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Abstract 
Semantic markup languages such as RDF (Resource Description Framework) [31] and OWL (Web 
Ontology Language) [35] are increasingly being used to externalize meta-data or ontologies about data, 
software and services in a declarative form. Such externalized descriptions in ontological format are 
used for purposes ranging from search and retrieval to information integration and to service 
composition [32, 36]. Ontologies could significantly reduce the costs of deploying, integrating and 
maintaining enterprise systems. The barrier to more wide-spread use of ontologies for such 
applications is the lack of support in the currently available middleware stacks used in enterprise 
computing. This paper presents our work on developing an enterprise-scale ontology management 
system that will provide APIs and query languages, and scalability and performance that enterprise 
applications demand. We describe the design and implementation of the management system that 
programmatically supports the ontology needs of enterprise applications in a similar way a database 
management system supports the data needs of applications. In addition, we present a novel approach 
to representing ontologies in relational database tables to address the scalability and performance issues. 
The state of the art ontology management systems are either memory-based or use ad-hoc solutions 
for persisting data, and so provide limited scalability. 
 
Keywords: Semantic Web, ontology, management system, inference 
 

1. Introduction 
 
In recent years, there has been a surge of interest in using ontological information for communicating 
knowledge among software systems. Particularly, the effort has been lead by the semantic Web 
initiative by W3C [33]. As a result, an increasing range of software systems need to engage in a variety 
of ontology management tasks, including the creation, storage, search, query, reuse, maintenance, and 
integration of ontological information. Recently, there have been efforts to externalize such ontology 
management burden from individual software systems and put them together in middleware known as 
an ontology management system. An ontology management system provides a mechanism to deal with 
ontological information at an appropriate level of abstraction. By using programming interfaces and 
query languages the ontology management system provides, application programs can manipulate and 
query ontologies without the need to know their details or to re-implement the semantics of standard 
ontology languages. Such a setting is analogous to the way a database management system allows 
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applications to deal with data as tables and provides a query engine that can understand and optimize 
SQL queries.  
 
In this paper, we describe the design and implementation of the SnoBase ontology management system 
[34], which is being developed at IBM T. J. Watson Research Center. While there are a number of 
projects for building ontology support tools [4, 6, 16, 18, 25, 27, 29], the SnoBase project is different 
from others in its objective of developing an industry-strength ontology management system. The 
design of the SnoBase system focuses on providing reliability, scalability, and performance for 
enterprise computing, and also providing functionality robust and sufficient for different levels of 
practitioners of ontological information.  
 
To make the system fit well into the current software development environment and reduce rather 
than increase the burden on software architects, programmers and administrators, we synthesize 
concepts familiar to software developers with ideas from the semantic Web and ontology communities. 
The SnoBase system programmatically supports the ontology needs of applications in a similar way a 
database management system supports the data needs of applications. For programmers, SnoBase 
provides a Java API referred to as Java Ontology Base Connector (JOBC), which is the ontological 
equivalent of Java Data Base Connector (JDBC) [24]. JOBC provides a simple-to-use but powerful 
mechanism for application programmers to utilize ontologies without dealing with the details of 
ontological information. In addition, the SnoBase ontology management system supports a number of 
query languages. At present, SnoBase supports a variant of OWL Query Language (OWL-QL) [7] and 
RDF Query Language (RDQL) [30] as ontological equivalents of SQL (Structured Query Language) of 
relational database systems.  
 
In addition, to address the scalability and performance issues of the state of the art ontology 
management systems that are either memory-based or use ad-hoc solutions for persisting data, 
SnoBase provides a novel approach to representing ontologies directly in database tables and providing 
logical reasoning by using plain SQL triggers. The provision of inference in an ontology management 
system requires the description and enforcement of semantics of semantic markup language constructs 
as rules. It turns out that most useful part of the semantics of W3C semantic Web markup languages 
(such as RDF and OWL) can be effectively expressed as plain SQL triggers. The execution of the 
triggers automatically enforces the semantics of the ontology markup language constructs. With this 
database-based reasoning approach, an ontology management system gains the scalability, reliability 
and query performance of the mature relational database system without extra cost. This paper 
describes the schematic architecture and design considerations of the ontology management system.  
 
The rest of this paper is structured as follows: In Section 2, we describe several enterprise application 
contexts in which an ontology management system can be useful. Section 3 provides technical 
background information on ontology using an example and discusses technical challenges on its 
management support. In Section 4, we explain how we address the challenges and provide a schematic 
overview of the SnoBase ontology management system. Additionally, we briefly describe each 
component of the SnoBase system. Section 5 explains on ontology query languages which the SnoBase 
system supports. In Section 6, we describe the design of JOBC API with examples. Section 7 presents 
an approach to representing ontologies directly in database tables and providing logical reasoning 
capabilities by using plain SQL triggers. Section 8 summarizes the previous work on the ontology 
management problem, and discusses how the presented work is different from them. In Section 9, 
conclusions are drawn and future work is outlined. 
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2. Use Cases in Enterprise Computing 
 
Ontology is similar to a dictionary, taxonomy or glossary, but with structure and formalism that enables 
computers to process its content. It consists of a set of concepts, axioms, and relations, and represents 
an area of knowledge. Unlike taxonomy or glossary, ontology allows to model arbitrary relations 
among concepts, also model logical properties and semantics of the relations such as symmetricity, 
transitivity and inverse, and logically reason about the relations. Ontology is often specified in a 
declarative form by using semantic markup languages such as RDF and OWL. It provides a number of 
potential benefits in processing knowledge, including the separation of domain knowledge from 
operational knowledge, sharing of common understanding of subjects among human and also among 
computer programs, and the reuse of domain knowledge. 
 
This section describes several enterprise application contexts in which an ontology management system 
can be useful. In addition to these examples, ontology management can be beneficial to any system 
dealing with multiple domain concepts that are interrelated and needs to use the concepts to describe 
the behavior or capabilities of its programs. Some other examples would include information retrieval 
and search systems for semantic-based search capabilities, video retrieval systems to annotate media 
with metadata, and collaboration management systems to provide a common understanding to 
collaboration contexts and annotate them. 

2.1. Business Process Integration with Web Services 
 
Web services facilitate the creation of business process solutions in an efficient, standard way. 
However, the process integration with Web services requires the automation of discovery and 
composition of Web services. Ontologies are applied to resolve two basic issues with the Web service-
based business process integration: the discovery of Web services based on the capabilities and 
properties of published services, and the composition of business processes based on the business 
requirements of submitted requests. Application providers can annotate their Web services using 
semantic markup languages and make these services available for business partners via business service 
registries such as UDDI. Suppose that there is a semantic matching service available to help match 
service requests with services offered by providers. Such a matching service would need to refer to 
ontologies in which domain knowledge describing the requirements or capabilities of services is 
defined. Then, it would be able to infer degrees of match between the requested and available services. 
An ontology management system that can manage the underlying ontology representation models and 
reasoning will enable the matching service to perform such semantic-based matches [1].  

2.2. Collaboration Using Corporate Social Networks 
 
In any large organization such as a university, a company and a government, employees have to 
collaborate with a wide variety of people in order to perform different kinds of tasks. They collaborate 
with people, not only in their own group or department, but also with people in other departments, 
particularly, service departments such as Human Resources, Legal, Finance, IT, Purchasing, Facilities, 
Public Relations, etc. Large organizations often have specific people assigned for these tasks that an 
employee can contact. However, this contact information is often not available explicitly in the 
organization database. Therefore, it becomes difficult for a person, especially a new employee, to 
discover his/her assigned contact for accomplishing a certain kind of task. A possible approach to 
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alleviating this problem is to use the concept of “social networks” based on the “friend” relation 
among people [11]. The informal social networks of an organization setting can be further extended 
with richer ontological information on the types of relations. For example, each employee in the 
corporate social network has links to various kinds of contacts (e.g., HR, Legal, IT, etc.). The system 
then explores the corporate social network to find the right contact for a certain task. It was reported 
that one of the most popular applications of RDF is the Friend of a Friend (FOAF) project, which is 
about creating a Web of machine-readable homepages describing people, links between them and 
things they create and do [13, 32]. 

2.3. Model-Driven Business Transformation 
 
An approach to business transformation is to employ business models such as process-oriented models 
or business component models to identify opportunities for saving costs or improve business 
processes [20]. The model-driven approach requires a model representation of business entities such as 
business processes, components, competencies, activities, resources, metrics, KPIs (Key Performance 
Indicators), etc. and their relations. Semantic models using ontology markup languages provide useful 
representation of business models because they are not limited in representing different types of 
relations among business entities. Also, the automatic reasoning capability of semantic models provides 
an effective method for analyzing business models for identifying cost-saving or process improvement 
opportunities. For example, business performance metrics are naturally fit well with business activities 
and traditionally represented that way. By using this relation between business activities and metrics, 
and also the relation between business components and business activities represented in a semantic 
model, a business analyst can infer relations between business components and metrics. This relation 
can provides business insights into how the corporate can improve its performance metrics by 
addressing issues with the business components associated with the selected set of metrics. Then, by 
identifying, again in the semantic model, IT systems (a type of resources) associated with the business 
components, the analysts may be able to suggest recommendations about IT system management to 
improve performance metrics.  

3. Technical Background 
 
Figure 1 illustrates a simple example of ontology, which represents knowledge of a university domain 
[11]. The ontology is displayed as a tree, as shown in a popular ontology editor, Protégé [29]. In this 
simple example, all the relations among nodes are subClassOf. Note that ontology, in general, 
represents a graph, not a tree, because it allows arbitrary relations among nodes, and also allows a node 
to inherit more than one parents. In this example, PhDStudent is a subclass of two classes, Researcher 
and GraduateStudents.  
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Figure 1 University ontology 
 

As described earlier, an ontology is often specified in a declarative form by using semantic markup 
languages. The Semantic Web initiative of W3C is a vision for the future of the Web in which 
information is given explicit meaning, making it easier for machines to automatically process and 
integrate information available on the Web. The initiative utilizes XML and XML Schema’s ability to 
define customized tagging schemes and RDF’s flexible approach to representing data. RDF provides a 
simple semantics for data, and the data models can be represented in an XML syntax. In addition, the 
initiative introduces an ontology language, OWL (Web Ontology Language), which can formally 
describe the meaning of terms. OWL is part of the growing stack of W3C recommendations related to 
the Semantic Web. Figure 2 displays a portion of the OWL representation of the university ontology 
introduced in Figure 1. It shows a number of classes related to people in the domain and their 
subClassOf relations by using OWL and RDF constructs. 
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<?xml version="1.0"?> 
<rdf:RDF 
    xmlns="http://a.com/ontology#" 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xmlns:owl="http://www.w3.org/2002/07/owl#" 
    xml:base="http://a.com/ontology"> 
  <owl:Ontology rdf:about=""/> 
  <owl:Class rdf:ID="People"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Object"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="Employee"> 
    <rdfs:subClassOf rdf:resource="#People"/> 
  </owl:Class> 
  <owl:Class rdf:ID="AcademicStaff"> 
    <rdfs:subClassOf rdf:resource="#Employee"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Researcher"> 
    <rdfs:subClassOf rdf:resource="#AcademicStaff"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Lecturer"> 
    <rdfs:subClassOf rdf:resource="#AcademicStaff"/> 
  </owl:Class> 
  <owl:Class rdf:ID="PhDStudent"> 
    <rdfs:subClassOf rdf:resource="#GraduateStudent"/> 
    <rdfs:subClassOf rdf:resource="#Researcher"/> 
  </owl:Class> 
 
  ... 

Figure 2 University ontology representation in OWL 
 
An ontology is expected to allow machines to perform useful reasoning tasks on documents and 
system it annotates with its concepts and relations. An inference engine provides this reasoning 
functionality. It extracts all the facts from the given ontology, and asserts them into its working 
memory. Also, it is equipped with a knowledge base which stores a set of action rules for interpreting 
constructs of RDF and OWL.  
 
Before asserting the facts initially specified in OWL into the working memory, the inference engine 
often utilizes an OWL parser and translates them into a language, Notation 3 or N3 [28], which is 
simplified, but basically equivalent to RDF and OWL in computational power. In RDF and OWL, 
information is simply a collection of statements, each with a subject, verb and object, and nothing else. 
In N3, facts are written as triples, verb (subject, object). Figure 3 shows a portion of facts extracted 
from the university ontology, translated into N3, and numbered. They will be asserted into the working 
memory of inference engine for reasoning. Note that this set of facts is basically the same set shown in 
Figure 2, only in a different notation, i.e., N3. 
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Figure 3 Asserted facts of the university ontology in N3 notation (part) 

 
1 http://www.w3.org/1999/02/22-rdf-syntax-ns#type( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Object, 
 http://www.w3.org/2002/07/owl#Class) 
 
2 http://www.w3.org/1999/02/22-rdf-syntax-ns#type( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#People, 
 http://www.w3.org/2002/07/owl#Class) 
 
3 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#People, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Object) 
 
4 http://www.w3.org/1999/02/22-rdf-syntax-ns#type( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Employee, 
 http://www.w3.org/2002/07/owl#Class) 
 
5 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Employee, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#People) 
 
6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#AcademicStaff, 
 http://www.w3.org/2002/07/owl#Class) 
 
7 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#AcademicStaff, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Employee) 
 
8 http://www.w3.org/1999/02/22-rdf-syntax-ns#type( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Researcher, 
 http://www.w3.org/2002/07/owl#Class) 
 
9 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Researcher, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#AcademicStaff) 
 
10 http://www.w3.org/1999/02/22-rdf-syntax-ns#type( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#PhDStudent, 
 http://www.w3.org/2002/07/owl#Class) 
 
11 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#PhDStudent, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Researcher) 
 
... 

 
An essential component of ontology management systems is the inference engine, which provides a 
mechanism for interpreting the semantics of an ontology language, represented as a set of language 
specific rules. The rules are used to answer queries, when the requested fact is not immediately 
available, but must be inferred from available facts. For example, if the application requests the 
childrenOf an individual, but the working memory only contains parentOf relations, the inference 
engine can use the inverse property statements about childrenOf and parentOf to identify the correct 
response. For the inference engine component, most ontology management systems depend on pattern 
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matching algorithms such as Rete  [8] originated from earlier work on the rule-based systems [2]. These 
systems comprises a working memory comprised of a set of facts representing the current status of the 
system, a knowledge base which stores a set of condition action rules, and a rule interpreter which 
applies the rules to the working memory. The pattern matching algorithms find all rules that are eligible 
to be fired by matching antecedent of rules to facts in working memory. If rules have variables, 
matching requires unification. The Rete algorithm does it efficiently because it avoids searching all rules 
every cycle by storing changes. 
 
The inference engines of most ontology management systems currently available are based on pattern 
matching algorithms developed for expert systems in the 1970’s and 1980’s. Their model for working 
memory and knowledge base is memory-based or uses ad hoc solutions for managing data. While this 
model is adequate for dealing with class hierarchies in small to medium scales, it does not scale for 
applications that involve large-scale ontologies and large amounts of instance data. We will explain how 
we address this scalability problem with the inference engines of ontology management systems in 
Section 6. First, we will describe the architecture and APIs of the SnoBase ontology management 
system. 

4. SnoBase Ontology Management System 
 
Ontologies are becoming increasingly prevalent and important in a wide range of enterprise 
applications. They are used to support parametric searches, enhanced navigation and browsing, to 
integrate heterogeneous data sources and applications, to configure software, products and services, 
and to qualitatively analyze business processes and components. In addition, applications such as 
information and (Web) service discovery and composition, and autonomous agents that are built on 
top of the Semantic Web require extensive use of ontologies.  
 
One of challenges in the design of an industry-strength ontology management system is the versatility 
of Application Programming Interfaces and query languages for supporting such as diverse 
applications. This objective requires a careful design to simultaneously satisfy seemingly conflicting 
objectives such as being simple, easy-to-use for the users, and easy-to-adopt for the developers. 
Another challenge in ontology management is to provide ontology-enhanced industrial applications 
with a system that is scalable (supporting thousands of simultaneous distributed users), available 
(running 365x24x7), fast, and reliable. These non-functional features are essential not only for the 
initial development and maintenance of ontologies, but also during their deployment.  
 
To provide a holistic management support for the entire lifecycle of ontological information, including 
ontology creation, storage, search, query, reuse, maintenance and integration, an ontology management 
system needs to address a wide range of problems; ontology models, ontology base design, query 
languages, programming interfaces, query processing and optimization, federation of knowledge 
sources, caching and indexing, transaction support, distributed system support, and security support, to 
name a few. While some of these areas are new challenges for ontology management systems, some are 
familiar and there have been active studies, particularly in relation to traditional studies on knowledge 
representation, or recent studies on semantic Web standards. Our approach to the ontology 
management support is a pragmatic one, that is, we identify missing pieces in this picture, and engineer 
and synthesize them with prior work for providing a holistic management system for ontological 
information. 
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Figure 4 shows a schematic overview of the SnoBase ontology management system. Conceptually, the 
application programs interact with the JOBC API that provides high-level access to ontology resources 
and the ontology engine. The application program interacts with the JOBC API that provides an access 
to an implementation of the API via an ontology base driver. In this case, our driver is the SnoBase 
driver. In this section, we will describe the each component of the SnoBase ontology management 
system. 

Application Program

JOBC API

JOBC Driver

SnoBase

Ontology 
Directory

Inference
Engine

Model

Database
Ontology
Source

Connectors

Ontologies

Query
Optimizer

 
Figure 4 SnoBase ontology management system architecture 

4.1. JOBC API 
 
The SnoBase system provides a Java API referred to as Java Ontology Base Connector (JOBC), which 
is the ontological equivalent of the Java Data Base Connector (JDBC). The JOBC API follows the 
design patterns of JDBC, with several alterations. Just like JDBC, JOBC provides a connection-based 
interaction between applications and ontology sources. Also, JOBC provides JDBC-style, cursor-based 
result sets for representing query results. The similarity of JOBC to JDBC was a design decision to help 
application developers of SnoBase can quickly learn the programming style of JOBC from their 
previous experience of the popular JDBC protocol. One difference between JOBC and JDBC is that 
JOBC allows connections to be made without reference to a particular base ontology. Such 
connections provide an access to default ontologies of the top-level definitions of XML-based 
ontology languages such as OWL, RDF, RDF Schema and XML Schema. These definitions are 
required in order to process any ontological information.  

4.2. SnoBase Driver 
 
This component is an IBM driver for the JOBC interface that is equivalent to the IBM DB2 driver for 
JDBC. The SnoBase driver consists of Java classes that will provide an implementation of the JOBC 
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API, and contains of a number of components: a local ontology directory, an inference engine, a 
working memory, a query optimizer and a set of connectors, and other infrastructure needed to 
support ontology management.  

4.3. Ontology Directory 
 
This component provides the meta-level information about ontologies that are available to the 
SnoBase driver. By default, the ontology directory contains the references to the top-level definitions 
of OWL, RDF, RDF Schema, XML Schema, and similar definitions for the set of XML-based 
ontology languages supported. In addition, the ontology directory provides metadata such as 
deployment information and additional sources of ontology information. For each ontology source, the 
directory will need to store the URI, but may additionally store information about the contents of the 
ontology source to aid in query optimization. 

4.4. Inference Engine 
 
This component provides a mechanism for interpreting the semantics of an ontology language, 
represented as a set of language specific rules. The rules are used to answer queries, when the requested 
fact is not immediately available, but must be inferred from available facts. For example, if the 
application requests the childrenOf an individual, but the working memory only contains parentOf 
relations, the inference engine can use the inverse property statements about childrenOf and parentOf 
to identify the correct response. The details of this component, different approaches to implementing 
this component and issues of the scalability and performance will be discussed in Section 6. 

4.5. Query Optimizer 
 
For applications that connect to large databases and/or ontologies, it will not be feasible to load the 
entire set of available information into working memory. Instead, the driver will query the ontology 
source for appropriate information as it is needed. In addition, the task of the query optimizer is to not 
only optimize the retrieval of information from ontology sources, but also coordinate queries that span 
multiple sources.  

4.6. Ontology Source Connectors 
 
These connectors provide a mechanism for reading, querying, and writing ontology information to 
persistent storage. The simplest connector is the file connector that is used to store information to the 
local file system. In addition, there will be connectors for storing ontological information in remote 
servers. Also, the connectors are used to implement caching of remote information to cache the 
definitions of the top-level ontology definitions OWL, RDF, RDF Schema, and XML Schema to allow 
the system to work if the W3C Web site were inaccessible. 

5. Query Languages  
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Currently, the SnoBase system supports a variant of OWL Query Language (OWL-QL) as an 
ontological equivalent of SQL (Structured Query Language). OWL-QL is a language and protocol 
supporting agent-to-agent query-answering dialogues using knowledge represented in OWL. It 
precisely specifies the semantic relations among a query, a query answer, and the ontology base(s) used 
to produce the answer. It also supports query-answering dialogues in which the answering agent may 
use automated reasoning methods to derive answers to queries. An OWL-QL query contains a query 
pattern that is a collection of OWL sentences in which some literals and/or URIs have been replaced 
by variables. A query answer provides bindings of terms to some of these variables such that the 
conjunction of the answer sentences – produced by applying the bindings to the query pattern and 
considering the remaining variables in the query pattern to be existentially quantified – is entailed by a 
knowledge base (KB) called the answer KB.  
 
This design provides a simple but expressive query model. To make a query, a program simply 
describes the concept it is searching for, indicating with variables which aspects of matching concepts 
it is interested in receiving as part of a reply. This query model is similar to the concept of query-by-
example, but with the advantage that the ontology language allows a richer method for describing the 
examples. Another advantage of the OWL-QL query approach is that the mechanism is easily 
adaptable to a variety of ontology representation languages. In addition to OWL-QL, SnoBase also 
supports another ontology query language, RDQL, whose specification was submitted to W3C for a 
possible recommendation. RDQL is similar to OWL-QL in its underlying query mechanism. 

6. Java Ontology Base Connector  
 
As described earlier, we designed the JOBC API for SnoBase as an ontological equivalent of the Java 
Data Base Connector (JDBC). The API is implemented using the abstract factory pattern [10]. An 
abstract factory class defines methods to create an instance of each abstract class that represents a user 
interface widget. Concrete factories are concrete subclasses of an abstract factory that implements its 
methods to create instances of concrete widget classes for the same platform. The DataManager class 
provides a method that is used to construct a connection, based on the URI used to initiate the 
connection. There is a mechanism in the DataManager that uses the database type specified in the URI 
to identify and load the correct driver. This driver is then used to create a connection of the 
appropriate type. The connection then acts as a factory to produce objects, such as statements. The 
objects created implement interfaces defined in the JDBC package, but have implementations that are 
provided by the driver that is loaded. We follow a similar design pattern in the implementation of 
JOBC, with several alterations, as described above. The following code sample illustrates the use of 
JOBC. 
 

 11



 

 
/* We connect to an ontology resource. */ 
Connection connection = DriverManager.getConnection(); 
RDFResource john = connection.createRDFResource("John"); 
RDFProperty isA = connection.createRDFProperty("isA"); 
RDFClass researcher = connection.createRDFClass(“researcher"); 
 
/* We assert a statement in inference engine: John isA researcher. */ 
Statement statement = connection.createStatement(John, isA, researcher); 
connection.assert(statement); 
 
/* We create a simple query. */ 
StatementCollection query = connection.createStatementCollection(); 
query.addStatement(statement); 
ResultSet resultSet = connection.select(query); 

Figure 5 A JOBC Statement 

 
In this example, the code first gets a connection. This connection is then used to create resources and a 
statement (john isA researcher). This statement is then asserted into the inference engine. The code 
then creates a simple query for the asserted fact and retrieves it from the working memory of the 
inference engine. More complex queries can be implemented using variables.  For example, the 
following query requests all who are researchers. 
 

 

 
/* We form a query: show me all who isA researcher. */ 
Variable X = connection.createVariable("?X"); 
Statement queryStatement = connection.createStatement(X, isA, researcher); 
 
/* We create a simple query. */ 
query.addStatement(queryStatement); 
resultSet = connection.select(query); 

Figure 6 A JOBC query 

 
The results of such a query are a set of triples that include the binding(s) of the variable(s) in the query. 
In this case, the variable X is bound to john. Using these basic APIs, SnoBase programmers can build 
more complicated queries. For example, a query may contain multiple variables and multiple (query) 
statements. Also, note that SnoBase does not simply retrieve information previously stored for queries. 
Instead, by using an inference engine, it infers for answering facts that are not immediately available. 

7. Direct Representation of Ontologies in a Database  
 
State of the art inference engines for ontology management systems are either memory-based or use 
ad-hoc solutions for persisting data (for a survey of ontology storage systems, see [14]). While this is 
adequate for dealing with the class hierarchies in small to medium-size ontologies, it does not scale for 
applications that involve large amounts of instance data. This is due to the emphasis that is placed on 
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the metadata (hierarchy of classes or concepts) as first-class citizen as opposed to the data (in-stances 
of classes).  
 
However, many new application domains of enterprise computing such as e-commerce and social 
networks, and bioinformatics deal with large amounts of pre-existing data that needs to be linked to an 
ontology. Current solutions recommend migration of the existing data into the ontology data structures. 
However, if other applications still use that data, this approach requires constant replication to keep the 
two versions in sync. Moreover, typical ad-hoc storage solutions do not provide the same level of 
support for data integrity, concurrent access, and recovery as a mature database management system. 
We believe that approaches that create custom storage systems may suffer from severe limitations in 
the long run, such as problems arising from the need to integrate different ontologies, or ontologies 
with existing data in terms of scalability and flexibility. 
 
To overcome these limitations, we propose exploring database-centric architectures for storing and 
manipulating ontological data. Such solutions will take advantage of existing standards for data 
management and the DBMS features that have been optimized over the years (robustness, concurrency 
control, recovery, scalability). This is, however, just the first step towards leveraging relational database 
systems for large-scale ontology data management (ODM). Due to the inherent complexity of 
ontological queries, a straightforward database implementation of an ontology system may not perform 
optimally. The reason is that database systems are not optimized for this type of application. We 
identify several promising directions of future research with the hope of stimulating the interest of the 
database community in supporting efficient management of ontological data. 
 
In this section, we introduce a solution to the lack of scalability and performance problem of the 
traditional approach to reasoning in ontology management systems. This solution improves reasoning 
for ontologies by directly representing facts in relational database tables and representing action rules in 
SQL triggers. This solution pro-vides a single table called Fact Table, which stores facts asserted by 
ontology. The table is designed to store facts expressed in N3 notation. Also, this solution provides a 
set of triggers which are fired when a statement is inserted, updated, or deleted from the Fact Table. 
Facts added by the triggers are called derived facts, as opposed to asserted facts which are originated 
from the ontology. The Fact Table stores these derived facts along with the keys (IDs) of statements 
that caused their existence. Those keys are called justifications. Note that the justification fields of 
asserted facts are null. The justification fields are important because they are used to delete de-rived 
statements when their justification statements are deleted from the Fact Table. The deletion of derived 
facts is also automatically managed by using triggers. 
 
Figure 7 displays the data schema of the Fact Table, which shows the fields for three parts of 
statements, subject, verb and object, justification fields, along with the key field. Note that the fields for 
subject, verb and object are foreign keys to an ancillary table which stores actual strings. The model 
field represents the scope of the given statement, but it is not directly related to this discussion. 
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Figure 7 Data schema for Fact Table 

 
// Create fact_table 
 
CREATE TABLE FACT_TABLE 
( 
 FACT_ID BIGINT DEFAULT AUTOINCREMENT INITIAL 1 INCREMENT 1 NOT NULL, 
 SUBJECT BIGINT NOT NULL, 
 VERB BIGINT NOT NULL, 
 OBJECT BIGINT NOT NULL, 
 MODEL VARCHAR(256) NOT NULL, 
 JUSTIFICATION_1 BIGINT, 
 JUSTIFICATION_2 BIGINT, 
 JUSTIFICATION_3 BIGINT 
) 

 
Figure 8 displays a couple of triggers that enforce the semantic of subClassOf relations, namely, the 
subClassOf relation is transitive. If a statement inserted into the Fact Table completes the rule’s 
antecedent, then the trigger adds a derived fact as a consequent. There can be many rules represented 
in plain SQL triggers in the system to implement the meaning of constructs of RDF and OWL.  

 

 
Figure 8 Triggers for deriving implied facts from asserted facts (part) 

 
// (A subClassOf B) and (B subClassOf C) => (A subClassOf C) 
 
CREATE TRIGGER SUBCLASSCLASS1 
 AFTER INSERT 
 ON FACT_TABLE 
 REFERENCING NEW ROW AS inserted_fact 
 FOR EACH ROW 
 INSERT INTO fact_table (subject, verb, object, model, just_1, just_2) 
 SELECT DISTINCT inserted_fact.subject, verb, object, model, inserted_fact.fact_id, fact_id 
 FROM fact_table 
 WHERE verb = 2 
  AND verb = inserted_fact.verb 
  AND subject = inserted_fact.object 
  AND model = inserted_fact.model 
 
CREATE TRIGGER SUBCLASSCLASS2 
 AFTER INSERT 
 ON FACT_TABLE 
 REFERENCING NEW ROW AS inserted_fact 
 FOR EACH ROW 
 INSERT INTO fact_table (subject, verb, object, model, just_1, just_2) 
 SELECT DISTINCT subject, verb, inserted_fact.object, model, fact_id, inserted_fact.fact_id 
 FROM fact_table 
 WHERE verb = 2 
  AND verb = inserted_fact.verb 
  AND object = inserted_fact.subject 
  AND model = inserted_fact.model 
 

 
Figure 9 displays a few facts derived by the triggers shown in Figure 8. In this simple example, it is 
relatively straightforward to see the justifications of each derived statement, as shown in Figure 10. 
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Note that firing of a rule sometimes can cause chains of trigger firing. Also, note that a statement can 
be derived by multiple combinations of justification statements. Therefore, the solution should provide 
a mechanism that prevents a statement from being added multiple times to the Fact Table. 
 

 

 
101 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Employee, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Object) 
 
102 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#AcademicStaff, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#People) 
 
103 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#AcademicStaff, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Object) 
 
104 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Researcher, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Employee) 
 
105 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Researcher, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#People) 
 
106 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Researcher, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Object) 
 
107 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#PhDStudent, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#AcademicStaff) 
 
108 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#PhDStudent, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Employee) 
 
109 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#PhDStudent, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#People) 
 
110 http://www.w3.org/2000/01/rdf-schema#subClassOf( 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#PhDStudent, 
 http://rgoodwin.watson.ibm.com/snoscape/university.owl#Object) 
 
... 
 
 

Figure 9 Derived facts of the university ontology (part) 
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101:    (3, 5) 
102:    (5, 7) 
103:    (7, 101), or (3, 102) 
104:    (7, 8) 
105:    (8, 102), or (5, 104) 
106:    (8, 103), (101, 104) or (3, 105) 
107:    (8, 10) 
108:    (10, 104), or (7, 107) 
109:    (10, 105), (102, 107), or (5, 108) 
110:    (10, 106), (103, 107), (101, 108), or (3, 109) 

Figure 10 Justifications of derived facts 

 
With statements both asserted and derived in relational database tables, queries to the ontology 
management system become SQL queries to the relational database tables. Most ontology management 
systems available today uses certain query languages which express queries with a collection of N3 
statements in which some parts are replaced by variables. A query answer provides bindings of terms 
to some of these variables. As explained earlier, the query language of the IBM’s SnoBase system which 
is loosely based on OWL-QL follows this query pattern. The solution presented in this section 
provides a query processor which transforms ontology queries into SQL queries against the Fact Table.  
 
Provision of an inference mechanism which is purely based on mature relational database technology 
and SQL would resolve the problems with scalability and performance of the traditional approach 
based on rule-based expert systems. In addition, query optimization techniques known to relational 
databases such as indexing, schema optimization, and performance tuning can be applied to this 
proposed approach and further improve the performance of ontology query execution. 

8. Model-Driven Approach to a Semantic Toolkit  
 
Until now, we have focused on the description of the application programming interfaces, query 
languages, and inference engines of the SnoBase Ontology Management System. In this section, we will 
describe its environment for application and model development and transformation, which is equally 
important in the adoption of the semantic technology in the industry. The work presented in this 
section is a result from our collaboration with researchers at IBM’s China Research Lab. 
 
Participating in a number of real-world applications by using the SnoBase Ontology Management 
System, we have learned that it is critical to provide a comprehensive development environment 
including supporting tools for the application developers. A pick-and-choose approach to the best of 
the breed tools from different environments does not always work well for the majority of the 
developers and often results in a longer learning curve for the developers. A comprehensive ontology 
development environment often means a tight integration of various tools for application development, 
ontology development, model import and transformation, among others. Semantic markup languages 
such as W3C’s RDF and OWL are based on the work in the logic and AI (Artificial Intelligence) 
communities, such as Description Logic and Knowledge Representation. The syntax of these languages 
is less intuitive to those trained for object-oriented programming and simple XML-based languages. 
This deficiency makes the job of subject matter experts and application developers difficult, and often 
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affects negatively to the adoption of the semantic technology in the industry. An effective ontology 
application development environment should bridge this gap between the semantic markup languages 
and the object-oriented programmers by providing a tight and seamless integration. 
 
Another consideration for the industry adoption of the semantic technology is the interoperability of 
the semantic markup languages with the well-established and widely-accepted industry standard 
modeling languages such as Entity-Relation (ER) modeling, XML Schema, and Unified Modeling 
Language (UML). The fact is that enterprises developed models in these languages for the past few 
decades and invested significantly to build systems around them. Despite all the advantages the 
semantic technology brings in, it is highly unlikely that the enterprises abandon the legacy systems and 
develop new systems around the semantic technology only. Rather, the users of the semantic 
technology in the industry would be interested in the interoperability of the modeling languages, and 
the reuse of the existing models and data with the semantic technology. 
 
To address these practical requirements of the industry, we took an approach based on the Model 
Driven Architecture (MDA), which enables developers and users to design, build, integrate and manage 
applications throughout their lifecycle, while separating technology and business concerns [26]. The 
Object Management Group’s MDA specification provides means to organize and manage enterprise 
architectures supported by automated tools and services for both defining the models and facilitating 
transformations between different model types. It also provides an open, vendor-neutral approach 
against the challenge of interoperability. It facilitates efficient use of models in the software 
development process and reuse of best practices when creating families of systems.  
 
For implementation, we utilized the Eclipse Modeling Framework (EMF), which is IBM’s open source 
MDA infrastructure for integration of modeling tools [23]. A model specification described in various 
modeling languages including XML Metadata Interchange (XMI) language, XML Schema, and 
annotated Java source can be imported into EMF. Then EMF produces a set of Java classes for the 
model, a set of adapter classes that enable viewing and command-based editing of the model, and a 
basic editor. In its current implementation, EMF does not provide formal semantics definitions, 
inference and the related model specifications. We are adding this capability to EMF for the 
comprehensive ontology application development environment and the dynamic application 
integration.  
 
For adding the semantic model transformation capability to EMF, we utilized the OMG’s specification 
of Ontology Definition Metamodel (ODM) [3], which provides metamodels of W3C’s RDF and OWL 
in UML. By using EMF and ODM, we generated a foundational memory model, i.e., Java classes, for 
the constructs of RDF and OWL. This foundational memory model is referred to as EODM (Eclipse 
Ontology Definition Metamodel). By adding several necessary helper classes and methods to EODM, 
we can use it to create, edit, and navigate any models in RDF and OWL.  
 
We also added an RDF/OWL parser to EODM, which can load RDF/OWL files into EODM and 
generate RDF/OWL files from EODM, i.e., serialize EODM models to standard XML RDF/OWL 
files. The parser utilizes an XMI adaptor which enables the transformation between the RDF/OWL 
models and EMF Core (Ecore) models [23]. The transformation is made possible by defining a 
mapping between RDF/OWL and the Ecore metamodel. The transformation opens a way to 
interoperability between RDF/OWL models and other EMF supported models, which currently 
include ones defined in XML Schema, UML and annotated Java classes. The support of other models 
such as Entity Relationship models in EMF will be provided in the near future. By leveraging the 
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RDF/OWL parser and the bi-directional transformation between the RDF/OWL models and the 
Ecore models, ontology application developers can develop ontologies using their favorite model 
building tools, import them into EMF, transform their models into OWL ontologies, enrich them with 
semantics, leverage their inference capability, and utilize the comprehensive development facility of 
Eclipse and EMF.  
 
To be more specific, the EODM Ecore model is the core model that represents ontologies in memory. 
It is the intermediate model for imported and transformed legacy models, as well as the generated 
ontology, Java code, Java editor and Java edit. The development environment allows its users to 
manipulate EODM Ecore models, enrich it with semantic specification, and generate Java code. A 
default set of mappings between metamodels of legacy models and OWL are developed in EMF. 
Eclipse plug-in developers can extend the mappings to handle other types of legacy models, or other 
elements in legacy models specifying semantics. In the generated Java code, a small foot-print inference 
engine is shipped with the code and can be invoked by applications. The generated Java editor and Java 
edit provide ready-to-use visual tools to populate or manipulated instances of OWL models. The visual 
tools are actually copies of the standard methods of supporting application development in EMF.  

9. Related Work  
 
One of the notable studies in ontology management is the Open Knowledge Base Connectivity 
(OKBC) [4], which shares somewhat similar objectives with JOBC. It is a protocol for accessing 
knowledge bases stored in Knowledge Representation (KR) Systems. The API has been developed to 
address the issue of knowledge base tool reusability and was implemented in various languages 
including Java. It provides a set of operations with a generic interface to underlying KR systems, so 
that it provides applications with independence from the idiosyncrasies of specific KR system and 
enables the development of generic tools.  
 
Other work on ontology management includes KAON [18], SymOntoX [16], pOWL [27], and Jena 
[25]. KAON is a tool suite for ontology management, providing an editor, a Web interface, an API and 
an inference engine based on a deductive database approach. SymOntoX is a Web-based ontology 
editing environment which supports collaborative and distributed ontology authoring activities. 
Similarly, pOWL also provides a Web-based ontology editing environment. Jena is a collection of RDF 
tools written in Java that includes a Java model/graph API, an RDF parser, a query system, support 
classes for OWL ontologies, and persistent and in-memory storage. Jena provides statement-centric 
methods for manipulating an RDF model as a set of RDF triples and resource-centric methods for 
manipulating an RDF model as a set of resources with properties.  
 
Additionally, there is active work for ontology integration, which enables to detect and resolve 
ontological differences and mismatches among existing models and ontologies. Systems such as 
PROMPT [17] and Chimera [15] belong to this category. A more comprehensive survey on ontology 
tools can be found in [6]. This survey focuses on the ontology editors and reports 94 existing tools. 
Additionally, the study reports on management functions of the existing systems such as reasoning and 
problem solving facilities, standard ontology language support, version control, visual navigation 
support, ontology alignment, natural language support, collaborative development support, etc. 
 
There are many activities going on in the areas of ontology query. In addition to OWL-QL described in 
Section 4, there are a few other ontology query languages of interest. RDQL (RDF Query Language) is 
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a typed, declarative query language for querying RDF description bases. TRIPLE is an ontology query, 
inference, and transformation language for the semantic Web [19]. It allows the semantics of languages 
on top of RDF to be defined with rules.  
 
The database-centric architecture for storing and managing ontological data presented in Section 6 is 
related to deductive databases [9, 21, 22]. The concept of the deductive database was implemented in 
several systems including SABRE [9], CORAL Deductive Database [21], and Datalog [22]. They often 
provided a logic-based, declarative query language for the relational model, and imperative constructs 
such as update, insert and delete rules. In addition, CORAL provided C++ API to combine declarative 
and imperative programming.  
 
One aspect that separates our approach from the deductive databases is that it teaches rules are written 
in the standard SQL language as SQL triggers, while the prior art (CORAL, SABRE, Datalog) teaches 
that rules are written in a logic-based, declarative query language, which is not standard SQL. In 
addition, unlike prior art, this approach takes advantage of the mature standard SQL technology for 
managing rules (for update, assert and retract) instead some other means, which is not standard SQL. 
 
Another database-centric approach related to ontology support was discussed in [5]. This approach 
expanded SQL by adding new operations for supporting ontology-based semantic matching in SQL 
queries. It allows users to write a SQL query by using the new ontology operators that returns not only 
syntactically matching rows of data, but also rows of data semantically related as defined in the 
ontology also specified in the query. It stores ontologies in system-defined tables instead of user tables, 
and so, they are invisible to the users. Also, inference for queries is hidden in the implementation of 
the ontology operators. Therefore, it is invisible to the users. The approach additionally discussed a 
special indexing scheme for speeding up the ontology-based semantic matching queries. This work 
focused on extending SQL to support ontology-based semantic matching. They placed the actual 
implementation of the inference and ontology storage mechanisms in a lower level of the system. In 
contrast, the database-centric approach presented in this paper focuses on the implementation of the 
inference and ontology storage mechanisms by using plain SQL constructs (triggers) and user tables. 
The user queries ontologies through OWL-QL which SnoBase supports and the OWL-QL queries are 
automatically translated into SQL queries. 

10. Concluding Remarks 
 
An increasing range of applications require an ontology management system that helps externalize 
ontological information for a variety of purposes in a declarative way. The primary objective of 
ontology management systems is to provide holistic control over management activities for ontological 
information by externalizing them from application programs. Ontology management systems provide 
ontology independence to applications in a similar way that database management systems provide data 
independence. One of the pragmatic challenges for ontology management system research is how to 
create missing component technology pieces, and to engineer them with existing results from prior 
research work for providing a holistic management system.  
 
In this paper, we presented a project for developing an industry-strength ontology management system 
that will provide reliability, scalability, and performance for enterprise uses, and also provide 
functionality robust and sufficient for different levels of practitioners of ontological information. We 
described the design and implementation of the SnoBase ontology management system, which is under 
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development at IBM T. J. Watson Research Center. The programming interface of the SnoBase system 
provides a Java API, Java Ontology Base Connector, which is the ontological equivalent of the Java 
Data Base Connector. Similarly, this system supports a variant of OWL Query Language (OWL-QL) as 
our ontological equivalent of SQL (Structured Query Language), and will support a few other ontology 
query languages in the future.  
 
As ontologies are becoming central to an increasing number of enterprise applications such as business 
process and information integration, and information search and navigation which require scalability 
and performance, efficient storage and manipulation of large scale ontological data is going to be 
essential. In this paper, we introduced an architecture that leverages relational database systems for 
storing ontologies. We described a direct representation of ontologies in a relational database using a 
vertical table for storing ontology triples and triggers for automatic maintenance of inferred facts. This 
solution is primarily concerned with the storage of classes and their relations and less with instance 
data. In order to accommodate large volumes of data, we are working on an architecture that leaves the 
data in place, and provides a virtualization layer that effectively links the data triples to ontology classes. 
The database-centric approach to ontology management support is still in its infancy. For this 
approach to scale, a number of technical challenges need to be addressed. Some directions for further 
investigation include:  
 
• Improving trigger evaluation by exploiting the fact that many inference rule-specific triggers share 

considerable portions of their conditions. 
• Exploring query rewriting possibilities by analyzing the characteristics of vertical virtual views used in 

the database-centric inference scheme. 
• A specialized metadata, ontology indexes to guarantee short response times when supporting an 

increasing number of enterprise applications with large volumes of instance data. 
• Extensions to SQL for ontological queries over classes, relations and instances. For example, it 

might be useful to allow path patterns over the labeled graph of classes and relations. 
• Exploring hybrid approaches to storage ranging from fully materialized vertical tables to fully virtual 

views over existing tables. Cost measures can take into account query work-load and physical 
distribution of data. 

• Reasoning about the cardinalities of the relations between classes and tables. For example, one table 
corresponds to one and only class, one table stores instances of many classes, a single class can span 
multiple tables, and finally many-to-many class-table relations. 

• Lazy vs. Eager computation of derived facts: some inference rules involve transitive closure and are 
harder to evaluate at query time; for others, simpler rules (non-recursive) can be added to a user 
query automatically and evaluated at query time. 

 
Finally, we presented an ontology application development environment which allows model 
transformation. We took an approach based on the Model Driven Architecture, which supports 
automated tools and services for both defining the models and facilitating transformations between 
different model types. Our implementation utilized the Eclipse Modeling Framework (EMF) which is 
IBM’s open source MDA infrastructure. By leveraging the bi-directional transformation between the 
RDF/OWL models and the EMF models, our system enables ontology application developers to 
develop ontologies using their favorite model building tools, import them into EMF, transform their 
models into OWL ontologies, enrich them with semantics, leverage their inference capability, and 
utilize the comprehensive development facility of Eclipse and EMF. 
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