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THE OPTIMALITY OF THE ON-LINE GREEDY ALGORITHM

IN CARPOOL AND CHAIRMAN ASSIGNMENT PROBLEMS

Abstract. We study several classes of related scheduling problems including
the carpool problem, its generalization to arbitrary inputs and the chairman
assignment problem. We derive both lower and upper bounds for on-line algo-
rithms solving these problems. We show that the greedy algorithm is optimal
among on-line algorithms for the chairman assignment problem and the gener-
alized carpool problem. We also consider geometric versions of these problems
and show how the bounds adapt to these cases.

1. Introduction

In this paper, we mostly consider the following setting for a class of scheduling
problems: Let ∆ denotes the standard n− 1 dimensional simplex in the real affine

space An which for all practical reasons can be identified with Rn:

∆ =

{

Λ = (λ1, λ2, . . . , λn) ∈ An :

n
∑

i=1

λi = 1 and λi ≥ 0

}

.

As the case n = 1 is trivial, we will always assume n ≥ 2.

- There are n tasks Tj , j = 1, . . . , n, each one represented by one corner (or
vertex) of the simplex ∆: cj ∈ C = {ci, i = 1, . . . , n}.

- At each (discrete) moment of time t ∈ N∗ = {1, 2, . . . }, a demand is re-
quested, such demand (or input) being represented as the point Λ(t) ∈ ∆ ⊂
An.

- Then the task at time t is chosen T(t) = Tj(t), and the corresponding corner
of ∆ is considered as the output c(t) = cj(t) at time t, of a

- process which is determined:
– by the sequence of inputs, and
– by the method chosen

to get a schedule, i.e., an output sequence
(

cj(t)

)

t∈N∗
= cj(1), cj(2), . . . out

of an input sequence (Λ(t))t∈N∗ = Λ(1),Λ(2), . . . , a method that we call
for now an

- algorithm A (a concept to be formally defined below in a way appropriate
for our purpose).

- The collections I of possible inputs and O of admissible choices of outputs
define for us the problem class Π(I,O). We often say problem for problem
class, especially when dealing with problem classes that bear special names;
we hope that this will not cause any confusion since then, the usual meaning
of the word problem would work as well.

- A problem class together with restrictions on the algorithms that are con-
sidered as acceptable define a protocol P of a scheduling problem (all al-
gorithms may be acceptable, yielding the most general protocol for a given
problem class).

1
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Remark. The simplex ∆ is more often understood as a subset of the n-dimensional
real affine space than as a subset of the corresponding real vector space since both
inputs and outputs are naturally modeled by points (hence elements of affine spaces
rather than vectors), while objects such as errors get modeled by vectors since they
appear as differences of points (something which appeals even more for the point
space to be an affine space).

We notice also that in some cases related to the ones that we consider here,
outputs may be collections of tasks or some number (the weight) of copies of a single
task , so that both inputs and outputs may be more generally modeled as collections
of weighted points or as the points from a convex combinations of the corners and
the corners themselves of some polytopes in (generally) lower dimensional affine
space.

The word “mostly” used in the first sentence of the paper refers to the fact that a
more general situation will also be considered where multiple simplices represent the
inputs and their vertices the outputs. This more general setting appears naturally in
the geometrical formulation of problems classes that have inputs in a single simplex,
but which have special protocols with constraints such as:

“If the input belongs to an m-face of the simplex,
then the output belongs to the same m-face.”

In brief, we will study some algorithms for scheduling problems that are represented
geometrically as above. In order to state more precisely the problems that we
will consider, we need next to introduce more quantities, concepts, and notations
associated with the inputs and the outputs.

Comparing the inputs and the outputs gives rise to the time depending sequence
of cumulative error vectors defined by:

(1.1) E(t) =

t
∑

s=1

(Λ(s) − c(s)) ∈ Rn .

Remark that as both Λ(s) and c(s) belong to ∆ then:

(1.2)
∑

j

Ej(s) = 0, where E(s) = (E1(s), . . . , En(s)) .

We only consider here the case when E(0) = (0, . . . , 0) since we are interested in
actual bounds, while studies such as [1] or [10] on the existence of bounds rather
consider more general initial error vectors. Note that the error can be written
recursively as:

(1.3) E(t) = E(t − 1) + Λ(t) − c(t) ; t ∈ N∗ ,

and as we always set E(0) = 0 we have again (1.2). Notice that while inputs and
outputs are defined for t ∈ N∗, errors are defined for t ∈ N = 0, 1, 2, . . .. Now we
introduce the modified input Θ(t) = E(t − 1) + Λ(t). Using the formula (1.1) this
can be rewritten as:

(1.4) Θ(t) = Θ(t − 1) + Λ(t) − c(t − 1) ; t ∈ N∗ ,

which is a time dependent dynamical system in the affine space An. More precisely,
because of (1.2) the dynamical system defined by (1.4) acts in the hyperplane
∑

j xj = 1 (notice that c(t − 1) only depends on Θ(t − 1) and on the chosen
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algorithm A). With this notion the representation of Ej(t) can be written as 1:

(1.5) Ej(t) =

{

Θj(t) − 1 = Ej(t − 1) + λj(t) − 1 if j = j(t)
Θj(t) = Ej(t − 1) + λj(t) otherwise

.

where Θj(t) = Ej(t − 1) + λj(t) by definition of Θ(t).

Remark. There is an alternate time dependent dynamical system (1.3), this time
in the vector space R(n−1) since errors are vectors, and we have (1.2). We call
Ej(t) the cumulative error of task Tj at time t and we omit the argument t when
the time is clear from the context. Note that again by (1.2) the modified input can
be written as Θ(t) =

∑

j Θj(t)cj with
∑

j Θj(t) = 1.

More generally, without (1.2),
∑n

j=1 Ej(t) is a constant as t varies. However,

with (1.2), all modified inputs belong to the hyperplane that contains the standard
simplex, which means that the dynamics of the modified inputs takes place in the
(n−1)-dimensional affine subspace, a point of view used elsewhere to consider inputs
in more general polytopes (in which case, the results one can expect are of course
less precise than what will be described here): see for instance [1], [2], [3], [10].

Having introduced the notions of the input, the output and the error we are
ready to talk about the algorithms.

- Abstractly an algorithm will be for us a function A which maps the space
{(Λ(t))t} of infinite demand sequences (Λ(t))t∈N∗ ∈ ∆N

∗

into the space
{(c(t))t} of infinite outputs sequences (c(t))t∈N∗ , and further into the space

(T(t))t ∈ {1, . . . , n}N
∗

of infinite task sequences:

A : (Λ(t))t∈N∗ 7→ (T(t))t∈N∗ .

Notice that this definition of an algorithm is not a standard one 2.
- More generally given sets of inputs I and outputs O the protocol is defined

by a subset of the set of maps (ON)(I
N) and an algorithm is any map from

this subset.
- The properties, conditions, or restrictions attached to a protocol define the

context of the problem, which is to find an algorithm not only compati-
ble with a given protocol, but also fulfilling some additional qualitative or
quantitative conditions, such as providing best value of the some bounds,
or limiting the information that can be used such as requiring the algorithm
to be on-line.

- Usually such conditions are given by a collection of inequalities and at some
points the ambiguities have to be resolved by tie breaking rules, that are
either deterministic or probabilistic, and have to be included in algorithms.

In this paper the main issues that we will tackle for the protocols that we consider
will be:

1When the cj ’s are not linearly independent, the decomposition E(t) =
∑n

j=1
Ej(t)cj is not

unique. On the other hand, for several of the scheduling problems that we consider, we set the
cj ’s to be such that the vectors cj − 0 are unit coordinate vectors, in which case Ej(t) is unique.

2See the fundamental book by Donald E. Knuth [7], where the algorithm is a map from a space

of states to itself, such that given a subsets of states called inputs and a subsets of states called
outputs we impose that (a) every input is mapped in a finite number of steps to an output and (b)
every output is a fixed point of the map. The finiteness may be not uniform and is not required
for a broader notion of computational method.
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- to find the best algorithm (under some protocol or further constraints)
and/or

- to estimate how good or bad an algorithm can be.

- The quality of an algorithm will be measured by the supremum over time
and over all possible input sequences (under some protocol) of the norms
of E(t).

For scheduling problems, this norm is usually the sup norm ‖E(t)‖∞ considered for
each time t in the appropriate space. To this effect for each algorithm A and demand
sequence {Λ(t)}t acceptable by some protocol P we define the bound relative to the
input sequence as:

(1.6) BA({Λ(t)}t) = sup
t∈N

‖E(t)‖ ,

from which the universal bound for the algorithm A is obtained as:

(1.7) BA = sup
{{Λ(t)}t}Λ∈P

(BA({Λ(t)}t)) ,

and then the absolute bound for the protocol at hand as:

(1.8) B = inf
A∈P

BA .

We will be interested in on-line algorithms, i.e., algorithms that can be represented
as sequences of compatible maps from initial segments of inputs to initial segments
of outputs of the same length:

At : (Λ(s))s≤t∈N
7→ (T(s))s≤t∈N

.

Otherwise speaking, on-line means here that the choice of T(t) = c(t) depends
only on Λ(s), for s ≤ t (and hence can also depend on Tj(s) for s < t once the
algorithm has been chosen, as a compact or otherwise convenient way to represent
the dependance on past and present inputs).

We will give bounds for BA for several on-line algorithms. The lower bound will
be given for all on-line algorithms, whereas the upper bound will be for a specific
on-line algorithm. For the precise formulation see Definition 1.

In several cases the specific algorithm which gives the best upper bound is the
greedy algorithm, the algorithm that at each time chooses T(t) = Tj(t) among
the allowable tasks such that the distance between the modified input Θ(t) =
E(t − 1) + Λ(t) and cj(t) is the smallest possible, with a deterministic or random
tie breaker when several cj ’s are at the same distance from the modified input. We
borrow this terminology from error diffusion, a greedy algorithm that is sometimes
used to solve the problem of halftoning that one faces in order to print digital
images with a digital printer [2].

The ith coordinate of a demand is naturally associated to the corner ci ∈ C, and
so is the ith coordinate of a modified input: the correspondence goes both way so
that one can speak without ambiguity, e.g., of the input of a task or of a corner
or of the modified input to a task or to a corner (then taken as representing the
coordinate axis that contains it) (see for instance the formulation of Proposition
2.5).

We consider the following classes of algorithms in order of increasing constraints
on the chosen task Tj(t) and on the demand Λ(t). In sections 3-6 we assume
cj to be unit coordinate vectors ej , in which case ‖E(t)‖∞ = maxj Ej(t) and
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BA(Λ) = supt maxj |Ej(t)|. Furthermore, in this case the greedy algorithm picks
the task Tj among all allowable tasks such that Θj(t) is the largest. In Sections 7-8
we consider more general cj ’s. The paper is organized as follows, where for each
section from 3 to 8 we indicate what is the set of inputs I (which is ∆ in most but
not all cases) and the set of outputs O (which is always the set of corners of the set
of inputs):

• In Section 2, we review General properties of on-line algorithms and
related issues.

• In Section 3, we consider The Chairman Assignment Problem (CAP)
[12] where I = ∆, O = {ej}, and there is no restriction on the demands
and tasks.

• In Section 4, we consider The Generalized Carpool Problem (GCP)
for which I = ∆, O = {ej}, and a task can be chosen as output only if the
corresponding demand entry is not zero. This means that the driver of the
carpool must be in the car, i.e., in symbols: λj(t) > 0.

• In Section 5, we revisit the Carpool Problem (CP) [6] to which one of us
(D.C.) has already made contributions in the past (see [6] for details). The
Carpool Problem is the same as the Generalized Carpool Problem except
that the nonzero entries of a demand are all equal to each other (hence
equal to one divided by the number of non-zero entries).

• In Section 6, we study The Chairman Assignment Problem with
Multiple Tasks (MCAP) where for a σ = m

d
∈ Q the set I of inputs

is
{

p :
∑

j pj = σ, pj ∈ [0, 1]
}

and the set O of outputs form the set, say

OMCAP , of all the rational points of the polytope I with the denominator
d.

• In Section 7, we discuss the Geometric Version of the problems that we
consider here.

• In Section 8, we consider The Multiple Polytope Problem for which
I =

∏

Pi, O =
∏Oi with Oi being the corners of the polytope Pi. At

each time t ∈ N, first a polytope is given out of some collection {Pi}, then
a demand represented by a point from this polytope Pj is given.The task
must be chosen as a corner of the same polytope Pj . See Section 8 for the
formulation which fits the general setting.

Remark. Except otherwise stated, all algorithms are online: we consider more
general algorithms at the beginning of Section 2.

2. General properties of on-line algorithms

We are going first to revisit the quantities introduced in equations (1.6), (1.7),
and (1.8) in the context of general protocols and protocols that are assuming on-line
algorithms.

Definition 1 (Lower bound, upper bound). We say that the number L is a
lower bound for a protocol P (respectively a protocol P assuming on-line algorithms)
if for every on-line algorithm A ∈ P there is a demand sequence ΛA ∈ I ∈ P such
that BA(ΛA) ≥ L.

We say that the number U is an upper bound if there exists an algorithm A0,
for which every demand sequence Λ yields BA0

(Λ) ≤ U .
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Clearly, by an upper bound we mean here an acceptable upper bound in the
sense that any algorithm that does not respect this bound is unsatisfactory, but
the bound can be enforced. We have the following Proposition linking the concepts
introduced in Definition 1.

Proposition 2.1 (Tight bound). Let:

BA = sup
Λ

BA(Λ)

B = inf
A

BA .

Then for any lower bound L and any upper bound U :

L ≤ B ≤ U .

Moreover:
B = supL = inf U ,

where the supremum is taken over all lower bounds L and the infimum is taken over
all upper bounds U .

Proof. If L is a lower bound then for every algorithm BA ≥ L, hence B ≥ L. If
U is an upper bound then for some A0, BA0

≤ U , hence B ≤ U . In particular
supL ≤ B ≤ inf U .

By definition of the supremum, for every ǫ > 0 and every A there exists a demand
Λǫ,A such that BA(Λǫ,A) ≥ BA − ǫ ≥ B− ǫ, as B = infA BA. Hence B− ǫ is a lower
bound. We proved supL ≥ B.

On the other hand for every Λ we have BA(Λ) ≤ BA. Then by definition of
infimum for every ǫ > 0 there exists an algorithm Aǫ such that BAǫ

≤ B+ ǫ, which
means that B + ǫ is an upper bound. Hence inf U ≤ B. �

We are interested in optimal algorithms A such that B = BA. The optimality
depends of course on the protocol: even if the problem class (I,O) is fixed, opti-
mality may change from a protocol to a more restrictive one. We will be mostly
concerned with optimality for protocols that only accept online algorithms.

Proposition 2.2 (Comparing different problem classes). Let I ′ ⊃ I and
O′ ⊂ O be the sets of inputs and outputs. If the protocol for the problem class
(I ′,O′) does not impose less constraints on the output than the protocol for the
problem class (I,O) then the tight bound for said protocol for the problem class
(I,O) is not higher than the tight bound for said protocol for the problem class
(I ′,O′):

B(I,O) ≤ B(I ′,O′) .

This Proposition provides a tool to estimate the bounds by reducing the study
of a protocol to a known or simpler one. One of its applications is when the outputs
are not only the corners of the inputs, but also some internal points. In such a case
skipping the internal points gives a (possibly higher) estimate. Another possible
application is to estimate the bound using a bound for a problem class with larger
set of outputs and no extra constraint on the acceptable set of algorithms.

Proof of Proposition 2.2. The condition on constraints implies that every admissi-
ble algorithm for (I ′,O′) induces by restriction an admissible algorithm for (I,O).
If U is an upper bound for (I ′,O′) there exists an algorithm A with BA(Λ) ≤ U ,
for all Λ ∈ I ′N, therefore its restriction to Λ ∈ IN also satisfies this inequality. It
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follows that U is an upper bound for (I,O). Hence inf U for (I,O) is not larger
than inf U for (I ′,O′). �

Notice that similarly every lower bound L for (I,O) is also a lower bound for
(I ′,O′), hence sup L for (I ′,O′) is not smaller than supL for (I,O).

From now on, we assume that all algorithms are online, except otherwise stated.

Proposition 2.3 (The lower bound stays forever). Let for given algorithm A

and demand Λ:

Kt = Kt(A,Λ) = sup
s≤t

max
1≤j≤n

|Ej(s)| .

Then for every Λ and every t there exists Λ′ such that for every w we have

K ′
w = Kw(A,Λ′) ≥ Kt(A,Λ) .

Proof. Let v ≤ t and 1 ≤ j ≤ n be such that Kt = |Ej(v)|. Let Λ′(s) = Λ(s)
for s ≤ v and Λ′(s) = ej for s > v. Then because we are dealing with on-line
algorithms for w ≤ v we have with obvious notation T(w) = T′(w) and K ′

w = Kw,
while for w > v we have K ′

w ≥ |E′
j(w)| = |E′

j(v)| = |Ej(v)| = Kt, as for w > v we

were adding (input) and subtracting (output) 1 in E′
j(w). �

Proposition 2.4. For any greedy algorithm with no restrictions in choosing the
task (as in CAP) Ej(t) > −1 + 1

n
.

Proof. As the entries Θj of the modified input at time t sum up to 1, at least one
of these entries is not smaller than 1/n. There is no restriction on the task to be
chosen, hence picking a task with a maximal entry yields to the error not less than
−1 + 1/n. We conclude by induction, since the first error has been chosen to be
zero. �

Proposition 2.5 (Sum of errors). Let us assume that the chosen task has a mod-
ified input which is not smaller than any modified input with nonzero demand (this
covers greedy algorithms in both the chairman assignment and the carpool problems
classes). For a subset of indices I ⊂ {1, . . . , n} denote SI(t) = 2

∑

i∈I Ei(t). Then:

|SI(t)| ≤ k(n − k) ,

where k = #I is the cardinality of I.

Proof. By construction, the errors satisfied the condition

S{1,...,n}(t) =
∑

i

Ei(t) = 0

and by definition S∅(t) = 0, which covers the cases k = n and k = 0.
For other k’s, we offer a proof by induction on time t. The conclusion is clearly

true for t = 0, since Ei(0) = 0 for all i. It is then enough to prove that for any
k the sum is at least −k(n − k) as by symmetry of the formula the reminder sum
cannot exceed (n − k)k. Suppose that the statement holds up to t − 1 for all k’s.
Let I ⊂ {1, . . . , n} with k = #I > 0. If the index of the chosen task at time t,
j = j(t) 6∈ I we are done, as then SI(t) ≥ SI(t − 1), because we were adding the
demand and we did not subtract 1 for any i ∈ I. We assume hence that j ∈ I,
and let I− = I \ {j} with #I− = k − 1 ≥ 0. For a moment we shall suppress the
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dependence on time t − 1 and will write Ei = Ei(t − 1) and SI = SI(t − 1). By
induction we have that:

(2.1) SI− ≥ −(k − 1)(n − k + 1) = −k(n − k) + (n − 2k + 1)

We denote the demand vector at time t − 1 by λ and we define LI = 2
∑

i∈I λi.

Let J = {i 6∈ I : λi > 0} with m = #J and J+ = J ∪ {j}. Clearly 0 ≤ k + m ≤ n.
Remark that:

(2.2) 2 = LI + LJ = LI− + 2λj + LJ = LI− + LJ+

By assumption the modified input for the chosen task prevails over all tasks with
positive demand:

Ej + λj ≥ Ei + λi ,

and in particular for all i ∈ J . From SI∪J = SI− + 2Ej + SJ we have:

(2.3)

SI− + 2(m + 1)(Ej + 2λj) ≥ SI− + 2
∑

i∈J+(Ei + 2λi)
≥ SI− + 2Ej + SJ + LJ+

= SI∪J + LJ+

≥ −(k + m)(n − k − m) + LJ+

= −k(n − k) − m(n − 2k − m)
+LJ+

Adding m
m+1 times inequality (2.1) to 1

m+1 times inequality (2.3) we get:

SI + 2λj = SI− + 2Ej + 2λj

≥ −k(n − k) + m +
L

J+

m+1

= −k(n − k) + m +
2−L

I−

m+1 ,

where we used (2.2). We return to the time depending notation. By equations (1.4)
we have SI(t) = S(t − 1) + LI − 2 and by definition LI − 2λj = LI− ≥ 0. Then:

SI(t) ≥ −k(n − k) + m +
2 − LI−

m + 1
− 2λj + LI − 2

= −k(n − k) + m − 2 +
2

m + 1
+ LI−(1 − 1

m + 1
)

≥ −k(n − k) ,

as m + 2/(m + 1) ≥ 2 for all natural numbers m. When m = 0 then LI = 2 and
SI(t) = SI(t − 1). �

3. The Chairman Assignment Problem (CAP)

This problem, first presented in [9] in the constraint-less protocol version (al-
though it is so basic that we may have missed former formulations), was described
in Section 1 as pertaining to the problem class for which I = ∆, O = {ej}. In the
original protocol, one seeks the absolute best solutions and there is no restriction on
the demands and tasks: see for instance [9], [11] , [8], [12]. We are here concerned
with the protocol characterized by restricting to online algorithms, for which some
remarks were made by Tijdeman in [12]. We use Proposition 2.4 to restrict our
consideration to positive values of the errors. Denote the harmonic series by:

H(n) =

n
∑

j=1

1

j
.
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Recall that for n > 1, H(n) − 1 < ln(n) < H(n − 1).

Theorem 3.1 (Tight bound for CAP). Let I = ∆, O = {ej} and there are
no other conditions on the protocol (Chairman Assignment Problem). Then for
on-line algorithms:

B = H(n) − 1 .

Proof. Lower bound: sup L ≥ H(n) − 1. This was shown in [12]. It is enough
to prove that

∑n

j=2
1
j

is a lower bound. We shall prove that for any algorithm this

number is achieved it at most n steps on a specific family of demands. We consider
the demands which at time t = 1, . . . , n have either entries 0 or 1

n−t+1 , because
they must add to 1 there are n − t + 1 positive, equal entries and t − 1 zeros. In
particular Λ(1) = ( 1

n
, . . . , 1

n
) and Λ(n) = ej for some 1 ≤ j ≤ n.

Let fix an algorithm and let N(t) be an increasing family of the sets of t indices
which contain the indices of the tasks chosen up to time t; if for some s ≤ t we
have T(s) = Tj then j ∈ N(t). At each time 1 < t ≤ n there is a demand from our
family such that the set of indices of zeros of Λ(t) is equal to N(t). Therefore for
j 6∈ N(t) the algorithm did not choose Tj up to time t, there were no substraction
of 1, but on the other hand there were always an addition of a positive entry and
hence Ej(t) =

∑t
s=1

1
n−s+1 . At time n − 1 we have N(n − 1) ≤ n − 1 and there is

at least one entry with Ej(n − 1) =
∑n−1

s=1
1

n−s+1 =
∑n

j=2
1
j
. That means that for

every algorithm A:

BA = sup
Λ

BA(Λ) = sup
Λ

sup
t

sup
j

Ej(t) ≥
n
∑

j=2

1

j
,

or that H(n) − 1 is a lower bound.
Upper bound inf U ≤ H(n) − 1. We prove this upper bound for the greedy

algorithm. Let us fix a time moment t, and a task T. At this moment we rename
the tasks by T1 = T and the other ones in the order which they were last chosen.
So T2 is the most recently chosen task, T3 is the most recently chosen task besides
T2, etc. It is possible that some tasks were never chosen up to time t. For j ≥ 2
we call tj the moment when Tj was last chosen, we have hence t = t2 and tj is
decreasing. With this convention we have e(tj) = ej .

For 2 ≤ k ≤ j, let zk
j = Ej(tk) be the error of task Tj just after the time when

task Tk was chosen for the last time. Notice that when k < j we have tk > tj ,
and as Tj was not chosen after tj any algorithm only adds to its error non negative
demand entries and never subtracts 1, so this error cannot decrease. So for any
j ≥ k′ ≥ k ≥ 2 we have:

(3.1) zj
j ≤ zk′

j ≤ zk
j ≤ z2

j .

Consider the modified input vector at time tk, Θ(tk) = E(tk − 1) + Λ(tk) whose
entries sum up to 1. As the algorithm is greedy we have Θj(tk) ≤ Θk(tk) for all j, in
particular for j < k. For j > k the tasks were not chosen and we have Θj(tk) = zk

j .
Hence for k ≥ 2:

1 =
n
∑

j=1

Θj(tk) ≤ kΘk(tk) +
n
∑

j=k+1

zk
j .
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The error of Tk after it was chosen is hence:

Ek(tk) = zk
k = Θk(tk) − 1 ≥ 1

k
(1 −

n
∑

j=k+1

zk
j ) − 1 .

Multiplying this inequality by 1
k−1 we obtain 1

k(k−1)

∑n

j=k+1 zk
j + 1

k−1zk
k ≥ − 1

k
.

If Tk has never been assigned, then Tk+1, . . . , Tn have also never been assigned
and the preceding inequality still holds, since all values on the left-hand side are
nonnegative. By inequality (3.1), we get:

1

k(k − 1)

n
∑

j=k+1

z2
j +

1

k − 1
z2

k ≥ −1

k
,

for 2 ≤ k ≤ n. Summing over k we obtain:

−H(n) + 1 ≤
n
∑

k=2

n
∑

j=k+1

z2
j

k(k − 1)
+

n
∑

k=2

1

k − 1
z2

k

=
n
∑

j=3

j−1
∑

k=2

z2
j

k(k − 1)
+

n
∑

j=2

1

j − 1
z2

j

=

n
∑

j=2

z2
j

((

j−1
∑

k=2

1

k − 1
− 1

k

)

+
1

j − 1

)

=
n
∑

j=2

z2
j

Since at each time the errors sum up to zero, in particular for time t2 = t we have
∑n

j=1 z2
j = 0. It follows that E1(t) = z2

1 ≤ H(n) − 1. As t and T1 were arbitrary,
the estimate holds for every task at any time. �

Remark. The proof of Theorem 3.1 actually shows a little more: the errors satisfy
Ej ∈ [ 1

n
− 1, Hn − 1] for the greedy on-line algorithm, and this is a tight bound.

The upper endpoint is achieved by the example in the proof of Theorem 3.1, and the
lower endpoint is achieved with λ(1) = ( 1

n
, . . . , 1

n
).

Remark. For off-line algorithms, B = 1 − 1
2(n−1) [8, 11, 12] (tight bound). In

other words, whereas for on-line algorithms, B grows as ln(n), there exists an off-
line algorithm for which B is less than 1 for all n (a condition which is called P -fair
in [5]).

4. The Generalized Carpool Problem (GCP)

This problem refers to the same protocol as the Chairman Assignment Problem
in Section 3, except that the chosen task Tjt

must satisfy the additional requirement
that λj(t) > 0, i.e., the task chosen must be among those tasks whose demand is
nonzero. From its name, the reader will guess that GCP is also related to the
Carpool Problem (CP) that is studied in Section 5. We came in fact to formulate
GCP by generalizing CP, seeing of course right away that the generalization of CP
we had in hand was related to CAP. We then realized that GCP makes a lot of
sense in actual chairman assignment situations, and more precisely, each time one
needs the chairman to be present to do the job.



CARPOOL AND CHAIRMAN ASSIGNMENT PROBLEMS September 2, 2005 11

Theorem 4.1 (Tight bound in GCP). Let I = ∆, O = {ej} and if a coordinate
of an input at some time is zero, so is the corresponding coordinate of the output
at the same time (Generalized Carpool Problem). Then

B =
n − 1

2
.

Proof.
Lower bound: sup L ≥ n−1

2 .
It is enough to prove a slightly stronger statement: for every on-line algorithm
A solving the GCP there is a demand sequence Λ such that lim supt BA(Λ) ≥
(n − 1)/2.

For any time t let l = l(t) and l′ = l′(t) be such two different indices that the gap
g = g(t) = El(t)−El′(t) ≥ 0 is minimal. Then max1≤i,j≤n Ei(t)−Ej(t) ≥ (n− 1)g
and therefore:

(4.1) max
i

|Ei(t)| ≥ (n − 1)g(t)/2 .

Having this we define inductively a demand sequence by λl′ (t) = (1+g(t))/2, λl(t) =
(1−g(t))/2, and all other λi(t) = 0. By the carpool protocol only task Tl or Tl′ can
be chosen. The modified inputs of both of them are equal to (El(t)+El′ (t)+1)/2 =
El(t)+ (−g(t)+1)/2, as by definition El′ = El − g. Hence for i 6= l, l′ the entries of
the error vector at time t+1 are Ei(t+1) = Ei(t) and the two remaining entries are
El(t)+(−g(t)+1)/2 and El(t)+(−g(t)−1)/2 (for the chosen one we subtracted 1).
Define the second moment of the error vector by D(t) =

∑

1≤i≤n Ei(t)
2. We notice

that if D(t) ≥ A2 then at least one |Ei(t)| ≥ A/
√

n. Then:

(4.2)

D(t + 1) − D(t) = (El − g−1
2 )2 + (El − g+1

2 )2

−(E2
l + (El − g)2)

= 1−g2

2

We have three possibilities:

(1) g(t) ≥ 1 for infinitely many t, then, by (4.1), ‖Ei(t)‖∞ ≥ (n−1)/2 infinitely
often and hence this holds for

lim sup
t

‖E(t)‖∞

(2) g(t) < 1 for almost every t, but g(t) ≥
√

1 − 2/t infinitely many times.
Then again by (4.1)

lim sup
t

‖E(t)‖∞ ≥ (n − 1)/2

(3) g(t) <
√

1 − 2/t for almost every t, in particular there exists a t0 such that
it holds for all s ≥ t0. Then by (4.2) for any t1 ≥ t0 there is a t > t1 such
that D(t) ≥ D(t1) +

∑

t1≤s<t
1
s
≥ n(n − 1)2/2. Thus ‖E(t)‖∞ ≥ (n − 1)/2

for infinitely many t. Notice that in fact in this case lim supt ‖E(t)‖∞ = ∞.

Upper bound: inf U ≤ n−1
2

We estimate the upper bound for the greedy algorithm, so that we can use Propo-
sition 2.5, where we pick the case k = 1. �

In fact, this bound is only approached asymptotically. In particular,
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Theorem 4.2. Consider the greedy algorithm with O = {ej} and n > 2. For
1 ≤ k ≤ n − 1, the magnitude of the sum of any collection of k errors Ej’s is

strictly less than k(n−k)
2 . This implies that ‖E(t)‖∞ < n−1

2 .

Proof. From Proposition 2.5 we know that
∑k

j=1 Ej ≥ −k(n−k)
2 for 1 ≤ k < n. To

reach a contradiction, consider the first time t such that:

(4.3)

k
∑

j=1

Ej = −k(n − k)

2
,

for some k, 1 ≤ k < n. Suppose also that k is the largest such integer. The chosen
task Td must have been among these k tasks and at least one of the tasks with
nonzero demands was not among the k tasks, say task Tp. We consider the group
of tasks without the chosen task and use again Proposition 2.5:

E1 + · · · + Ek − Ed ≥ − (k − 1)(n − k + 1)

2
,

and subtracting equation (4.3) we get Ed ≤ −n−2k+1
2 .

Considering the k tasks plus Tp, we have E1 + · · · + Ek + Ep ≥ − (k+1)(n−k−1)
2 .

Subtracting equation (4.3) we get Ep ≥ −n−2k−1
2 . Therefore the modified input for

task Td is less than or equal to the modified input for task Tp, i.e., Ed + 1 ≤ EP .
If k > 1, consider the k − 1 tasks without the chosen task Td:

E1 + · · · + Ek − Ed >
(k − 1)(n − k + 1)

2
,

which holds at time t−1 and continues to holds for time t. Therefore Ed < −n−2k+1
2 .

If k < n− 1, then by maximality of k, (E1 + · · ·+Ek +Ep) > − (k+1)(n−k−1)
2 which

implies Ep > −n−2k−1
2 . In either case (k > 1 or k < n − 1) we have Ed + 1 < Ep,

which means that task Td should not have been chosen under the greedy algorithm.
The only possibility to avoid a contradiction is if k = 1 = n − 1, i.e., n = 2. �

5. The Carpool Problem (CP)

This problem, first proposed in [6], is the same as the generalized carpool problem
with the additional constraint that the demand vector Λ(t) is such that for some
integer b (which may depend on t), b of its elements are equal to 1

b
and the rest are

zero.

Theorem 5.1 (Lower bound for B in CP).

B >
3(n − 1)

8
− 1

4
.

Proof. We will only use demand vectors with 2 or 3 nonzero entries and show that
this bound is true for any on-line algorithm. Note that the error will be a multiple
of 1

6 . Again let (E1, . . . , En) denote the error E(t). Recall that
∑

Ej = 0. Consider

the error vector E(t) maximizing the second moment
∑

E2
j among all error vectors

reachable from E(0) = (0, 0, ..., 0) after a finite time using only demand vectors with
either 2 or 3 nonzero entries. Such an error vector exists since the second moment
can only attain a finite number of values (as the second moment is a multiple of 1

36 ),
and if the second moment were to become unbounded, then the theorem is trivially
true. We assume that Ej are arranged in ascending order. For this maximal error
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vector, the gap g between two successive Ej is at least 3
6 . Otherwise we can create

a demand vector where these two tasks have demand 1
2 and increase the second

moment: if 0 ≤ g < 1/2 then both (Ej +1/2)2 +(Ej + g− 1/2)2E2
j +(Ej + g)2 and

(Ej − 1/2)2 +(Ej + g +1/2)2 > E2
j +(Ej + g)2. Here the first inequality represents

the result of applying the greedy algorithm, while the second represents the other
choice. So each gap is at least 1/2, which gives the lower bound of n−1

4 that was
given in [6].

Next we show that two successive gaps cannot both be 3
6 . Suppose that

(Ej , Ej+1, Ej+2) = (Ej , Ej +
3

6
, Ej +

6

6
) .

Using a demand vector giving all three of these tasks a demand of 1
3 , the error at

the next time is then (Ej + 2
6 , Ej + 2

6 , Ej + 5
6 ) (if the greedy algorithm is followed).

Next a demand vector for the first two tasks each with a demand of 1
2 results in

the errors (Ej − 1
6 , Ej + 5

6 , Ej + 5
6 ) (no matter which algorithm is followed, since

the two candidates have equal errors). The latter two tasks next have demand 1
2 ,

resulting in the error (Ej − 1
6 , Ej + 2

6 , Ej + 8
6 ), which has larger second moment. If

the greedy algorithm had not been followed, the first step would have led to errors
(Ej − 4

6 , Ej + 5
6 , Ej + 8

6 ) or (Ej − 1
6 , Ej + 2

6 , Ej + 8
6 ), each of which already has

higher second moment.
Other patterns of consecutive small gaps can be treated similarly. Here we

list a pattern of consecutive small gaps, the related initial error pattern, and a
pattern which results after several iterations of presenting a carefully chosen demand
vector and following the greedy algorithm. In each case this latter pattern has a
larger second moment than the initial pattern, and in each case one can check that
any other online algorithm would also lead to an increase in second moment, (see
Appendix B for more details).

Gaps Initial errors
(0
6 ) (E, E + 0

6 )
(1
6 ) (E, E + 1

6 )
(2
6 ) (E, E + 2

6 )
(3
6 , 3

6 ) (E, E + 3
6 , E + 6

6 )
(3
6 , 4

6 ) (E, E + 3
6 , E + 7

6 )
(4
6 , 3

6 ) (E, E + 4
6 , E + 7

6 )
(3
6 , 5

6 ) (E, E + 3
6 , E + 8

6 )
(5
6 , 3

6 ) (E, E + 5
6 , E + 8

6 )
(3
6 , 6

6 , 3
6 ) (E, E + 3

6 , E + 9
6 , E + 12

6 )
(3
6 , 6

6 , 4
6 ) (E, E + 3

6 , E + 9
6 , E + 13

6 )
(4
6 , 6

6 , 3
6 ) (E, E + 4

6 , E + 10
6 , E + 13

6 )
(4
6 , 4

6 , 4
6 ) (E, E + 4

6 , E + 8
6 , E + 12

6 )
(4
6 , 4

6 , 5
6 ) (E, E + 4

6 , E + 8
6 , E + 13

6 )
(5
6 , 4

6 , 4
6 ) (E, E + 5

6 , E + 9
6 , E + 13

6 ) .
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final errors
(E − 3

6 , E + 3
6 )

(E − 2
6 , E + 3

6 )
(E − 1

6 , E + 3
6 )

(E − 1
6 , E + 2

6 , E + 8
6 )

(E − 1
6 , E + 3

6 , E + 8
6 )

(E − 1
6 , E + 4

6 , E + 8
6 )

(E − 1
6 , E + 4

6 , E + 8
6 )

(E + 0
6 , E + 4

6 , E + 9
6 )

(E − 1
6 , E + 4

6 , E + 8
6 , E + 13

6 )
(E − 1

6 , E + 4
6 , E + 9

6 , E + 13
6 )

(E + 0
6 , E + 4

6 , E + 9
6 , E + 14

6 )
(E − 1

6 , E + 4
6 , E + 8

6 , E + 13
6 )

(E − 1
6 , E + 4

6 , E + 9
6 , E + 13

6 )
(E + 0

6 , E + 4
6 , E + 9

6 , E + 14
6 ) .

For example, the gaps (3
6 , 6

6 , 4
6 ) and errors (E, E + 3

6 , E + 9
6 , E + 13

6 ) (which we
will abbreviate as (0,3,9,13)) go through the sequence (0, 3, 9, 13) → (2, 5, 5, 13) →
(2, 2, 8, 13) → (−1, 5, 8, 13) → (−1, 7, 10, 9) → (−1, 7, 7, 12) → (−1, 4, 10, 12) →
(−1, 4, 13, 9) = (−1, 4, 9, 13) under the greedy algorithm. One can check that at
each stage, a departure from the choices of the greedy algorithm would lead even
faster to an increase in second moment.

The error vector maximizing the second moment contains none of these sequences
of consecutive small gaps. Starting at an arbitrary location, one can check that
either its first gap is at least 5

6 , or the sum of the first two gaps is at least 9
6 , or

the sum of the first three gaps is at least 14
6 . Proceeding left-to-right, we conclude

that the average value of all but the last one or two gaps is at least 3/4 = (9
6 )/2.

Thus En −E1 ≥ min{(n− 3)(3/4)+ 4
6 + 4

6 , (n− 2)(3/4)+ 3
6} = 3(n−1)−1

4 . Similarly

En − Ej ≥ 3(n−j)−1
4 , so that:

nEn = (n − 1)En −
n−1
∑

j=1

Ej =
n−1
∑

j=1

(En − Ej)

≥
n−1
∑

j=1

3(n − j) − 1

4
=

3n(n − 1) − 2(n − 1)

8

B ≥ En >
3(n − 1) − 2

8
.

The most extreme example is apparently when consecutive gaps alternate be-
tween 4

6 and 5
6 . �

Theorem 5.2 (Upper bound for B in CP). If n > 2, then:

B ≤ n − 1

2
− 1

lcm (2, 3, . . . , n)
.

where lcm (a1, . . . am) is the least common multiple of the set of numbers ai.

Proof. It follows from Theorem 4.2 that at each time ‖E(t)‖∞ < n−1
2 for the

greedy algorithm. Since each element of the demand vector (and thus also E(t)) is
a multiple of 1

lcm (2,3,...,n) the result follows. �
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Remark. Theorem 5.2 was announced in [6]. For an alternate proof, see [4].

6. The Chairman Assignment Problem with Multiple Tasks (MCAP)

Consider now the case where m tasks are chosen, but within each time step,
the same task cannot be chosen more than d times, for instance if d = 1, all the
chosen tasks at each time are distinct. Using the notation as in Section 1 the
demand vector Λ(t) satisfies 0 ≤ λj(t) ≤ d and

∑

j λj(t) = m where m and d are
integers with 1 ≤ d ≤ m. At each time m tasks are chosen such that the same task
cannot be chosen more than d times. Extending the notation from the introduction
the output c(t) is now a point

∑

j αjcj where αj are integers, 0 ≤ αj ≤ d, and
∑

j αj = m. The greedy algorithm for this case is defined as the algorithm where

at each time step, the ⌊m
d
⌋ tasks with the largest modified inputs are each chosen d

times and the task with the next largest modified input is chosen m mod d times.

Remark. Using the convention from the Section 1 we have the demands coming
from the polytope which is the convex hull of the set of the following points (outputs):

C =







c ∈ {0, . . . , d}n
:

n
∑

j=1

cj = m







.

Notice that when d > 1, not all the outputs are the corners (extremities) of the
polytope. For d = 1 the corners are subsets of the corners of the standard cube
{0, 1}n

and the polytopes are called hyper-simplices.
If we allow the non-integer coefficients αj then we can consider the following

MCAP formulation. The inputs are from the polytope:

I =







p :
∑

j

pj = σ =
m

d
, pj ∈ [0, 1]







,

and the set O of outputs form the set OMCAP of all the rational points of the
polytope I with the denominator d. A set of corners C of the polytope is a subset
of its points with at most one of coordinate not in {0, 1}. The upper bound for the
context with outputs C is also an upper bound for the context with outputs in the
extreme points of the convex hull of C.

This can be generalized to any real σ ∈ (0, n).

When d | m, this reduces to the case of m
d

tasks with distinct chosen tasks since
the demand vector can be divided by d and the greedy algorithm for m

d
tasks with

distinct chosen tasks is applied d times. In particular, when d = m, this reduces to
the single task case, and thus:

if d = m, then B ≤ H(n) − 1 .

When d = 1, we can use the substitutions E(t) → −E(t), Θ(t) → (1, . . . , 1)−Θ(t),
Λ(t) → (1, . . . , 1)−Λ(t), ej(t) → (1, . . . , 1)− ej(t) to show that if each component
of the error vector is shown to lie in the interval [a, b] for the case of m tasks, then
each component of the error vector lie in the interval [−b,−a] for the case of n−m
tasks. Thus the bound B is the same for m tasks as it is for n − m tasks. In
particular, by the results in Section 3:

If d = 1 and m = n − 1, then B = H(n) − 1 .
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Theorem 6.1 (Lower bound for B in MCAP).

B ≥ H
(⌈ n

m

⌉)

− 1 .

Proof. The proof is essentially the same as that of the lower bound in Theo-
rem 3.1. Choose the first demand vector as (m

n
, m

n
, . . . , m

n
). Without loss of

generality, the first m tasks are chosen. The next demand vector is chosen as
(0, . . . , 0, m

n−m
, . . . , m

n−m
). Without loss of generality, tasks Tm+1, . . . , T2m are cho-

sen etc. This process is repeated ⌈ n
m
⌉ − 1 times, at which point, task Tn will have

error m
n

+ m
n−m

+ · · · + m

n−m(⌈ n
m

⌉−2)
=
∑⌈ n

m
⌉−2

j=0
1

n
m

−j
. �

Corollary 6.2. If d = 1, then B ≥ H(⌈ n
m
⌉)−1 for m ≤ n

2 and B ≥ H(⌈ n
n−m

⌉)−1
for m ≥ n

2 .

Proof. Follows from Theorem 6.1 and the discussion above. �

Theorem 6.3 (Upper bound in MCAP, case d = 1). Let:

α =
m

n
− m

2
− 1

2
< 0 and β =

n

2
+

m

n
− m

2
− 1

2
> 0 .

If d = 1, then the error vector E(t) = (E1, . . . En) satisfies Ej ∈ [α, β] and:

B ≤ max (−α, β) .

Proof. It is easy to show that α = −1 + (1 − (m − 1)β)/(n − m + 1), β = α + n
2

and β(m + 1) = m − (n − m − 1)α.
We prove this by induction on time t using the greedy algorithm. For t = 0 the

errors are all zero. By the induction hypothesis the errors at time t−1 are in [α, β].
Therefore at time t, the modified inputs Θj ∈ [α, β + 1].

Let J be the set of indices of the m tasks with the largest modified input. For
j ∈ J , Ej = Θj − 1, and Ej ≤ β. Let i ∈ J , then:

m =
∑

j Θj =
∑

j 6∈J Θj + Θi +
∑

j 6=i,j∈J Θj

≤ (n − m + 1)Θi + (m − 1)(β + 1) .

Therefore:

Ei = Θi − 1 ≥ m − (m − 1)(β + 1)

n − m + 1
− 1 = −1 +

1 − (m − 1)α

n − m + 1
= α .

On the other hand for j 6∈ J , Ej = Θj, hence Ej ≥ α. It remains to show the upper
bound. Let k 6∈ J . Then Θk ≤ Θj for all j ∈ J , and:

m =
∑

j Θj =
∑

j 6∈J,j 6=k Θj + Θk +
∑

j∈J Θj

≥ (n − m − 1)α + (m + 1)Θk .

This implies that:

Ek = Θk ≤ m − (n − m − 1)α

m + 1
= β .

Thus Ej ∈ [α, β] and the proof is complete. �

Corollary 6.4. If d | m, then

B ≤ max

(

m

2d
+

1

2
− m

dn
,
n

2
+

m

dn
− m

2d
− 1

2

)



CARPOOL AND CHAIRMAN ASSIGNMENT PROBLEMS September 2, 2005 17

In particular, the error vector E(t) = (E1, . . . En) satisfies m
dn

− m
2d

− 1
2 ≤ Ej ≤

n
2 + m

dn
− m

2d
− 1

2 .

Proof. Follows from Theorem 6.3 and the discussion above. �

For the case when d does not divide m, geometric ideas will be useful in providing
an upper bound for B. We will give such a result in Section 7.

The bounds for these problem classes are summarized in Table 1.

lower
bound
of B

upper bound of B

CAP H(n) − 1 H(n) − 1
GCP n−1

2
n−1

2

CP 3(n−1)
8 − 1

4
n−1

2 − 1

lcm(2,...,n)
(for n > 2)

MCAP H
(⌈

n
m

⌉)

− 1
max

(

m+1
2 − m

n
, n−m−1

2 + m
n

)

(for d = 1)

Table 1. Table of upper and lower bounds of maximal error vector
norm B.

7. Geometric Version of the Problem

The general setting for a geometric version of this problem is as follows:

Given a polytope P in Rq with vertices v1, . . . , vn, at each time t, a demand
Λ(t) ∈ P is given and a vertex vj(t) is chosen. The error at time t is given by E(t) =
∑t

s=1

(

Λ(s) − vj(s)

)

. The goal is to pick vertices such that ‖E(t)‖ is minimized.

The Euclidean norm ‖·‖2 is usually chosen for this problem. As before on-line means
that vj(t) depends only on Λ(t), Λ(s) and vj(s) for s < t. The greedy algorithm for
a metric ρ on Rq is given by: at each time t, pick the (admissible) vertex which is
closest under ρ to the modified input Θ(t) = E(t − 1) + Λ(t).

Remark . It can be shown that the greedy algorithm for the geometric version
under the Euclidean metric coincide with the greedy algorithm in Section 3 when
the polytope is the standard simplex ∆. Note also that if Λ(t) are allowed to be
outside of P , then one can choose a series of Λ’s such that ‖E(t)‖ is unbounded
[2].

The next result shows that a upper bound for this problem can be found from
the upper bound for the CAP.

Theorem 7.1. There exists an on-line algorithm such that:

‖E(t)‖ ≤ sup
{bj}∈S

∥

∥

∥

∑

bjvj

∥

∥

∥
≤ (n − 1) sup

p∈P

‖p − p∗‖ ,

where S =
{

{bj} : ∀j 1
n
− 1 ≤ bj ≤ H(n) − 1,

∑

j bj = 0
}

and p∗ = 1
n

∑

vj.

Proof. The proof is similar to that of Theorem 3 in [2]. Each demand vector Λ(t)
can be decomposed as a convex combination of vertices, i.e., Λ(t) =

∑

j αjvj . It is
then clear that the coefficients αj form a demand vector for the CAP and that the
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task Tjt
chosen corresponds to picking the vertex vjt

. The error vector E(t) in this
problem is formed by taking the coefficients Ej of the error vector in the CAP and
forming

∑

j Ejvj . By the proof of Theorem 3.1, there exists an online algorithm

such that 1
n
− 1 ≤ Ej ≤ ∑n

l=2
1
l

and thus the first inequality follows. The second

inequality is obtained by changing bj to b̃j = bj + 1 − 1
n
. �

In Theorem 7.1 the bound depends on the number of vertices in P . Next we
present a bound which depends only on the dimension q of the polytope and is thus
superior to the bound in Theorem 7.1 when the number of vertices is much larger
than q.

Theorem 7.2. There is an on-line algorithm such that:

E(t) ∈ P ′ ,

where P ′ = {x : 1
q
x + p0 ∈ P}, q is the dimension of P and p0 is any point in P .

Proof. By induction on t. Since 0 ∈ P ′, it’s true for t = 0. Since E(t − 1) ∈ P ′

it can be written as
∑

αj(vj − p0) where αj ≥ 0,
∑

αj = q. Since Λ(t) ∈ P ,
Θ(t) = E(t−1)+Λ(t) can written as

∑

βj(vj−p0)+p0 where βj ≥ 0,
∑

βj = q+1.
By Carathéodory’s theorem βj can be chosen such that the number of nonzero βj ’s
is at most q + 1. This means that there exists a vertex vj such that βj ≥ 1. Pick
this vertex and it’s clear that E(t) = Θ(t) − vj is in P ′. �

Remark. A geometric interpretation of P ′ is that it is the polytope P enlarged
q times and translated so that it includes the origin. To minimize the bound on
‖E(t)‖, p0 should be picked such that the maximum norm of the points in P ′ is
minimized.

By considering the vectors E(t) and Θ(t) in Section 6 as points in Rn, Theorem
7.2 can be used to give an upper bound for B on the order of Ω(dn) for the problem
in Section 6 where we set q = d.

8. Multiple Polytopes

In this section we generalize the problem in Section 7 to multiple polytopes. We
assume that there are given a finite number of polytopes P1, . . . Pr. At each time
t, a polytope Pmt

, mt = 1, . . . r is chosen and the demand Λ(t) at time t is a point
in Pmt

. The vertex chosen at time t must be a vertex of the polytope Pmt
. We

consider here the protocol that allows errors to be treated by groups corresponding
to the polytopes that generate them, to the contrary of what was considered in
[13] where (in a protocol than contains the GCP as a special case) errors were
cumulative across all the polytopes P1, . . . Pr and the algorithm was fixed to be
greedy. The problem that we consider here is a sort of product of individual one
polytope problems and can be reduced to the single polytope case as follows:

Theorem 8.1. For each k, let Sk be a set such that the geometric problem with a
single polytope Pk has its error within Sk for all time, then the error E(t) for the
multiple polytope case satisfies: E(t) ∈∑m

k=1 Sk.

Proof. The theorem can be proved by decomposing E(t) into m components, one
for each polytope: E(t) = E1(t) + · · · + Em(t). At each time t the polytope Pmt

is chosen, and the error component Emt
(t) is updated according to the geometric

problem for a single polytope Pmt
while the other components remain the same. �
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Remark. To the contrary of what has been described in Theorem 8.1 about er-
rors for general online algorithms, there is no nice dynamics (generalizing equation
(1.4)) for the greedy algorithm in the affine space of minimal dimension that would
contain more than one polytope. It is shown in [13] that any invariant region for
the greedy algorithm in the invariant space An of minimal dimension would need to
be unbounded for more than one polytope, to the contrary of what is proven in [1]
for the case of a single polytope.

Note that in applying Theorem 8.1, polytopes which differs from each other only
by a translation can be considered the same: such a simplification would not be
possible for the greedy algorithm in affine space given by the obvious generalization
of equation (1.4).

When the number of distinct vertices of the set of polytopes is much smaller
than the number of polytopes, for instance, when {Pm} are the set of faces of a
polytope, then the GCP can provide a better upper bound for this problem.

Theorem 8.2. There exists an on-line algorithm such that:

(8.1) ‖E(t)‖ ≤
(

n − 1

2

)

sup
∑

bj=0,|bj |≤1

∥

∥

∥

∑

bjvj

∥

∥

∥
,

where {vj} is the set of all the distinct vertices of the set of polytopes P1, . . . , Pm.

Proof. The proof is essentially the same as Theorem 7.1. The demand vector at
each time can be written as a convex combination of the vertices vj . The restriction
that the chosen vertex is a vertex in Pmt

corresponds to the fact that the chosen
task in GCP must have nonzero demand. In fact, it is weaker since the chosen task
having nonzero demand implies that the corresponding vertex is a vertex in Pmt

but
not vice versa. Thus the bound in Theorem 4.1 can be used for this problem. �

Remark. The relative positions between the various polytopes do not affect E(t).
Therefore, in order to minimize the bound on ‖E(t)‖, the polytopes (at least those
without common vertices) should be translated such that the right hand side of equa-
tion (8.1) is minimized.

The next theorem gives an explicit construction which shows that this problem
has a bounded error under the greedy algorithm for the Euclidean metric on the
two dimensional plane.

Theorem 8.3. E(t) is bounded under the greedy algorithm for the Euclidean metric
in R2.

Proof. First we construct a convex polytope P ′ such that the modified input Θ(t) is
a point in P ′ for all t. The theorem is then proved by noting that E(t) = Θ(t)−Λ(t).

Let nm
j , j = 1, . . . , nm be the unit normal vectors to the edges of Pm. Let P t

m

denote the polygon generated by moving the edges of Pm perpendicularly outward
a distance t:

P t
m =

⋂

j

{x : x · nm
j ≤ dm

j + t} ,

where Pm = P 0
m. We then define P ′ =

⋂

m P t
m for large enough t. Consider time t

where the polytope is Pmt
. By Theorem 2 in [3], for large enough t, Θ(t+1) ∈ P t

mt
.

Next we need to show that Θ(t + 1) ∈ P t
m for m 6= mt. Let v1 be the vertex in

Pmt
such that Θ(t) ∈ Rv1

. Let n0 and n1 be the two adjacent unit normal vectors
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of v1 in Pmt
. It’s clear that (n0, n1) form a basis of R2. Let nm

k be a normal
vector of Pm, m 6= mt. It’s clear that nm

k can be written as an0 + bn1. If either
a < 0 or b < 0, then the proof of Theorem 2 in [3] can be used to show that
Θ(n + 1) · nm

k ≤ dm
k + t when t is large enough. Assume that both a and b are

nonnegative. By induction on t, we assume that Θ(t) ·nm
k ≤ dm

k + t. It then follows
that Θ(t)·nm

k ≤ dm
k +t+(Λ(t)−v1)·nm

k = dm
k +t+(Λ(t)−v1)·(an0+bn1). It’s easy to

see that (Λ(t)−v1)·n0 ≤ 0 and (Λ(t)−v1)·n1 ≤ 0 and thus Θ(t+1)·nm
k ≤ dm

k +t. �

Remark. The problem in Section 7 can be thought of as an approximation algo-
rithm: a series of points in P is approximated by a series of vertices of P such
that on average the difference is small. Similar considerations apply to the problem
in section 8. Consider now the case where instead of vertices we pick any set of
points V such that the convex hull of V includes P . Can the error E(t) be made
smaller by choosing V which covers P more densely? Theorems 7.2 and 8.1 can be
used to show that if each point in P is inside some the set S which is formed as the
convex hull of some points in V such that all these sets S are these same except for
a translation, then the error E(t) is bounded by S expanded n times. Thus if we
pick V such that S is small enough, then the error E(t) will also be small.

Appendix A. Rate at which ‖E(t)‖∞ approach n−1
2

The following result shows the rate at which ‖E(t)‖∞ approaches n−1
2 for the

greedy algorithm in Theorem 4.2.

Theorem A.1. For n > 2, it takes Ω(n log(1/ǫ)) steps for the error in the greedy
algorithm to reach (1 − ǫ)(N − 1)/2.

Proof. At time t let (E1, . . . , En) = E(t) and (w1, . . . , wn) = E(t− 1). Let ǫ be the
smallest value such that for any k = 1, . . . , n−1, and any group of k tasks, we have
E1 + · · · + Ek ≥ −(1 − ǫ)k(n− k)/2. Let δ be the smallest value such that for any
k = 1, . . . , n− 1, any group of k tasks, we have w1 + ... + wk ≥ −(1− δ)k(n− k)/2.

Both equations hold trivially for k = 0 or k = n but ǫ and δ are defined by
minimizing over k = 1, . . . , n − 1.

Initially δ = 1. We want to bound how quickly ǫ can approach 0. Suppose n0

steps are required to achieve δ < 1
3 . Assume throughout now that δ < 1

3 .
Let k +1 be some value between 1 and n− 1 achieving the new minimum ǫ, i.e.,

E1 + · · ·+ Ek + Ek+1 = (1− ǫ)(k + 1)(N − k− 1)/2. Assume ǫ < δ (since otherwise
we’re very happy). Then w1 + ... + wk + wk+1 ≤ (1 − δ)(k + 1)(N − k − 1)/2 <
(1− ǫ)(k + 1)(N − k − 1)/2, so some of these quantities grew, implying two things:
(1) The chosen task in the last time was among these k + 1 tasks; call that task
Tk+1. (2) At least one non chosen task with nonzero demand was among the other
n − k − 1 tasks; call them Tk+2, . . . , Tk+M , with M ≥ 2 (so M − 1 ≥ 1). Define
P = λk+1 + · · · + λk+M to be the demand contributed by the chosen task and
those tasks with nonzero demands among the ”other” n − k − 1 tasks. Define
Q = λ1 + · · · + λk to be the demand contributed by those non chosen tasks with
nonzero demands among the first k tasks. We have P + Q = 1.

(A.1)

∑k
i=1 wi ≤ (1 − δ)(k)(N − k)/2

∑k+M
i=1 wi ≤ (1 − δ)(k + M)(N − k − M)/2

= (1 − δ)[k(N − k) + M(N − 2k − M)]/2

.
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Adding (M − 1)/M times the first equation to 1/M times the second equation:
w1 + · · ·+wk +(1/M)(wk+1 + · · ·+wk+M ) ≤ (1− δ)[k(N −k)+(N −2k−M)]/2
xk+1 − 1 = wk+1 − ck+1 ≤ wk+t − ck+t, t = 1, 2, . . . , M M(xk+1 − 1) ≤ wk+1 +

wk+2 + · · · + wk+M − ck+1 − · · · − ck+M = wk+1 + · · · + wk+M − P .

(A.2)

∑k+1
i=1 xi =

∑k

i=1 wi −
∑k

i=1 ci + (xk+1 − 1) + 1

≤ ∑k
i=1 wi − Q + (1/M)

(

∑k+M
i=k+1 wi − P

)

+ 1

≤ (1 − δ)[k(N − k) + (N − 2k − M)]/2
−Q − P/M + 1

≤ (1 − δ)[(k + 1)(N − k − 1) − (M − 1)]/2
+P − P/M

≤ (1 − δ)[(k + 1)(N − k − 1)]/2
−(1 − δ)(M − 1)/2 + 1 − 1/M

.

If M = 2 we have −(M − 1)/2 + 1 − 1/M = 0, so that we would get:

(A.3)

∑k+1
i=1 xi ≤ (1 − δ)[(k + 1)(N − k − 1)]/2

+δ(M − 1)/2

(1 − ǫ) (k+1)(N−k−1)
2 ≤ (1 − δ) (k+1)(N−k−1)

2 /2
+ δ

2

ǫ ≥ δ (k+1)(N−k−1)−1
(k+1)(N−k−1)

.

In the worst case (k + 1 = 1) we have ǫ ≥ δ(1 − 1/(N − 1))
If M > 2 we have −(1 − δ)(M − 1)/2 + (1 − 1/M) < 0 because δ < 1/3. So in

this case we get ǫ ≥ δ.
Thus after δ ≤ 1/3, each step decreases δ by at most a factor of (1− 1/(N − 1)).

So it takes Ω(N log(1/ǫ)) to reach a small value of ǫ. �

Appendix B. Details of Theorem 5.1

We list transitions that increase the second moment, starting from any given
sequence of small gaps. The list of tasks with nonzero demand is obvious from
inspection, and is determined by an adversary; we have listed the result of the
greedy algorithm, but in each case one can check that departure from the greedy
algorithm does not avoid increase in the second moment.

The sequence of gaps is listed first, then the initial configuration and the tran-
sitions to the final configurations, where we abbreviate (a, b, c) for (Et + a/6, Et +
b/6, Et + c/6).

GAPS Transitions
(0

6): (0, 0) → (−3, 3)

(1
6): (0, 1) → (3,−2)

(2
6): (0, 2) → (3,−1)

(3
6 , 3

6): (0, 3, 6) → (2, 5, 2) → (−1, 5, 5) → (−1, 2, 8)

(3
6 , 4

6): (0, 3, 7) → (2, 5, 3) → (2, 2, 6) → (−1, 5, 6) → (−1, 8, 3)

(4
6 , 3

6): (0, 4, 7) → (2, 6, 3) → (4, 2, 5) → (1, 5, 5) → (1, 2, 8) → (4,−1, 8)

(3
6 , 5

6): (0, 3, 8) → (2, 5, 4) → (2, 2, 7) → (−1, 5, 7) → (−1, 8, 4)

(5
6 , 3

6): (0, 5, 8) → (2, 7, 4) → (4, 3, 6) → (1, 6, 6) → (1, 3, 9) → (4, 0, 9)

(3
6 , 6

6 , 3
6): (0, 3, 9, 12) → (2, 5, 5, 12) → (2, 2, 8, 12) → (−1, 5, 8, 12) → (−1, 7, 10, 8) →

(−1, 7, 7, 11) → (−1, 4, 10, 11) → (−1, 4, 13, 8)
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(3
6 , 6

6 , 4
6): (0, 3, 9, 13) → (2, 5, 5, 13) → (2, 2, 8, 13) → (−1, 5, 8, 13) → (−1, 7, 10, 9) →

(−1, 7, 7, 12) → (−1, 4, 10, 12) → (−1, 4, 13, 9)
(4

6 , 6
6 , 3

6): (0, 4, 10, 13) → (0, 6, 12, 9) → (0, 8, 8, 11) → (0, 5, 11, 11) → (0, 5, 8, 14) →
(2, 7, 4, 14) → (4, 3, 6, 14) → (1, 6, 6, 14) → (1, 3, 9, 14) → (4, 0, 9, 14)

(4
6 , 4

6 , 4
6): (0, 4, 8, 12) → (0, 4, 11, 9) → (0, 7, 11, 6) → (2, 3, 11, 8) → (5, 0, 11, 8) →

(8, 0, 8, 8) → (4, 0, 10, 10) → (4, 0, 7, 13) → (4, 3, 4, 13) → (6, 5, 0, 13) → (2, 7, 2, 13) →
(−1, 7, 5, 13) → (−1, 4, 8, 13)

(4
6 , 4

6 , 5
6): (0, 4, 8, 13) → (3, 1, 8, 13) → (3, 3, 10, 9) → (5, 5, 10, 5) → (7, 7, 10, 1) →

(4, 10, 10, 1) → (4, 7, 13, 1) → (4, 4, 13, 4) → (6, 6, 13, 0) → (8, 2, 13, 2) → (11, 2, 10, 2) →
(11, 5, 10,−1) → (7, 7, 12,−1) → (4, 10, 12,−1) → (4, 13, 9,−1)

(5
6 , 4

6 , 4
6): (0, 5, 9, 13) → (0, 5, 12, 10) → (2, 5, 8, 12) → (5, 5, 5, 12) → (1, 7, 7, 12) →

(3, 3, 9, 12) → (0, 6, 9, 12) → (0, 9, 9, 9) → (0, 5, 11, 11) → (0, 5, 8, 14) → (3, 5, 5, 14) →
(5, 1, 7, 14) → (7, 3, 3, 14) → (7, 0, 6, 14) → (4, 0, 9, 14)
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