
RC23719 (W0509-075) September 21, 2005
Computer Science

IBM Research Report

Inverted Browser: A Novel Approach towards
Display Symbiosis

Mandayam Raghunath, Nishkam Ravi, Marcel C. Rosu,
Chandra Narayanaswami

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Inverted Browser: A Novel Approach towards Display Symbiosis

Mandayam Raghunath, Nishkam Ravi*, Marcel C Rosu, Chandra Narayanaswami
IBM TJ Watson Research Center

{mtr, rosu, chandras}@us.ibm.com, *nravi@paul.rutgers.edu

Abstract

In this paper we introduce the Inverted Browser, a

novel approach to enable mobile users to view content
from their personal devices on public displays. The
Inverted Browser is a network service to start and
control a browser that is then used to view the content.
In contrast to a traditional Web browser, which runs
on the client device and pulls content from a server,
content is pushed to the Inverted Browser from a
personal data source upon user input. This approach
allows a wide variety of personal content to be viewed
by facilitating symbiotic relationships between mobile
devices and intelligent displays in the environment. In
addition, this approach exploits the significant
investments in Web browsers and related technologies.

Our initial Inverted Browser prototype is based on
a Web Services wrapper around a traditional Web
browser. We compare the Inverted Browser with
alternative approaches based on VNC thin client
technology and Bluetooth profiles.

Our experiments show that the Inverted Browser
approach is superior in terms of user convenience,
ease of use, energy consumption, and privacy. We
expect hardware improvements to further reduce
interaction latencies, an aspect where the other
solutions presently have a slight edge.

1. Introduction

Mobile devices, such as smart phones and portable
music players, are becoming the preferred storage
device for personal data, mainly due to their constant
availability, wireless connectivity, data capturing
abilities, and increasing amounts of storage they
incorporate. However, their small screens coupled
with lack of software to view several types of content
limit the user’s ability to interact with his personal
data. At the same time, it is becoming clear that large
displays hold enormous promise as a pervasive

technology due their increasing availability in public
spaces. Furthermore, many of the newer TV displays
feature digital input capabilities and they can be
directly attached to PCs or incorporate comparable
processing and networking capabilities. For instance,
some TVs, such as the Sharp Aquos B3, have the
requisite hardware and software capabilities to directly
show digital images stored on portable storage media,
such as SD, xD and CF cards. In addition to displays,
there is a trend towards adding more functionality to
projectors. We are beginning to see projectors that
support wired and wireless connectivity primarily for
network management. Some of the newer projectors
also accept portable storage media, including USB
flash keys, and have built-in viewers to show
PowerPoint files. Our objective is to take this trend one
step further and elevate display devices to intelligent
first class network entities that offer display services.

Several questions arise upon closer examination of
the functions necessary to establish relationships
between mobile and public display devices. What
minimal software does the user have to carry on the
mobile device to be able to interact with the displays?
How does this software work in heterogeneous
environments? What software stack is necessary on the
display and how can the software investment for the
displays be minimized? As such displays proliferate in
public spaces, how can one reduce the expense
associated with the management of such displays?

 In an earlier paper [9], we outlined a vision of
intelligent display devices offering display services to
mobile devices. Essentially, intelligent displays are
devices that are capable of displaying content in a
variety of different formats and that are accessible to a
large variety of mobile devices. Enabling a symbiotic
relationship between mobile devices and such
intelligent environmental displays that allows users to
view and to interact with content from mobile devices
is the subject of this paper.

The Inverted Browser is our scheme for
implementing such intelligent display devices and for
enabling symbiotic relationships between display and

 1

personal devices. The Inverted Browser is a network
service used by mobile users to push content from the
personal device to the display and to control a
browser-based viewer on the environmental display.
Our approach exploits the significant investments
made in Web browsers and related technologies.
Similar to the widely-deployed web servers, delivering
content to traditional Web browsers, we envision
future public spaces being populated with intelligent
displays running browser-like viewers, which are
controlled using mobile devices over wireless
connections.

Our initial prototype of the Inverted Browser
display service uses existing technologies, such as
Web browsers, Web Services, and Open Services
Gateway initiative (OSGi) middleware[5]. Web
Services are an emerging standard for distributed
computing tasks, typically used for information
exchange between businesses. More recently Web
Services are being used to accomplish tasks in
pervasive computing scenarios [8]. OSGi middleware
simplifies remote management and on demand
software provisioning.

The Inverted Browser service is implemented as a
Web Service that is offered by intelligent displays.
Mobile devices installed with the corresponding client
software are able to use the services offered by such
displays. Both the display and client side Web Services
software are based on an OSGi-compatible service
platform. Besides personal content, the mobile device
stores data used by the service to configure the
browser, such as user preferences or credentials for
accessing remote servers such as web sites.

As an alternative to the Inverted Browser display
service, we also considered leveraging existing off-the-
shelf solutions to accomplish the same end goal of
viewing content from mobile devices. The approaches
we considered were based on using thin client
technologies, such as VNC, and Bluetooth profiles.

VNC is a popular thin client solution used to export
display and the UI controls of a server machine to a
remote and typically less capable machine (the thin
client). In one alternative approach, we run the VNC
client on the mobile device to control the server
machine, which is connected to the large display.

The other alternative is a combination of Bluetooth
file transfer profile and the Bluetooth Human Interface
Device (HID) profile. The file transfer profile is used
to transfer the content that the user wishes to view and
a HID-like profile is used to interact with the displayed
content using the controls on the mobile device. We
compare the Inverted Browser approach with the VNC
and the Bluetooth approaches and report our
qualitative and quantitative comparisons.

The key contribution of this paper is a software
architecture for intelligent network displays that
leverages existing communication protocols,
middleware, and application software. The architecture
accommodates independent evolution of each of the
existing components, and is also tailored to the
differences in resource constraints between
environmental devices and mobile devices. In addition,
we also address the complexity and costs involved in
the deployment of a new class of intelligent network
display devices.

2. Inverted Browser

The Inverted Browser is a software-only approach
for creating intelligent displays that can establish
symbiotic relationships with a wide variety of mobile
devices. The purpose of establishing the symbiotic
relationship is to use intelligent display capabilities to
overcome mobile device limitations and, as result, to
enhance mobile user ability to interact with data stored
on their personal devices.

Our approach is built around the Web browser
because of its widespread availability as client
application and versatility in terms of content formats
that it can handle. As a result, our approach leverages
the huge investment that has gone into the
development of the existing Web browsers and related
technologies. This level of investment is responsible
for the browser’s ability to render a wide range of
content types, as well as the support for plug-in APIs
that enable the addition of viewers for several other
non-native content formats. In addition, there has also
been a significant level of investment by third parties
who have developed large number of browser plug-ins.

Typically, browsers run on the client side and
content resides on web servers. By invoking a browser,
content can be fetched from remote servers over HTTP
and displayed on the client side. To enable the
interaction between public displays and mobile
devices, we adopt this simple and successful approach
with one key difference - we invert it.

The Inverted Browser is designed as a browser-
based application running on the intelligent display
device and remotely accessible as a network service.
Mobile users of the service push commands and
content from their personal devices to the display.
However, browsers do not operate in a mode where
some other device pushes content to the browser for
display or where they accept commands from a remote
device, such as from the mobile user’s smart phone.
Therefore, we had to augment the browser to accept
incoming connections, and to display content and

 2

processes the commands received on such a
connection. A push-based interaction model, in which
connections are initiated, and commands and data are
sent by the mobile device to the display is more
appropriate than a pull-based interaction model, since
mobile devices may be protected by (provider-
managed) firewalls or behind NAT devices, such as
wireless access points.

To allow for various link- and transport-level
networking technologies, network-level details of the
display service are not defined. Typical display and
mobile devices feature TCP/IP connectivity, in which
case the lower layers of the display network service are
identical to those of existing service, such as FTP or
HTTP. Overall, we expect the service to be accessible
over a variety of connections, such as 802.11,
Bluetooth or IrDA.

Furthermore, to enable enhanced remote
management features on both display and mobile
devices, we expect their software stacks to be built on
middleware which allows for dynamic provisioning,
such as OSGi. The Inverted Browser approach
leverages the dynamic provisioning capabilities of
mobile devices to download the client components
most appropriate for the capabilities of the surrounding
displays. The role played by this feature in the initial
prototype is explained later in the section.

To get a better understanding of the challenges of
this approach and to determine level of optimization
required for the display and client software stacks, we
built an initial prototype of the Inverted Browser
service. In this prototype, we do not directly modify
the Web browser code to make it listen for incoming
data. Instead, we wrap the browser code with a thin
layer of software. In addition to reducing the
implementation effort, this allows the browser itself to
be upgraded as newer versions become available. Our
wrapper listens for incoming display requests, accepts
them and uses the installed browser to display the
content. The wrapper queries the browser for its
supported content types and uses this information to
negotiate content formats with the client devices
requesting display services. In the remainder of this
section, we describe the Inverted Browser
functionality, its first prototype and communication
protocol.

2.1 Inverted Browser Capabilities

The Inverted Browser service passively waits for a

first access from a mobile device. For TCP/IP-enabled
devices, this translates into the service listening to a
predefined TCP port for incoming connections. A
device that accesses an idle display gets a description

of the display capabilities upon the first access, i.e.,
immediately after the TCP connection is established.
This device becomes the session owner. Subsequent
accesses by other mobile devices are accepted only if
authorized by the owner, which uses its already
established symbiotic relationship to grant or deny
access. Only the owner can download content on the
display device; the other devices, if any, can only
interact with the downloaded content. Typical
scenarios involving multiple mobile users include the
group review of documents and playing an applet
implementation of a game, such as chess.

Inverted Browser commands are sent by the mobile
device(s) to the intelligent display device. The most
important commands are described next.

First, there are the commands to display various
types of content, followed by the actual content. Only
one such command is active at a given time, i.e.,
content sent in one command replaces the one sent
with the previous one. These commands can be issued
only by the session owner device.

Second, there are the commands for interacting with
the content, i.e., I/O events, such as mouse movements
or clicks and keyboard key events. Support for these
commands is required because many display devices
have very limited interaction capabilities, if at all.
These commands can be issued by any mobile device
interacting with the display service. However, it is the
responsibility of the mobile users to synchronize with
each other when, for instance, browse a document or
play chess. Reducing the latency of these commands is
one important challenge since interactive response
requires fairly short latencies.

Third, there are the commands used for accessing
content from remote servers, including but not limited
to web servers. Typically, these commands configure
the display service before it accesses the remote site;
for instance, user credentials, such as cookies, from the
mobile device are pushed to the intelligent display
before the remote access is made.

Fourth, there are the commands for deleting the
downloaded content from the intelligent display
device, which typically returns the display to the idle
state. These commands can only be issued by the
session owner device. The display may also
automatically clean up after the session times out.
Some of these commands store back on the mobile
device the modified content, such as an edited
document and its viewing state (current page), or the
state of an applet-based chess game, for later access.
The later commands require content-specific
extensions of the service implementation.

 3

2.2 Inverted Browser Prototype

In our first prototype, a Web browser, such as

Internet Explorer, is run on the public display and
wrapped with a web service. The web service receives
requests for displaying content and for interacting with
it. The display service is described as a set of
endpoints using the Web Services Description
Language. Operations are described abstractly and
then bound to a network protocol and message format
to define an endpoint.

In the initial stage, the mobile device discovers the
web service and dynamically obtains the client
software stack for interacting with the web service
using capabilities of the OSGi-based middleware layer.
The client software invokes the web service with a
self-URL (URL of the web server running on the
mobile device). The web service invokes the browser,
which fetches content from this URL over HTTP and
displays it. The web service also receives UI control
messages from the mobile device, such as mouse and
keyboard events and inserts them in the system event
queue. This allows the user to interact with the
displayed content. Figure 2 shows the five main
components of the Inverted Browser prototype.
Inverted Browser Web Service. This service runs on
the public display and implements two main methods:
DisplayContent and UIControl. DisplayContent
receives a URL as parameter and passes it on to a
browser, which fetches content and displays it.
UIControl receives control messages, such as mouse
events, and passes them onto UI Monkey.
UI Monkey. This component receives the I/O events,
such as mouse clicks, mouse movements, keyboard
events, and inserts them in the system event queue.
This allows the mobile device to interact with the
displayed content.
Inverted Browser Client. This component represents
the client stack corresponding to the Inverted Browser
Web Service; this component can be downloaded on
the fly unless already cashed on the mobile device. It
provides the user interface on the mobile device for
interacting with the public display. There are two main
components of this interface. The first component
allows the user to browse the file system on the mobile
device and pick the content he wishes to display. The
URL corresponding to this file is generated
automatically and communicated to the public display
by invoking the Inverted Browser Web Service. The
second component allows the user to generate mouse
and keyboard events, such as left-click, right-click,
page-up, page-down etc. It also programs the hardware

button on the mobile device so that it can be used for
generating mouse movements.
Content Service. This component serves user’s
personal content over HTTP. It can also be
downloaded and dispatched for execution on the fly.
Middleware. All the aforementioned components,
with the exception of the UIMonkey, run on top of a
middleware layer, which provides the capability to
provision and run web services, http services, and
download code on the fly. This middleware is the only
software necessary on the user's mobile device to
bootstrap the Inverted Browser software stack.

The Inverted Browser Web Service, Inverted
Browser Client and Content Service are implemented
in Java using the API's exported by the middleware.
UIMonkey is implemented in Perl. The Inverted
Browser architecture was tested on HP iPAQ h6325
phone which runs Windows Mobile 2003.

Workplace Client Technology Micro Edition
(WCTME) [6] is used as the middleware. This
middleware has been designed and implemented by
IBM for mobile devices. It is currently available for
Windows Mobile, Windows XP/NT/2000, Palm OS,
Linux and Sharp Zaurus.

Figure 1 shows the WCTME architecture.
WebSphere Everyplace Micro Environment (WEME)
is IBM’s implementation of J2ME that includes both
Connected Device Configuration (CDC) as well as
Connected Limited Device Configuration (CLDC).
Service Management Framework (SMF) is IBM’s
implementation of the OSGi Service Platform
Specification. SMF allows applications and services to
be downloaded on the fly, as bundles. Bundles have
manifests with special headers that enable sharing of
classes and services at the package level. Bundles can
be started and stopped dynamically. In many cases, the
updates can be performed over the air without user
intervention.

Figure 1: WCTME Architecture

 4

WCTME comes with many preinstalled
bundles/services. Among them are MQe and DB2e
which are embedded versions of IBMs widely known
products. Needless to mention, WCTME provides
complete support for web services and HTTP servers.

2.3 Inverted Browser Protocol

 Figure 2 gives an overview of the Inverted Browser
protocol. The Inverted Browser Client generates a
SOAP request for the Inverted Browser Web Service.
The SOAP request consists of a URL from where the
content is to be fetched. This URL can correspond to a
remote web server, or the server running on the mobile
device. In the second case, the URL also includes an
ephemeral token which serves as session key.

Upon receiving the SOAP request, the Inverted

Browser Web Service sends back a SOAP response
acknowledging receipt. It then invokes a browser and
passes on the URL. The browser sends an HTTP
request to the URL. In the case where the URL

corresponds to the web server running on the mobile
device, the Content Service is invoked.

Content Service first authenticates the incoming
request by inspecting the ephemeral token contained in
the request. The ephemeral token serves to ensure that
the incoming request is from the public display
invoked by the user. If authentication is successful, the
Content Service responds with the file after setting the
correct MIME type and the browser displays it.

User generates control events (such as mouse
clicks) using the UI provided by the Inverted Browser
Client. The events are encapsulated in a SOAP request
and communicated to the Inverted Browser Web
Service, which passes them onto UIMonkey. The
UIMonkey inserts the events in the system event
queue. The Inverted Browser Web Service sends back
a SOAP response at the end of the operation. Figures 3
and 4 show screen shots of the Inverted Browser

3. Alternative Solutions

This section describes two alternative approaches to
implementing the functionality in Section 2 by
leveraging existing remote access communication

Figure 2: Inverted Browser Protocol

Figure 3: Inverted Browser iPAQ view
Figure 4: Inverted Browser host view

 5

protocols to accomplish some of the equivalent
functionality. For instance, if the mobile device runs a
HTTP server, the display could simply pull content
from the mobile device into a standard web browser.
For instance, this approach is used by the Personal
Server[26]. On displays that support virtual or physical
keyboards, the user may directly type in the URL. On
displays that do not support keyboard input, one would
need to find an alternative way of provide the URL.

To ensure that the personal files on the mobile
device cannot be accessed by any web browser, it will
typically be necessary to protect the HTTP access
using a password. In addition to providing the URL,
the user would need to enter a password on the display
device. Also since the user needs to provide this
password manually, the same password is likely to be
used across multiple files as well as multiple displays.
One may wish to use SSL to secure the channel to
protect the password and the private content.

The Inverted Browser approach avoids these
complexities by enabling the user to select the content
that he wishes to view on the mobile device and it
either pushes this content to the display, or it pushes an
ephemeral token to the display that authorizes it to pull
only the content selected by the user.

In spite of these advantages of the Inverted Browser
approach, it is still a new protocol that needs to be
adopted by several displays and mobile devices before
end users can benefit from its services. Therefore it is
important to examine whether one can obtain a
significant fraction of the functionality using existing
standards, and to compare these approaches with the
Inverted Browser approach.

3.1 Thin-Client Approach

A typical thin-client platform consists of a client
application that runs on a client device and a server
application that runs on a remote machine. GUI

interaction operations such as keystrokes and mouse
clicks that are performed on the client device are sent
to the server. Screen or Window updates are sent to the
client device. All of the application logic executes on
the server with the user interface exported to the client.

One could use existing thin-client protocols to
control the display from the mobile device and
combine it with the standard password protected HTTP
server approach described above. In this alternative,
the thin-client server application runs on the display
and allows mobile devices to take control of the
display.

One of the nice features of the VNC protocol is that
a client is available for PDAs and secondly, unlike the
Microsoft Remote Desktop, the screen on the large
display does not lock up as soon as the remote access
client connects to the display PC.

To use VNC, we install Mocha VNC client [4] on
the iPAQ and a VNC server on the display. Usually
VNC servers are password protected to ensure that
only authorized users connect to the display. In our
case, since we wish to allow any mobile device to
connect to the display, we use a simple password for
the VNC server that is displayed prominently on the
display monitor. Once the user connects to the display
from the VNC client on the PDA, the user can send
keystrokes and mouse operations to the display from
the PDA. The content fetch can be triggered by
entering a URL on the PDA using the PDA’s soft
keyboard. Subsequent controls, such as clicks on the
scroll bar, or page up/down controls, can be sent from
the PDA to the display.

In addition to sending the control operations from
the mobile device, the VNC protocol also sends screen
updates from the VNC server to the VNC client. For
our application, the screen updates are not very useful
since the user is generally in visual range of the VNC
server’s display. These updates tend to create a high
volume of network traffic between the mobile device

Figure 5: VNC Server
Figure 6: VNC Client on PDA

 6

and the display which is wasteful for the particular
mode in which we are using VNC. VNC was not
designed for situations where the client and server
displays are within visual range of each other. One
could consider an enhancement to the VNC protocol
where the screen updates are turned off and only
refreshed upon explicit user request.

Figures 5 and 6 show the screenshots of a VNC
server running on a Windows XP desktop and of a
VNC client running on Windows Mobile 2003 PDA,
respectively

3.2 Bluetooth HID

The Bluetooth HID (Human Interface Device) [1]

profile is another standard that is beginning to see
adoption. Like VNC, Bluetooth HID enables mobile
devices to send control operations to other devices. A
mobile phone that supports the Bluetooth HID profile
can act as a remote control for a computer capable of
supporting HID devices. When connected to the
computer over Bluetooth, the mobile phone would act
like a combined mouse and keyboard. Unlike VNC,
there are generally no screen updates, but the two
devices generally need to be connected over a direct
Bluetooth connection. Furthermore, only very small
fraction of mobile devices supports Bluetooth HID or
equivalent protocols.

 Bluetooth HID itself does not provide any content
transfer capabilities but it can be used in conjunction
with the Bluetooth file transfer profile. Alternatively if
the mobile device also supports TCP/IP connectivity,
perhaps over a separate wireless interface, one could
use the password protected HTTP server model to
transfer files.

For our evaluation we used a proprietary J2ME
implementation of Bluetooth HID-like protocol, called
Bluetooth Remote Control [2] and tested it with the
Sony Ericsson P900 phone. The Bluetooth Remote

Control client was installed on the P900 and the
corresponding server was installed on the display PC.
Figure 7 shows a picture of Bluetooth Remote Control
starting up on Sony Ericsson P900. Bluetooth Remote
Control is not supported on the iPAQ.

4. Evaluation

4.1 Evaluation Metrics

Several important metrics have to be considered
while building a system for symbiotic displays.
• Usability: The entire process of transferring

content from the mobile device to the display,
interacting with the display, and cleaning up the
state at the end of the interaction should be simple
and intuitive. While interacting with the content,
the user should not have to split his attention
between the mobile device and the display device.
In other words, the user should be able control the
mouse or send simple key stroke commands to the
display from the mobile device without having to
look at the mobile device.

• Response time: When the mobile device is used
to send control events the display, the display
should respond quickly and update the screen.

• Energy: Most mobile devices carried by users are
battery-powered. Interacting with the
environmental displays should not excessively
drain the battery.

• Privacy: Can displayed files be deleted from the
displays automatically? Can the user selectively
share only some content with the public display?
Can the user ensure that the content got
transferred only to the intended public display and
cannot be accessed from somewhere else?

• Deployment Overhead: The cost of deploying
public displays, maintaining and updating the
software components must be kept low. When
new content formats become popular, it must be
possible to dynamically upgrade the display
service to support them. Displays should also be
usable by a wide range of mobile devices.

• Development Effort: Software complexity has
many side effects, such as high maintenance
requirements, lack of robustness, security
vulnerabilities, and lack of extensibility. The
development effort should therefore be minimized.
The adoption of well designed middleware enables
code reuse and simplifies application
development.

We evaluate the approaches: Inverted Browser,
VNC Thin-Client and Bluetooth profiles by comparing

Figure 7: Bluetooth Remote Control
running on Sony Ericsson P900

 7

them against each other quantitatively as well as
qualitatively on the design parameters described above.

4.2 Experimental Methodology

As stated earlier, we used an HP iPAQ h6325 PDA,
and Sony Ericsson P900 phone for our experiments.
The HP iPAQ h6325 runs the Windows Mobile 2003
OS, while Sony Ericsson P900 runs Symbian OS. The
iPAQ supports both 802.11b and Bluetooth wireless
connectivity, while the Ericsson phone only supports
Bluetooth. Both devices support a cellular telephony
interface but this was not used in our experiments. We
used a standard desktop PC attached to a large monitor
for the display. The desktop PC was connected to the
lab network using Ethernet.

To test the Inverted Browser we installed the
mobile device software components on the HP iPAQ
h6325 on top of the WCTME middleware. We also
installed the relevant display side software components
on the display PC. We tested the Inverted Browser
over both the 802.11b and Bluetooth interfaces. Our
lab has several 802.11b access points, which are
connected to the network. The iPAQ connected over
802.11b, obtained an IP address over DHCP and could
then interact with the display over the network. For the
Bluetooth experiments, we installed our own Bluetooth
access point on the network which provided wireless
connectivity to the iPAQ, and once the link level
connectivity was established the iPAQ obtained an IP
address from the DHCP server as in the 802.11b case.
A GUI on the iPAQ enables the user to specify the
name or IP address of the display device and also
choose the content that the user wishes to view on the
display. The GUI also enables the user to remotely
control the keyboard and mouse from the PDA using
the UI components described earlier.

As stated earlier, we used Mocha VNC [4] on the
iPAQ h6325, and a VNC server on the display PC to
test the thin client approach. The user starts the VNC
client on the PDA and connects to the VNC server
running on the display by specifying the name or IP
address of the display.

 The display monitor has a label with name and IP
address of the display as well as the password for its
VNC server. The user then manually starts a browser
on the display device, and types in a URL that refers to
the relevant file on the PDA. The starting of the
browser and the typing of the URL may be done using
the keyboard and mouse of the display, or using the
I/O capabilities of the PDA. The PDA also runs a
HTTP server to send the requested file to the display.
The entire file system of the PDA is available to the

HTTP server. However these contents are password
protected, so that the HTTP server refuses to serve up
files to unauthorized requestors. This adds an
authentication step to the process where the user must
provide a user name and password on the display using
either its own I/O devices or using the PDA’s I/O
devices.

For testing Bluetooth HID, we used a J2ME
implementation of Bluetooth HID capabilities, called
Bluetooth Remote Control [2] which runs over the
Bluetooth Serial Port Profile. Since this only worked
on the Sony Ericsson P900, we were unable to test it
on the iPAQ. The Bluetooth Remote Control works
over a direct point-to-point connection. To test this we
added a USB Bluetooth interface to the display device.
First the file is transferred to the display using
Bluetooth FTP, and then the Bluetooth remote control
is used to send keyboard. We used Windump
(implementation of tcpdump for Windows OS) to
monitor and analyze network traffic between the
display PC and the iPAQ, for both Inverted Browser
and VNC Client. Using Windump we are able to
measure the total amount of network traffic as well as
the round-trip latency of the control operations. For the
experiments where the mobile device was directly
connected to the display PC over Bluetooth, we used
USB monitoring software to measure the data transfer
between the PC and the USB Bluetooth interface.

The response time corresponding to mouse events is
a good indicator of user experience. To get an estimate
of the response time, we measured the time interval
between the incoming message representing a mouse
click and the corresponding response from the display.
This approach gives a lower bound on the response
time, and enables a uniform comparison between the
three different solutions. For the Inverted Browser, we
measure the response time interval over both 802.11b
and Bluetooth.

The total energy spent by the mobile device on an
application primarily consists of: (1) Energy spent in
transmitting and receiving data over the network
interface, and (2) Energy spent on the other device sub
systems such as the processor, display, backlight, etc.
Our measurements are primarily focused on the energy
used in the network, since this is the additional energy
overhead of using the environmental display To get an
estimate of the network energy consumption of the
three solutions, we measure the total number of bytes
exchanged between the mobile device and the public
display for reading an 8-page PDF document. Since we
used two different mobile devices, it was not possible
to carry out a fair head-to-head comparison of the total
energy for the three solutions.

 8

Table 1: Comparative Study

Solution Usability Response
Time

Network
Energy

Privacy Deployment
Ease

Development Ease

Inverted
Browser

**** 450ms (.11b)
650ms (BT)

630KB*k
630KB*c

*** **** ***

Thin-Client ** 150ms 10100KB*k ** ** *

Bluetooth *** 200ms 670KB*c * * **

4.3 Results

Table 1 shows the qualitative and quantitative
comparison between the three approaches.

4.3.1 Usability. Although VNC provides I/O
capability for interaction, it does not provide any
content transfer capability. So one needs to add a
password protected HTTP server for content transfer.
This results in additional steps. In the case of
Bluetooth, if one uses the Bluetooth File Transfer
profile to transfer the content the user must manually
delete the content from the display. In contrast, the
Inverted Browser approach to content transfer needs
the user to simply choose the file on the mobile device
and the software takes care of the rest.

VNC suffers from the split attention problem. The
user has to look at the PDA screen and use a stylus to
position the mouse cursor. Inverted Browser and
Bluetooth HID use hardware buttons for generating
mouse and keyboard events. A hardware pointing
mechanism such as a TrackPointTM on the mobile
device that relays mouse events to the large display can
alleviate this problem for VNC.
4.3.2 Response time. Experimental results show that
the response time for a mouse click is highest for
Inverted Browser, 450 msec in the case of 802.11b and
650 msec in the case of Bluetooth. This can be
attributed to the thick software-stack corresponding to
the web service middleware. By virtue of being closer
to the network layer, VNC Client and Bluetooth HID
perform better. This implies better user experience
with VNC Client and Bluetooth HID as compared to
Inverted Browser. However, considering that
performance of web services will improve with faster
hardware and with software optimizations, we believe
that the response time for the Inverted Browser can be
within acceptable bounds.

One interesting point to note is that in all three
cases the response time is not fast enough for
interactive operation. When directly attached input

devices are available on the display, or a dedicated
remote control is available, they are preferable.
4.3.3 Energy. In our experiment of reading a 8 page
PDF document, Inverted Browser and Bluetooth
Remote Control generated almost the same amount of
network traffic, approximately 650 KB. In contrast,
VNC generates approximately 10100 KB, which is
more than 15 times the traffic generated by the others.
The increased traffic is attributed to the screen updates
that VNC sends back to the PDA. Though the
Bluetooth messages are smaller than the SOAP
messages used by the Inverted Browser, there appears
to be a significant amount of background Bluetooth
traffic. We are investigating this, but have not been
able to identify the reason for this traffic since we do
not have the source code to the Bluetooth Remote
Control software.

Bluetooth radios operate at lower power levels
compared to 802.11b. Typical averages are 200 mW
for Bluetooth and around 1W for 802.11b. These
numbers vary somewhat with hardware vendors and
will reduce with time. Let c be the constant that
represents the average energy per byte consumed by
Bluetooth radio while communicating (transmitting or
receiving), and k be the constant representing the
average energy per byte consumed by an optimized
802.11b wireless card. The ratio of k to c will vary
with time and from device to device. However it is
generally safe to assume that k is at least two times c.
Inverted Browser running over Bluetooth consumes
almost as much energy as Bluetooth Remote Control.
The network energy consumed by the Inverted
Browser running over 802.11 is at least twice as much
as that consumed by the Bluetooth Remote Control.
VNC client consumes at least 30 times more network
energy than Bluetooth Remote Control, and at least 15
times more network energy than Inverted Browser.
Also, a high amount of energy is spent by the mobile
device on the screen updates and is not accounted for
in these measurements.
4.3.4. Privacy. There are three major privacy issues:
(1) How do we ensure that the data is deleted from the
display at the end of the interaction? (2) How do we
ensure that the only the identified content is

 9

transferred? and, (3) How do we ensure that
transferred content is not leaked to unintended
destinations?

When the content is manually transferred as in the
case of Bluetooth FTP, deleting data is a manual
process. When the data is displayed by the browser in
any of the three cases, the data is cached in the browser
cache and will eventually get overwritten. In the case
of the Inverted Browser, the display side software
knows when the interaction is complete and can
automatically clear the cache. In the case of VNC,
users will have to clear out the browser cache manually
if they do not want to rely on the browser’s internal
cache management to clear out the data.

We are in the process of building amnesia into
Inverted Browser. Amnesia provides the capability of
destroying private content after the user walks away,
by sandboxing all the state associated with an
interaction session and destroying it at the end of the
session. The Amnesic Inverted Browser will not accept
any other incoming connections while it is in session
with the user, and will also be prevented from
establishing any outgoing connections except with the
user's mobile device to prevent viruses on the display
from forwarding data to some other network device.

The ephemeral tokens used in the current Inverted
Browser prototype ensure that only the user specified
content is transferred to the identified display. In the
case of a push based Inverted Browser, only the user
specified content is pushed to the identified display by
the mobile device. In the case of a standard HTTP
access ensuring only the identified files are sent over is
difficult because users cannot remember a separate
password per file.
4.3.5. Deployment Overhead. Inverted Browser
scores well on this criterion. The display side software
is built on top of the WCTME middleware which
allows the software to be remotely administered.
Services can be started, stopped, uninstalled or updated
from a remote server reducing the operational cost of
displays. Even on the client side since we use
WCTME, it is possible to download the required client
side code dynamically, as opposed to manually
installing each application beforehand. Since the
interfaces are based on Web Services, it is possible to
support mobile devices that use a different middleware
stack. The Inverted Browser architecture is compatible
with Windows Mobile, Windows XP/NT/2000, Linux
as well as Palm OS.

Bluetooth based protocols require Bluetooth
interfaces on both the public display as well as the
mobile device. Devices that support other wireless
interfaces such as 802.11b or emerging interfaces such

as UWB cannot be used. Interoperability between
Bluetooth stacks still continues to be a problem.

To use VNC, one would have to run an open VNC
server on the display. This approach is likely to meet
with some resistance from display administrators due
to security concerns.
4.3.6. Development Effort. Inverted Browser is a
good example of an application that leverages already
existing code (i.e., the middleware) to accomplish a
certain task with minimal additional development
effort. Inverted Browser architecture reuses a
collection of pre-existing libraries and services
provided by the WCTME middleware. So the amount
of code is relatively small. Thin-Clients such as VNC
are big pieces of software with thousands of lines of
code. Modifying a thin-client implementation to tailor
it for our purpose, would involve substantial
development effort. Similarly, adding the required
features to the Bluetooth HID is non trivial. If we use
VNC and Bluetooth as-is there is no additional
development effort, but for the reasons mentioned
earlier these protocols are inadequate.

5. Related Work

Prior work in this area can be categorized into three
broad categories. The first focuses on sharing large
displays with direct interaction capabilities, the second
on using mobile devices to control displays, and the
third on middleware for smart spaces.

Several systems have been created to support
multiple-user interaction and collaboration on large
displays. The Liveboard [12] system included a large
rear-projection display that was connected to a
workstation running the applications. A cordless pen
with four distinct states that can be used several feet
from the display served as the input device. The
project focused on enabling group meetings and
collaborations. The MMM [10] (Multi-Device, Multi-
User, Multi-Editor) project used multiple mice to
provide a user interface to allow multiple users to edit
content on a single display. IBM BlueBoard [21]
includes a large, interactive display surface with a
touch-screen and a badge reader for personal
identification. It has an integrated PC running a thin-
client which can fetch display from a web-based
content server. IBM Everywhere Display [18][25] uses
a projector and a rotating mirror to project images
anywhere in the room. Graphics and vision techniques
are used to detect user gestures for interaction. In all of
the above systems no content-transfer capability from
mobile devices was provided. Moreover, mobile
devices were not used to control the contents of the

 10

display. Buxton et al. [11] explore the use of large
displays for automotive design.

A few systems explore the interaction between
mobile devices and large displays. Greenberg et al.
[13] describe a system that allows users to move
private notes created on their PDAs to a large display.
One of their goals was to understand the distinction
between private and public artifacts. The questions
appear on a large display in the studio where the
interview is conducted. Hello.Wall [24] is an ambient
display transmitting organization-oriented information
publicly and information addressed to individuals
privately. A dedicated handheld-system called
ViewPort can be used to show personal information
and also show information related to visual codes on
the wall. BBCi has built a system that allows people to
watch interviews on displays in public spaces and to
submit related questions via SMS text messages [23].

A few systems have been built to enable real-time
interaction between handhelds and displays. The
Xerox ParcTab [1] was essentially a thin client that
accessed information, such as email and file from other
machines using infrared communication. The ParcTab
featured hard-wired buttons and a touch-sensitive
screen and can be used as a remote control for other
appliances. The Pebbles [16] project was among the
first to explore handheld-based remote control
functionality and study usability issues. Pebbles was
an application built over Palm PilotsTM that had two
components: Remote Commander, which provided
remote control capabilities and PebblesDraw which
allowed multiple users to draw at the same time. Palm
PilotsTM were connected to the PC via serial port. Paek
et al. [17] built a system to allow users to interact with
displays using a mobile device. Their system adheres
to a modular design in which diverse input devices
send data to I/O modules, each of which is specifically
designed to understand data from a single mode of
communication. To date they have only implemented
two I/O modules: email and instant messaging.
Ballagas et al. [7] have implemented mechanisms to
interact with public displays using phone cameras and
visual tags. They use cameras on cell phone and vision
techniques to accomplish this goal. Vodafone has also
demonstrated a 13ftx13ft cube display system that
allows users to request news and games using SMS
text messaging [23].

Viewing private content on public displays is a
problem that is being researched independently.
Rukzio et al. [22] present a matrix relating the number
of people that can see the display to the number of
people that can interact with the display. Through this
they show that there are different cases where
personalization of services on public displays is useful.

In an earlier work [9], we had described a technique
for viewing private content in public, by blurring
sensitive information on the public display and
viewing it on the display of the mobile device.

Among the popular middleware based smart
environments that use interactive displays are iRoom
[14] and Gaia [20]. iRoom uses EventHeap [15] as the
interfacing mechanism between connected devices,
while Gaia uses the Gaia middleware.

The Inverted Browser shares goals with many of the
applications described here, but is fundamentally
different from them in the approach it takes and the
capabilities it provides. The system that is closely
related to Inverted Browser, in terms of the technology
and approach used, is the Personal Server [26]. The
Personal Server is a small handheld device that does
not have any traditional I/O capabilities such as
keyboard or display. The Personal Server includes a
web server and acts like a wireless-enabled mobile
hard-disk that can be accessed from host devices over
Bluetooth. Most interaction between the Personal
Server and the host device is initiated from input
devices on the host device. The Inverted Browser and
the Personal Server share the idea of running an
embedded web server and using http for content
transfer. However, there are a few key differences
between the two. Since the Personal Server uses a host
device for content selection, the listing of files, etc.,
must be sent to the host device, thus compromising the
privacy of the user’s data to some extent. In contrast,
with the Inverted Browser, the native UI on the mobile
device allows the user to select and send only the
necessary content to the host device. The Personal
Server architecture is built on top of Bluetooth, and is
therefore protocol-dependent, as opposed to Inverted
Browser which takes a network-protocol independent
web services based approach. Finally, the Inverted
Browser is a software solution that can be ported to
any mobile device and aims at providing content-
transfer and remote control capabilities for public
displays.

6. Conclusions and Future Work

We introduced the vision for a viewing service,
namely the Inverted Browser, which can be made
available on displays and presented an initial prototype
of such a service. Just as the HTTP protocol allowed
people to retrieve content from web servers using
browsers on heterogeneous devices and heavily
impacted the way content was delivered, we envision
that a protocol that allows people to send content from
their personal devices, or other sources, to large

 11

displays will dramatically change the way they view
and interact with their personal content.

Our first prototype of the Inverted Browser utilized
Web Services to create a wrapper to existing browsers
where the wrapper triggered the browser to pull
content. We are working on the push based model
where all interactions go over a single TCP connection
opened by the mobile device. In comparison to other
approaches, such as the VNC Thin Client approach
and Bluetooth HID, the Inverted Browser is agnostic to
network type and consumes less energy. The latency of
all three approaches is not acceptable and we are
exploring several options for reducing the latency of
the Inverted Browser.

7. References

[1] Bluetooth Human Interface Device Profile,

www.bluetooth.org.
[2] Bluetooth Remote Control, www.bluetoothshareware.

com.
[3] Citrix Meta-Frame, www.citrix.com.
[4] Mocha VNC Client, www.mochasoft.dk.
[5] OSGi Alliance www.osgi.org
[6] Workplace Client Tech. Micro Edition (WCTME),

http://www.developer.ibm.com/isv/pvc/wctme.html.
[7] R. Ballagas, M. Rohs, “Mobile Phones as Pointing

Devices,” In Proc. of the Workshop on Pervasive
Mobile Interaction Devices (PerMid), 2005.

[8] S. Berger, S. McFaddin, C. Narayanaswami, M.
Raghunath, "Web Services on Mobile Devices -
Implementation and Experience," In Proc. 5th IEEE
Workshop on Mobile Computing Systems and
Applications (WMCSA), pp. 100-109, 2003.

[9] S. Berger, R. Kjeldsen, C. Pinhanez, M. Podlaseck, C.
Narayanaswami, and M. Raghunath, “Using symbiotic
displays to view sensitive information in public,” In
Proc. of the Third Intl. Conference on Pervasive
Computing and Communications (PerCom), 2005.

[10] E. A. Bier and S. Freeman, “MMM: A User Interface
Architecture for Shared Editors on a Single Screen,” In
Proc. of the 4th annual ACM symposium on User
interface Software and Technology (UIST), 1991.

[11] W. Buxton, G. Fitzmaurice, R. Balakrishnan, and G.
Kurtenbach, "Large Displays in Automotive Design," In
IEEE Computer Graphics and Applications, Vol. 20,
No. 4, pp. 68-75, 2000.

[12] S. Elrod et. al., “Liveboard: a large interactive display
supporting group meetings, presentations, and remote
collaboration,” In Proc. of the SIGCHI Conference on
Human Factors in Computing Systems (CHI), 1992.

[13] S. Greenberg, M. Boyle, and J. Laberg, “PDAs and
Shared Public Displays: Making Personal Information
Public, and Public Information Personal,” In Personal
Technologies. No. 3, Vol. 1, 1999.

[14] B. Johanson, A. Fox, “The interactive workspaces
project: Experiences with ubiquitous computing rooms,”
IEEE Pervasive Computing Magazine, April-June 2002.

[15] B. Johanson and A. Fox, “The Event Heap: A
Coordination Infrastructure for Interactive
Workspaces,” In Proc. of the Fourth IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA),
2002.

[16] B. A. Myers, H. Stiel, and R. Gargiulo. “Collaboration
using Multiple PDAs Connected to a PC,” In CSCW
’98: Proc. of the 1998 ACM conference on Computer
supported cooperative work, 1998.

[17] T. Paek, M. Agrawala, S. Basu, S. Drucker, T.
Kristjansson, R. Logan, K. Toyama, and A. Wilson,
“Toward universal mobile interaction for shared
displays,” In CSCW ’04: Proc. of the 2004 ACM Conf.
on Computer supported cooperative work, 2004.

[18] C. S. Pinhanez, “The everywhere displays projector: A
device to create ubiquitous graphical interfaces,” In
UbiComp ’01: Proc. of the 3rd international conference
on Ubiquitous Computing, 2001.

[19] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A.
Hopper, “Virtual network computing,” IEEE Internet
Computing, Vol. 2, No. 1, pp. 33–38, 1998.

[20] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R.
H. Campbell, and K. Nahrstedt., “GAIA: A Middleware
Platform for Active Spaces,” SIGMOBILE Mob.
Comput. Commun. Rev., 2002.

[21] D. M. Russell, C. Drews, and A. Sue, “Social Aspects
of Using Large Public Interactive Displays for
Collaboration,” In Proc. of the 4th international
conference on Ubiquitous Computing (UbiComp), 2002.

[22] A. S. E. Rukzio and H. Hussmann, “An Analysis of the
Usage of Mobile Phones for Personalized Interactions
with Ubiquitous Public Displays,” In Workshop on
Ubiquitous Display Environments in conjunction with
UbiComp 2004.

[23] J. Scanlon, “If Walls Could Talk, Streets Might Join
In,” New York Times, September 2003.

[24] N. Streitz, et al., “Ambient displays and mobile devices
for the creation of social architectural spaces” In Public
and Situated Displays: Social and Interactional Aspects
of Shared Display Technologies, pp. 387-409, Kluwer
Academic Publisher, 2003.

[25] N. Sukaviriya, R. Kjeldsen, C. Pinhanez, L. Tang, A.
Levas, G. Pingali, and M. Podlaseck, “A Portable
System for Anywhere Interactions,” In Extended
abstracts on Human factors in Computing Systems
(CHI), 2004.

[26] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar,
and J. Light, “The Personal Server: Changing the way
we think about Ubiquitous Computing,” In Proc. of the
4th international conference on Ubiquitous Computing
(UbiComp), 2002.

[27] R. Want, B. N. Schilit, N. I. Adams, R. Gold, K.
Petersen, D. Goldberg, J. R. Ellis, and M. Weiser, “An
Overview of the PARCTAB Ubiquitous Computing
Experiment,” IEEE Personal Communications, Vol. 2,
No. 6, pp. 28-33, Dec 1995.

 12

	1. Introduction
	2. Inverted Browser
	2.1 Inverted Browser Capabilities
	2.2 Inverted Browser Prototype
	2.3 Inverted Browser Protocol

	3. Alternative Solutions
	3.1 Thin-Client Approach
	3.2 Bluetooth HID

	4. Evaluation
	4.1 Evaluation Metrics
	4.2 Experimental Methodology
	4.3 Results

	5. Related Work
	6. Conclusions and Future Work
	7. References

