
RC23732 (W0509-112) September 30, 2005
Computer Science

IBM Research Report

SLA Based Profit Optimization in Multi-tier Systems

Danilo Ardagna
Politecnico de Milano

Italy

Marco Trubian
Università degli Studi di Milano

Italy

Li Zhang
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

SLA Based Profit Optimization in Multi-tier Systems

Danilo Ardagna
Politecnico di Milano
ardagna@elet.polimi.it

Marco Trubian
Universit̀a degli Studi di Milano

trubian@dsi.unimi.it

Li Zhang
IBM Research

zhangli@us.ibm.com

Abstract

Nowadays, large service centers provide computational ca-
pacity to many customers by sharing a pool of IT resources.
The service providers and their customers negotiate util-
ity based Service Level Agreement (SLA) to determine the
costs and penalties on the base of the achieved performance
level. The system is often based on a multi-tier architec-
ture to service requests. The service provider would like to
maximize the SLA revenues, while minimizing its operating
costs. The system we consider is based on a centralized
network dispatcher which controls the allocation of appli-
cations to servers, the request volumes at various servers
and the scheduling policy at each server. The dispatcher
can also decide to turn ON or OFF servers depending on
the system load. This paper designs a resource allocation
scheduler for such multi-tier environments so as to maxi-
mize the profits associated with multiple class SLAs. The
overall problem is NP-hard. We develop heuristic solutions
by implementing a local-search algorithm. Results are pre-
sented to demonstrate the benefits of our approach.

1. Introduction

To reduce their management cost, companies often out-
source their IT infrastructure to third party service
providers. Large service centers have been set up to provide
services to many customers by sharing the IT resources.
This leads to the efficient use of resources and a reduction
of the operating costs. The service providers and their cus-
tomers often negotiate utility based Service Level Agree-
ments (SLAs) to determine costs and penalties based on the
achieved performance level. The service provider needs to
manage its resources to maximize its profits. Utility based
optimization approaches are commonly used for provid-
ing load balancing and for obtaining the optimal trade-off
among job classes for Quality of Service levels [6]. One
main issues of these systems is the high variability of the
workload. For example for Internet applications, the ratio
of the peak to light load is usually in the order of 300%

[3]. Due to such large variations in loads, it is difficult to
estimate workload requirements in advance, and planning
the capacity for the worst-case is either infeasible or ex-
tremely inefficient. In order to handle workload variations,
many data centers have started to employ self-managing
techniques [4, 5], such that resources are dynamically allo-
cated among applications of different customers on the base
of short-term demand estimates. The goal is to meet the
application requirements while adapting IT architecture to
workload variations. Usually, each request requires the ex-
ecution of several applications allocated on multiple phys-
ical tiers. This paper focuses on the design of a resource
allocator for multi-tier environments. The goal is to maxi-
mize the revenue while balancing the cost of using the re-
sources. The cost usually includes the cost of energy, the
cost of air conditioning of the data center [3] and software
and hardware cost of resources allocated on demand. The
overall profit (utility) includes the revenues and penalties
incurred when Quality of Service guarantees are satisfied
or violated. The resource allocator can establish the set of
applications executed by each server, the request volumes
at various servers and the scheduling policy at each server.
The allocator can also decide to turn ON or OFF servers
depending on the system load. Resource allocator policies
are applied on multiple time scales. Optimum load balanc-
ing and scheduling are determined in real-time and applied
every few minutes, while application allocation and servers
status are evaluated with a greater time scale, i.e. every half
an hour, in order to reduce system re-configuration over-
head. We model the problem as a mixed integer nonlin-
ear programming problem and develop heuristic solutions
based on a local-search approach. The neighborhood ex-
ploration is based on a fixed-point iteration (FPI) technique,
which iteratively solves a scheduling and a routing problem
by implementing a gradient method. Experimental results
are presented to show the benefits of our approach. The re-
mainder of the paper is organized as follows. Section 2 in-
troduces the overall system model. The optimization prob-
lem formulation is presented in Section 3. The experimental
results in Section 4 demonstrate the quality and efficiency
of our solutions. Conclusions are drawn in Section 5.

Figure 1. Network Queue Model

2 The System Model

The system under study is a distributed computer system
consisting ofM heterogeneous servers. There are totallyK
classes of request streams. Each classk ∈ K request can
be served by a set of server applications (application tiers
in the following) according to the client/server paradigm.
For simplicity assume that each classk request is associ-
ated with a single customer. The architecture comprises a
requests dispatcher in front of servers that assigns incom-
ing requests to individual server. The controller can also
establish the allocation of application tiers to servers and
the scheduling policy at each server. The service discipline
under consideration is the Generalized Processor Sharing
(GPS) class. The controller can also turn OFF and ON in-
dividual server in order to reduce the overall cost. For each
classk ∈ K, a linear utility function is defined to spec-
ify the per request revenue (or penalty) incurred when the
average end-to-end response timeRk, from multiple tiers,
assumes a given value.−mk indicates the slope of the util-
ity function (mk = uk/zk > 0) and zk is the threshold
that identifies the revenue/penalty region (i.e., ifRk > zk

the SLA is violated and penalties are incurred). Linear util-
ity functions are currently proposed in the literature (see for
example [2, 5]), anyway our approach can be extended in
order to consider a broad family of utility functions. We
only assume that the utility function is monotonically non-
increasing, continuous and differentiable. Monotonic non-
increasing utility functions are very realistic since the better
the achieved performance by end users, the higher are the
revenues gained per request by the Service Provider. The
data center is modeled by a queueing network composed of
a set of multi-class single-server queues and a multi-class
infinite-server queue. The first layers of queues represent
the collection of applications supporting requests execu-
tion. The infinite-server queues represent the client-based
delays, or think time, between the server completion of one
request and the arrival of the subsequent request within a
session (see Figure 1). User sessions begin with a class
k request arriving to the data center from an exogenous
source with rateλk. Upon completion the request either

returns to the system as a classk′ request with probability
pk,k′ or it completes with probability1 − ∑K

l=1 pk,l. Let
Λk denote the aggregate rate of arrivals for classk requests,
Λk =

∑K
k′=1 Λk′pk′,k + λk.

In next sections the following notation will be adopted:
K := set of request classes;

Nk := number of tiers involved in the execution of classk;
M := number of servers at the data center;
Ci := capacity of serveri;
ci := time unit cost for serveri ON;

Ai,k,j := 1 if serveri can support the execution of
application tierj for classk job, 0 else;

µk,j := max service rate of a capacity 1 server
for executing processes at tierj for classk.

The routing matrix[Ai,k,j] is usually obtained as a result
of an optimization problem [7]. It is used to assign private
servers to distinct Web sites for dedicated e-commerce
transaction servers. It can also limit the number of Web
sites assigned to servers due to caching issues [7]. Thus,
the routing matrix is used to model the assignment of
application tiers to individual servers. In practice,ci ∝ Ci,
if power is the main cost associated with turning a server
on.
The decision variables of our model are the followings:

xi := 1 if serveri is ON, 0 otherwise;
λi,k,j := rate of execution for classk jobs at tierj on serveri;
φi,k,j := GPS parameter at serveri for executing

processes at tierj for classk jobs;
zi,k,j := 1 if process at tierj for classk jobs

is assigned to serveri, 0 otherwise.

The analysis of multi-class queueing system is notoriously
difficult. We use the GPS bounding technique in [8] to ap-
proximate the queueing system. Under GPS, the server ca-
pacity devoted to classk requests for tierj at timet (if any)
is Ciφi,k,j/

∑
k′∈K(t)

∑Nk′
j=1

φi,j,k′ , whereK(t) is the set of
classes with waiting requests on serveri at time t. Re-
quests at different tiers within each class and on every server
are executed either in a First-Come First-Serve (FCFS) or
a Processor Sharing (PS) manner. Under FCFS, we as-
sume that the service time for classk requests at server
i has an exponential distribution with mean(Ciµk,j)−1,
whereas, under PS, service time of classk requests at clus-
ter i follows a general distribution with mean(Ciµk,j)−1,
including heavy-tail distributions of Web servers. In the
approximation, each multi-class single-server queue associ-
ated with a server application is decomposed into multiple
independent single-class single-server queues with capacity
greater than or equal toCiφi,k,j . The response times evalu-
ated in the isolated per-class queues are then upper bounds
on the corresponding measures in the original system. Un-
der these hypothesisRi,k,j , i.e., the average response time
for the execution of the process at tierj of classk jobs at
serveri can be evaluated asRi,k,j = 1

Ciµk,jφi,k,j−λi,k,j
(see

[8]). We adopt analytical models in order to obtain an in-

dication of system performance and response time as the
authors in [4]. Note also that the approximation provided
in [8] is asymptotically correct for high loads. In Section 4,
resource allocation results will be validated by simulations
considering also heavy-tail distributions for service time.
The average response time for classk jobs is
the sum of the average response times at each
tier computed over all servers, and is given by

Rk = 1
Λk

(∑M

i=1

∑Nk

j=1
λi,k,jRi,k,j

)
. Our objective

is to maximize the difference between revenues from
SLAs and the costs associated with servers ON in the
inter-scheduler time period which can be expressed as∑K

k=1
Λk(−mkRk + uk) − ∑M

i=1
cixi, which, after substi-

tutingRk, becomes:
K∑

k=1

(−mk

M∑
i=1

Nk∑
j=1

λi,k,j

Ciµk,jφi,k,j − λi,k,j
) +

K∑
k=1

ukΛk −
M∑

i=1

cixi

3. Optimization Problem

The overall optimization problem can be formulated as:

P1)max

K∑
k=1

(−mk

M∑
i=1

Nk∑
j=1

λi,k,j

Ciµk,jφi,k,j − λi,k,j
)−

M∑
i=1

cixi

M∑
i=1

λi,k,j = Λk; ∀k, j (1)

K∑
k=1

Nk∑
j=1

φi,k,j ≤ 1; ∀i (2)

∑
(k,j)∈Bl

zi,k,j ≤ 1; ∀i, l (3)

zi,k,j ≤ Ai,k,jxi; ∀i, k, j (4)

λi,k,j ≤ Λkzi,k,j ; ∀i, k, j (5)

λi,k,j < Ciµk,jφi,k,j ; ∀i, k, j (6)

λi,k,j , φi,k,j ≥ 0; xi, zi,k,j ∈ [0, 1] ∀i, k, j

Constraint family (1) entails that the traffic assigned to in-
dividual servers, and for every tier, equals the overall load
predicted for classk jobs. Constraint family (2) expresses
the bounds for GPS scheduling parameters. Constraint fam-
ily (3) is introduced in order to assign distinct servers to
subset of applications, whereBl is a subset of the indexes in
Nk×K. For example, a servlet engine can be executed with
a Web server or an application server instance, vice versa
application and DBMS servers are usually allocated to in-
dividual machines (i.e., eventually supporting multiple ap-
plication or DBMS instances) for management and security
reasons. The constraint family (4) allows to assign appli-
cation tiers to severs according toAi,k,j and only if servers
are ON. Constraint family (5) allows to execute requests at
a server only if the corresponding application tier has been
assigned to it. Finally, constraints family (6) guarantees that

resources are not saturated. Note that
∑K

k=1 ukΛk is a con-
stant and it has been dropped in the objective function.
Problem P1) is a mixed integer nonlinear programming
problem. Even if the set of server ON is fixed, i.e. the value
of variablesxi has been determined, the joint scheduling
and routing problem is difficult since the objective function
is neither concave nor convex. We have shown [1] by diag-
onalization techniques, that the eigenvalues of the Hessian
of the cost function are mixed in signs.
The given problem can be solved by nonlinear commercial
tools only for small size instances. For all instances of in-
terest, an heuristic approach has to be considered. We have
decomposed the problem into three sub-problems [1]. First,
we evaluate the overall capacity to be provided to each tier.
Then, tiers are assigned to servers. Finally, the routing and
scheduling problems are solved by implementing a fixed-
point iteration (FPI) technique, which iteratively solves a
scheduling and a routing problem. The solution is then en-
hanced by a local-search algorithm that turns on and off
servers and modifies the assignment of application tiers to
servers.

4. Experimental Results

The effectiveness of our approach has been tested on a wide
set of randomly generated instances. All tests have been
performed on a 3 GHz Intel Pentium IV workstation. The
number of servers has been varied between 40 and 400 (with
steps of 40). Data centers up to 200 job classes have been
considered and the number of tiers has been varied between
2 and 4.Ai,k,j values were randomly generated, and every
server was shared by at most five customers. Service times
were randomly generated and for each test case the load
was increased in a way that the utilization of data center
resources varied between 0.2 and 0.8.Nk, mk andzk val-
ues have been randomly generated,zk is proportional to the
number of tiersNk and to the overall demanding time at var-
ious tiers of classk job. mk varied uniformly between 2 and
10. Usually the FPI converges very quickly and performs
less than 10 iterations and execution time is always lower
than 8 secs. Local search usually performs a greater num-
ber of iterations but the execution is stopped when the ex-
ecution time achieves 30 min. Indeed, our implementation
allows to compute optimum load balancing and scheduling
in real-time, while application allocation and servers status
can be evaluated with a greater time scale, i.e. every half an
hour. As a typical example, Table 1 shows the average im-
provement which can be obtained from the initial solution
(% IS column) and from the first FPI (% FP) by applying
the local search approach for a test case with 400 servers. In
this test case, 100 job classes are allocated on four tiers, and
100 servers are assigned at each tier byAi,k,j . The column
reports the overall execution time (in minutes). Results are

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19

Time interval

T
hr

o
u

g
h

p
u

t
(r

eq
/s

ec
)

Gold class Bronze class

Figure 2. Throughput Variation

grouped by the average data center utilization. Tests have
been run by considering homogeneous (only servers of ca-
pacity 1) and heterogeneous systems (half servers with ca-
pacity 1 and half of capacity 2) where the load was evenly
shared among different tiers, or more realistically, in the
second case higher tiers were the system bottleneck. Test re-
sults show that the optimal solution for heterogeneous sys-
tems adopts a lower number of servers of the correspond-
ing homogeneous case using mainly servers of higher ca-
pacity. This is expected since servers of grater capacity
give better performance and hence better revenues despite
their higher cost. We have validated by simulation our so-
lutions based on analytical models. We generated arrival
streams with different classes of interarrival times to investi-
gate the effects of non-Poission arrivals. We also simulated
job service times from the log-Normal and Pareto families,
with the same mean and standard deviations. The regen-
erative simulation runs until a minimum number of regen-
erative cycles have been reached and the collected statis-
tics from the servers and queues all reach the desired con-
fidence level (95%). We have observed consistent results
from different simulation runs. In the plots reported in Fig-
ures 2 and 3 a gold and a bronze job class are considered
(|mgold| >> |mbronze|). The service time distribution is
Pareto. In the control time interval the gold class load in-
creases by 70% (Figure 2) and the bronze class response
time has a greater increase (about 20%) than that of the gold
one (about 12%).

5. Conclusions

We proposed an allocation controller for multi-tier data
center environments which maximizes the profits associ-
ated with multi-class Service Levels Agreements. The cost
model consists of a class of utility functions which include
revenues and penalties incurred depending on the achieved
level of performance and the cost associated with servers.
The overall optimization problem which considers the set
of servers to be turned ON, the allocation of applications to

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 3 5 7 9 11 13 15 17 19

Time interval

R
es

p
o

n
se

 t
im

e
va

ri
at

io
n

Gold class Bronze class

Figure 3. Response Time Variation

servers and routing and scheduling at servers as joint control
variables, is NP-hard and we developed a heuristic solution
based on a local search algorithm. Future work will intro-
duce strict QoS performance guarantees, i.e., deadlines for
the response times.

Table 1. Improvement of the Optimization Steps
Homogeneous Heterogeneous

U % IS % FP Time % IS % FP Time
0.2 257.3% 229.1% 30 300.1% 47.9% 30
0.3 221.7% 90.2% 26 33.6% 18.0% 30
0.4 78.5% 54.2% 22 41.8% 13.8% 25
0.5 120.1% 60.2% 28 29.1% 5.2% 13
0.6 75.1% 39.2% 18 22.0% 2.1% 20
0.7 100.2% 19.3% 12 15.3% 1.1% 15
0.8 21.3% 15.4% 5 115.1% 2.3% 10

References

[1] Ardagna, D., Trubian, M., Zhang, L. 2004.On Maximizing SLA in
multi-tier Web Applications. Politecnico di Milano Technical Report
n. 2004.34.

[2] Bennani, M., Menasće D. 2004Accessing the Robustness of Self-
Managing Computer Systems under Highly Variable Workloads. In
Proc. of ICAC 2004. On-Demand

[3] Chase , J. S., Anderson, D. C. 2001Managing Energy and Server
Resources in Hosting Centers. In Proc. of the 18th ACM symposium
on Operating systems principles. Operational

[4] Liu, Z., Squillante, M. S., Wolf, J. 2001On maximizing service-level-
agreement profits. In Proc. of the 3rd ACM conf. on E-Commerce.

[5] Urgaonkar, B., Shenoy, P. 2004.Sharc: Managing CPU and Network
Bandwidth in Shared Clusters. IEEE Trans. on Parallel Distrib. Syst.
15,1, 2-17.

[6] Walsh, W., Tesauro, G., Kephart, J., Das, R. 2004.Utility Functions
in Autonomic Systems. In Proc. of ICAC 2004.

[7] Wolf, J., Yu, P. S. 2001.On balancing the load in a clustered Web
farm. ACM Trans. on Internet Technology, 1,2, 231-261.

[8] Zhang, Z. L., Towsley, D., Kurose, J. 1995.Statistical analysis of the
generalized processor sharing scheduling discipline. IEEE Journal
on Selected Areas in Comm., 13,6, 1071-1080. Workload 63-77.

[9] Zhang, L., Ardagna, D. 2004SLA Based Profit Optimization in Au-
tonomic Computing Systems. In Proc. of ICSOC 2004.

