
RC23717 (W0509-057) September 16, 2005
Computer Science

IBM Research Report

Chicken & Egg: Dependencies in Security Testing and
Compliance with Common Criteria Evaluations

Amit Paradkar, Suzanne McIntosh, Sam Weber,
David Toll, Paul Karger, Matt Kaplan

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Chicken & Egg: Dependencies in Security Testing and Compliance with
Common Criteria Evaluations

Amit Paradkar, Suzanne McIntosh, Sam Weber, David Toll, Paul Karger, Matt Kaplan
IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532, USA
e-mail :{paradkar, skranjac, toll, mmk}@us.ibm.com,{samweber, karger}@watson.ibm.com

Abstract

Common Criterion security evaluations require an anal-
ysis of test dependencies present (if any) during the testing
activities of an application under evaluation. Such analy-
sis is required to ensure that no fault masking occurs. In
this paper, we present 1) a formalization of the notion of
test dependencies from fault masking perspective in terms
of a test dependency graph (TDG), 2) a model based ap-
proach for derivation of a TDG for a set of use cases, 3) an
algorithm which derives a test order from a TDG to mini-
mize the debugging cost, and 4) results from a case study
using a secure smart card operating system. Our results in-
dicate that fault masking in the presence of test dependen-
cies is not a serious concern.

1. Introduction

Explosive growth in worms and viruses has made IT se-
curity a critical issue both for vendors and consumers of IT.
Many consumers, including governments of several nations,
require IT vendors to demonstrate security compliance of
applications that they provide. An international standard,
called the Common Criteria (CC), which supports different
levels of assurance has been developed to evaluate a given
IT application. The Common Criteria Scheme [1] enables
consumers to obtain an impartial security evaluation of an
IT product by an independent entity. The specific IT prod-
uct being evaluated is referred to as the Target of Evalua-
tion (TOE). The security requirements for that product are
described in its security target.

CC security evaluation includes an analysis of the IT
product and the testing of the product for conformance
to a set of security evaluation requirements. These evalu-
ation criteria require an development organization to fur-
nish evidence of security compliance along seven dimen-
sions (called assurance classes) as follows Configuration

Management (ACM), Delivery and Operation (ADO), De-
velopment (ADV), Guidance Documents (AGD), Lifecycle
Support (ALC), Testing (ATE), and Vulnerability Analysis
(AVA).

Each assurance class is further divided into families and
components which detail the compliance requirements. The
ATE assurance class, for example, is divided into 4 families
as follows:

1. Coverage (ATECOV): Requires evidence that testing
activities have covered each TOE security function ad-
equately

2. Depth (ATEDEP): Requires evidence that the testing
activities have covered TOE security functions to ap-
propriate depth (such as high level or low level design)

3. Functional Testing (ATEFUN): Requires evidence
that the testing activities have covered functional-
ity of each TOE security function adequately.

4. Independent Testing (ATEIND): Imposes require-
ments on the independent evaluators

Each family describes contents and presentation of the
required evidence. One aspect of the ATEFUN family is
concerned with test dependency as quoted in the CC docu-
ment [1] “. . . Ordering dependencies are relevant when the
successful execution of a particular test depends upon the
existence of a particular state. For example, this might re-
quire that test A be executed immediately before test B,
since the state resulting from the successful execution of
test A is a prerequisite for the successful execution of test B.
Thus, failure of test B could be related to a problem with the
ordering dependencies. In the above example, test B could
fail because test C (rather than test A) was executed imme-
diately before it, or the failure of test B could be related to
a failure of test A.”

The specific requirements concerning test ordering are

(as quoted from [1]1): “ATE FUN.2 Ordered functional
testing Objectives. The objective is for the developer to
demonstrate that all security functions perform as specified.
The developer is required to perform testing and to provide
test documentation. In this component, an additional objec-
tive is to ensure that testing is structured such as to avoid
circular arguments about the correctness of the portions of
the TSF being tested.

ATE FUN.2.6CThe test documentation shall include an
analysis of the test procedure ordering dependencies.”

These test dependency requirements have two con-
sequences: 1) Need to developself-containedtest cases,
where each test case in a test suite does all the set up it
needs, verifies all the expected output including any sys-
tem state updates, and cleans up after itself, and 2) Po-
tential to minimize the risk offault masking, where one
fault prevents another fault from being exposed. For appli-
cations which provideservicesto other applications, the
problem of test dependencies can be cast in terms of or-
dering dependencies among services. The ordering is im-
posed because of the system state being manipulated by the
provided services. Provided services may depend on a par-
ticular system state to operate correctly and depend on
other services to achieve the desired system state. Such de-
pendencies imply thatintegration testingof the provided
services may need to be carried out in certain order to en-
sure that the test case areself-contained, to minimize the
probability of fault masking, and to reduce the cost of de-
bugging process.

The problem of dependency and order in the context
of integration testing of object-oriented (OO) software has
been studied extensively [4, 5, 9, 11, 10]. However, in all
the previous works the emphasis is on minimizing the cost
of stub development, and not on reducing fault masking.
The dependencies are defined in terms of inheritance, ag-
gregation, and association relationships among the classes
being tested. However, this notion of dependency is not suit-
able for a set of services. In this paper, we provide a more
appropriate formulation of test dependency among a group
of services. We use this formulation for a model based ap-
proach to perform the analysis required inATE FUN.2.6C
above. We use Unified Modeling Language (UML) to de-
scribe the external behavior of the services (and treat a ser-
vice like an UML use case). We define 3 kinds of dependen-
cies between a pair of services:

1. Set Up, which arises when a service needs to be in-
voked with a successful result before another service
can succeed,

2. Verification , which arises when a service needs to be

1 The changes proposed for the Common Criteria V3 [2] do not materi-
ally affect these requirements.

invoked in order to verify behavior of another service,
and

3. Clean Up, which arises when a service needs to be in-
voked to reverse the state update effects of another ser-
vice.

Additionally, the specific contributions of this paper are:

• Concept of aTest Dependency Graph(TDG) which en-
capsulates the dependency relationships among a set of
services.

• A technique to derive a TDG based on a UML behav-
ior model of the services.

• A technique to derive a test order for services based on
a two-phase topological sort of the TDG.

• Results of a case study using a smart card operating
system component demonstrating that fault masking is
reduced with theself-containedtest cases created us-
ing the test order.

The rest of this paper is organized as follows. Section 2
describes the concepts involved in the UML behavior model
for the services along with an example based on file sys-
tem component of a smart card operating system. Section 3
defines 1) various dependency relationships between a pair
of services, and 2) the test dependency graph itself. Sec-
tion 3 also describes algorithm to derive a test order based
on TDG. Section 4 describes the results of a case study us-
ing the file system component. Section 5 reviews the prior
results in integration test order which are related to ours. Fi-
nally, Section 6 summarizes our conclusions and indicates
areas of future work.

2. Preliminaries

2.1. Terminology

We use Unified Modeling Language (UML) [3] to de-
scribe the behavior of the services provided by an applica-
tion. The behavior model used in this paper consists of 2 ar-
tifacts: 1) Domain Model, and 2) Use case Model.

A Domain modelD consists of conceptual entities and
relationships thereamong that are manipulated by the pro-
vided services. These concepts are represented using the
Class diagram artifact of UML. A UML Class diagram con-
sists of classes in the system each describing a conceptual
domain entity. A class has a list of attributes and associated
types. Two classes may be related to each other in a variety
of ways.Inheritancerelationship captures anis-a relation-
ship between two classes and is depicted by a hollow arrow-
head in the diagram notation. Anassociationrelation exists
if the two entities are logically related to each other, and is
depicted by a plain line in the diagram.

2

A system state consists of concrete instance of a domain
model. A concrete instance of aClassis called anObject,
and that of anAssociationis called aLink.

A Use case Modelin UML model describes the behav-
ior of an individual use cases. LetU be the set of use cases
that an application provides. EachU ∈ U takes parameters
PU = IU∪OU , whereIU is the set of input parameters and
OU is the set of output parameters, andIU ∩ OU = ∅; and
produces exactly one of the resultsRU = XU ∪NU for any
invocation.XU is the set ofabnormalresults which raiseex-
ceptionsto the environment andNU is the set ofnormalre-
sults. EachRU ∈ RU has aguardcondition,GRU

(IU ,D),
which is a predicate on the input parameters and entities
from the domain model.

Each RU ∈ RU has an associated postcondition
ARU

(PU , D) expressed as a list ofimperative actions.
Some actions affect entities in the domain model, while oth-
ers assign values to the output parameters. Actions which
affect the domain model entities follow a Create, Read, Up-
date, and Delete (CRUD) paradigm for both instances and
links in the domain model. ACreateaction creates an in-
stance of an object or a link (along with appropriate
initialization of the corresponding attributes). AReadac-
tion assigns values of a domain model entity to an out-
put parameter. AnUpdateaction modifies an instance (by
changing its attributes). ADelete action deletes an ob-
ject or a link.

2.2. An Example Application

We will illustrate the above terminology and our tech-
niques with a file system component of the Caernarvon op-
erating system software [7]. Caernarvon is a high assurance
operating system currently under development at IBM T.J.
Watson Research Center for use in smart card applications.
Smart card chips are equipped with a microprocessor, tran-
sient and persistent memory, and certain other peripheral
devices - in particular an input/output and communication
device. Smart card chips are commonly used in banking ap-
plications such as electronic purse/debit cards. They are also
used in securing information such as may be found on na-
tional identification cards and, more recently, passports.

The Caernarvon operating system is different from most
smart card operating systems, because it requires a proces-
sor chip that supports both user and supervisor modes and
that supports memory protection. In traditional smart card
operating systems, all code running on the smart card must
be trusted, because it can touch all of memory. However,
Caernarvon supports downloading of applications that may
not be fully trusted or that may be mutually suspicious and
require protection from each other.

Traditional smart cards provide services based on appli-
cation protocol data units (APDUs) that are used to commu-

nicate between the smart card and the reader. However, in
the Caernarvon operating system, the services provided are
supervisor calls that are used to communicate between ap-
plications programs and the trusted operating system ker-
nel. The APDUs are implemented by applications program
which may or may not be trusted to be secure.

Thus, at the very highest level of abstraction, the
Caernarvon operating system provides a well-defined set
of services, implemented as supervisor calls. These ser-
vices are grouped into logical subsets such as the Crypto
System services, the Key System services, the File Sys-
tem services, etc. For the purpose of this paper, we
considered only the File System services, and mod-
eled the behavior of each File System service as a UML
use case.

Figure 1 shows the domain model for the file sys-
tem component of Caernarvon. It consists of 5 classes.
ClassesFile , and Directory inherit from an ab-
stract classFileSystemObject . A Directory may
contain otherFileSystemObject s (and hence both
otherDirectory s andFile s.). This is depicted by the
parent-children association between the two classes. A
FileSystemObject consists of blocks ofData (rep-
resented as aSequence). Also, A FileSystemObject
may be referred to by aHandle object.

Figure 2 describes some of the file system services mod-
eled as use cases. For brevity, we describe only the
essential behavior, leaving out many details. For ex-
ample, use caseCreate Directory takes two in-
put arguments: parentName and pName. It then
checks if aDirectory instance with the name equal
to parentName exists in the current system state. If
such an instance exists, it creates a newDirectory in-
stance with name equal to the parameterpName, and
creates aparent and child links between the par-
ent Directory and the newly createdDirectory
instances. In what follows, we refer to the file system be-
havior model (consisting of the Domain model and the use
case model) asFileSystemSpec .

3. Test Dependency Graph

3.1. Terminology

A notion of Test Dependency Graph, or TDG, is defined
below to capture the relationships among the use cases of a
system.

Definition 1 A use caseU is a constructor of a Class C
(or Association A) if there exists a create action for an in-
stance of Class C (Association A resp.) inARU

(PU ,D) for
some resultRU of U .

For example, inFileSystemSpec use caseCreate
Directory is a Creator of Directory class and

3

FileSystemObject

name
path
size

File Directory

quota
parent

bytes contents

HandleData

filePointer

children

Figure 1. Domain Model for FileSystemSpec

Directory - FileSystemObject associa-
tion, while use caseFile Open is aCreatorof Handle
class, and theFileSystemObject-Handle associa-
tion.

Definition 2 A use caseU is adestructor of a Class C (or
Association A) if there exists a delete action for an instance
of Class C (Association A resp.) inARU (PU , D) for some
resultRU of U .

For example, use caseDelete File is a destruc-
tor of classFile and associationFileSystemObject

-Directory in FileSystemSpec .

Definition 3 A use caseU is a reader of a Class C (or As-
sociation A) if there exists a read action for an instance of
Class C (Association A resp.) inARU

(PU ,D) for some re-
sultRU of U .

For example, use caseOpen File is a reader of class
Handle , and use caseFile Read is a readerof Class
Data .

Definition 4 A use caseU is a user of a Class C (or Asso-
ciation A) if there exists a reference to an instance of Class
C (Association A resp.) inGRU (IU ,D) for some resultRU

of U .

For example, use caseFile Create is an user of
Directory class since, its guard condition checks
to see if an appropriate instance ofDirectory ex-
ists.

Definition 5 The relation SetsUp :U×U → {true, false}
for a pair of use casesU1, U2 ∈ U , denoted SetsUp(U1, U2),
is true iff there exists an entity (either a class or an associ-
ation) E ∈ D such thatU1 is a creator ofE andU2 is an
user ofE.

The relationSetsUp captures the set up dependency,
where one use case prepares the system state by creat-
ing entities (objects or links) that would be needed by
others. For example,SetsUp (Create Directory,
Create File) is truesinceCreate Directory is a
creator ofDirectory which is used byCreate File .

We define analogous relationsVerifiesandCleansUpas
follows.

Definition 6 The relation Verifies :U×U → {true, false}
for a pair of use casesU1, U2 ∈ U , denoted
Verifies(U1, U2), is true iff there exists an entity (ei-
ther a class or an association)E ∈ D such thatU1 is ei-
ther a reader or a user ofE and U2 is a creator of
E.

The relationVerifies captures the verification de-
pendency, where one use case demonstrates the updates
to the system state in terms of entity creation by using
another use case to externalize the evidence of its exis-
tence. For example,Verifies (Read File, Write
File) is true since Read File demonstrates the im-
pact of Write File to the environment through a read
action. Similarly,Verifies (Open File, Create
File) is true since, a file created byCreate File can
be used by anOpen File to demonstrate its successful
creation.

Definition 7 The relation CleansUp :U × U →
{true, false} for a pair of use casesU1, U2 ∈ U ,
denoted CleansUp(U1, U2), is true iff there exists an en-
tity (either a class or an association)E ∈ D such thatU1

is a destructor ofE andU2 is a creator ofE.

The relationCleansUp captures the clean up depen-
dency, where one use case deletes the entities created
by another use case. This is useful in the testing prac-

4

<COMPONENT>File System
<use case> Create Directory

in parentName
in Name
RESULT rOK IF

a directory with name=parentName exists
post {Create a new Directory Instance }
{Create a children link }

</use case>

<use case> Remove Directory
in pName
RESULT rOK IF

a directory with name=pName exists
post {Remove the directory Instance }

</use case>

<use case> Create File
in parentName
in Name
RESULT rOK IF

a directory with name=parentName exists
post {Create a new File Instance }
{Create a children link }

</use case>

<use case> Delete File
in pName
RESULT rOK IF

a file with name=pName exists
post {Delete the found File Instance }
</use case>

<use case> Open File
in pName
out handle
RESULT rOK IF

a fileObject with name=pName exists
post {Create a new Handle Instance }
{Create a handles link }
{Return the handle instance }

</use case>

<use case> Close File
in handle
RESULT rOK IF

pHandle exists in the Set of Handles
post {Delete the pHandle Instance }

</use case>

<use case> Write File
in pHandle
in buffer
RESULT rOK IF

a handle = pHandle exists
post {Create a new Contents Instance }
{Set the blocks attribute to buffer }
{Create a contents link }

</use case>

<use case> Read File
in pHandle
out buffer
RESULT rOK IF

a handle = pHandle exists
post
{Copy the blocks into the buffer output }

</use case>

Figure 2. Use case Model for FileSystemSpec

tice to have a self contained set of test cases, which restore
any modifications to the persistent system state back to
the original values. For example,CleansUp (Create
Directory, Remove Directory) is true since
Create Directory is a creator ofDirectory which
is deleted byRemove Directory .

Definition 8 An edge labeled diagraphG = (V, E,L) is a
directed graph, whereV = {V1, . . . , Vn} is a finite set of
nodes,L = {L1, . . . , Lk} is a finite set of labels, andE ⊆
V × V × L is a finite set of edges.

Definition 9 The TDG for a set of use cases is an edge la-
beled diagraphG = (V, E,L), whereV is the set of use
cases,L = {S, V,C}, andE = ES ∪ EV ∪ EC is the set
of edges as defined below.

Definition 10 ES ⊆ V ×V ×L is the set of directed edges
representing the set up relationship among the use cases.
For any two use casesU1, U2 ∈ U , < U1, U2, S >∈ ES if
SetsUp(U1, U2) is true.

Definition 11 EV ⊆ V ×V ×L is the set of directed edges
representing the verification relationship among the use
cases. For any two use casesU1, U2 ∈ U , < U1, U2, V >∈
EV if Verifies(U1, U2) is true.

Definition 12 EC ⊆ V ×V ×L is the set of directed edges
representing the clean up relationship among the use cases.
For any two use casesU1, U2 ∈ U , < U1, U2, C >∈ EC if
CleansUp(U1, U2) true.

Figure 3 shows the result of applying the TDG defini-
tions to the File System component behavior model.

5

CleansUp

File Write

File Open
File Create

File Delete
File Close

File ReadRemove

Create

Directory

Directory

SetsUp

Verifies

Figure 3. Test Dependency Graph for FileSystemSpec

3.2. Deriving Test Orders from TDG

The algorithm for finding test dependency order oper-
ates in two phases. In the first phase, the original TDG is
converted into an acyclic directed graph by identifying its
Strongly Connected Components (SCCs) [6]. A topologi-
cal sort of the resulting acyclic graph yields a major order
of traversal. For the TDG in Figure 3, the entire graph is a
single SCC.

In the second phase, each SCC identified in the first
phase is converted into an acyclic graph by removing cer-
tain edges from the SCC. A second topological sort of the
resulting acyclic graphs yields minor test order.

To break the cycles, we delete an edge which is not of
SetsUp kind. With this algorithm, the derived test order is
as follows:

Create Directory , (Create File ‖ Remove
Directory), (Open File ‖ Delete File), Write
File , Read File , where ‖ implies that any choice
would be correct.

Along with the test order, our algorithm also produces a
list of the verification and clean up services that could be
used to create aself-containedtest case for a given service.

4. Experimental Evaluation

The experiments described in this section were designed
to enable us to search for evidence of fault masking in
the presence of multiple faults using a test suite ofself-
containedtest cases. These test cases were created manu-
ally prior to the development of the test order formulation
described in Section 3.1, but approximate the test order de-
rived for the file system services in Section 3.2. In support
of our experiments, we injected seeded faults into the sta-
ble implementation of Caernarvon available to us.

We performed testing of the Caernarvon Builds with In-
jected Faults (BIFs) by running a standard set of test cases
(267 of them) against each build. These test cases target all
Caernarvon services,i.e. they are not limited to testing the
File System services only.

For every build, we required that all standard test cases
must have been attempted and a clearpassor fail indica-
tion received. These criteria ensured that both the test envi-
ronment and the SUT remained healthy in areas outside the
scope of the injected fault. We discarded the BIFs (and the
associated faults) that prevented the full suite of test cases
from completing.

In the next section, we provide an overview of the
Caernarvon implementation along with the associated test
environment in which we performed our experiments. We
then describe the nature of the injected faults and the crite-
ria used in vetting single and combined faults. Finally, we
describe the fault injection experiments performed and re-
sults obtained.

4.1. Target Environment Overview

The implementation of the File System component of
the Caernarvon operating system consists of approximately
16K lines of C code (including comments and embedded
documentation) of which approximately 5K are executable
Cstatements. The Caernarvon test environment consists of a
test bench and test scripts written in the scripting language
Ruby. The test scripts are the implementations of numer-
ousself-containedtest cases intended to cover both the suc-
cessful and failing behavior of various services. Each test
case is composed of four basic stages:

1. The setup stage establishes the environment prerequi-
site for testing of the main objective.

6

2. The objective testing stage carries out the test objec-
tive.

3. The verification stage compares results obtained to ex-
pected results.

4. The cleanup stage returns the system to the state which
existed prior to the setup stage.

The test system runs these scripted test scenarios and then
captures the results for post-test analysis.

Another utility, the Caernarvon Fault Insertion Tool
(CFIT), augments the basic Caernarvon test environ-
ment already described. In order to facilitate the anticipated
high volume of testing, CFIT supports:

1. Insertion of single faults and fault combinations into
Caernarvon builds;

2. Automatic generation of Caernarvon BIFs;

3. Automatic testing of BIFs;

4. Automatic storage of test results for analysis.

CFIT provides a simple external interface to facilitate the
fault injection process. A user/tester may select any combi-
nation of faults and, through a menu-driven interface, one
can initiate the automatic generation and test of Caernar-
von BIFs. CFIT collects test results, unambiguously associ-
ating the results with the faults injected.

4.2. Fault Injection Experiments

In preparing for our fault injection experiments, our first
task was to identify the types of faults to be injected into
the implementation of Caernarvon File System services. An
initial list of plausiblefile system bugs was produced. To
avoid bias, this list was produced from the file system ser-
vices specification document alone by one of the authors
who was not familiar with either the implementation details
or the existing Caernarvon test suite.

Of this list, fifty faults were selected and implemented.
Although all of them could have been implemented, we pre-
ferred faults that:

1. Required minimal changes to the existing code, and

2. Could be fully realized without the need to modify
multiple software components.

We injected each of the fifty faults individually gener-
ating fifty BIFs. We quickly found that some of the faults
we had injected interfered with Caernarvon’s boot-up se-
quence. To combat this, we introduced a flag for gating the
injected faults such that the injected faults took effect only
after Caernarvon entered its steady state.

Gating in place, we proceeded to run the full suite of
test cases against our collection of BIFs. We discovered that

fourteen builds either caused catastrophic failures or fail-
ures that occurred early in the setup stage of a test case. In
both of these scenarios, we found that only a portion of the
standard test suite had run. As stated earlier, we required
that all test cases run and yield a clearpassor fail indica-
tion. Consequently, these fourteen BIFs (and the associated
injected faults) were removed from our target set.

Our final fault set consisted of thirty six faults quite
representative of common programming errors especially
prevalent in file processing systems. For example, failure
to:

• verify path or filename is legal

• charge or return quota properly

• create file of correct size or file type

• prevent operations illegal for a given file type or mode

• record file state information accurately

• initialize or update the file pointer properly

• trap a read beyond the end of file

In Table 1, we illustrate some of the injected faults. Col-
umn labeledOperational Code - No Faultshows the frag-
ment of correct code, and column labeledCode with In-
jected Fault shows the code corresponding to the injected
fault. For example,Fault StartRdAtWrongAddr in
Table 1 causes an off-by-one error with respect to the file
pointer during a file read operation. We inserted code that
directly decrements the file pointer prior to calling the low-
level read operation. Other faulty code shown in Table 1
causes side effects such as:

• Reducing the correct file size prior to creating the file.

• Neglecting to update quota (achieved by commenting
out certain code).

• Returning the wrong amount of quota.

Having identified our target set of single faults and scru-
tinized the single fault seeding results, we turned our atten-
tion to experimenting with paired fault seeding. We paired
inter- and intra-service faults and then ran the standard 267
test cases. When we refer topaired inter-servicefaults, we
are referring to two faults, each of which occurs in imple-
mentations of different services. When we refer topaired
intra-servicefaults, we are referring to two faults, both of
which occur in the implementation of the same service.

Once again, we scrutinized the results and discarded 102
fault pairs that did not meet our criteria. This left us with
207 paired fault BIFs (135 inter-service, 72 intra-service)
for further analysis.

7

Id Operational Code - No Fault Code With Injected Fault

Fault StartRdAtWrongAddr rc = PSM ReadObject (DataMemId, rc = PSM ReadObject (DataMemId,
Offset+FcbEntry->Position, (Offset+FcbEntry->Position) -1,

CntData, (USHORT P)Buffer) CntData, (USHORT P)Buffer)

Fault CreFileWrongSize rc = PSM CreateObject (MS FILE | MemType, rc = PSM CreateObject (MS FILE | MemType,
HdrSize + FileSize, (HdrSize + FileSize) -1,

&HdrId) &HdrId)

Fault QuotaNotCharged RelevantQuoteMemId = ParentMemId; RelevantQuoteMemId = ParentMemId;
AvQuota = Quota; AvQuota = Quota;
rc = fsManagemQuota(&RelevantQuoataMemId, /* rc = fsManagemQuota(&RelevantQuoataMemId,
&AvQuota, QT SUB) &AvQuota, QT SUB)*/

Fault WrongQuotaCharged AvQuota = HdrExt.qc.Quota; AvQuota = HdrExt.qc.Quota - 1;

Table 1. Faults Injected into File System Implementation

4.3. Fault Masking Analysis Results

Endeavoring to find evidence of fault masking, we com-
pared the results obtained for each paired fault tested to the
results obtained when each fault comprising the pair was
individually tested. To claim absence of fault masking, we
needed to demonstrate that the union of test cases that failed
for each of the two faults tested individually was present in
the results obtained when the two faults were paired up and
tested.

The result of this analysis provided us with several can-
didate cases of fault masking - it appeared we could not
claim absence of fault masking. Upon further investigation,
we were able to characterize these candidate cases as be-
longing to one of two categories of masking which were ac-
tually trivial, the direct result of the presence of opposing
faults. The two categories are:

1. Masking that occurs from the presence of two faults
that cancel each other out.

2. Masking that occurs from the presence of two faults
that cannot co-exist logically.

As an example of the first category, consider en-
abling two faults: Fault Add1 and Fault Sub1.
Enabling Fault Add1 demands that a pointer be in-
cremented by one. EnablingFault Sub1 demands
that same pointer be decremented by one. If we in-
clude both faults, the net result is an unchanged pointer. We
noted five such cases. Not surprisingly, we observed cases
such as this only with intra-service fault pairs where the
fault pairs are likely to modify code within the same mod-
ule.

As an example of the second category, consider
enabling two faults: Fault Wr2RdOnlyHandle
and Fault Wr2ClosedHandle . Enabling
Fault Wr2RdOnlyHandle requires that the han-
dle to be written to be open in read-only mode. Enabling

Fault Wr2ClosedHandle requires that the han-
dle to be written to be closed. The prerequisite state of
the file handle cannot be both open and closed. There-
fore, this is an illogical combination. We noted nine such
cases.

We also observed other interesting results not associated
with fault masking. In these results, we discovered that one
fault pair caused test cases to fail even though these test
cases had passed when we applied each of the two faults of
the pair individually. Six test cases failed in this instance.
One of the test cases, a File Seek test, failed on file open be-
cause we reached the maximum number of open handles
and, due to one of the faults injected into the build, we pre-
vented file handles from being marked as closed. The other
five test cases failed because they attempt to create a file that
already exists. Normally, the failed File Seek test, which had
created the same file, would have deleted it. However, ow-
ing to its own failures, the File Seek test had not deleted
that test file. This implies that for a test case to be trulyself-
containedit is not enough to have all clean up fragment in
the test cases, its placement within the test case is also im-
portant.

5. Related Work

One important problem when integrating and testing
object-oriented software is to decide the order of class in-
tegration. A number of papers have provided strategies and
algorithms for deriving an integration and test order from
dependencies among classes in the system class diagram
[4, 8, 9, 11, 10]. The objective of all these approaches is
to minimize the number of test stubs to be produced, as this
is perceived to be a major cost factor for integration test-
ing. Indeed, stubs are pieces of software that have to be
built in order to simulate parts of the software that are ei-
ther not developed yet or have not yet been unit tested, but
are needed to test classes that depend on them. Kung et al.
[8] were the first researchers to address the class test or-

8

der problem and they showed that, when no dependency cy-
cles are present among classes, deriving an integration order
is equivalent to performing a topological sorting of classes
based on their dependency graph a well known graph the-
ory problem. In the presence of dependency cycles, the pro-
posed strategy consists of identifying strongly connected
components (SCCs) and removing associations until there
is no cycle in the SCCs.

However, Kung and colleagues do not provide precise
solutions when there is more than one candidate association
for cycle breaking. In this case they simply perform a ran-
dom selection. Existing solutions to this problem are based
on the principle of breaking some dependencies to obtain
acyclic dependencies between classes. Tai and Daniels [10]
propose a 2-stage algorithm that deals with dependency cy-
cles. However, in cases where class associations are not in-
volved in cycles, their solution is sub-optimal in terms of the
required number of test stubs. Le Traon et al. [11] propose
an alternative strategy based on graph search algorithms
that recognize strongly connected components, and that ar-
guably yields more optimal results. One issue, though, is
that this algorithm is not fully deterministic in the sense that,
depending on some arbitrary decision (e.g., the initial ver-
tex (class) of the search, and the search itself), the algorithm
may yield significantly different results.

Furthermore, since the model used does not have any in-
formation on the kind of dependency (inheritance, associa-
tion or aggregation), this approach may lead to the removal
of an inheritance or aggregation relationship. Kung et al.
[8], as well as others before them [10], point out that asso-
ciation relationships are usually the weakest links in a class
diagram, i.e., the links involving the fewest dependencies
and therefore the least stub complexity if broken.

6. Conclusions and Future Work

Common Criterion security evaluations require an anal-
ysis of test dependencies present (if any) during the testing
activities of an application under evaluation. Such analysis
is required to ensure that the test cases areself-contained,
and no fault masking occurs. In this paper, we have pre-
sented 1) a formalization of the notion of test dependen-
cies from fault masking perspective in terms of a test depen-
dency graph (TDG), 2) a model based approach for deriva-
tion of a TDG for a set of use cases, 3) an algorithm which
derives a test order from a TDG to minimize the debugging
cost, and 4) results from a case study using a secure smart
card operating system. Our results indicate that fault mask-
ing in the presence of test dependencies is not a serious con-
cern.

One of the CC requirements at higher levels of evaluation
is to demonstrate that all the implementation code is exer-
cised thoroughly. However, the coverage adequacy criterion

is not clearly specified. We would like to make this criterion
more precise. To that end, we plan to conduct experiments
to measure coverage of the code entities (e.g. statements,
branches) in Caernarvon implementation using the existing
test suite, and explore the relationship between code cover-
age and detected faults. We would also like to investigate
the impact of set up, verification, and clean up aspects of a
test case on the relationship between measured code cover-
age and fault detection effectiveness.

References

[1] Information technology - security techniques – evaluation
criteria for IT security – part 3: Security assurance require-
ments, 1999. ISO/IEC 15408-3, International Standards Or-
ganization.

[2] Common criteria for information technology security evalu-
ation - part 3: Security assurance components, 2005. Version
3.0, Revision 2, CCMB-2005-07-003.

[3] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Mod-
eling Language User Guide. Addison-Wesley, 1999.

[4] L. Briand, Y. Labiche, and Y. Wang. An investigation of
graph-based class integration test order strategies.Transac-
tions on Software Engineering, 29(6):1–37, 2003.

[5] L. Briand, Y. Labiche, and Y. Wang. Towards a comprehen-
sive and systematic methodology for class integration test-
ing. In Proc. of Int. Symp. on Software Reliability Engineer-
ing, Nov. 2003.

[6] N. Deo.Graph Theory and Applications to Engineering and
Computer Science. 1974.

[7] P. A. Karger, V. R. Austel, and D. Toll. Using mandatory se-
crecy and integrity for business to business applications on
mobile devices. InWorkshop on Innovations in Strong Ac-
cess Control, pages 25–27, 2000. http://www.acsac.org/sac-
tac/wisac00/wed0830.karger.pdf.

[8] D. Kung et al. “On Regression Testing of Object-Oriented
Programs”.Journal of Systems and Software, Vol. 32, pages
21–40, Jan. 1996.

[9] Y. Labiche, P. Thvenod-Fosse, H. Waeselynck, and M.-H.
Durand. Testing levels for object-oriented software. InPro-
ceedings of International Conference on Software Engineer-
ing, 2001.

[10] K. C. Tai and F. Daniels. Interclass test order for object-
oriented software.Journal of Object Oriented Programming,
12(4):18–25, 1999.

[11] Y. L. Traon. Efficient object-oriented integration and regres-
sion testing.IEEE Transactions on Reliability, 49(1):12–25,
2000.

9

