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Abstract

We present several ideas for the development of
sequential and parallel dense linear algebra soft-
ware. The algorithms of Linpack and Eispack and
later LAPACK and ScaLAPACK have stood the
test of time in terms of robustness and accuracy.
We focus on producing high performance versions
of these algorithms. Our main results use the Al-
gorithms and Architecture Approach. It will be
seen that these ideas affect both Architecture and
Compiler Design. The paper briefly discusses the
following topics:

1. The Linear Transform Approach as a general
way to produce traditional algorithms.

2. The underlying role of Matrix Multiplication.

3. The use of matrix partitioning to describe tra-
ditional algorithms.

4. The two standard Data Structures of Dense
Linear Algebra hurt performance.

5. The Packed Data Format has poor perfor-
mance relative to Standard Full Format.

6. Standard full format meshes well with Indus-
try Standards.

7. Standard full format waste half the storage
for Triangular matrices.

8. A novel hybrid full format for Triangular ma-
trices.

9. The LAPACK and Level 3 BLAS approach
has a basic flaw.

10. The ScaLAPACK and PBLAS approach has
the same basic flaw.

11. New Block-based Data Structures for Matri-
ces remove the flaw.

12. Industry Standards relative to Dense Linear
Algebra Software.

13. Industry Standards relative to Distributed
Memory Computing

14. The role of concatenating submatrices to fa-
cilitate hardware streaming.

15. A need for Architecture to enlarge the Float-
ing Point Register File.

We describe anew result by showing that repre-
senting a matrixA as a collection of square blocks
can reduce the amount of data reformating re-
quired by LAPACK factorization algorithms from
O(n3) to O(n2). Newresults are presented for rec-
tangular full packed format which is a standard
full format array using minimal storage for rep-
resenting a symmetric or triangular matrix. The
LAPACK library contains some 125 times two (
full and packed storage ) routines for symmetric
or triangular matrices. Equivalent routines, writ-
ten for this new format, usually consist of just calls
to Level 3 BLAS and existing LAPACK full for-
mat routines. Hence they are trivial to produce.
We give several examples for Cholesky factoriza-
tion and an example for both triangular inverse
and Cholesky inverse. Finally, we introduce two
newdistributed memory near minimal storage al-
gorithms using square block packed format for
Cholesky factorization. We only give performance
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results for Square Block Format Cholesky, on an
IBM Power 3, and Rectangular Full Format, on an
IBM Power 4.

1 Introduction

We present a novel way to produce Dense Lin-
ear Algebra Factorization Algorithms (DLAFAs)
for serial and Distributed Memory Comput-
ing (DMC). The current Most Commonly Used
(MCU) Dense Linear Algebra (DLA) algorithms
for such systems have a performance inefficiency
and hence they give sub-optimal performance for
most of LAPACK’s factorizations. We show that
standard Fortran and C two dimensional arrays are
the main reason for the inefficiency. For the other
standard format ( packed one dimensional arrays
for symmetric and/or triangular matrices ) the sit-
uation is much worse. We introduce Rectangu-
lar Full Packed (RFP) format which represents a
packed array as a full array. This means that per-
formance of LAPACK’s packed format routines
becomes equal to or better than their full array
counterparts. Hence, RFP format should replace
packed format. Returning to full format, we also
show how to correct these performance inefficien-
cies by using New Data Structures (NDSs) along
with so-called kernel routines. The NDS general-
izes the current storage layouts for both standard
layouts. The BLAS [32, 11, 12] (Basic Linear Al-
gebra Subroutines) were introduced to make the
algorithms of DLA performance-portable. How-
ever, a relationship exists between Level 3 BLAS
use in most of level 3 factorization routines of
the LAPACK library. This relationship intro-
duces a performance inefficiency in LAPACK al-
gorithms and we will now discuss the Level 3
BLAS, DGEMM(Double precision GEneral Matrix
Matrix) to illustrate this fact. This paper is a con-
densation and continuation of [23]. To make it self
contained we shall repeat or re-formulate certain
essential parts of [23]. A re-formulation and con-
densation of it is to appear in [24]. At the end of
the paper we include a Glossary of the Acronyms
that we will be using.

In [2, 7, 41, 21] design principles for produc-
ing a high performance “Level 3”DGEMMBLAS
are given. A key design principle forDGEMMis to
partition its matrix operands into submatrices and
then call an L1 kernel routine multiple times on
its submatrix operands. The suffixi in Li stands

for level i cache. Li is not to be confused with
Level i BLAS. Another key design principle is to
change the data format of the submatrix operands
so that each call to the L1 kernel can operate at or
near the peak Million FLoating point OPerations
per Second (MFlops) rate. This format change and
subsequent change back to standard data format is
a cause of a performance inefficiency inDGEMM.
The DGEMMinterface definition requires that its
matrix operands be stored as standard Fortran or C
two-dimensional arrays. Any LAPACK factoriza-
tion routine of a matrixA calls DGEMMmultiple
times with all its operands being submatrices of
A. For each call data copy will be done; the prin-
ciple inefficiency is therefore multiplied by this
number of calls. However, this inefficiency can
be eliminated by using the NDS to create a substi-
tute forDGEMM, e.g. its analogous L1 kernel rou-
tine, which doesnot require the aforementioned
data copy.

The MCU software for DLA is probably the
LAPACK Library. Thus, the standard data layout
for matrices becomes, for the most part, the two di-
mensional rectangular full array of the Fortran and
C languages. The Level 1,2,3 BLAS are an Indus-
try Standard and they support the DLA algorithms
of the LAPACK library. Also, for the most part,
the input and output formats of the BLAS are the
two dimensional arrays of the Fortran and C lan-
guages. Now the LAPACK library and the Level
2 BLAS are partly written in terms of the packed
data format that was introduced in 1950 and sup-
ported since by the DLA community. Their pur-
pose was to represent symmetric and triangular
matrices using minimal storage. Note that plac-
ing these matrices in a standard full array wastes
half the storage of the full array. At this point
we want to dispense with the packed data format
and Level 2 packed BLAS as this paper demon-
strates that packed data format can be represented
by RFP format. RFP format is a standard full ar-
ray that requires minimal storage and it is easy
to write LAPACK library software for this for-
mat; see also [20]. Now, looking at BLAS writ-
ten for the full format, we find they are designed
for shared memory processors which use the In-
dustry Standards Threads and Open MP. The point
of this paragraph was to argue that the Industry
Standards for DLA and the standard full format
arrays of Fortran and C mesh together very well
on shared memory machines; ie, to cover Point 6
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of the Abstract.
We introduce a NDS as a replacement for stan-

dard Fortran or C array storage. One of the key
insights is to see that storing a matrix as a collec-
tion of submatrices (eg, square blocks of sizeNB)
leads to very high performance on today’s, RISC
type, processors. Some NDS order the blocks in
standard Fortran or C order; ie, store the blocks
either in column-major or row-major order. How-
ever, to facilitate hardware streaming, [31, 38], it
may be necessary to reformat the interior of each
block. The main benefit of the simpler data layout
is that addressing of an arbitrarya(i, j) element
of matrix A can be easily handled by a compiler
and/or a programmer. We call the NDSsimpleif
the ordering within the blocks as well as the order-
ing of the blocks themselves follows the standard
row / column major order.

For level 3 algorithms, the basis of the ESSL
(Engineering and Scientific Subroutine Library)
is a set of kernel routines that achieve peak per-
formance when the underlying arrays fit into L1
cache [2, 27]. If one were to adopt the new,
simple NDS then BLAS and LAPACK type al-
gorithms become almost trivial to write. At this
point we shall follow [23] closely as we want to
clarify how NDS differs from standard full format.
Briefly, NDS are a good format for BLAS kernels
and full format is not. Also, the combination of
using the NDS with kernel routines is a general
procedure and for matrix factorization it helps to
overcome the current performance problems in-
troduced by having a non-uniform, deep memory
hierarchy. We use the Algorithms and Architec-
ture (AA) approach, see [2], to illustrate what we
mean and in doing so we cover Point 3 of the Ab-
stract. We shall make eight points below. Points
1 to 3 are commonly accepted architecture facts
about many of today’s processors. Points 4 to 6 are
DLA algorithms facts that are easily demonstrated
or proven. Points 7 and 8 are a natural conclusion
based on the AA approach.

1. Floating point arithmetic usually cannot be
done unless the operands involved first reside
in the L1 cache.

2. Two-dimensional Fortran and C arrays donot
map nicely into L1 cache.

(a) The best case happens when the arrays
are contiguous and properly aligned.

(b) At least a three-way set associative
cache is required when matrix multi-
ply is being done asDGEMMhas three
operands.

3. For peak performance, all matrix operands
must be used multiple times when they enter
L1 cache.

(a) This assures that the cost of bringing an
operand into cache is amortized by its
level 3 multiple re-use.

(b) Multiple re-use of all operands only oc-
curs when all matrix operands map well
into L1 cache.

4. Each scalar a(i, j) factorization algo-
rithm has a square submatrix counterpart
A(I:I+NB-1,J:J+NB-1) algorithm.
See

(a) Golub and Van Loan’s “Matrix Compu-
tations” book, [18].

(b) The LAPACK library.

5. Some submatrices are both contiguous and fit
into the L1 cache.

6. Dense matrix factorization is a level 3 com-
putation.

(a) Dense matrix factorization, in the con-
text of Point 4, is a series of submatrix
computations.

(b) Every submatrix computation (execut-
ing any kernel routine) is a level 3 com-
putation that is done in the L1 cache.

(c) A level 3 L1 computation is one in
which each matrix operand gets used
multiple times.

From Points 1-6, we conclude Points 7 and 8:

7. Map the input Fortran/C array (matrix A) to
a set of contiguous submatrices each fitting
into the L1 cache.

(a) For portability (using block hybrid for-
mat) perform the inverse map after ap-
plying Point 8 (below).

8. Apply the appropriate submatrix algorithm.
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The book [18], Point 4a, gives a detailed listing
of the scalar algorithms and describes (with ref-
erences to the research literature) their block sub-
matrix counterparts. The LAPACK library, Point
4b, gives code for the submatrix counterpart algo-
rithms. The block submatrix codes of Point 4b use
Fortran and C to input their matrices, so Point 5
doesnot hold for MCU algorithms. See page 739
of [22] for more details. Point 5 does hold for the
NDS described here. Assuming both Points 5 and
6 hold, we see that Point 3 holds for every execu-
tion of the kernel routines that make up the factor-
ization algorithm. This implies that near peak per-
formance will be achieved. Points 7 and 8 suggest
an algorithmic change that is justified by Points 1
to 6. Point 7 is pure overhead for the new algo-
rithms. Using the new data formats reduces this
cost to zero. By only doing Point 8 we see that
we can get near peak performance as every sub-
computation of Point 8 is a Point 6b computation.
Note that each kernel call of the submatrix algo-
rithm is a level 3 call done in L1 cache and so, on
average, every scalar of each submatrix gets used
multiple times.

Now we discuss the use of kernel routines in
concert with NDS. Take any standard linear alge-
bra factorization code, say Gaussian elimination
with partial pivoting or the QR factorization of an
M by N matrix, A. It is quite easy to derive the
block equivalent code from the standard code. In
the standard code a floating point operation is usu-
ally a Fused Multiply Add (FMA), (c = c − ab),
whose block equivalent is a call to aDGEMMker-
nel. Similar analogies exist; eg, forb = b/a or
b = b ∗ a, we have a call to either aDTRSMor
a DTRMMkernel. In the simple block equivalent
codes we are led to one of the variants of IJK or-
der, [10]. For these types of new algorithms the
BLAS are simply calls to kernel routines. It is im-
portant to note that no data copying need be done.

There is one type of kernel routine that deserves
special mention. It is the factor kernel. Neither
LAPACK nor the research literature treat factor
kernels in sufficient depth. For example, the fac-
tor part of LAPACK level 3 factor routines are
level 2 routines; they are named with the suffix
TF2, and they call Level 2 BLAS repetitively.
On the other hand ESSL, [2], and more recently,
[22, 25, 14, 26, 4, 15, 16, 3], where sometimes re-
cursion is used, have produced level 3 factor rou-
tines that employ level 3 factor kernels to yield

level 3 factor parts. The above four paragraphs
and its Points 1 to 8 are also a basis of some of the
MCU LAPACK library. We are referring to LA-
PACK’s level 3 full format DLAFAs. However,
these routines are based on using Level 3 BLAS
which uses standard full format Fortran or C 2-D
arrays and on level 2 factorization parts of these
routines which uses Level 2 full BLAS. Besides
Point 3 of the Abstract these four paragraph cover
Points 4, 9, 11 and 12 of the Abstract.

Besides full storage, there is packed storage,
which is used to hold symmetric/triangular matri-
ces. Using the NDS instead of the standard packed
format [23] describes new algorithms that save
“half” the storage of full format for symmetric ma-
trices and outperform the current block based level
3 LAPACK algorithms done on full format sym-
metric matrices. Also, we introduce RFP format
which is a variant of Hybrid Full Packed (HFP)
format. HFP format is described in [20]. RFP
format is a rearrangement of a standard full stor-
age array holding a symmetric / triangular matrix
A into a compact full storage rectangular array
AR that uses minimal storageNT=N(N+1)/2 .
Therefore, Level 3 BLAS can be used on AR.
In fact, using AR instead of A on an equivalent
LAPACK algorithm gives slightly better perfor-
mance. This offers the possibility to replace all
packed or full LAPACK routines with equivalent
LAPACK routines that work on AR. We present
a new algorithm and indicate its performance for
Cholesky factorization and inverse using AR in-
stead of full A or packed AP; see also [20]. This
paragraph is covering anewresult called RFP for-
mat and it properties and Points 4, 5 and 7 of the
Abstract.

Let us now consider some Industry Standards
for Single Program Multiple Data (SPMD) ma-
chines. For DLA and ScaLAPACK [39] in particu-
lar one uses aP×Qmesh of processors (processes).
The programming model is a Block Cyclic Lay-
out (BCL) of a rectangular full format array. As
such, symmetric and triangular matrices are rep-
resented in full arrays which waste half the stor-
age on allPQ processors. Currently, the LAPACK
and ScaLAPACK project, [9], has a NSF funded
project to investigate and produce a “packed ar-
ray solution” with supporting PBLAS. A major re-
sult of this paper is to present two solutions to this
problem; one is a detailed solution and the sec-
ond is only a sketched solution. Both solutions use
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nearly minimal storage on each of thePQ proces-
sors. Again, we argue that the Industry Standards
for DLA and standard fullrectangularformat ar-
rays of Fortran and C mesh together very well for
SPMD machines ( see Item 13 of the Abstract ).
However, there are no distributed memory indus-
try standards for minimal storage arrays holding
symmetric and triangular matrices. Our new re-
sults in Section 4 suggest new industry standards.

In paragraphs one and two of this Introduction
we briefly discussed a flaw in the LAPACK and
Level 3 BLAS approach. The NDS, discussed in
this Introduction, removes this flaw. It turns out
that a Square Block (SB), these SB’s make up our
new NDS, is the fundamental building block of
the standard BCL. Therefore, it should not be sur-
prising that our NDS can lead to high performing
DMC ScaLAPACK type algorithms for the SPMD
programming model. Also, it is fairly easy to see
that the ScaLAPACK PBLAS approach has the
same flaw as the LAPACK and Level 3 BLAS ap-
proach. We suggest that this flaw is compounded
as ScaLAPACK represents the distributed global
rectangular matrixA on each processor of aP× Q

mesh as a single full format array. These single
full format arrays are also, by definition, a rectan-
gular array consisting of just SB’s; ie, our NDS.

So, another generalization of using NDS applies
or relates to ScaLAPACK. The standard BCL on a
P×Qmesh of processors has parameterNB. There-
fore, it is natural to view the square submatrices
of orderNB that arise in these layouts as atomic
units. Now, many ScaLAPACK algorithms can be
viewed as right looking LAPACK algorithms: fac-
tor and scale a pivot panel, broadcast the scaled
pivot panel to all processors, and then perform a
Schur Complement Update (SCU) on all proces-
sors. Three example areLU = PA, PDGETRF;
QR = A, PDGEQRF; LLT = A, PDPOTRFof
ScaLAPACK. We describe in Section 4 some ben-
efits:

1. since P and Q are arbitrary integers, the
square blocks can move about the mesh as
contiguous atomic units

2. it is possible to eliminate the PBLAS layer of
ScaLAPACK as only standard Level 3 BLAS
are needed

3. for triangular / symmetric matrices one only
needs to use about half the storage.

In Section 4, we outline two DMC Right Look-
ing Algorithms (RLAs) for Cholesky Factoriza-
tion on aP × Q mesh of processors for the SPMD
programming model. They both have the features
(1-3) above. However, our twoLLT = A algo-
rithms will use near minimal storage and so can be
codes for the newly proposedPDPPTRFScaLA-
PACK algorithm [9]. In Sections 4.1 and 4.2 we
give full details on one of these algorithms. The
above three paragraphs are covering Points 10, 11,
12 and 13 of the Abstract.

In Section 2 we describe some basic algorith-
mic and architectural results as a rationale for the
work we are presenting. The idea is to briefly elu-
cidate the AA approach [2]. An architecture with
an FMA instruction has a real advantage and we
argue this assertion in Section 2. We describe the
linear transformation approach to producing DLA
algorithms and use it as a foundation for produc-
ing their high performance implementations. Sec-
tion 2.1 describes anewconcept which we call the
L1 cache / L0 cache interface [5]. The L0 cache
is the register file of a Floating Point Unit. To-
day, many architectures possess special hardware
to support the streaming of data into the L1 cache
from higher levels of memory [31, 38]. In fact
with a large enough floating point register file it
may be possible to do, say, a L2 or L3 cache block-
ing for aDGEMMkernel; ie, completely bypass the
L1 cache. This is the case in [5] where a 6 by 6
register block for theC matrix can be used as this
processor has 32 dual SIMD floating point regis-
ters. To do L0 register blocking we can concate-
nate tiny submatrices to faciltate streaming; ie, to
reduce the number of streams. In effect, at the L0
level we have a concatenation of tiny submatrices
behaving like a single long stride one vector that
passes through L1 and into L0 in an optimal way.
Sections 2.1, 2.2 and 2.21 gives details about this
technique. Using this extra level of blocking does
not negate the benefits of using SB’s. It is still es-
sential thatNB2 elements of a SB be contiguous.
However, the SB’s are now no longer simple ac-
cording to our definition. And using non-simple
SB’s as described here allows us to claim in Sec-
tion 3.2 that data copy for RLAs using SBs can be
O(N2) instead of O(N3) which occurs for stan-
dard Fortran or C two dimensional arrays. This
paragraph is addressing an application of the AA
approach and Points 1, 2, 4, 11, 12, 14 and 15 of
the Abstract.
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In Section 3.1 we describe Square Block Packed
(SBP) format for symmetric/triangular arrays and
show that they generalize both the standard packed
and full arrays used by DLA algorithms. This Sec-
tion is covering SBP format which is the NDS of
Point 8 of the Abstract. In Section 3.1.1 there is
a short discussion about four serial Cholesky fac-
torization algorithms. In general, three of these
algorithms, called left looking, right looking and
recursive, [10, 22, 19, 16] apply to most DLAFA’s.
For each DLAFA one can use any appropriate
matrix data structure. Thus, data structures and
DLAFA’s are independent components and hence
performance of a factorization code becomes the
product of the number of elements in each cator-
gory. It follows that an implementer or compiler
writer should try many possibilities in order to
find an optimally performing one. Using the Level
3 BLAS and standard full format data structures
the FLAME approach [19] describes an automatic
procedure to select a “best” performing DLA algo-
rithm. We have just covered another application
of the AA approach and also Point 4 of the Ab-
stract. We describe RFP format arrays in Section
3.3. They can be used to replace both the standard
packed and full arrays used by DLA algorithms.
A minimal new coding effort is required as ex-
isting LAPACK routines would constitute most of
the new code. Section 3.3 demonstrates this for
Cholesky factorization, and Section 3.4 demon-
strates this for LAPACK Cholesky inverse and tri-
angular inverse codes. Performance results of RFP
format versus LAPACK for Cholesky factorization
and inverse are also given. In the comparison, only
LAPACK and Level 2,3 BLAS codes execute for
both RFP and the standard full and packed for-
mats. Section 3.5 gives conclusions about RFP
format. This paragraph is addressing Points 4, 5,
6 and 7 of the Abstract.

We have said very little about the Compiler in
regard to the AA approach. What we have in mind
is to try and automate the production of the ker-
nel routines by a Compiler which we think can be
done.

2 Rationale and Underlying
Foundations of our Ap-
proach

The purpose of this section is to argue that
DLAFA’s are nothing more than matrix multipli-
cation in disguise. Many reseachers have made
this observation; eg, [28]. Our ammunition goes
back to the ground breaking work of the originator
of matrix theory, Cayley. He invented the matrix
and first defined matrix multiplication. Again, we
follow part of the description given in [23].

For solving a set of linear equationsAx = b
there are two points of view. The more popular
view is to select an algorithm, say Gaussian elimi-
nation with partial pivoting, and use it to compute
x. The other view, which we adopt here, is to per-
form a series of linear transformations on bothA
andb so that the problem, in the new coordinate
system, becomes simpler to solve. Both points of
view have their merits. We use the second as it
demonstrates some reasons why the AA approach,
[2], is so effective. Briefly, the AA approach states
that the key to performance is to understand the al-
gorithm and architecture interaction. Furthermore
a significant improvement in performance can be
obtained by matching the algorithm to the archi-
tecture and vice-versa. In any case, it is a very
cost-effective way of providing a given level of
performance.

The fundamental reason or idea behind the co-
ordinate transformation approach is the concept
of Equivalence and Elementary Matrices. In [6],
pages 170-173, matrices and row-equivalence are
discussed. In particular, elementary row opera-
tions of three types are cited on page 172. The
most important is the addition of any multiple
of one row to any other row of a matrix. See
also [34], Chapter 6, Elementary Operations and
the concept of Equivalence, for another treatment.
Closely related to elementary operations (there are
both row and column types) are elementary matri-
cesE which are a rank one modification of the
identity matrixI : E = I + σuvT , whereu andv
are vectors andσ is a scalar. We have the follow-
ing:

THEOREM Let Ax = b represent anm by
n linear system of equations. LetT represent
an elementary operation or an elementary matrix.
Let A1x = b1 represent them by n linear sys-
tem of equations after applyingT to both sides of
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Ax = b, i.e., A1 = TA andb1 = Tb. Then the
solution properties of both systems are the same.

Note that a more general form of an elementary
operation can be considered a linear transforma-
tion.

COROLLARY Let Ti, 1 ≤ i ≤ k representk
linear transformations where eachTi is elemen-
tary. LetT = Tk...T1. ThenAx = b andCx = d
whereC = TA andd = Tb have the same solu-
tion properties.

As an example, we relate this second approach
to the first approach of Gaussian elimination with
partial pivoting, i.e.,LU = PA. We getC = U
and k = n when the linear transformations are
Ti = Li or k = dn/NBe when a blocked method
is used. A second example would beA = QR
factorization whereC = R and theTi would be
elementary Householder matrices or the compact
WY representation, [14, 15]. We remark that Sec-
tion 2, pages 939-942 of [8] shows that product
of n Li to produceL requiresno additional work,
i.e., L is obtained via concatenation of then Li.
This isnot the case with elementary Householder
matrices; see Section 2, pages 606-615 of [14].

Now we examine a single elementary column
operation. Let the two columns be represented by
vectorsx andy and the scalar multiple byα. Then
this operation is the Level 1 BLASDAXPYoper-
ation y = y + αx. Note thatDAXPYis a series
of multiply-add operations. In fact the dot-product
xT y operation, another pervasive operation, is also
a series of multiply-add operations. For DLA we
can conclude that multiplies and additions occur
equally often and almost always in multiply-add
pairs. Hence, from the architecture point of view,
the use of the FMA instruction,T=B+A* C, is a
natural architecture choice for DLA. We mention
that the FMA instruction costs slightly more than
the multiply instruction and that doing a multi-
ply and an add costs about 1.7 times more than
a FMA, [35, 17, 36].

Next we claim that matrix multiplication is per-
vasive in the algorithms of DLA; eg, see the
book [18], and theLAPACKlibrary. Let R and
S be linear transformations with a common set of
basis vectors. LetT = S(R) be the composition
of the two linear transformations where we want
T to be linear. This restriction, i.e., that T be lin-
ear, on the basis forT , in terms of the common
set of basis vectors,definesmatrix multiplication.
In fact, in the 1840’s Cayley first described a ma-

trix as a rectangular two-dimensional array. Ac-
cording to Meyer [33], Cayley also defined ma-
trix multiplication as the result of the composition
of two linear coordinate transformations. We take
the same view here. Our dual point of view lets
us describe DLA algorithms as a series of linear
coordinate transformations with a common set of
basis vectors. And for each such composition of
transformations to be linear wemustperform ma-
trix multiplication. See [6], Chapter 8, pages 209-
214 of for more details. We also note that matrix
multiply is by definitiona series of parallel dot-
product and hence just a series of FMAs, which
can be done independently.

We have just seen why matrix multiply repeat-
edly shows up in say,LAPACKalgorithms. In fact,
the Level 3 BLAS,DGEMM, is called the most im-
portant Level 3 BLAS. Our next point relates to
the current block based (submatrix) matrix multi-
plication used by mostDGEMMimplementations.
These implementations are optimal in the follow-
ing sense:

THEOREM (Toledo, [40]) Any algorithm that
computesai,kbk,j for all 1 ≤ i, j, k ≤ n must
transfer between memory and anM word cache
Ω(n3/

√
M) words ifM < n2/5.

The current block based algorithms transfer
O(n3/

√
M) words. The point here is that we need

not search for better ways to perform matrix multi-
plication via otherDGEMMimplementations as our
current algorithms are achieving the lower bound
complexity measure. Also, practical experimen-
tal evidence, ( eg ESSL’sDGEMMachieves better
than 90 % of peak performance ), tells us the same
thing in a very concrete way.

We end this section with brief remarks about
blocking. The general idea of blocking is to get
information to a high speed storage and use it
multiple times to amortize the cost of moving the
data. In doing so, we satisfy Points 1 and 3 of
the Introduction. We only touch upon the Transla-
tion Look-aside Buffer (TLB), cache, and register
blocking. The TLB contains a finite set of pages.
These pages are a good approximation of thecur-
rent working setof the computation. If the com-
putation addresses only memory in the TLB then
there is no penalty. Otherwise, a TLB miss occurs
resulting in a large performance penalty; see [2].
Cache blocking reduces traffic between the mem-
ory and or a higher level cache and the L1 cache.
Analogously, register blocking reduces traffic be-
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tween the L1 cache and the registers of the CPU;
ie, the floating point register file. Cache and regis-
ter blocking are further discussed in [2]. Section 2
is covering an application of the AA approach and
Points 1, 2 and 3 of the Abstract.

2.1 The Need to Reorder a Contigu-
ous Square Block

NDS represent a matrixA as a collection of SB’s
of orderNB. Each SB is contiguous in memory.
In [37] it is shown that a contiguous block of mem-
ory maps best into L1 cache as it minimizes L1
and L2 cache misses as well as TLB misses for
matrix multipy and other common row and col-
umn matrix operations. When using standard full
format on a DLAFA one does an O((N/NB)2)
amount of data copy in callingDGEMMin an outer
do loop:j=1,N,NB . Over the entire DLAFA this
becomes O(N3).

Computer manufacturers have recently intro-
duced hardware, eg. [5], that initiates multiple
floating point operations (two to four) in a single
cycle. Also, each floating point operation requires
several cycles (five to ten) to complete. There-
fore, one needs to be able to schedule many (ten to
forty) independent floating point operations every
cycle. Thus, if one wants to run their floating
point applications at their peak MFlops rate it is
sufficient for hardware to introduce larger floating
point register files (storage for the operands and
results of the floating point units). We call this
tiny memory the L0 cache.

We now want to discuss anewconcept which
we call the L1 cache / L0 cache interface. On some
RISC processors there are floating point multi-
ple load and store instructions associated with the
multiple floating point operations; see [2, 5]. A
multiple load / store operation usually requires
that its multiple operands be contiguous in mem-
ory. Some newer processors with multiple float-
ing point operations require their operands to be
contiguous; eg, [5]. So, data that enters L1 may
also have to be properly ordered to be able to enter
L0 in an optimal way. Unfortunately, layout of a
SB in standard row / column major order mayno
longer lead to an optimal way. In some cases it is
sufficient to reorder a SB into submatrices which
we call register blocks. Doing this produces a new
data layout that will still be contiguous in L1 but
can also be loaded into L0 from L1 in an optimal

manner. Of course, the order and size in which
the submatrices (register blocks) are chosen will
be platform dependent. This section is addressing
another application of the AA approach and Points
8, 9, 10, 11, 14 and 15 of the Abstract.

2.2 A DGEMMkernel based on Square
Block Format

Currently, on some platforms, register blocks can
be considered as submatrices of a SB. This fact
is very important as it means one can still more
easily use the AA approach. To see this letA, B
andC be three SB’s and suppose we want to apply
DGEMMto A, B andC. If we partitionA, B and
C into conformable submatrices that are register
blocks then we can use Points 1 to 6 of the Intro-
duction at the register block level to obtain a near
optimal kernel forDGEMM.

Let AT beK × M, B beK × N andC beM × N.
Here one should think thatM, N, K are of the or-
der ofNB. Note that any SB stored in column ma-
jor order is identical to its transpose stored in row
major order and vice-versa. So, we want to com-
puteC = C − AT B as matrix multiply is stride
one across the rows and columns ofA andB re-
spectively. Let the sizes of the register blocks be
kb × mb, kb × nb andmb × nb. ThusAT , B and
C are matrices of register blocks of sizesk1×m1,
k1×n1 andm1×n1 respectively. Now consider a
fundamentalDGEMMkernel building block which
consists of multiplyingk1 register blocks ofAT by
k1 register blocks ofB and summing them to form
the update of a register block ofC. The entire ker-
nel will therefore consist of executingm1 × n1

fundamental building blocks in succession. And,
each element ofA, B andC getsN, M, K reuse re-
spectively; see Point 3 of the Introduction.

2.2.1 The FundamentalDGEMMKernel Build-
ing Block and Hardware Streaming

If we use simple SB format we would needmb
rows of AT andnb columns ofB andC to exe-
cute the fundamental building block. This would
requiremb+ 2nb stride one streams of matrix data
to be present and working during the execution of
a single building block. Many architectures donot
possess special hardware to support this number
of streams. Now the minimum number of streams
is three; one each for matrix operandsA, B and
C. Is three possible? An answer emerges if one
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is willing to change the data structure away from
simple SB order. We prefer the new data structures
to consist of submatrices ( register blocks ); this is
another application of the AA approach.

In Figure 1 we describe a data layout of a fun-
damental register block computation. Initially, a
register block ofC is placed inmb × nb floating
point registersT(0 : mb− 1, 0 : nb− 1). An inner
do loop on l=0:K-1,kb consists of perform-
ing kb sets ofmb × nb independent dot products
on T. For a given single value ofl vectorsu, v
of lengthsmb, nb from A andB respectively are
used to updateT = T − uvT . This update is a
DAXPYouter product update. However, and this
is important, since theT’s are in registers there
areno loads and stores of theT’s. The entire up-
date isT = T− AT(0 : K − 1, i : i + mb − 1) ×
B(0 : K− 1, j : j+ nb− 1). If A andB were sim-
ple SB’s we would need to access vectorsu, vwith
strideNB and also there would bemb+nb streams.
Luckily, if we transposeK × mb AT andK × nb

B we will simultaneously accessu, v stride one,
just get two streams and be able to addressA, B
in the standard way. These two transpositions ac-
complishes a matrix data rearrangement that al-
lows for an excellent L1 / L0 interface of matrix
data for theDGEMMkernel fundamental building
block computation. Sections 2.1 and 2.1.1 cover
an application of the AA approach and Points 2,
11, 14 and 15 of the Abstract.

3 SBP and RFP Formats for
Symmetric/Triangular Ar-
rays

SBP format emerges from applications of the AA
approach. Point 3 of the Abstract gives one a free
parameterNB to describe DLAFAs. Unlike stan-
dard 2-D arrays contiguous SBs of orderNBmap
optimally into a L1 cache [37]. A drawback of
SBP format is that the MCU LAPACK library does
not recognise this format. To get around this prob-
lem one can transform to SBP format, execute the
DLAFA on SBF format and then transform back
to standard 2-D format. In [23, 3] and elsewhere
this approach is used and the performance results
are better, sometimes decidedly so, despite having
to incur the penalty of two data transformations.
RFP format is a standard 2-D array and so Level 3
BLAS and triangular LAPACK DLAFAs work di-

Packed Lower
1
2 11
3 12 20
4 13 21 28
5 14 22 29 35
6 15 23 30 36 41
7 16 24 31 37 42 46
8 17 25 32 38 43 47 50
9 18 26 33 39 44 48 51 53

10 19 27 34 40 45 49 52 54 55

Packed Upper

1 2 4 7 11 16 22 29 37 46
3 5 8 12 17 23 30 38 47

6 9 13 18 24 31 39 48
10 14 19 25 32 40 49

15 20 26 33 41 50
21 27 34 42 51

28 35 43 52
36 44 53

45 54
55

Figure 2: Ordern=10 Packed Format Arrays

rectly on this format. Again, the LAPACK library
does not accept this format for its full triangular
matrices. In Sections 3.3-5 we give some reasons
why this would be a good idea.

3.1 SBP Formats Generalize Stan-
dard Full and Packed Formats

SBP formats are a generalization of packed for-
mat for triangular arrays. They are also a general-
ization of full format for triangular arrays. A ma-
jor benefit of the SBP formats is that they allow
for level 3 performance while using about half the
storage of the full array cases. In packed format,
the elements of a triangular matrix of ordern = 10
would be stored as shown in Figure 2; the number
in location(i, j) of Figure 2 isa(i, j)’s storage po-
sition inA.

For SBP formats there are two parameters,
TRANSand NB, where usuallyn ≥ NB. For
these formats, we first choose a block size,NB,
and then we lay out the matrix elements in squares
of sizeNB. Each square block can be in column-
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l

l

u1

umb

v1 vnb

T1,1

Tmb,1

T1,nb

Tmb,nb

Figure 1: FundamentalGEMMKernel Building Block.
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major order (TRANS= ‘N’) or row-major order
(TRANS= ‘T’). These formats support bothuplo
= ‘L’ or ‘U’. We shall only cover the caseuplo
= ‘L’. For uplo = ‘L’, the first vertical stripe isn
by NB and it consists ofn1 square blocks where
n1 = dn/NBe. It holds the first trapezoidaln by
NBpart ofL. Here we rename matrixA matrixL
to remind the reader that our format is lower trian-
gular. The next stripe hasn1−1 square blocks and
it holds the next trapezoidaln - NBby NBpart of
L, and so on, until the last stripe consisting of the
last leftover triangle is reached. The total number
of square blocks isn1(n1 + 1)/2.

The top of Figure 3 gives an example of
Square Blocked Packed Lower (SBPL) format
with TRANS = ‘T’. Here n = 10, TRANS= ‘T’
andNB= 4 and the numbers represent the position
within the array where the matrix elementa(i, j)
is stored. Note the missing numbers (eg, 2, 3, 4, 7,
8, and 12) which correspond to the upper right cor-
ner of the first stripe. This square blocked, lower,
packed array consists of 6 SB arrays. The first
three SB’s hold submatrices that are 4 by 4, 4 by 4,
and 2 by 4. The next two blocks hold submatrices
that are 4 by 4 and 2 by 4. The last SB holds a 2
by 2 submatrix. Note that we have added padding,
which we have done for ease of addressing. It is
straightforward to address this set of six SB’s as a
composite block array.

Now we turn to full format storage. We con-
tinue the example with a matrixA of orderN= 10,
in an arrayA of LDA= 12. To get SBP format one
simply setsNB = LDA = 12 and one obtains the
full format arrayA; ie, SBP format gives a single
block triangle which happens to be full format (
see bottom of Figure 3 ). Thus, it should be clear
that SBP format generalizes standard full format.

3.1.1 Benefits of SBP Formats

We believe a main innovation in using the SBP
formats is that one can translate, verbatim, stan-
dard packed or full factorization algorithms into a
corresponding SBP format algorithm by replacing
each reference to ani, j element by a reference
to its corresponding SB submatrix. This is an easy
application of Point 4 in the Introduction. Because
of this storage layout, the beginning of each SB is
easily located. Another key feature of using SB’s
is that SBP format supports Level 3 BLAS. Hence,
old, packed and full codes are easily converted into
square blocked, packed, level 3 code. Therefore,

1 * * *
5 6 * *
9 10 11 *

13 14 15 16
-----------|
17 18 19 20|49 * * *
21 22 23 24|53 54 * *
25 26 27 28|57 58 59 *
29 30 31 32|61 62 63 64
-----------|-----------|
33 34 35 36|65 66 67 68|81 * * *
37 38 39 40|69 70 71 72|85 86 * *

* * * * | * * * * | * * * *
* * * * | * * * * | * * * *

1 * * * * * * * * *
2 14 * * * * * * * *
3 15 27 * * * * * * *
4 16 28 40 * * * * * *
5 17 29 41 53 * * * * *
6 18 30 42 54 66 * * * *
7 19 31 43 55 67 79 * * *
8 20 32 44 56 68 80 92 * *
9 21 33 45 57 69 81 93 105 *

10 22 34 46 58 70 82 94 106 118

* * * * * * * * * *
* * * * * * * * * *

Figure 3: Square Blocked Lower Packed Format
for NB=4andLDA=NB
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do j = 0, n-nb, nb
factor a(j:j+nb-1,j:j+nb-1) ! kernel routine for potrf
do i = j + nb, n-nb, nb

a(i:i+nb-1,j:j+nb-1) =
a(i:i+nb-1,j:j+nb-1) * aT(j:j+nb-1,j:j+nb-1) ! BLAS trsm

end do
do i = j +nb, n-nb, nb ! THE UPDATE PHASE

a(i:i+nb-1,i:i+nb-1) = a(i:i+nb-1,i:i+nb-1) -
a(i:i+nb-1,j:j+nb-1) * aT(i:i+nb-1,j:j+nb-1) ! BLAS syrk

do k = i + nb, n-nb, nb ! The Schur Complement update phase
a(k:k+nb-1,i:i+nb-1) = a(k:k+nb-1,i:i+nb-1) -

a(k:k+nb-1,j:j+nb-1) * aT(i:i+nb-1,j:j+nb-1) ! BLAS gemm
end do

end do
end do

Figure 4: Block Version of Right Looking Algorithm for Cholesky Factorization

one keeps “standard packed or full” addressing so
the library writer/user can handle his own address-
ing in a Fortran/C environment. Figure 4 describes
a RLA for block Cholesky factorization and illus-
trates what we have just said. For clarity, we as-
sume thatn is a multiple ofnb . Lines 2, 4, 7 and
9 of Figure 4 are calls to kernel routines.

3.1.2 Performance for SBP Cholesky

In Figure 5 the graphs plot MFlops versus ma-
trix order N . Note that the x-axis is log scale;
we let N range from 10 to 2000. The graphs
compare the code of Figure 4 versusDPOTRF.
In [23], a complete Fortran 77 code of Figure 4
is given. Data for the graphs were obtained on a
200 MHz IBM Power 3 with a peak performance
of 800 MFlops. The performance of the SBP
Cholesky algorithm of Figure 4 at orderN ≥ 200
is over 720 MFlops and then reaches 735 MFlops
at N = 500. Kernel routines for Cholesky fac-
tor and three BLASDTRSM, DSYRK, DGEMM
were used in Figure 4. Using conventional full for-
mat LAPACKDPOTRFwith ESSL BLAS, perfor-
mance first gets to 600 MFlops atN ≥ 600 and
only reaches a peak of 620 MFlops. We do not
include the cost of transforming the data format.
This is perhaps unfair. Nonetheless, we did it to
demonstrate what type of performance is possible.
Note that the performance of Figure 4 shows some
choppy behavior especially whenN is small. The
matrix orders where this occurs arenot multiples
of four. For example, whenN = 70 the perfor-
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[Square Blocked Packed Cholesky , DPOTRF] vs.N

Figure 5: Performance of SBP format withnb=88
versus LAPACKDPOTRF

mance is about the same asN = 60. This is be-
cause Figure 4 is solving an orderN = 72 prob-
lem, while the MFlops calculation is being done
for N = 70. However, the kernel routines are
much simpler when there is no fixup code. In the
kernel codes register blocking withmb=4, nb=4
andkb=1 is used. Note that Figure 4 is always
faster thanDPOTRFby as much as a factor of four
whenN = 60 and at least 15 % forN = 2000.
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3.1.3 Serial Cholesky Factorization Algo-
rithms

More generally this section might be entitled Ser-
ial DLAFA’s. However, our focus is on Cholesky
factorization and what we say about Cholesky fac-
torization here applies to many other DLAFA’s.
There are many Cholesky DLAFA’s. We only
mention left and right looking as well as hybrid
and recursive [30, 29, 22] ones. A left, right
looking algorithm does the least, most amount of
computation at outerdo loop stagej , respec-
tively. The recursive algorithm uses the divide-
and-conquer paradigm. The hybrid algorithm is
a combination of the left and right looking algo-
rithms. The current version of LAPACK [29], uses
the hybrid algorithm. The paper [3] examines all
these four algorithms using SBF, packed recur-
sive and standard full and packed formats. Per-
formance studies on six platforms, Alpha, IBM
P4, Intel x86, Itanium, SGI and SUN were made.
Overall, the hybrid algorithm using SBF was best.
However, it was not a clear winner.

3.2 Data Copy of RLA’s can be O(N2)

The result we now give holds generally for RLAs
for DLAFAs. And similar results hold for Left
Looking Algorithms (LLAs). Here we shall
be content with demonstrating that the Cholesky
RLA on SBPF can be done by only using O(N2)
data copies.

In Figure 4 the O(N3) part of the RLA has to
do with the SCU; ie, the innerDGEMM do loop
over variablek . We assume each call toDGEMM
will do data copy on each of its three operandsA,
B and C. Now the number ofC SB’s that get
SCUed over the entire RLA isn1(n1 − 1)(n1 −
2)/2 wheren1 = dN/NBe andN is the order ofA. It
is therfore clear that O(N3) data copies will occur.

In Section 2.2.1 we indicated that it is now usu-
ally necessary to reformat each SB every time
DGEMMis called if simple SB’s are used. We now
demonstrate that we can reduce this data copy cost
to O(N2). What we intend to do is to store the
C operands ofDGEMMin the register block format
that was indicated in Section 2.2.1. Hence, the for-
mat of theseC operands is then fixed throughout
the algorithm of Figure 4 and no additional data
copy occurs for them during the entire execution
of the RLA of Figure 4. And clearly, an initial for-
matting cost, if necessary, is only O(N2). Now we

examine theA andB operands of the SCU for the
outer loop variablej . SB’s A(j : n1, j) whose
total isn1−j are needed for the SCU as they con-
stitute all theA, B operands of the SCU at itera-
tion j . Summing fromj=1 to j = n1 we find
just n1(n1 − 1)/2 SB’s in all that need reformat-
ting ( data copying ) over the course of the entire
RLA of Figure 4. And since there are bothA and
B operands we may have to double this amount
to n1(n1 − 1) SB’s. However, in either case this
amount of data copy is clearly O(N2).

3.3 Cholesky Factorization using
Rectangular Full Packed Format.

RFP format is a standard full array of size
NT=n(n+1)/2 that holds a symmetric / triangu-
lar matrixA of ordern. It is closely related to HFP
format, see [20], which representsA as the con-
catenation of two standard full arrays whose total
size is alsoNT. A basic simple idea leads to both
formats. LetA be an ordern symmetric matrix.
BreakA into a block2× 2 form

A =

[

A11 AT
21

A21 A22

]

(1)

whereA11 andA22 are symmetric. Clearly, we
need only store the lower triangles ofA11 andA22

as well as the full matrixA21. Whenn = 2k is
even, the lower triangle ofA11 and the upper tri-
angle ofAT

22 can be concatenated together along
their main diagonals into an(k+1)×k dense ma-
trix. This last operation is the crux of the basic
simple idea. The off-diagonal blockA21 is k × k,
and so it can be appended below the(k + 1) × k
dense matrix. Thus, the lower triangle ofA can
be stored as a single(n + 1) × k dense matrix
AR. In effect, each block matrixA11, A21 and
A22 is now stored in “full format”. This means
all entries ofAR can be accessed with constant
row and column strides. So, the full power of LA-
PACK’s use of Level 3 BLAS are now available
for symmetric and triangular computations. Addi-
tionally, one is using the minimal amount of stor-
age. Finally,ART which isk × (n + 1) has these
same two desirable properties; see Figure 6, where
n = 10. In Figure 6 we have added vertical| ’s
to try to visually delineate trianglesT1,T2 rep-
resenting lower, upper triangles ofA11 , AT

22 re-
spectively and square or near squareS1 represent-
ing matrixA21. The elements ofA are represented
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using 0 indexing. NowA has a block2 × 2 form
Cholesky factorization

LLT =

[

L11 0
L21 L22

] [

LT
11 LT

21

0 LT
22

]

(2)

whereL11 and L22 are lower triangular. Equa-
tion 2 is the basis of a Simple Related Partition
Algorithm (SRPA) on RFP format. We now illus-
trate this by using existing LAPACK routines and
Level 3 BLAS. The SRPA with partition sizesk
and k and n = 2k is: (see equations 1, 2 and
Figure 6).

1. factorL11L
T
11 = A11

call dpotrf(’L’,k,AR(1,0),

n+1,info)

2. solveL21L
T
11 = A21

call dtrsm(’R’,’L’,’T’,’N’,k,k,

one,AR(1,0),n+1,AR(k+1,0),n+1)

3. updateAT
22 ← AT

22 − L21L
T
11

call dsyrk(‘U’,’N’,k,k,-one,

AR(k+1,0),n+1,one,AR(0,0),n+1)

4. factorUT
22U22 = AT

22

call dpotrf(‘U’,k,AR(0,0),

n+1,info)

This covers RFP format whenuplo = ‘L’ and
n is even. A similar result holds forn odd. We let
n1 = dn/2e andn2 = bn/2c so thatn1 + n2 = n
andn1 = n2 + 1 and symmetric matricesA11 and
A22 have ordersn1 andn2 respectively. Again,
equation 1 applies. The lower triangle ofA11 and
the upper triangle ofAT

22 can be concatenated to-
gether along their main diagonals into an order
n1 dense matrix. The off-diagonal blockA21 is
n2 × n1, and so it can be appended below the or-
dern1 dense matrix. Thus, the lower triangle ofA
can be stored as a singlen×n1 dense matrixAR.
As before,AR andART have the same two desir-
able properties; see Figure 6 wheren = 9. Again,
equation 2 is the basis of a SRPA on RFP format.
This time the SRPA partition sizes aren1 andn2:
(see equations 1, 2 and Figure 6).

1. factorL11L
T
11 = A11

call dpotrf(’L’,n1,AR(0,0),

n,info)

2. solveL21L
T
11 = A21

call dtrsm(’R’,’L’,’T’,’N’,n2,

n1,one,AR(0,0),n,AR(n1,0),n)

3. updateAT
22 ← AT

22 − L21L
T
11

call dsyrk(’U’,’N’,n2,n1,-one,

AR(n1,0),n,one,AR(0,1),n)

4. factorUT
22U22 = AT

22

call dpotrf(’U’,n2,AR(0,1),

n,info)

Also, foruplo = ‘U’ and n even similar results
hold. To see this, break an ordern symmetric ma-
trix A into a block2× 2 form

A =

[

A11 A12

AT
12 A22

]

(3)

whereA11 andA22 are symmetric. We need only
store the upper triangles ofA11 andA22 as well
as the full matrixA12. Whenn = 2k is even,
the lower triangle ofAT

11 and the upper triangle of
A22 can be concatenated together along their main
diagonals into an(k + 1) × k dense matrix. The
off-diagonal blockA12 isk×k, and so it can be ap-
pended above the(k + 1)× k dense matrix. Thus,
the upper triangle ofA can be stored as a single
(n + 1) × k dense matrixAR. As before, each
block matrixA11, A12 andA22 is now stored in
”full format”, meaning its entries can be accessed
with constant row and column strides. Note that
ART which isk × (n + 1) also has these two de-
sirable properties; see Figure 7 wheren = 10.
In Figure 7 we have added vertical| ’s to try to
visually delineate trianglesT1,T2 representing
lower, upper triangles ofAT

11 , A22 respectively
and square or near squareS1 representing matrix
A12. The elements ofA are represented using 0
indexing. This timeA has a block2 × 2 form
Cholesky factorization

UT U =

[

UT
11 0

UT
12 UT

22

] [

U11 U12

0 U22

]

(4)

whereU11 andU22 are upper triangular. We now
give the SRPA that equation 4 generates: (see
equations 3, 4 and Figure 7).

1. factorL11L
T
11 = AT

11

call dpotrf(’L’,k,AR(k+1,0),

n+1,info)
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LRFP AR LRFP AR transpose
00|55 65 75 85 00 10 20 30 40|50 60 70 80
10 11|66 76 86 55|11 21 31 41|51 61 71 81
20 21 22|77 87 65 66|22 32 42|52 62 72 82
30 31 32 33|88 75 76 77|33 43|53 63 73 83
40 41 42 43 44 85 86 87 88|44|54 64 74 84
50 51 52 53 54
60 61 62 63 64
70 71 72 73 74
80 81 82 83 84

LRFP AR LRFP AR transpose
55 65 75 85 95 55|00 10 20 30 40|50 60 70 80 90
00|66 76 86 96 65 66|11 21 31 41|51 61 71 81 91
10 11|77 87 97 75 76 77|22 32 42|52 62 72 82 92
20 21 22|88 98 85 86 87 88|33 43|53 63 73 83 93
30 31 32 33|99 95 96 97 98 99|44|54 64 74 84 94
40 41 42 43 44
50 51 52 53 54
60 61 62 63 64
70 71 72 73 74
80 81 82 83 84
90 91 92 93 94

Figure 6: Lower Rectangular Full Packed formats whenn = 9, 10 , LDAR = n,n+1

URFP AR URFP AR transpose
04 05 06 07 08 04 14 24 34|44|00 01 02 03
14 15 16 17 18 05 15 25 35|45 55|11 12 13
24 25 26 27 28 06 16 26 36|46 56 66|22 23
34 35 36 37 38 07 17 27 37|47 57 67 77|33
44 45 46 47 48 08 18 28 38|48 58 68 78 88
00|55 56 57 58
01 11|66 67 68
02 12 22|77 78
03 13 23 33|88

URFP AR URFP AR transpose
05 06 07 08 09 05 15 25 35 45|55|00 01 02 03 04
15 16 17 18 19 06 16 26 36 46|56 66|11 12 13 14
25 26 27 28 29 07 17 27 37 47|57 67 77|22 23 24
35 36 37 38 39 08 18 28 38 48|58 68 78 88|33 34
45 46 47 48 49 09 19 29 39 49|59 69 79 89 99|44
55 56 57 58 59
00|66 67 68 69
01 11|77 78 79
02 12 22|88 89
03 13 23 33|99
04 14 24 34 44

Figure 7: Upper Rectangular Full Packed formats whenn = 9, 10 , LDAR = n,n+1
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2. solveL11U12 = A12

call dtrsm(’L’,’L’,’N’,’N’,k,k,

one,AR(k+1,0),n+1,AR(0,0),n+1)

3. updateA22 ← A22 − UT
12U12

call dsyrk(’U’,’T’,k,k,-one,

AR(0,0),n+1,one,AR(k,0),n+1)

4. factorUT
22U22 = A22

call dpotrf(’U’,k,AR(k,0),

n+1,info)

This covers RFP format whenuplo = ‘U’ and n
is even. A similar result holds forn odd. We let
n1 = bn/2c andn2 = dn/2e so thatn1 + n2 = n
andn2 = n1 + 1 and symmetric matricesA11 and
A22 have ordersn1 andn2 respectively. Again,
equation 3 applies. The lower triangle ofAT

11 and
the upper triangle ofA22 can be concatenated to-
gether along their main diagonals into an order
n2 dense matrix. The off-diagonal blockA12 is
n1 × n2, and so it can be appended above the or-
dern2 dense matrix. Thus, the upper triangle ofA
can be stored as a singlen×n2 dense matrixAR.
As before,AR andART have the same two desir-
able properties; see Figure 7 wheren = 9. Again,
equation 4 is the basis of a SRPA on RFP format.
This time the SRPA partition sizes aren1 andn2:
(see equations 3, 4 and Figure 7).

1. factorL11L
T
11 = AT

11

call dpotrf(’L’,n1,AR(n2,0),

n,info)

2. solveL11U12 = A12

call dtrsm(’L’,’L’,’N’,’N’,n1,

n2,one,AR(n2,0),n,AR(0,0),n)

3. updateA22 ← A22 − UT
12U12

call dsyrk(’U’,’T’,n2,n1,-one,

AR(0,0),n,one,AR(n1,0),n)

4. factorUT
22U22 = A22

call dpotrf(’U’,n2,AR(n1,0),

n,info)

We close the Section by giving the above four
SRPA’s onB = ART . To help understand how
these four SRPA’s are arrived at note that transpo-
sition changes lower to upper and vice versa and

left to right and vice versa. Forn = 2k and equa-
tion 2 we get

call dpotrf(’U’,k,B(0,1),k,info)
call dtrsm(’L’,’U’,’T’,’N’,k,k,one,\\

B(0,1),k,B(0,k+1),k)
call dsyrk(’L’,’T’,k,k,-one, \\

B(0,k+1),k,one,B(0,0),k)
call dpotrf(’L’,k,B(0,0),k,info)

Forn odd,n1 = dn/2e, n2 = bn/2c and symmet-
ric matricesA11 andA22 having ordersn1 andn2

we get with equation 2

call dpotrf(’U’,n1,B(0,0),n1,info)
call dtrsm(’L’,’U’,’T’,’N’,n1,n2, \\

one,B(0,0),n1,B(0,n1),n1)
call dsyrk(’L’,’T’,n2,n1,-one, \\

B(0,n1),n1,one,B(1,0),n1)
call dpotrf(’L’,n2,B(1,0),n1,info)

We shall give more details in just this one case.
Apply transposition to equation 1 withn = n1 +
n2 odd to get equation 3 withn = n2 + n1; ie, the
roles of n1, n2 interchange. Now we haveA11,
A22 upper, lower respectively and due to symme-
try A12 = AT

21. Also, due to symmetry and the
nature of Cholesky factorization,U12 = LT

21. Us-
ing these facts, we get below:

1. factorUT
11U11 = AT

11

2. solveUT
11U12 = AT

21

3. updateA22 ← A22 − LT
21L21

4. factorL22L
T
22 = AT

22

Forn = 2k and equation 4 we get

call dpotrf(’U’,k,B(0,k+1),k,info)
call dtrsm(’R’,’U’,’N’,’N’,k,k,one,\\

B(0,k+1),k,B(0,0),k)
call dsyrk(’L’,’N’,k,k,-one, \\

B(0,0),k,one,B(0,k),k)
call dpotrf(’L’,k,B(0,k),k,info)

Forn odd,n1 = bn/2c, n2 = dn/2e and symmet-
ric matricesA11 andA22 having ordersn1 andn2

we get with equation 4

call dpotrf(’U’,n1,B(0,n2),n2,info)
call dtrsm(’R’,’U’,’N’,’N’,n2,n1, \\

one,B(0,n2),n2,B(0,0),n2)
call dsyrk(’L’,’N’,n2,n1,-one, \\

B(0,0),n2,one,B(0,n1),n2)
call dpotrf(’L’,n2,B(0,n1),n2,info)
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3.4 Performance of RFP

We now consider performance aspects of using
RFP format in the context of using LAPACK rou-
tines on triangular matrices stored in RPF format.
Let X be a Level 3 LAPACK routine that oper-
ates either on standard packed or full format. X
has a full L3 LAPACK block algorithm, call it FX.
Write a SRPA with partition sizesn1 andn2. Ap-
ply the new SRPA on the new RPF data structure.
The new SRPA almost always has four major steps
consisting entirely of calls to existing full format
LAPACK routines in two steps and calls to Level
3 BLAS in the remaining two steps:

FX(’L’,n1,T1,lda)
BLAS3(n1,n2,’L’,T1,lda,S,lda)
BLAS3(n1,n2,S,lda,’U’,T2,lda)
FX(’U’,n2,T2,lda)

The SRPA of Section 3.2 operating on RFP format
should perform about the same as the correspond-
ing full format LAPACK routines. This is because
both the SRPA code and the corresponding LA-
PACK code is nearly the same and both data for-
mats are full format. Also the SRPA code should
outperform the corresponding LAPACK packed
code by about the same margin as does the cor-
responding LAPACK full code. We give perfor-
mance results for the IBM Power 4 Processor. The
gain of full code over packed code is anywhere
from roughly a factor of one to a factor of seven.

There are two performance graphs, one for
Cholesky factor, suffix C and the other for
Cholesky inverse, suffix I; see Figure 8. Before
continuing we need to give the SRPA for Cholesky
inverse. In equation 2 we gave the block algo-
rithm for computing the lower Cholesky factorL
from A. LAPACK computesA−1 in two steps:
(1) computeL−1 using dtrtri ; (2) compute
A−1 = L−T L−1 usingdlauum . So, there are
actually two SRPA’s, one fordtrtri and one for
dlauum . The SRPA fordtrtri is based on the
following equation 5

[

L11 0
L21 L22

]

−1

=

[

L−1

11 0
−L−1

22 L21L
−1

11 L−1

22

]

(5)
The SRPA fordtrtri follows:

call dtrtri(’L’,’N’,k,AR(1,0),n+1,info)
call dtrmm(’R’,’L’,’N’,’N’,k,k,-one,\\

AR(1,0),n+1,AR(k+1,0),n+1)
call dtrtri(’U’,’N’,k,AR(0,0),n+1,info)

call dtrmm(’L’,’U’,’T’,’N’,k,k,one,\\
AR(0,0),n+1,AR(k+1,0),n+1)

Next the SRPA fordlauum is based on the fol-
lowing equation 6

[

WT
11 WT

21

0 WT
22

] [

W11 0
W21 W22

]

=

[

WT
11W11 + WT

21W21 0
WT

22W21 WT
22W22

]

(6)

whereW = L−1. The SRPA fordlauum fol-
lows:

call dlauum(’L’,k,AR(1,0),n+1,info)
call dsyrk(’L’,’N’,k,k,one, \\

AR(k+1,0),n+1,one,AR(1,0),n+1)
call dtrmm(’L’,’U’,’T’,’N’,k,k, \\

one,AR(0,0),n+1,AR(k+1,0),n+1)
call dlauum(’U’,k,AR(0,0),n+1,info)

For both of the above two SRPA’s we have as-
sumedn = 2k is even. Of course, similar SRPA’s
are obtainable forn being odd.

For each graph in Figure 8 we give four
curves for LAPACK called FL, FU, PL, PU
corresponding to Full,Uplo=‘L’, Full,Uplo=‘U’,
Packed,Uplo=‘L’, and Packed,Uplo=‘U’ and a sin-
gle curve RFP corresponding to SRPA. This is be-
cause the SRPA replaces each of these four LA-
PACK subroutines. Actually, we ran the SRPA
routine four times and averaged their times. Per-
formance is given in MFlops. We chose the order
N of the matrices to follow a base 10 log distrbu-
tion. The values chosen wereN = 40, 64, 100,
160, 250, 400, 640, 1000, 1600, 2500, and 4000.
The corresponding logN values are 1.60, 1.81, 2,
2.20 2.40, 2.60, 2.81, 3, 3.20. 3.40, and 3.60.

As can be seen from Graph 1, SRPA perfor-
mance is greater than FLC, PLC, and PUC perfor-
mance. The suffix C stands for Cholesky. Also,
SRPA performance is greater than FUC perfor-
mance except atN = 1000 where FUC is 3%
faster. For graph two, with N≥ 400 the SRPA
curve is faster than the other four curves. For N≤
250 the performance ratios range from .92 to 2.18
(see Figure 8). Returning to Graph 1, we see that
SRPA is 1.33 to 7.35 times faster than PLC and
1.64 to 3.20 times faster than PUC. Similarly, for
Graph 2, SRPA is .92 to 3.21 times faster than PLI
and 1.01 to 5.24 times faster than PUI. The suffix
I stands for Inverse.

In Figure 9 we give performance ratios of RFP
to the four LAPACK routines, FL, FU, PL, and
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(a)

(b)

Figure 8: Absolute performance of algorithms (a) Cholesky Factorization. (b) Inversion.
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N 40 64 100 160 250 400 640 1000 1600 2500 4000
RFP 914 1568 1994 2883 3302 3861 4123 4198 4371 4358 4520
FLC 2.12 1.97 1.37 1.32 1.17 1.10 1.10 1.07 1.08 1.08 1.08
FUC 2.14 2.32 1.45 1.29 1.13 1.03 1.02 .97 1.00 1.01 1.01
PLC 1.33 1.72 1.93 2.92 3.24 3.62 4.08 6.42 7.18 7.30 7.35
PUC 1.73 1.82 1.64 1.89 1.84 1.91 2.02 2.58 3.10 3.13 3.20
RFP 755 1255 1656 2481 3081 3775 4141 4141 4351 4394 4544
FLI 1.26 1.31 .98 1.00 .98 1.00 1.03 1.00 1.02 1.05 1.05
FUI 1.23 1.25 .95 .99 .99 1.02 1.06 1.03 1.05 1.08 1.07
PLI .92 .93 .93 1.25 1.43 1.64 1.90 2.69 3.05 3.14 3.21
PUI 1.01 1.16 1.26 1.86 2.18 2.54 2.94 4.06 4.97 5.13 5.24

Figure 9: Relative Performance Comparison of Algorithms

PU. The row labeled RFP give MFlops values for
that routine. To obtain the MFlops values for the
other four routines, simply divide MFlops value by
its associated ratio. For example, forN = 640, the
MFlops for suffix C are 3818, 4042, 1011, 2041
and for suffix I, they are 4020, 3907, 2179, 1409.

3.5 Conclusions for RFP Format

We have described a novel data format, RFP, that
can replace both standard full and packed for-
mats for triangular and symmetric matrices. We
showed that codes for the new data format RFP
can be written by simply making calls to exist-
ing LAPACK routines and Level 3 BLAS. Each
new SRPA operating on RFP format data replaces
two corresponding LAPACK routines (four if you
count dual cases of uplo=‘L’ and ‘U’). Perfor-
mance on an IBM Power 4 of SRPA routines
on RFP format is slightly better than LAPACK
full routines while using half the storage and is
roughly one to seven times faster than LAPACK
packed routines while using the same storage.

We have described four distinct versions of RFP
format. Two are for matrixA having full formats
uplo=‘L’ or ‘U’. The other two are for the trans-
poses of the first two. Therefore, for uplo = ‘L’,
‘U’ we have two layouts each. For codes like
Cholesky factorization and triangular inverse each
version should be trivial to code; ie, we just need
to write SRPA’s. For other codes; eg, symmet-
ric indefinite factorization ( LAPACKDSYTRF,
DSPTRF) the AR format is probably best in terms
of a coding effort. The reason is that symmet-
ric indefinite factorization requires searching en-
tire columns and rows ofA and theLDA of AR

is eithern+1 or n. Even so, this code will be-
come intricate as it requires either one by one or
two by two pivoting. In terms of RFP format this
means one has to deal with boundary effects that
are introduced by placing the three full arraysT1,
T2, S1 into the single full arrayARor ART.

4 Distributed Memory Com-
puting with SB and SBP For-
mats

DMC is concerned with aP ×Q mesh of proces-
sors and with the SPMD programming model of
a BCL of a global rectangular array. This mesh
could be virtual or the actual hardware could be
interconnected in a toroidal 2-D or 3-D array. The
algorithms we describe here appear to work well
on such hardwares. Now, full format symmetric
and triangular arrays will waste half the storage
on all processors. Using the results of Section 3.3
and additionally SBP format of Section 3.1 we can
save this wasted storage if we are willing to use
SB’s of orderNB2. This is a natural thing to do
asNB is the free parameter of our programming
model. Letn1 = dN/NBe whereN is the order of
our global symmetric matrixA. For the time be-
ing we shall be concerned withA being a matrix
of SB’s of block ordern1. NowP andQ canhave
nothing to do withn1. This fact is an additional
reason why we should treat each SB ofA as an
atomic unitbecause whenP andQ are relatively
prime the SB’s ofA will move about the proces-
sors as single contiguous blocks. However, this
separation of the SB’s into single SB’s will only
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occur for symmetric or triangular matrices. The
reason has to do with the diagonal ofA separat-
ing a BroadCast (BC) into both a horizontal (row)
and a vertical (column) part. We want these SB’s
that move during BC’s to various processors to be
part of our data layout so that the Send / Receive
buffers of MPI or of ScaLAPACK’s BLACS [13]
can be treated as contiguous blocks of storage.
This allows one to avoid copying matrix data to
a Send buffer and copying a Receive buffer to ma-
trix data.

We now describe a right looking algorithm
(RLA) that is especially tailored to DMC. We ex-
plain it for a global matrixA. The usual way
to factorA is A = (F1U1)(F2U2) . . . (Fn1

Un1
)

whereUn1
= I. HereFi, Ui are the factor and up-

date parts at stagei of the RLA. A second equally
good way hasA = (F1)(U1F2) . . . (Un1−1Fn1

).
A benefit of the second way is that it allows one
to overlap the computation ofFi+1 with the com-
putation of Ui; see [1]. Let processor column
(pc) J hold the pivot panel (pp) ofFi+1. Here
0 ≤ J < Q. Now pc(J) will do four computa-
tions: updatepp(Fi+1) with Ui, factorpp(Fi+1),
Send or broadcastpp(Fi+1:n1

) to all otherpc(K),
0 ≤ K < Q and finally will update its remain-
ing column panels. Simultaneously, the remaining
pc(K), K 6= J will just update all of their column
panels.

The RLA above can be expressed as three
separate sub algorithms: factorFi+1, Send /
ReceiveFi+1:n1

and update on processorp(I, J)
for all I and J . The update algorithm is called
the Schur Complement Update: Each active SB
onp(I, J) gets aDGEMMupdate. What is missing
are theA,B operands ofDGEMMfor each active
SB, the C operand ofDGEMM. We add these
A,B operands to our data structure by placing
on eachp(I, J) West and South border vectors
that will hold all of p(I, J) SB A,B operands.
These borders, now part of our data layout, are
the Send / Receive buffers referred to above. Now
SB(il,jl)=SB(il,jl)-W(il) * S(jl)
becomes the genericDGEMMupdate onp(I, J)
where il,jl are local coordinates onp(I, J).
Thus, the Schur Complement update is just a sum
of DGEMM’sover all active SB’s and our DMC
paradigm guarantees that almost perfect load
balance will occur.

There are two DMC SBP Cholesky factoriza-
tion algorithms that emerge forA. One is based on

using a BCL of RFP format. SinceAR is rectan-
gular, it should not be hard to see that eachp(I, J)
will hold a rectangular matrix. The layout is made
up of pieces of two trianglesT1, T2 and a square
S1 that make up globalAR; see Section 3.3 or
[20] for the meaning ofT1, S1, T2 . In the lay-
out the SB’s ofT2 are reflected inT2’s main di-
agonal. We introduce North and East border vec-
tors to hold theA,B operands ofT2’s reflected
SB’s. The coding becomes intricate becauseAR
consists of three distinct pieces ofA.

The second algorithm is simpler to code be-
cause we have found a novel way to layoutA.
GlobalA consists ofNT1 = n1(n1 + 1)/2 SB’s.
Because we have made each SB atomic we may
layoutA on theP ×Q mesh in the standard man-
ner. The processorp(I, J) will hold a quasi lower
triangular matrix. We represent it as a one dimen-
sional array of SB’s along with a Column Pointer
(CP) array that points at the first block in local col-
umn jl , 0 ≤ jl ≤ qe(J); qe(J) is defined in
Section 4.2. It turns out that row indices arenotre-
quired. This is because the last row index on each
p(I, J) for 0 ≤ J < Q is the same for eachI.

This paper describes DMC for Symmet-
ric/Triangular matrices. However, it should be
clear that our paradigm of using SB’s works for
rectangular matrices as well. Thus, most of
ScaLAPACK’s factorization codes, eg.LU = PA
and QR = A, also work under this paradigm.
Our paradigm is based on the second view point
of Section 2. What we have done is to isolate the
major matrix multiply part of our DMC algorithm
and to relate it to the Schur complement update.
We have introduced West and South border vec-
tors to our data layout. In so doing we have pro-
duced a way to code ScaLAPACK type algorithms
without a PBLAS layer. However, this is not to say
that we should avoid the PBLAS layer.

4.1 Overview of the SBPL DMC Al-
gorithm

We shall give a complete overview of an example
problem and this description is general. We need
to introduce some notation. Upper case letters
(eg I,J ) represent the processors and the lower
case letters (egjp ) represent block indices. Thus,
p(I,J) will denote the process or processor at
row I and columnJ of a processor mesh. We
assume there areP process rows andQ process
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columns, so0 ≤ I < P and0 ≤ J < Q. Lower
case letters (eg,i,j,k,l ) denote indices or sub-
scripts of the blocks that make up a given block
matrix. There are both global indices and local in-
dices.

Figure 10 depicts a Block Packed Global (BPG)
matrix ABPGof block ordern = 18. Note that we
are using zero indexing; ie, the row and columns
of our matrices and arrays are labeled0, . . . , n−1.
Note that in Section 4 we usedn1 to denote then
we are using from now on. MatrixABPGwill be
laid out on aP=5 by Q=3 processor mesh. In the
three left columns, we give the mesh R(ow) label,
local row label, and global row label of then rows
of ABPG(letters a, b to h stand for the numbers 10,
11 to 17). These row labels are the row indices of
theNT=n(n+1)/2=171 NB by NB blocks mak-
ing upABPG. The last three rows give global col-
umn labels, local column labels, and mesh column
labels of the column indices ofABPG.

In Figure 11 we give the Block Packed Cyclic
(BPC) layout of Figure 10 whichs gives array
block packed cyclic (abpc ). We directly map
ABPGonto theP by Q process mesh. We shall
need the W and S border block vectors (buffers) to
hold the Scaled Pivot Blocks (SPB’s). These block
vectors r,c while hold theA and B operands
of GEMM. These two borders vectors contain the
jp=3 SPB blocks ofABPG(jp+1:n-1,jp) .
There aren-jp-1=14 SPB blocks. Thejp
= 3 pivot column J=0 lies on p(0:4,J)
and the pivot block(jp,jp) is on p(3,J) .
These SPB blocks reside on local column
jl=1 of p(0:4,J) . Later, we shall describe
in general howABPG(jp+1:n-1,jp) is BC
from p(0:P-1,J) to all SPB buffers on
p(0:P-1,0:Q-1) . We continue with Fig-
ure 11. The local indices ofabpc are given by
a one dimensional addressing scheme plus a set
of column pointers. For example, onp(1,2)
there are five local columns (0:4) that have 3, 3,
2, 2, 1 blocks, respectively. These columns start
at addresses 0, 3, 6, 8, 10 of a vector (one di-
mensional packed block format) ofabpc blocks
whose length is 11. Now,bl(9) on p(1,2)
is the second block of column 3. This block is
bl(g,b) of Figure 10.

In Figure 11 the processes are considered as
occurring on process rows identified from 0 to 4
and process columns identified from 0 to 2. The
processor memory contents after the cyclic distri-

bution is represented by the global lower block in-
dices inside themp = dn/Pe = 4 bynp = dn/Qe =
6 rectangle that just contain a quasi lower packed
array of blocks. Also, the left column block vec-
tor and the bottom block row vector represent the
send buffers for the processor. This figure repre-
sents the condition for whichjp = 3 , wherein
the column on the left and the row at bottom are in
receipt of a row BC from the zeroth process col-
umn (eg,J=0 ). The asterisks in the block border
vectors (eg, “ ** ”) represent positions in which
nothing is presently occurring.

In general, the west and south boundaries in
each process will hold the SPB’s and active SB’s
residing to the north and east of these buffers will
get updated by them during a SCU..

The conventional RLA for execution by blocks
of data was given in Figure 4 of Section 3.1. For
the distributed memory version, after theABPG
is distributed onto aP by Qmesh in block cyclic
fashion, the RLA is carried out with a slight mod-
ification; see Figure 12. In Section 4 we gave a
reason to prefer the global algorithm of Figure 12
over the global algorithm of Figure 4 for the case
of DMC. The reason was to overlap the factor
part of pivot panelj with the SCU of stagej-1 .
Clearly, this is what Figure 12 is doing in its outer
do loop j=1,n . Note that steps 2 and 3 of the
elseif clause forces one to use two border col-
umn and row block vectors as buffers. For clar-
ity, we disregard this technicality in what follows.
Figure 12 can be structured into three sub algo-
rithms:

• Factor a Pivot Panel

• Send and Receive the Pivot Panel

• Perform a Schur Complement Update

For factoring a pivot panel, the following steps
are executed; see Figure 13. The pivot panel
j is on some columnJ , p(0:P-1,J) , of the
mesh. This group ofP processors update, (step
1.), pivot panelj via a SCU of this single panel.
In step 2.,p(I,J) does a NS BC of the global
block bl(j,j) , (pivot), to all p(0:P-1,J) .
HereI is the row processor of the group on which
bl(j,j) resides. In step 3. allp(0:P-1,J)
factors and scales the pivot panelj . In last step
4. all p(0:P-1,J) do a row BC of the just com-
pleted SPB.
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ABPG has block size order n 18
m l g
e o l
s c o
h a b

l a
R l

0 0 0 | 00
|

1 0 1 | 10 11
|

2 0 2 | 20 21 22
|

3 0 3 | 30 31 32 33
|

4 0 4 | 40 41 42 43 44
|

0 1 5 | 50 51 52 53 54 55
|

1 1 6 | 60 61 62 63 64 65 66
|

2 1 7 | 70 71 72 73 74 75 76 77
|

3 1 8 | 80 81 82 83 84 85 86 87 88
|

4 1 9 | 90 91 92 93 94 95 96 97 98 99
|

0 2 a | a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa
|

1 2 b | b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb
|

2 2 c | c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc
|

3 2 d | d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd
|

4 2 e | e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee
|

0 3 f | f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff
|

1 3 g | g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 ga gb gc gd ge gf gg
|

2 3 h | h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 ha hb hc hd he hf hg hh
|

--------------------------------------------------- ------------

global 0 1 2 3 4 5 6 7 8 9 a b c d e f g h

local 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

mesh C 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Figure 10: The Global Layout of a SBP order 18 matrix
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Lower Block Packed Cyclic layout(P,Q)= 5 3

--------------------------------------------------- -------------
| | | | | |
| ** |00 | ** | | ** |
| | | | | |
|53|50 53 |53|51 54 |53|52 55
| | | | | |
|a3|a0 a3 a6 a9 |a3|a1 a4 a7 aa |a3|a2 a5 a8
| | | | | |
|f3|f0 f3 f6 f9 fc ff|f3|f1 f4 f7 fa fd |f3|f2 f5 f8 fb fe
--------------------------------------------------- -------------
| ** ** 63 93 c3 f3| | ** 43 73 a3 d3 ** | | ** 53 83 b3 e3 **
--------------------------------------------------- -------------
| | | | | |
| ** |10 | ** |11 | ** |
| | | | | |
|63|60 63 66 |63|61 64 |63|62 65
| | | | | |
|b3|b0 b3 b6 b9 |b3|b1 b4 b7 ba |b3|b2 b5 b8 bb
| | | | | |
|g3|g0 g3 g6 g9 gc gf|g3|g1 g4 g7 ga gd gg|g3|g2 g5 g8 gb ge
--------------------------------------------------- -------------
| | ** ** 63 93 c3 f3| | ** 43 73 a3 d3 g3| | ** 53 83 b3 e3 **
--------------------------------------------------- -------------
| | | | | |
| ** |20 | ** |21 | ** |22
| | | | | |
|73|70 73 76 |73|71 74 77 |73|72 75
| | | | | |
|c3|c0 c3 c6 c9 cc |c3|c1 c4 c7 ca |c3|c2 c5 c8 cb
| | | | | |
|h3|h0 h3 h6 h9 hc hf|h3|h1 h4 h7 ha hd hg|h3|h2 h5 h8 hb he hh
--------------------------------------------------- -------------
| | ** ** 63 93 c3 f3| | ** 43 73 a3 d3 g3| | ** 53 83 b3 e3 h3
--------------------------------------------------- -------------
| | | | | |
| ** |30 33 | ** |31 | ** |32
| | | | | |
|83|80 83 86 |83|81 84 87 |83|82 85 88
| | | | | |
|d3|d0 d3 d6 d9 dc |d3|d1 d4 d7 da dd |d3|d2 d5 d8 db
| | | | | |
| ** | | ** | | ** |
--------------------------------------------------- -------------
| | ** ** 63 93 c3 ** | | ** 43 73 a3 d3 ** | | ** 53 83 b3 ** **
--------------------------------------------------- -------------
| | | | | |
|43|40 43 |43|41 44 ** |42
| | | | | |
|93|90 93 96 99 |93|91 94 97 |93|92 95 98
| | | | | |
|e3|e0 e3 e6 e9 ec |e3|e1 e4 e7 ea ed |e3|e2 e5 e8 eb ee
| | | | | |
| ** | | ** | | ** |
--------------------------------------------------- -------------
| | ** ** 63 93 c3 ** | | ** 43 73 a3 d3 ** | | ** 53 83 b3 e3 **
--------------------------------------------------- -------------

Figure 11: 5 by 3 Lower Block Packed Cyclic Layout of a SBP order 18 matrix
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Factor and Scale first column
panel j=0 on p(0:P-1,0).

Row BC the completed 0-th pivot
column panel on p(0:P-1,0).

do j = 1, n-1
Receive scaled blocks cols of

previous pivot col j-1
in the W and S borders.

if(p(0:P-1,J) does NOT hold
the j-th pivot panel)then
Update all trailing blocks
with the W and S borders
(holding scaled column
panel j-1).

elseif(p(0:P-1,J) holds the
j-th pivot panel)then
Update the j-th pivot col-

umn panel, Factor it,
and Scale it.

Row BC the completed j-th
pivot column panel to all
W and S borders.

Update the remaining trail-
ing blocks of p(0:P-1,J)
with the W and S borders
(holding scaled column
panel j-1).

endif
enddo

Figure 12: Distributed Memory
Cholesky Factorization

1. p(0:P-1,J) updates the pivot
col j with their W,S borders
(scaled column panel j-1).

2. p(I,J) sends pivot block
(j,j) to all p(0:P-1,J).

3. p(0:P-1,J) factors pivot
block (j,j) and scales pivot
col (j+1:n-1,j)
(column panel j).

4. p(0:P-1,J) row BC’s the
scaled pivot column
(j+1:n-1,j).

Figure 13: Distributed Memory
Cholesky Factorization of a Pivot
Panel

SPB’s (j+1:n-1,j) have been row
BC (last step of Figure 11).

p(I,0:Q-1) receives all scaled
blocks.

A block (i,j) is column BC when
it reaches p(I,K) that is
holding block(i,i); Row BC of
block(i,j) stops at p(I,K)
holding block (i,i) if i<j+q-1;
"stopping" means that a BC is
not done to p(I,K+1), as it
would hold non existent block
(i,i+1).

Col BC of block (i,j) stops at
p(L,K) holding block (n-1,i) if
i+p=n; "stopping" means that a
BC is not done to p(L+1,K), as
it would hold non existent
block (n,i).

Figure 14: Distributed Memory Send /
Receive of a Pivot Panel

An overview of the Send and Receives are given
in Figure 14. We shall describe this overview in
Section 4.1.1.

For the update of the trailing matrix see also
Section 4.1.1.

4.1.1 The Schur Complement Update

The Schur complement is another name for the
blocksABPG(jp+1,n-1,jp+1:n-1) . These
blocks are updated during the update phase. They
are theGEMMandSYRKupdates. Almost all of
the floating point operations are done in this phase
which has 100 % parallelization.

Looking at the figure 10, we see that
blocks ABPG(jp+1:n-1,jp+1:n-1) are to
be updated by the current scaled pivot blocks
ABPG(jp+1:n-1,jp) . Let Bi,j be any Schur
complement block andBi,jp andBj,jp be its as-
sociated scaled pivot blocks. The update opera-
tion is Bi,j = Bi,j − Bi,jpBT

j,jp if are all three
operand blocks are stored in column major order.
Now Bi,jp, i > jp is used toGEMMupdate SB’s
Bi,jp+1:i−1 as anA operand, SB’sBi+1:n−1,i as
a B operand and toSYRKupdate SBBi,i. In all,
eachBi,jp, i > jp is used to updaten − 1 − jp
times during the SCU stagejp. For example, in
Figure 10, leti = 9, jp = 3 and note thatBi,jp
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is used six times to updateBi,jp+1:i along rowi
and eight times to updateBi+1:n−1,i along col-
umni. Now in Figure 11Bi,jp resides onp(I,J)
whereI=4,J=0 . And mesh rowp(I,0:Q-1)
contains block rowi of ABPGincluding diagonal
block Bi,i which is on somep(I, K), 0 ≤ K <
Q. In this case,K=0. This means mesh column
p(0:P-1,K) contains columni of ABPG. These
simple observations tells us thatBi,jp only needs
one row and one column BC on theP × Q mesh
to fully distribute it for the DMC SCU. These re-
marks serve as an explanation of Figure 14.

Figure 15 overviews the SCU operation with
the West and South border vectors containing the
A and B operands ofGEMM. In Figure 11 each
p(I,J) has W and S borders that hold update
operandsBi,jp andBj,jp where jp=3 . The in-
active blocks are allBi,j for j < jp + 1. Thus,
global row i indices withi < 4 and global col-
umn j indices withj < 4 are inactive. For the
time being, note that each active Schur comple-
ment block has two operands present for updating
purposes (ie, a W and S operand which is found
by projecting W and S from its(i,j) position
onp(I,J) .

Therefore, in summary, an update of any SB
Bi,j requires operandsBi,jp andBj,jp. We have
assumed above that allNT blocks ofABPGhave
been stored in column major order. However, we
can also store all of these blocks in row major or-
der; see Section 3.1. In that case, each block is
the transpose of the column major case and vice
versa. This means we can use a transpose identity
of GEMM; ie,C = C−ABT if and only ifD = D−ETF
whereD, E, F are the transposes ofC, B, A respec-
tively. Here, we prefer to store the blocks in row
major format because it will lead to theT,N form
of GEMMas opposed to theN,T form of GEMM
which one gets by using column major order.

4.2 Details of the SBPL DMC Algo-
rithm

We now give details about the Block Packed
Cyclic Lower (BPCL) algorithm. We shall not
cover the upper case, as it is quite similar to
the lower case. First we describe the mapping
of a SBPL array to our new BPCL layout on a
P by Q rectangular mesh. Before doing so, we
must define our newBPCL layout on a rectangu-
lar mesh. The block order of our BPG symmetric

do for all p(0:P-1,J), 0 = J < Q.
Receive row and col BC scaled
pivot col blocks (j+1:n-1,j) on
the W and S borders.
Do SYRK and GEMM updates on all
trailing blocks
(j+1,n-1,j+1,n-1) using the
scaled pivot col blocks
(j+1:n-1,j) on the W and S
borders.

enddo

Figure 15: Distributed Memory Schur
Complement Update

matrix ABPGis n. On aP by Q mesh,p(I,J)
gets rowsI + il ∗ P, il = 0, . . . , pe(I) and
columnsJ + jl ∗ Q, jl = 0, . . . , qe(J). Here
pe(I) and qe(J) stand for the local end in-
dex values ofil and jl . On the West border
of p(I,J) we lay out pe(I)+1 send receive
buffers, block vectorr of row positions (row in-
dices), and on the South border ofp(I,J) we
lay outqe(J)+1 send receive buffers, block vec-
tor c of column positions (column indices). The
row and column positions are the same as the stan-
dard BCL indices. ABPGconsists of an isosce-
les triangle of SB’s. As a full symmetric matrix
it holdsn2 SB’s. Now the BCL of a full rectan-
gular array of SB’s is standard and well under-
stood. Conceptually, the two sides of the isosce-
les triangle can play the role of the two sides of
the rectangle in a standard BCL. Here these sides
are represented by the two border vectorsr and
c . These two block vectors along with a one
dimensional column pointer arrayCP, described
in the next paragraph, are sufficient to determine
our lower (upper) packed BCL. In Figure 11,
P=5,Q=3 , n=18 , pe(0:4)=3,3,3,2,2 and
qe(0:2)=5,5,5 . The block vectorsr,c will
receive SPB’s with row, column indicesI +
il ∗ P, il = 0, . . . , pe(I), J + jl ∗ Q, jl =
0, . . . , qe(J) respectively.

SinceABPGcan be viewed as a full matrix of
order n, we could layout alln2 blocks. This is
what ScaLAPACK currently does. However, we
shall only layout the lower triangular blocks (eg,
just the blocks ofABPG). To do this, we use a col-
umn pointer arrayCP(0:np,0:P-1,0:Q-1) ,
where np = dn/Qe. Actually, on p(I,J)
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np is an upper bound of the size of arrayCP;
see Section 4.2.3 and arrayjle for the ac-
tual size ofCP on eachp(I,J) . On p(I,J) ,
CP(jl,I,J) points to the first block of global
column j=J+jl * Q. The column pointer array is
found by counting the number of SB’s of global
column j of ABPG that reside onp(I,J) . It
is clear that the last row of columnj will have
process last (pl ) row indexpl(I) independent
of the global columnj and the process col-
umn J . These independent values are equal to
the last row index values of the block vectors
r , namely, I+pe(I) * P. For ABPG these val-
ues are15,16,17,13,14 . Using this fact and
the nature of the standard block cyclic mapping,
one can show that a row index array isnot nec-
essary. In Figure 11 ,pl(I)=f,g,h,d,e .
To see this, note thatCP(jl,I,J) gives the
first nonzero in local columnjl of p(I,J) .
The last index in columnjl is pl(I) which
is pointed at byCP(jl+1,I,J)-1 . There
are NU=CP(jl+1,I,J)-CP(jl,I,J) ele-
ments in columnjl . Let i1 be the first global row
index in columnjl . Then i1=pl(I)-NU * P.
The NUglobal indices in columnj are therefore
i1, i1 + P, . . . , pl(I) which are of course the in-
dex set of block vectorr . Hence, row indices are
not required.

We can now define mapping global local packed
(glp ) and local global packed (lgp ), which are
described in Figures 16 and 17, respectively.
For both mappings we assume theABPGarray
is SBPL triangular. In Figures 16, 17ijp is
the global packed block index of standard lower
packed format andijl is the corresponding lo-
cal packed index onp(I,J) . The idea behind
describing both mappings is to move to full co-
ordinates, use the standard full block cyclic maps
for global local (gl ) and/or local global (lg ), and
then move back to packed coordinates.

Looking now at theglp mapping shown in
Figure 16, we start with block ordern and0 ≤
ijp < NT = n(n + 1)/2. Fromn and ijp we
can compute global full coordinates(i,j) using
the standard mapping from lower packed format to
full format. Now we have(i,j) . The standard
block cyclic mapping for a rectangular global ar-
ray givesil=i/P andI=i-il * P and jl=j/Q
andJ=j-jl * Q. Now we have the full local co-
ordinates. Using the properties of our BPCL lay-
out, namely arraysCP,pL , we can find the unique

1. Enter withn,ijp

2. Find(i,j) from n,ijp :

• j = (n+ 1/2)− [(n+ 1/2)2− 2ijp].5

• i = ijp− j(2n− 1− j)/2

3. Use (i,j) to compute (il,I) and
(jl,J)

• il=i/P andI=i-il * P

• jl=j/Q andJ=j-jl * Q

4. Findijl from il,I,jl,J,CP,pl,i ; ie,
IND = CP(jl + 1) − 1 → pl(I) and
ijl=IND-(pl(I)-i)/P

Figure 16: The Global Local Packed Mapping

1. Enter withI,J,ijl

2. Findjl such thatCP(jl) ≤ ijl < CP(jl+
1); eg, use a binary search

3. il=CP(jl+1)-1-ijl

4. Use(il,I) and (jl,J) to find (i,j) ;
ie, i=I+il * P andj=J+jl * Q

5. Use (i,j) to compute
ijp=j(2n+1-j)/2+i-j

Figure 17: The Local Global Packed Mapping
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ijl associated withI,J,jl,i . See Step 4 of
Figure 16 for details.

Now look at Figure 17 showing thelgp map-
ping. We start withI,J , and elementijl on
p(I,J) . Index ijl corresponds to SB(il,jl )
on p(I,J) . From ijl , we need to findil,jl ,
the full coordinates associated with our BPCL lay-
out. In step 2, we can use a binary search to find
jl , using inputI,J,ijl and arrayCP. Know-
ing jl,ijl , andCP, we can findil (see step
3). In step 4, we use the standard block cyclic in-
verse mapping for a rectangular array to obtain the
global i,j full coordinates ofABPG. Finally, in
step 5, we computeijp from i,j , using the stan-
dard map of full lower,L(i,j) , to packed lower
LP(ijp) .

In Section 4.1 we saw that the DMC RLA for
the Cholesky Factorization Algorithm of Figure 12
consisted of three sub algorithms given in Fig-
ures 13, 14, 15. In the next three sub-sections
we shall give the details of these three sub algo-
rithms. Experts can probably skip over these three
sections as the information we gave about Fig-
ures 13, 14, 15 was sufficient for their complete
understanding of the three sub algorithms. We
are going into more detail for two reasons. First,
we want an overly complete description to demon-
strate how efficient this algorithm will be. Second,
some of our intended audience is not performance
oriented about algorithms or they are not famil-
iar with the area of DLAFA. The very detailed
descriptions to be given will serve the purpose
of demonstating the efficiency and allow various
readers to stop reading when their understanding is
complete. We shall use the technique of a general
description followed by covering a detailed exam-
ple. The detailed example, withjp=3 , will be rel-
egated to the Appendix. Finally, before we move
on we first we give very brief details of our pro-
gramming model which is the SPMD model. This
model works well on a BCL. For our application,
my=p(I,J) is the unique identifier of one of the
P × Q processors; ie,(I,J) is another name for
this identifier.

4.2.1 Factor Pivot Panel jp Producing
n-jp-1 SPB’s

In Figure 18 we give explicit pseudo code for
DMC of factoring a pivot panel. This code is
quite simple. Every processp(I,J) has a copy
of global variablejp which is the current global

pivot column of Figure 18. Givenjp we com-
pute il=jp/P , pr=jp-il * P, jl=jp/Q and
pc=jp-jl * Q. Since we are onp(I,J) we
can find out if our I,J equalspr,pc . So,
the firstif-then-else clause can be executed
and pb(I,J) will then hold the pivot block
bl(jp,jp) for J=pc and0 ≤ I < P. From
now on, the process columnJ will execute in par-
allel and there will be almost perfect load bal-
ance during this parallel sub-computation: First,
p(0:P-1,J) factors its copy ofbl(jp,jp)
by calling factor kerneldpofu . This ker-
nel is a level 3 implementation of LAPACK
code DPOTF2. Now, we come to the second
if-then-else clause of Figure 18. IfI=pr
then the factoredbl(jp,jp) is copied back to
abpc(ijl,I,J) . This clause also locates the
local starting pointerijl onp(0:P-1,J) of the
first SB that is to be scaled. Also, in parallel local
end pointerijle is set. Finally,ijle-ijl+1
SB’s are scaled to become SPB’s in the last par-
allel do loop of Figure 18. This completes the
description of Figure 18. However, see the Appen-
dix, Section 7.1, if you want to follow the above
code via an example.

4.2.2 Send and Receive all SPB’s to all p(0:P-
1,0:Q-1)

After a pivot and scaling step completes a BC
SEND RECEIVE commences onp(0:P-1,J) .
We now illustrate with explicit details how
the SEND/RECEIVE algorithm, works on
p(0:P-1,J) , using Figure 19 below. Input
(I,J) is the identifier of the processor. Input
jls is the local starting column inapbc andc .
Input ils is the local starting row inr . Input
ilj is the starting index ofabpc corresponding
to row ils of r and columnjls of c .

In Section 4.1.1 we saw that a single SPB
Bi,jp on p(I,J) needs to be row BC from
p(I,J) to SB Bi,i on p(I,K) and then col-
umn BC to SBBn−1,i onp(L,K) . Usually these
two BC’s are full BC’s of lengthsQ-1,P-1 re-
spectively. The row BC starts by copying SPB
Bi,jp from abpc(ijl,I,J) to r(il,I,J) .
The length of the row BC is determined and
the BC commences. Nowp(I,K) holds Bi,i.
When r(il,I,J) is received onp(I,K) in
r(il,I,K) it is copied toc(jl,I,K) where
jl corresponds to global indexi. The length of
the column BC is determined and this BC is ex-
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Input:
I,J,jp,CP(jl:jl+1,I,J)
abpc(CP(jl,I,J):CP(jl+1,I,J)-1,I,J)

from jp compute (il,pr),(jl,pc) ! pc=J
if(I.eq.pr)then

ijl=CP(jl,I,J) ! -> bl(jp,jp) on P(I,J)
pb(I,J)=abpc(ijl,I,J) ! pb is pivot send buffer on p(I,J)
DO a NS BC from pb(I,J)

else !
pb(I,J) receives bl(jp,jp) from pb(pr,pc)

endif
! bl(jp,jp) now resides on p(0:P-1,J) in pb(0:P-1,J)
call dpofu(pb(I,J),nb,nb,info) ! pb is now factored
ijl=CP(jl,I,J)
if(I.eq.pr)then

abpc(ijl,I,J)=pb(I,J) ! return factored bl(jp,jp)
ijl=ijl+1

endif
ijle=CP(jl+1,I,J)-1 ! last block to be scaled on p(I,J)
do ii=ijl,ijle

scale abpc(ii,I,J) ! dtrsm
enddo

Figure 18: BPCL Pivot Panel Factoring and Scaling Pseudo Code

ecuted. This completes the description of Fig-
ure 19. However, see the Appendix, Section 7.2, if
you want to follow the above code via an example.

4.2.3 Execute a Schur Complement Update
on all p(0:P-1,0:Q-1).

Finally, as Figure 11 shows whenjp=3 , one is
ready to perform a Schur complement update. The
algorithm for doing this is given in the BPCL SCU
Algorithm of Figure 20 given below.

On p(I,J) the basis of Figure 20 rests on the
relationships between the SB’s ofr,c and the ac-
tive part of the SB’s ofabpc . We have seen that
the generic update formula is

Bi,j = Bi,j −Bi,jpBT
j,jp (7)

Now, on p(I,J) the SB’s, Bi,j , are repre-
sented by the one dimensional array of SB’sabpc
and its associated column pointer arrayCP. The
SB’s Bi,jp, Bj,jp on p(I,J) are represented by
the one dimensional block vectorsr,c respec-
tively. Given three local indicesijl,il,jl of
abpc,r,c we need to relate them to the global
indices of equation 7. Clearly, one could use the

mappingsglp and lgp . This approach has a
neglicable cost. However, the cost is not zero
and we wish to find a better approach with a
near zero cost. Onp(I,J) we shall have two
do loops , the outer onjl and the inner on
il as Figure 20 shows. In the outer do loop
we need to know if the first SB in columnjl
is a diagonal block. We do this via a cheaper
computation of the globali,j associated with
the local il,jl . Our data structure makes it
easy to relatejl with ijl via the use of the
CParray. Also, theCParray defines a linear re-
lation between the starting value ofil , called
ils(jl) , and jl ; ie, ils(jl)=pe(I)+1
-CP(jl+1,I,J)+CP(jl,I,J) . See also the
explanation in the second paragraph of Section
4.2. As said above, in the outerdo loop , we
compute globali,j as a way to ascertain whether
the first SB in columnjl is on the diagonal of
ABPG. All other SB’s in columnjl must beGEMM
blocks. This completes the description of Fig-
ure 20. However, see the Appendix, Section 7.3, if
you want to follow the above code via an example.
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Input:
I,J,jp,ils,jls,ijl,pe(I),abpc(ijl:ijl+pe(I)-ils,I,J )

Output
r(ils:pe(I),I,J),c(jls:qe(J),I,J)

Do il=ils to pe(I)
i=I+il * P ! global i
slr=min(i-jp,Q-1) ! length of West East BC
abpc(ijl,I,J) to r(il,I,J) ! bl(i,jp) to W send buffer
DO East West BC from r(il,I,J)
r(il,I,(J+1:J+slr)mod Q) receive bl(i,jp)
K=mod(i,Q) ! p(I,K) holds bl(i,i)
jl=i/Q ! c(jl,I,K) will hold bl(i,jp)
slc=min(n-i,P)-1 ! length of North South BC
r(il,I,K) to c(jl,I,K) ! bl(i,jp) to S send buffer
DO N S BC from c(jl,I,K)
c(jl,(I+1:I+slc)mod P,K) receive bl(i,jp)
ijl = ijl +1

enddo

Figure 19: BPCL SEND/RECEIVE Algorithm

Input
jp,I,J,jls,jle(I,J),ils(jls),pe(I),CP(jls:jle(I,J)+ 1,I,J),
abpc(CP(jls,I,J):CP(jle(I,J)+1)-1,I,J),
r(ils(jls):pe(I),I,J),c(jls:jle(I,J),I,J)

Output
abpc(CP(jls,I,J):CP(jle(I,J)+1)-1,I,J)

--------------------------------------------------- ---------
ijl=CP(jl,I,J) ! first active block
do jl=jls,jle(I,J)

j=J+jl * Q ! global j index
ils=pe(I)+1-CP(jl+1,I,J)+ijl ! local row start column jl
i=I+ils * P ! global i index
if(i.gt.j)then ! gemm bl(i,j)=bl(i,j)-bl(i,jp) * bl(j,jp)ˆt

abpc(ijl,I,J)=abpc(ijl,I,J)-r(ils,I,J) * c(jl,I,J)ˆt
else ! i=j, syrk bl(i,i)=bl(i,i)-bl(i,jp) * bl(i,jp)ˆt

abpc(ijl,I,J)=abpc(ilj,I,J)-r(ils,I,J) * c(jl,I,J)t
endif
ijl=ijl+1 ! bump pointer to abpc
do il=ils+1,pe(i)

abpc(ijl,I,J)=abpc(ijl,I,J)-r(il,I,J) * c(jl,I,J)ˆt ! gemm
ijl=ijl+1 ! bump pointer to abpc

enddo
enddo

Figure 20: BPCL Schur Complement Update Algorithm
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5 Summary and Conclusions

This paper contains three new results. RFP format,
a variant of HFP format was described as a stan-
dard minimal full storage array for representing
both symmetric and triangular matrices. Hence,
for these types of matrices it is a replacement for
both the standard formats of DLA, namely full and
packed storage. It possesses three really good fea-
tures: it is supported by Level 3 BLAS and LA-
PACK full format routines and it requires minimal
storage.

Secondly, by using a combination of sub ma-
trix partitioning and standard packed format; ie,
the SBP format of Section 3.1 we have produced
a near minimal storage distributed memory algo-
rithm for Cholesky factorization on aP × Q mesh
of processors. Full details were given. Also, by
combining SB format and RFP format we have
sketched a second such algorithm.

The final result quantifies the amount of data
reformating done by right looking LAPACK fac-
torization algorithms such asLU = PA (
DGETRF), LLT = A ( DPOTRF) andQR = A (
DGEQRF). LAPACK factorization algorithms all
call Level 3 BLAS and in particularDGEMM. The
data reformating we are referring to occurs in mul-
tiple calls to the Level 3 BLAS and it is done to
improve the performance of the BLAS. We show
this data reformatting cost is O(N3). On the other
hand, we also demonstrate that this data reformat-
ting cost can be O(N2) when SB format is used to
implement the same right looking algorithms.

The other part of our paper centered on mak-
ing the ideas of the paper [23] relate well to the
fourteen topics listed in the abstract. In Section
2 we demonstrated that matrix multiplication was
a fundamental algorithm of DLA. Hence,DGEMM
becomes the major component of almost every
DLAFA. Also, we showed the standard full for-
mat data structure of DLA isnot the best one for
DGEMMperformance. We showed that using SB’s
was. Also, programming a DLAFA using SB for-
mat was just as easy, if not easier, as using con-
ventional full format. Finally, it was demonstrated
that DMC also adapted very well to using SB for-
mat because the atomic unit of a BCL was indeed
a SB.
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7 Appendix

7.1 Illustration of factoring a pivot
panel

We now illustrate how the algorithm for fac-
toring a pivot panel works. Referring to Fig-
ure 11, we have local column 1 onp(0:4,0)
as thejp=3 the pivot panel. Input to the cod-
ing of Figure 18 is basicallyjp=3 . Given jp
we computeil=jp/P , I=jp-il * P, jl=jp/Q
and pc=jp-jl * Q. Thus, il,pr,jl,pc =
0,3,1,0. Let us choose our processor as
p(3,0) of the mesh. Having these four values
we find J=0,jl=1 ; CP(1:2,3,J)=3,6 and
apbc(3:5,3,J)=bl((3,8,13),3) . Now
we start the execution of Figure 18. We
have already foundil,pr and jl,pc in line
1 of the code. NowI=pr so ijl=3 and
pb(3,0)=abpc(3,3,0) . From Figure 11 we
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havepb(3,0)=bl(jp,jp) . After completion
of the NS BC we havepb(0:4,J)=pb(3,0) .
Now, pb(3,0) is Cholesky factored by ker-
nel routinedpofu . Next, ijl=3 and factored
pb(3,0) is stored back intoabpc(3,3,0) and
ijl is set to 4. Now,ijle=5 and thedo loop
scalesabpc(4:5,3,0) via two calls todtrsm .
From Figure 11 these two scalings are on global
blocksbl((8,13),3) .

7.2 Illustration of Send and Receive
the Pivot Panel

To illustrate Figure 19 we considerjp=3 and
p(4,0) as our processor; ie,I,J = 4,0. Other
input ils,jls,ijl,pe(I) = (0,1,3,2) and
abpc(3:5,I,J) = bl((4,9,14),3) . The
SPB’s on p(4,0) are bl((4,9,14),3) of
Figures 10 and 11. Figure 11 shows allr,c
border vector with their final contents; ie, after
Figure 19 has finished on allp(0:4,0) . There-
fore, initially one should viewr,c as containing
garbage. What Figure 19 does onp(4,0) is initi-
ate the filling inbl((4,9,14),3) into all r,c
that is appropriate on the entire mesh. The outer
do loop is over SPB’sbl((4,9,14),3) as
il takes on values 0,1,2. We now step through
this outer loop three times :

il,i,slr,ijl =0,4,1,3 and
abpc(ijl,4,0) = bl(4,3) . Since slr
= 1 we do not have a full row BC. Now,
bl(4,4) is on p(4,1) so K = 1 = mod(4,3).
jl,slc = 1,4 and we have a full column BC
from c(1,4,1) .

il,i,slr,ijl =1,9,2,4 and
abpc(ijl,4,0) = bl(9,3) . Since slr
= 2 we do have a full row BC. Now,bl(9,9) is
on p(4,0) soK = 0 = mod(9,3).jl,slc = 3,4
and we have a full column BC fromc(3,4,0) .

il,i,slr,ijl =2,14,2,5 and
abpc(ijl,4,0) = bl(14,3) . Sinceslr =
2 we do have a full row BC. Now,bl(14,9)
is on p(4,2) so K = 2 = mod(14,3). jl,slc
= 4,3 and we do not have a full column BC from
c(4,4,2) .

This completes the illustration of Figure 19.
In Figure 11 ther,c border vectors filled in
with bl((4,9,14),3) are the final result of
p(4,0) ’s contribution to the DMC Send / Re-
cieve of pivot paneljp = 3.

l g r in <--active-->
o l ac.

----------------------
| | | |

0 4|43|41|44 |
| | | |

1 9|93|91|94 97 |
| | | |

2 e|e3|e1|e4 e7 ea ed |
| | | |
| ** | | |
----------------------

c | | ** 43 73 a3 d3 ** |
----------------------

global 1 4 7 10 13 16
local 0 1 2 3 4 5

Figure 21:jp=3 BPCL SCU onp(4,1)

7.3 Illustration of Perform a Schur
Complement Update

To illustrate the coding of Figure 20, consider
p(I,J) of Figure 21 withI,J = 4,1 . We have
added local and global column and row labels to
aid in the clarity of our description. As described
above Figure 20 has a doubledo loop structure.
We have introduced an arrayjle(I,J) which
denotes the last localj column on processor
p(I,J) . Note that jle(I,J) can be strictly
less thanqe(J) . In Figure 21 this inequality
occurs. The outerdo loop on jl is therefore
jls,jle(I,J) = 1:4 . Local column 0 of
c,abpc is inactive as1 ≤ jp. The active part
of abpc is abpc(3:9,I,J) . The active part
of r is ils(jls):pe(I) = 0:2 . The relevant
part of CP is CP(jls:pe(I,J)+1,I,J)
= 3,6,8,9,10 . We now walk through
the code: ijl=CP(jls,I,J) =3. do
jl=jls,ije(I,J) translates todo jl=1,4 .

jl=1, j=1+1 * 3=4, ils=3-6+3=0,
i=4+0 * 5=4 and i=j . Since i=j , we do a
SYRKupdate:B4,4 = B4,4 − B4,3B

T
4,3 and ijl

becomes 4. The innerdo il=1,2 is next and we
have twoGEMMupdates:B9,4 = B9,4 −B9,3B

T
4,3

andB14,4 = B14,4 − B14,3B
T
4,3. And ijl has

become 6.

jl=2, j=1+2 * 3=7, ils=3-8+6=1,
i=4+1 * 5=9 and i>j . Since i>j , we do a
GEMMupdate: B9,7 = B9,7 − B9,3B

T
7,3 and
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ijl becomes 7. The innerdo il=2,2
is next and we have oneGEMM update:
B14,7 = B14,7 − B14,3B

T
7,3 and ijl has

become 8.

jl=3, j=1+3 * 3=10, ils=3-9+8=2,
i=4+2 * 5=14 and i>j . Since i>j , we do a
GEMMupdate:B14,10 = B14,10 − B14,3B

T
10,3 and

ijl becomes 9. The innerdo il=3,2 is next
and is empty.

jl=4, j=1+4 * 3=13, ils=3-10+9=2,
i=4+2 * 5=14 and i>j . Since i>j , we do a
GEMMupdate:B14,13 = B14,13 − B14,3B

T
13,3 and

ijl becomes 10. The innerdo il=3,2 is next
and is empty.

The outer loop is now complete and the code is
done. It should be noted that extremely little extra
operations are required in Figure 20. They are all
fixed point operations ( onj,ils,i and the logic
of theif-then-else clause ) and they all occur
in the outerdo loop on jl .

8 Glossary

Acronym Meaning Page #
AA Algorithms and Architecture 3
abpc array block packed cyclic 20
BC BroadCast 19

BCL Block Cyclic Layout 4
BPC Block Packed Cyclic 20
BPG Block Packed Global 20
BPCL Block Packed Cyclic Lower 25

CP Column Pointer 20
DGEMM Dbl. prec. GEneral Matrix Multipy 2

DLA Dense Linear Algebra 2
DLAFA Dense Linear Algebra Factorization Algorithm 2
DMC Distributed Memory Computing 2
FMA Fused Multiply Add 4

gl global local 26
glp global local packed 25
HFP Hybrid Full Packed 4
lg local global 26
lgp local global packed 25

LLA Left Looking Algorithm 12
MCU Most Commonly Used 2

MFlops Million FLoating-point OPerations per Second 2
NDS New Data Structure(s) 2
pe local end index (row) 25
pl global end index (row) 25
qe local end index (column) 25

RFP Rectangular Full Packed 2
RLA Right Looking Algorithm 5
SB Square Block 5
SBP Square Block Packed 5

SBPL Square Block Packed Lower 10
SCU Schur Complement Update 5
SPB Scaled Pivot Block 20

SPMD Single Program Multiple Data 4
SRPA Simple Related Partition Algorithm 13
TLB Translation Lookaside Buffer 7
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