
RC23720 (W0509-076) September 21, 2005
Computer Science

IBM Research Report

On the Integration of Web Services and Messaging

Ignacio Silva-Lepe, Michael J. Ward, Francisco Curbera
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

On the Integration of Web Services and
Messaging

Ignacio Silva-Lepe, Michael J. Ward, Francisco Curbera

IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne NY 10532, USA

Abstract. Web Services and Messaging, as application-to-application
communication paradigms, have so far been considered separately, with
independent programming models and supporting middleware. Differ-
ent efforts are now introducing messaging notions such as asynchrony,
greater consumer cardinality, and looser coupling between web services.
This trend will likely result in an extension of the web services program-
ming model. It is not clear, however, that this extension will adhere to a
pre-planned approach. A coherent approach requires a thorough integra-
tion of the web services and messaging paradigms. This paper proposes
one such approach which, in addition to supporting the current style
of web services interactions, allows the incorporation of messaging-style
interactions under a common programming model. These messaging-
style interactions include asynchronous request-response, one-way multi-
consumer interactions, and even multiple-choice point-to-point interac-
tions, common in message queuing systems. This paper also elaborates
on a model for one-way multi-consumer interactions that integrates the
publish/subscribe mode of messaging into the web services programming
model. A primary motivation for our approach is to take advantage of
key messaging features, while exerting as small an impact as possible on
the web services programming model.

1 Introduction

Web Services and Messaging, as application-to-application communication para-
digms, have so far been considered separately, with independent programming
models and supporting middleware. Messaging, as used here, refers to the ap-
proach to application-to-application communication in which the parties, re-
ferred to as producer(s) and consumer(s), are not necessarily known to each
other and do not have to be available at the same time, and which rely on a
third party (not necessarily explicitly instantiated or localized), called a des-
tination, to establish the communication [2, 3]. Distinguishing features of this
approach include distribution mode (unicast, anycast, multi-consumer), as well
as various qualities of service (reliability, ordering, etc.)

The current state of the practice in web services focuses on client/server,
synchronous request-response interactions, primarily over SOAP/HTTP. How-
ever, the introduction of specifications such as WS-ReliableMessaging [6], WS-
Addressing [4] to a certain extent, WS-Eventing [5], and WS-Notification [7] sug-
gest a trend towards broadening this focus in the direction of asynchrony, greater

2

consumer cardinality, and looser coupling. For example, WS-ReliableMessaging
seems to be motivated by a need for asynchronous one-way point-to-point inter-
actions. WS-Addressing includes an explicit vehicle that can be used to specify
asynchronous reponses. WS-Eventing allows the dissemination of events to mul-
tiple consumers, which WS-Notification can be seen as extending by introducing
brokered (and thus anonymous) delivery. Further, by introducing consumer lists
maintained by event sources or notification producers, WS-Eventing and WS-
Notification extend the mechanisms to specify the consumer(s) of a web service
interaction.

While this trend may ultimately result in an extension of the web services
programming model, it is not clear that this extension adheres to an overarch-
ing, pre-planned approach. An approach that can fit the current trend, as well as
guide the evolution of the web services programming model, may be obtained by
an integration of the messaging paradigm with that of web services interactions.
This paper proposes one such approach, where web service clients can be seen as
specializations of generalized message producers, web service providers can be
seen as specializations of generalized message consumers, where messaging des-
tinations are defined as late-binding artifacts, and where the interface between
producer and consumer and the makeup of the message to be conveyed are one
and the same and given by a WSDL [1] definition. This approach, in addition to
supporting the current style of web services interactions, should allow the incor-
poration of messaging-style interactions under a common programming model.
This resulting style of interactions includes asynchronous request-response, one-
way multi-consumer interactions, and even the multiple-choice point-to-point
interactions that are common in message queuing systems.

This paper also elaborates on a model for one-way multi-consumer interac-
tions amongst web service producers and consumers. This model provides one
realization of the proposed approach that integrates the many-to-many messag-
ing mode of interaction (also known as publish/subscribe) into the web services
programming model. While incorporating the main features of WS-Eventing and
WS-Notification, this multi-consumer messaging model preserves the high-level
web services programming model exposed to an application and leaves details
such as subscription management to the infrastructure.

2 An Approach to Integration

A primary motivation for the approach proposed in this paper is to take advan-
tage of the multiple cardinality, asynchrony and anonymity features that have
made messaging a popular paradigm for a substantial class of applications, while
at the same time exerting as small an impact as possible on the programming
model that web services applications have grown accustomed to in the last few
years.

With this in mind, our approach starts with the web services programming
model as it is practiced today. This model consists of web service clients, web
service providers and web service definitions expressed in WSDL. A web ser-

3

vice provider makes itself available by getting deployed at some address. A web
service client invokes an operation on a web service provider. This operation is
described by a WSDL port type definition. Before a web service client can make
an invocation, it gets bound to a reference to the web service provider it intends
to invoke.

In order to integrate messaging into this model, we first consider a generaliza-
tion of this model, and then we cast the elements of the messaging programming
model as specializations of this generalized model. This generalization is moti-
vated by the observation that web services applications and messaging applica-
tions both engage in application-to-application communication, and thus their
basic elements have similar characteristics. A second motivation for this gener-
alization is given by the following observation. An important principle in Service
Oriented Architecture (SOA) in general, and in Web Services in particular, is
that of late binding of partners. Ideally, the user of a service should not be con-
cerned with what the actual provider is, or even if that provider is determined at
run-time, and it should not be concerned with whether the provider is available
or not. However, as we have alluded to, in the current state of practice most uses
of web services are of the forms (1) targeted, synchronous request-response, or
(2) targeted one-way invocations. The term targeted here refers to the coupling
of the interaction, where the requester or invoker knows or at some point deter-
mines the identity of the provider, whether it be statically or dynamically via
a UDDI directory, for instance. Notice that this level of coupling does include
a certain degree of late binding; it just does not go as far as the anonymous
nature of messaging. This observation leads to the idea that rather than try to
introduce messaging destinations as an additional element in the programming
model, they could be introduced as an intermediate binding target that delays
the binding to the ultimate target.

Thus, our generalization of the web services programming model as we have
described it consists of web service message producers, web service message
consumers, message definitions expressed in WSDL, and destination bindings.
Notice that, since a WSDL operation does not necessarily imply a command
semantics1, a message defintion in this model is actually given by a WSDL
operation, and it denotes the schema of the contents agreed to by producers
and consumers. A destination binding denotes a reference to an intermediary
that enables messages to flow from producers to consumers. Before a web service
message producer can send a WSDL defined message, it connects to a destination
binding. A web service message consumer makes itself available by connecting
to a destination binding at deployment time. Notice that, since web service
message consumers receive messages via a destination binding, as long as the
denoted intermediary is capable of doing so, more than one consumer may be
connected to the same destination binding, just as many producers may connect
to and send messages via a given destination binding. Hence, many-to-many
messaging interactions are natural in this generalized model.

1 That is, an operation name does not necessarily denote a task to be performed and
can be used instead to annotate the contents of its input message, for instance.

4

Given this generalization, it is straightforward to see how the web services
programming model can be cast as one of its specializations. In particular, a
one-way web service client can be seen as a web service message producer for
which a one-way invocation consists of sending a WSDL message; a one-way web
service provider can be seen as a web service message consumer; the destination
binding to which a web service client connects is the actual reference to the web
service provider; and a web service provider implicitly connects to itself as its
own destination binding by virtue of being deployed. A SOAP/HTTP request-
response web service client can be seen as a combination of web service message
producer and consumer, where its consumer side and reply-to destination binding
are optimized away by the transport; that is, given that an HTTP response
is used to carry a SOAP response, there is no need for an explicit consumer
or destination binding. Similarly, a SOAP/HTTP request-response web service
provider can be seen as a combination of web service message consumer and
producer, where its producer side and reply-to destination are also optimized
away by the transport.

More notably, given this generalization, the messaging programming model
can also be seen as one of its specializations, which we refer to as web services
messaging. Here, messaging producers can be seen as web service message pro-
ducers and messaging consumers as web service message consumers, and the
conveyed message is described by a WSDL operation. In addition, a messaging
destination, which in this case is an independent third party, is specified by a
destination binding. A messaging producer connects to its destination binding
before sending messages, and a messaging consumer makes itself available by
connecting to its messaging destination at deployment time.

Actual realizations of web services messaging include asynchronous request-
response messaging, multi-consumer messaging and multiple-choice point-to-
point messaging. Multi-consumer messaging is a form of web services messaging
where multiple consumers receive each message sent by a producer, and where
the binding destination acts as a mediator to allow their infrastructure to es-
tablish either a direct or a brokered connection between them. Multi-consumer
messaging is further elaborated on in Section 3.

Asynchronous request-response messaging is a form of web services messag-
ing where a combination web service message producer and consumer sends a
request message to an outbound destination and sets up an inbound destination
from which its consumer receives the corresponding response. A combination web
service consumer and producer connects to the outbound destination to receive
a request and binds to the inbound destination to send the response. This form
of messaging entails the ability to queue messages at both the outbound and in-
bound destinations, as well as the ability by the web service producer/consumer
to send the request without blocking and to receive the response at a later time
by correlating it with the request. It is important to point out that these tasks are
not intended to be exposed to the application web service producer/consumer
and consumer/producer combinations. Rather, and as we shall also see with
multi-consumer messaging, these tasks are intended to be performed by the

5

infrastructure that underlies the application web services. All that an applica-
tion web service sees from a programming model point of view is that it can
send a request and continue processing until the reponse arrives, and that a
request arrives and a response can be sent. The actual details of how this infras-
tructure is designed are beyond the scope of this paper. Notice that, given the
programming model for this form of web services messaging, it may also be pos-
sible to derive a targeted asynchronous request-response model, where no third
party outbound and inbound destinations are required. Here, the web service
producer/consumer outbound destination binding corresponds to the reference
to the web service consumer/producer, and the producer/consumer includes in
the request a reply-to reference for the consumer/producer to use as inbound
destination binding. In fact, this targeted asynchronous request-response model
could be seen as a two-way interaction supported by WS-ReliableMessaging, aug-
mented by an infrastructure-supported reply-to consumer that the application
producer/consumer can use to obtain its response.

Finally, multiple-choice point-to-point messaging is a form of web services
messaging where multiple consumers are eligible to receive any given message
sent by a producer to a given destination, but only one consumer actually receives
the message. This is a pattern that is common in message queuing systems and
that is implied by our approach, provided that the proper infrastructure design
is in place for the destination intermediary to select and route any given message
to a single consumer. The design of such infrastructure is beyond the scope of
this paper.

3 Multi-Consumer Messaging

Web services multi-consumer messaging (MCM) extends the scope of one-way
web service interactions to consider more than one web service consumer. To
delay the binding of a web service producer to any specific consumer, a message
type mediator is introduced. In addition, to increase scalability and to provide
multiple possible points of entry for producers and consumers, a broker type of
service is introduced. The interface (or message signature) between a web service
producer and a consumer is given by the message in an operation of a WSDL
port type specification, although it may be possible to specify, on a per consumer
basis, the inclusion of a message selector based on the schema of the message.

A message type mediator is a web service that provides an interface that
allows the multi-consumer messaging infrastructure for producers and consumers
(e.g., producer stub and consumer skeleton) to join the underlying messaging
network for the message type.

A producer uses a WSDL document that includes, in its binding and service
definition, the message type mediator for the message type it is interested in
working with. This WSDL document is referred to as the common WSDL docu-
ment for the message type. A consumer uses an extension of the common WSDL
document that also includes a reference to itself and an optional message selec-

6

tor. This WSDL document extension can be seen as the consumer’s subscription
specification.

This way, a producer’s multi-consumer messaging infrastructure is able to
contact the message type mediator and determine a point of entry into the
messaging network. Similarly, a consumer’s messaging infrastructure, as part of
the corresponding deployment process, contacts the message type mediator to
register interest in messages of the given type, and to determine a point of entry
into the messaging network.

A broker is an intermediary composite web service that relays messages from
producers to consumers and that is used to form the multi-consumer network
for a message type.

Given that, in keeping with the web services programming model, the sub-
scription model for a consumer is based on a WSDL message, which is defined by
an XML-schema, the subscription model becomes content-based. Notice however
that this does not preclude the use of a topic-based subscription model. First, a
WSDL message can readily model simple topic categorization and subscription.
More advanced hierarchical topic categorization and topic subscription expres-
sions entail the definition of a particular message structure and a subsequent
subscription expression dialect.

The following sections elaborate on the multi-consumer messaging infrastruc-
ture model. More advanced features, including support for hierarchical topic cat-
egorization and subscription expressions, selective subscription propagation, and
reliable multi-consumer messaging are beyond the scope of this paper. However
it is worth pointing out that the model presented here is intended to provide a
foundation for these advanced features. For instance, an MCM network and its
message dissemination invariant, as presented in the following section, provide
the foundation for tree-shaped message-tracking sequences that are at the core
of reliable multi-consumer messaging.

3.1 Multi-Consumer Messaging Infrastructure Model

The multi-consumer messaging infrastructure consists of a number of web ser-
vices that underlie client application producers and application consumer web
services, and that enable the delivery of web service one-way messages from any
application producer to any number of application consumers. These infrastruc-
ture web services include: multi-consumer messaging producer (or MCM producer
for short), MCM consumer, MCM broker, and MCM message type mediator (or
MTM for short).

An MCM producer is a web service that is given a message to send to one or
more MCM consumers. An MCM producer can be given a message by a client
application producer or by an MCM consumer. In the former case we refer to
the MCM producer as an lprod, in the latter as an inprod. An MCM producer
maintains a list of MCM consumers to which it sends the messages it is given.
When an MCM producer p has a reference to an MCM consumer c in its list of
consumers, p is said to be connected to c.

7

An MCM consumer is a web service that receives messages from one or
more MCM producers to deliver to either a number of application consumer
web services or to another MCM producer. In the former case we refer to the
MCM consumer as an lcons, in the latter as an incons. Messages delivered to
an application consumer will be filtered by its MCM consumer according to
the message selector specified by the application consumer, if any. An MCM
consumer c becomes connected to an MCM producer p by sending a request to
p to add c to p’s list of consumers.

An MCM broker is a composition of an incons and an inprod, where any data
message received by the broker’s incons is relayed to the broker’s inprod to be
sent. Two brokers b1 and b2 are said to have a bi-directional connection if b1’s
inprod is connected to b2’s incons and b2’s inprod is connected to b1’s incons.
Two brokers b1 and b2 establish a bi-directional connection with each other
when their respective inprods become connected to their counterpart inconses.
An lprod lp is connected to a broker b if lp is connected to b’s incons. An lcons
lc has a connection from a broker b if b’s inprod is connected to lc.

An MCM network is a triple < lp, lc, b >, where lp is a non-empty collection
of lprods, lc is a non-empty collection of lconses, and b is a possibly empty
collection of brokers. An MCM network < lp, lc, b > aims at maintaining the
following message dissemination invariant: in the absence of failure, a message
produced by any lprod in lp will be received by every lcons in lc. To maintain
its invariant, an MCM network satisfies the following rules:

1. If it has an empty collection of brokers, then each lprod in lp must be con-
nected to every lcons in lc

2. Otherwise:
(a) When a broker b1 joins the network, it must establish a bi-directional

connection with a single other broker b2 in the network
(b) Each lprod in lp must be connected to exactly one broker in the network
(c) Each lcons in lc must have a connection from exactly one broker in the

network

The diagrams in Fig. 1 illustrate two MCM producers underlying correspond-
ing application producers (i.e., two lprods) and two MCM consumers underlying
corresponding application consumers (i.e., two lconses). Fig. 1(a) illustrates the
absence of a broker and thus the need for full connectivity amongst lprods and
lconses. Fig. 1(b) shows the use of a broker.

As an MCM network evolves, any given broker bx will typically have bi-
directional connections to n other brokers. That is, bx’s incons and inprod will
be connected to each of bi’s inprod and incons, respectively, where bi is one of
the n brokers bx is connected to. For example, in the MCM network of Fig. 2,
broker 4 has bi-directional connections with three other brokers.

To ensure that message flow in the network is only ’downstream’, when a
message arrives at bx’s incons from bi’s inprod, and after being relayed to bx’s
inprod, bx’s inprod will make sure that it is sent to bj ’s incons, where bj is each
one of the n − 1 brokers bx is connected to, besides bi. To achieve this, the

8

lprod1 lprod2

lcons1 lcons2

To app consumer 1 To app consumer 2

From app producer 1 From app producer 2

incons inprod

lprod1 lprod2

lcons1 lcons2

From app producer 1 From app producer 2

To app consumer 1 To app consumer 2

(a) Without a broker (b) With a broker

Fig. 1. Broker usage

message must contain a tag that identifies the broker that sends it, bi in this
case. For example, a data message that arrives at broker 4’s incons from broker
2’s inprod will only be sent to broker 1 and broker 3’s inconses by broker 4’s
inprod, in addition to lcons7, of course.

An MTM is a web service that maintains information about the current
state of an MCM network for a given message type; if the network has a non-
empty collection of brokers this information includes, for each broker in the
network, the endpoint references for the broker’s incons and inprod; otherwise,
this information includes the endpoint reference of every lprod and every lcons
in the network.

An MTM provides an interface for an lprod to join the network and to obtain
a list of possible MCM consumers to connect to, annotated with an indicator of
whether these are inconses or lconses.

An MTM also provides an interface for an lcons to join the network and to
obtain a list of possible MCM producers from which to request a connection,
annotated with an indicator of whether these are inprods or lprods.

Finally, an MTM provides an interface for a broker to join the network and
to be removed from the network.

3.2 Setting up and Maintaining the Network

At deployment time of an application consumer web service, the corresponding
lcons sends a request to the MTM to join the network, including the lcons’ end-
point reference in the request. The MTM responds with a list of MCM producers
for the lcons to connect to. If the list is annotated as a list of inprods, then the

9

lprod1

lprod2

inprod incons

incons inprod incons inprod

incons inprod

lcons1 lcons2 lprod4lprod3

lcons5

lcons6

lprod5

lprod6

lcons3

lcons4

Broker 4

Broker 1 Broker 2

Broker 3

lcons7 lprod7

Fig. 2. MCM Network

lcons picks one and sends a request to connect; this request includes the lcons’
endpoint reference. Otherwise, if the list is annotated as a list of lprods, the
MCM consumer must send a request to connect to each lprod in the list.

Before an application producer client can send a message for the first time,
the corresponding lprod must send a request to the MTM to join the network,
including the lprod’s endpoint reference in the request. The MTM responds
with a list of MCM consumers to connect to. If the list is annotated as a list
of inconses, then the lprod picks one and adds it to its list of consumers as
its single consumer. Otherwise, if the list is annotated as a list of lconses, the
lprod must add each lcons in the list to its list of consumers. Note that if the
list is empty, the lprod may try to block the application producer client until
a consumer is available as, in general, its messages may be lost otherwise. At
any time after an MCM producer first connects as an lprod or it does not find
any MCM consumer to connect to, it may receive a request to connect from an
MCM consumer, which includes the MCM consumer’s endpoint reference. Upon
receiving this request, the MCM producer adds the MCM consumer to its list
of consumers.

At any point before or after any lprods or lconses are added to the MTM’s
list, the first broker may ask the MTM to be added to the network. If the MTM
has any lprods or lconses in its lists, it returns them to the broker and expects an
acknowledgement from the broker that the lists can be removed. Upon receipt of
a non-empty list of lprods, the connecting broker sends a request to each lprod

10

in the list to remove its connection to any lcons and to add a connection to the
broker. Upon receipt of a non-empty list of lconses, the MCM broker connects
to each lcons. The MCM broker then sends an acknowledgement to the MTM.
The MTM is then able to remove its lists of lprods and lconses. From the time
when the first broker asks to be added to the network until the time it sends
acknowledgement to the MTM, the MTM may refuse or delay for a configurable
amount of time any other request from a broker, an lprod or an lcons, to ensure
that its information about the state of the network remains consistent. If the
new broker does not send its acknowledgement within the configured time, the
MTM may assume the operation failed and the new broker must try again.

Any time thereafter, a new broker may ask the MTM to be added to the net-
work, to which the MTM responds with a list of MCM brokers for the new broker
to choose from. The new broker then establishes a bi-directional connection with
the chosen broker.

At any time after a broker has been added to the network, it may receive a
request to connect to an lcons or to establish a bi-directional connection with
some other broker.

As the network of brokers for a given message type evolves, brokers may
be removed. When this happens, the bi-directional connections that a removed
broker br maintains with other brokers must also be removed. In particular, each
such broker must remove br from its inprod’s list of consumers. Furthermore,
the n bi-directional connections being removed must be replaced by n − 1 bi-
directional connections amongst the n corresponding brokers involved in such
a way as to preserve the structure that maintains the network’s invariant and
downstream flow of messages. Notice that is only necessary when n > 1. This can
be accomplished, for instance, by the following procedure. Let B be the set of
brokers with which a removed broker br maintained bi-directional connections.
While the current B is not a singleton: pick a bj from B, subtract it from B,
and send a notification to bj to establish a bi-directional connection with some
(and only one) member of the resulting B. This procedure may be implemented
by the MTM when br asks to be removed from the network, where the set B is
br’s list of consumers.

When the last broker asks the MTM to be removed from the network, it
includes its lists of lprods and lconses in the request so that the MTM can
reconstitute its own lists of lprods and lconses. The removed broker also notifies
each lprod to replace its connection to the broker with a connection to each lcons
in the broker’s list.

4 Related Work

WS-Eventing [5] provides a light-weight facility for disseminating events from an
event source to multiple subscribers and to manage the corresponding subscrip-
tions. Since subscribers interact directly with an event source, there is no real
decoupling between the two. In addition, an event source can be seen as its own
destination with an implicit message type. Presumably, if two web service pro-

11

ducers wanted to produce events of the same type, they would be independent
event sources of their own, with the implication that subscribers would have to
subscribe to every event source that ever produced events of a given type. We
view WS-Eventing as a foundational architecture on top of which higher-level
models, such as multi-consumer messaging, can be built.

WS-Notification [7], in addition to providing a basic WS-Eventing type of
dissemination, promotes a brokered many-to-many style of notification. Hence,
decoupling between producers and consumers is a main feature. However, WS-
Notification is not explicit about how broker networks are to be organized.
Without this, building support for end-to-end reliability protocols for large de-
ployments of producers and consumers becomes problematic. In addition, WS-
Notification uses topics as its primary means to organize and categorize mes-
sages, with message types as optional constraints on topics. We believe that this
unnecessarily modifies the programming model, given that the content-based
form of message organization, afforded by a straight use of WSDL message types,
can be thought of as subsuming topic-based message organization.

Container-Managed Messaging (CMM) [8] is aimed at providing a uniform
view of either object-oriented components or message-oriented applications to
object-oriented components. To this end, an architecture and programming model
are defined that approach messaging as a container-managed service. This is
analogous to our approach to integrate web services and messaging from a web
services point of view. The CMM architecture includes artifacts such as a mes-
sage proxy, a result proxy, a message listener, and a callback proxy. Artifacts
similar to these would play an important role in the design of an asynchronous
request response messaging infrastructure, as we have outlined it in Section 2.
CMM focuses more on point-to-point messaging interactions and less on address-
ing multiple consumers. In addition the CMM architecture is defined solely in
object-oriented component terms and not as a generalization that can also cover
message-oriented applications.

5 Conclusion

We have presented an approach to integrating web services and messaging,
based on a generalization of the web services programming model, of which
web services messaging is defined as another specialization. As we have seen,
web services messaging can then be realized as modes of interaction that in-
clude asynchronous request-response messaging, multi-consumer messaging and
multiple-choice point-to-point messaging.

We believe that the integration approach we have presented has the potential
of bringing into the mainstream of service-oriented computing the features of
message-orientation that have made it a useful, albeit independent, paradigm.
Moreover, by integrating messaging with a standards-based platform such as web
services, our approach has the potential of leading the way to a standardization
of the messaging paradigm itself, independently of any programming language,
virtual machine, etc.

12

References

[1] Web Services Description Language (WSDL 1.1). W3C Note, March 2001.
[2] Java Message Service. http://java.sun.com/products/jms/docs.html, April

2002. Version 1.1.
[3] Chuck Cavaness and Brian Keeton. The Components of Java Message

Service. http://www.quepublishing.com/articles/article.asp?p=26270&rl=1,
April 2002. Section 1, Introduction to Messaging.

[4] Don Box, et al. Web Services Addressing (WS-Addressing), August 2004.
[5] Don Box, et al. Web Services Eventing (WS-Eventing), August 2004.
[6] R. Bilorusets, et al. Web Services Reliable Messaging (WS-ReliableMessaging),

February 2005.
[7] S. Graham, et al. Publish-Subscribe Notification for Web Services, March 2004.

Version 1.0.
[8] Ignacio Silva-Lepe, Christopher Codella, Peter Niblett, and Donald Ferguson.

Container-Managed Messaging: An Architecture for Integrating Java Components
and Message-Oriented Applications. In Proceedings of the 37th International Con-
ference on Technology of Object-Oriented Languages and Systems (TOOLS-Pacific
2000), Sydney, Australia, November 2000.

