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Abstract

Recently, methods in stochastic control are used to study the synchronization properties of a

nonautonomous discrete-time linear systemx(k + 1) = G(k)x(k) where the matricesG(k) are derived

from a random graph process. The purpose of this paper is to extend this analysis to directed graphs

and more general random graph processes. Rather than using Lyapunov type methods, we use results

from the theory of inhomogeneous Markov chains in our analysis. Sufficient conditions are derived that

depend on the types of graphs that have nonvanishing probabilities. For instance, if a scrambling graph

occurs with nonzero probability, then the system synchronizes.

I. INTRODUCTION

Synchronizing dynamics among coupled nonlinear systems where the coupling topology is

expressed as a graph is an active area of research [1]–[7]. In recent years, in the context of

agreement and consensus problems, there is increased interest to study the case where the

dynamics are linear [8]–[10]. In [11] a discrete-time nonautonomous linear systemx(k + 1) =

G(k)x(k) is studied where the matricesG(k) are derived from a random graph process. It was

found thatx(k) converges to the subspace spanned by(1, . . . , 1)T in probability if each edge is

chosen with the same probability. The purpose of this paper is to extend this to directed graphs

and more general random graph models. In contrast to [11] where Lyapunov methods from

stochastic control are used, we use results from the theory of inhomogeneous Markov chains.

This approach allows us to easily obtain results for general random graph models.
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II. PROBLEM FORMULATION

We consider the following nonautonomous discrete-time linear dynamical system:

x(k + 1) = (G(k) ⊗ D(k))x(k) + 1 ⊗ v(k) (1)

wherex =




x1

...

xn


, xi ∈ R

m, v(k) ∈ R
m, and 1 = (1, . . . , 1)T . The matrixG ⊗ D is the

Kronecker product or tensor product of the matricesG and D. We assume that for eachk,

‖D(k)‖ ≤ 1 andG(k) is ann by n stochastic matrix (i.eG(k) is a nonnegative matrix whose

rows sum to 1). We say Eq. (1)synchronizesif ‖xi(k) − xj(k)‖ → 0 as k → ∞ for all i, j.

First we show that the maximum distance between thexi’s is nonincreasing:

Theorem 2.1:Let κ(k) = maxi,j ‖xi(k) − xj(k)‖. Thenκ(k + 1) ≤ κ(k).

Proof: Let S(k) = {x1(k), . . . , xn(k)} andT (k) = {D(k)x1(k)+ v(k), . . . , D(k)xn(k)+ v(k)}.

Note thatκ(k) is the diameter of the convex hull ofS(k). Sincexi(k+1) is a convex combination

of elements ofT (k), it is in the convex hull ofT (k). Thus means that the convex hull ofS(k+1)

is a subset of the convex hull ofT (k). Since‖D(k)‖ ≤ 1, the diameter of the convex hull of

T (k) is less than or equal to the diameter of the convex hull ofS(k) and thusκ(k + 1) ≤ κ(k).

�

III. SCRAMBLING STOCHASTIC MATRICES ANDHAJNAL’ S INEQUALITY

We next summarize some results from the theory of ergodic inhomogeneous Markov chains

which are useful in deriving sufficient conditions for synchronization.

Definition 3.1: A matrix A is scramblingif for each pair of indices(i, j) there existsk such

that Aik andAjk are both nonzero.

Definition 3.2: For ann by n matrix A, the ergodicity coefficientµ(A) is defined as

µ(A) = min
j,k

∑
i

min(Aji, Aki)

For stochastic matrices, it is clear that0 ≤ µ(A) ≤ 1 with µ(A) > 0 if and only if A is

scrambling.

Definition 3.3: For an by n matrix A, defineδ(A) as

δ(A) =
1

2
max

i,j

∑
k

|Aik − Ajk|
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If A is stochastic, it is easy to see thatδ(A) = maxi,j

∑
k max(0, Aik−Ajk) ≥ maxi,j,k(Aik −

Ajk).

Theorem 3.1 (Hajnal’s inequality [12], [13]):If A, B are stochastic matrices, thenδ(AB) ≤
(1 − µ(A))δ(B).

IV. A SYNCHRONIZATION CRITERION

We consider the set ofn by n stochastic matrices along with a probability measure on this

set. We study synchronization of Eq. (1) when eachG(k) is taken independently from this set

using the corresponding probability measure.

Definition 4.1: Eq. (1) synchronizes in probability if for anyx(0) and anyε > 0,

Pr(κ(x(k)) ≥ ε) → 0

ask → ∞.

Theorem 4.1:If there exists a compact set of stochastic scrambling matricesH such that

Pr(H) > 0, then Eq. (1) synchronizes in probability.

Proof: Pick ε, η > 0. SincePr(H) > 0, for any N there existsK such that for allk ≥ K, at

leastN matrices in the set{G(2), . . . , G(k)} belongs toH with probability at least1 − η. Let

B = G(k)G(k− 1) . . . G(1). Let µ = infX∈H µ(X). By Theorem 3.1,δ(B) ≤ (1−µ)Nδ(G(1)).

SinceH is compact,µ > 0 and this means thatδ(B) can be made arbitrarily small for large

enoughN . Sincex(k + 1) = (B ⊗ Πk
i=1D(i))x(1) + 1 ⊗ v′(k) for some vectorv′(k), ‖xi(k +

1) − xj(k + 1)‖ = ‖∑
l(Bil − Bjl)Π

k
i=1D(i)xl(1)‖ ≤ δ(B)

∑
l ‖xl(1)‖. This implies that with

probability 1 − η, κ(x(k + 1)) ≤ ε for large enoughN . �

V. GRAPHS AND DIGRAPHS

A directed graph (digraph)G = (V, E) consists of a vertex setV and an edge setE ⊂ V 2.

We also consider (undirected) graphs where each edge is a set of two vertices. In addition,

we consider weighted graphs where each edge has a nonzero weight. An undirected graph will

be viewed as a digraph by replacing each undirected edge with two directed edges of half the

weight and opposite orientation. For two graphsG1 = (V, E1) andG2 = (V, E2) with the same

vertex set, the union is defined asG1 ∪ G2 = (V, E1 ∪ E2).

Definition 5.1: A digraph is calledscramblingif for any verticesi andj there exists a vertex

k such that there is an edge fromi to k and an edge fromj to k.
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The graph of a matrixA is defined as the weighted graph with an edgee = (i, j) from vertex

i to vertex j of weight Aij if and only if Aij 6= 0. It is clear that a matrix is scrambling if

and only if its graph is scrambling. An unweighted graph is simple if it has no self-loops and

multiple edges between vertices. If an edge(i, j) exists in a digraph, theni is called the parent

of j and j is called the child ofi. A spanning directed tree is a digraph withn vertices and

n − 1 edges with a vertex, called the root vertex, that has directed paths to every other vertex.

A reversalof a digraph is obtained by reversing the orientation of all the edges. The following

result shows when products of matrices are scrambling.

Theorem 5.1:If Ai are nonnegative matrices with positive diagonal elements such that for

eachi the reversal of the graph ofAi contains a spanning directed tree, thenA1A2 . . . An−1 is

scrambling.

Proof: Let B(m) = A1A2 . . . Am. For i 6= j, we need to show thatB(n − 1)ik 6= 0 and

B(n− 1)jk 6= 0 for somek. Let Ci(m) be the children of vertexi in the graph ofB(m). Since

Ai has positive diagonal elements,i ∈ Ci(m) and the graph ofB(m) (ignoring the weights) is

a subgraph of the graph ofB(m + 1). Suppose thatCi(m) does not intersectCj(m). Then the

root of the directed treer in the reversal of the graph ofAm+1 is either not inCi(m) or not in

Cj(m). Supposer is not in Cj(m). Since all vertices inCj(m) has a directed path tor in the

graph ofAm+1, at least one vertex inCj(m) must have a child in the graph ofAm+1 outside of

Cj(m). SinceCj(m+1) is Cj(m) plus the children ofCj(m) in the graph ofAm+1, this means

that Cj(m + 1) is strictly larger thanCj(m). Similarly, if r is not in Ci(m), thenCi(m + 1) is

strictly larger thanCi(m). Since the reversal of the graph ofA1 contains a spanning directed

tree, one of the two setsCi(1), Cj(1) has at least two elements (recall thati ∈ Ci(m)), and this

means thatCi(n − 1) must intersectCj(n − 1), sayk ∈ Ci(n − 1) ∩ Cj(n − 1) which is thek

we are looking for. �
In Theorem 5.1, a product of matricesAi of lengthn−1 results in a scrambling matrix. Using

the example

Ai =




1 1

1 1

1
. . .
. . . . . .

1
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for all i, we see that Theorem 5.1 is not true if we replace the lengthn − 1 with something

smaller.

A. Random graphs

For a givenn, a random graph model assigns a probability measure on the set of graphs

(or digraphs) withn vertices. In particular, two of the most well knownsimplerandom graph

models are [14]:

G(n, p): Each undirected edge is chosen with probabilityp. Thus a graph withm edges has

probability pm(1 − p)
n(n−1)

2
−m where n(n−1)

2
is the total number of possible edges.

G(n, M): Each graph ofn vertices andM edges is given equal probability whereas the rest

of the graphs ofn vertices has probability0.

We can generalize these models to simple directed graphs:

Gd(n, p): Each directed edge is chosen with probabilityp. A graph withm edges has proba-

bility pm(1 − p)n(n−1)−m.

Gd(n, M): Each digraph ofn vertices andM edges is given equal probability whereas the

rest of the graphs ofn vertices has probability0.

VI. SYNCHRONIZATION IN RANDOM NETWORKS

Suppose now that to each unweighted graphG, there corresponds a stochastic matrixG such

that the graph ofG ignoring the weights isG. We then consider Eq. (1) where at eachk, a graph

G is chosen independently from a random graph process andG(k) is set to be the stochastic

matrix corresponding toG.

Corollary 6.1: If the random graph model isG(n, p) with p > 0, then Eq. (1) synchronizes

in probability.

Proof: Follows from Theorem 4.1 and the fact that the complete graph, which is scrambling,

has nonzero probability inG(n, p). �
Corollary 6.1 was shown in [11] for the caseD(k) = 1 using stochastic Lyapunov theory. We

show here how it follows easily from Theorem 4.1.

Corollary 6.2: If the random graph model isG(n, M) with M ≥ 2n − 3, then Eq. (1)

synchronizes in probability.
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Proof: Consider the simple graphG with 2n − 3 edges as shown in Figure 1. It is clear that

every pair of vertices has a common child, and therefore this graph is scrambling. Since any

graph withG as a subgraph is scrambling, the result follows from Theorem 4.1. �

Fig. 1. A simple undirected scrambling graph.

Similar arguments show that these results hold for the digraph case as well.

Corollary 6.3: If the random graph model isGd(n, p) with p > 0, then Eq. (1) synchronizes

in probability.

Corollary 6.4: If the random graph model isGd(n, M) with M ≥ 2n − 1, then Eq. (1)

synchronizes in probability.

Proof: The proof is the same as Corollary 6.2 except that we consider the simple scrambling

directed graph with2n − 1 edges in Figure 2. �

Fig. 2. A simple directed scrambling graph.

VII. SYNCHRONIZATION WITHOUT THE SCRAMBLING CONDITION

In this section, we study a synchronization condition that does not require the existence of a

scrambling matrix with nonvanishing probability. LetP be the set of stochastic matrices with

positive diagonal elements.
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Theorem 7.1:Considernp compact sets of matricesSi ⊂ P with Pr(Si) > 0 for each

i = 1, . . . , np. Suppose that ifGi ∈ Si, then the reversal of the union of the digraphsGi,

i = 1, . . . , np, contains a spanning directed tree. Then Eq. (1) synchronizes in probability.

Proof: The proof is similar to Theorem 4.1. In this case we chooseK large enough such

that a sequence of matricesG1,1, . . . , G1,np, G2,1, . . . , G2,np, . . . , Gn−1,1, . . . Gn−1,np whereGi,j ∈
Sj can be found as a subsequence ofG(2), . . . , G(K) with probability at least1 − η. Since

the reversal ofGi,1Gi,2 . . . Gi,np contains a spanning directed tree, by Theorem 5.1Πi,jGi,j is

scrambling. Since the setsSi are compact,µ(Πi,jGi,j) is bounded away from0. By choosingK

even larger, we can make this happen at leastN times. The rest of the proof is the same as that

of Theorem 4.1. �
If the condition thatSi ⊂ P is omitted, then Theorem 7.1 is not true as the following example

illustrates. LetG(k) =


 0 1

1 0


, D(k) = I, and v(k) = 0 for all k. In this case the states

oscillate with period 2.

Suppose now that to each simple graphG, there corresponds a matrixG ∈ P such that the

graph ofG minus the diagonal elements and ignoring the weights is equal toG.

Corollary 7.1: If the random graph model isG(n, M) or Gd(n, M) with M > 0, then Eq.

(1) synchronizes in probability.

Proof: Follows from Theorem 7.1 by choosing each setSi to consist of the matrix corresponding

to a single graph ofM edges. �
Theorems 4.1 and 7.1 are applicable to other random graph models besides the classical

models in Section V-A. In particular, it is applicable to random graph models such as small

world networks [15], scale free networks [16] or random geometric graphs [17].

VIII. C ONCLUSION

We have shown how results in inhomogeneous Markov chains can be useful in establishing

synchronization in nonautonomous linear systems where the coupling topology at each time is

drawn from a random graph model. We show that synchronization is possible if the probability

of certain types of graphs is nonzero. In particular, the system synchronizes in probability if the

probability of a scrambling graph is nonzero. If we impose additional conditions, the system

synchronizes if a set of graphs whose union contains a spanning directed graph in its reversal

occurs with nonzero probability.

September 29, 2005 DRAFT



8

REFERENCES

[1] C. W. Wu and L. O. Chua, “Application of graph theory to the synchronization in an array of coupled nonlinear oscillators,”

IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, vol. 42, no. 8, pp. 494–497, Aug.

1995.

[2] C. W. Wu, “Synchronization in arrays of chaotic circuits coupled via hypergraphs: static and dynamic coupling,” in

Proceedings of the 1998 IEEE Int. Symp. Circ. Syst., vol. 3. IEEE, 1998, pp. III–287–290.

[3] M. Barahona and L. M. Pecora, “Synchronization in small-world systems,”Physical Review Letters, vol. 89, no. 5, p.

054101, 2002.

[4] X. F. Wang and G. Chen, “Synchronization in small-world dynamical networks,”International Journal of Bifurcation and

Chaos, vol. 12, no. 1, pp. 187–192, 2002.

[5] V. N. Belykh, I. V. Belykh, and M. Hasler, “Connection graph stability method for synchronized coupled chaotic systems,”

Physica D, vol. 195, pp. 159–187, 2004.

[6] C. W. Wu, “Synchronization in systems coupled via complex networks,” inProceedings of IEEE ISCAS 2004, 2004, pp.

IV–724–727.

[7] ——, “Synchronization in networks of nonlinear dynamical systems coupled via a directed graph,”Nonlinearity, vol. 18,

pp. 1057–1064, 2005.

[8] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor

rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[9] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,”

IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[10] C. W. Wu, “Agreement and consensus problems in groups of autonomous agents with linear dynamics,” inProceedings

of 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 292–295.

[11] Y. Hatano and M. Mesbahi, “Agreement over random networks,”43rd IEEE Conference on Decision and Control, pp.

2010–2015, 2004.

[12] J. Hajnal, “Weak ergodicitiy in non-homogeneous Markov chains,”Proc. Cambridge Philos. Soc., vol. 54, pp. 233–246,

1958.

[13] A. Paz and M. Reichaw, “Ergodic theorems for sequences of infinite stochastic matrices,”Proc. Cambridge Philos. Soc.,

vol. 63, pp. 777–784, 1967.

[14] B. Bollobás,Random Graphs, 2nd ed. Cambridge University Press, 2001.

[15] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”Nature, vol. 393, pp. 440–442, 1998.

[16] A.-L. Barabási, R. Albert, and H. Jeong, “Scale-free characteristics of random networks: the topology of the world wide

web,” Physica A, vol. 281, pp. 69–77, 2000.

[17] M. Penrose,Random Geometric Graphs. Oxford University Press, 2003.

September 29, 2005 DRAFT


