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Abstract

The importance of XML as a universal data representation format has
led to several efforts to integrate XML as a construct in a programming
language. There has been growing interest in the addition of update oper-
ations in these languages, for example, to languages such as XQuery [20]
and XJ [8]. These update operations (whether the semantics are mutat-
ing or value-based) support concise and declarative specification of trans-
formations of XML data. The presence of update operations raises the
question of detecting data dependencies between reads and updates of
XML documents. In this paper, we formalize the notions of updates on
XML data and conflicts between update operations. We show that con-
flict detection is NP-complete when the update operations are specified
using XPath expressions that support the use of the child and descen-
dant axis, wildcard symbols, and branching. We also provide polynomial
time algorithms for update conflict detection when the patterns do not
use branching.

1 Introduction

The rising importance of XML as a standard for data representation has led to
several efforts aimed at reducing the burden of developing applications that pro-
cess XML data. The strategy has been to incorporate XML as a first-class con-
struct in a programming language, whether it be an imperative language, such
as Java and C# (XJ [8], Xtatic [6], Cω [5]), a functional language (XDuce [11],
CDuce [4]) or a domain-specific language (XQuery [20]). Despite evident differ-
ences in the design of these languages, all of them, in some sense, have a data
model that represents XML as trees, and support deconstruction of XML data
(using XPath expressions [19] or pattern matching [10]).
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Figure 1: Tree representation t of an XML document.

In most languages that integrate XML as a first-class construct, program-
mers construct a new XML document t′ from an existing XML document t by
deconstructing t to determine the locations that are to be modified, and re-
constructing the new t′. We argue that supporting update operations in these
languages (with either mutating semantics or value-based semantics) is impor-
tant, because it supports the writing of shorter, more declarative programs.

Consider, for example, the XML document t shown in Figure 1 (depicted as a
tree). Assume we wish to add the XML subtree “<restock/>” to all nodes that
satisfy the constraint C, where C is “ all ‘books’ whose ‘quantity’ descendant
contains a value less than 10.” The constraint C is represented concisely by the
XPath expression //book[.//quantity < 10].1 Consider the statement below,
where the interpretation of an “insert” is equivalent to constructing a copy of t,
evaluating the XPath expression on the copy, inserting a copy of “<restock/>”
as a child of each node selected by the XPath expression, and returning the
modified copy (the XPath expressions considered in this paper cannot observe
order between siblings; assume the tree is inserted as an arbitrary child):

insert $t//book[.//quantity < 10], <restock/>

This insertion operation is more concise and declarative than the corresponding
(recursive) program that would perform the same task in existing XML-based
languages. In imperative languages such as XJ, such update statements on XML
data are natural (and expected). XQuery, as well, is exploring the addition of
update operations such as insertions, deletions, etc. [16, 21] (with imperative
semantics — trees are mutated in-place).

When a language supports update operations on XML data, the question
arises of how to detect conflicts between update operations. We consider the

1Here the “//” is the descendant operator, and the [. . .] delimit predicates, which are
constraints that must be true of any subtree of the result. We consider a subset of predicates
corresponding to conjunctions over paths (branching) in this paper. For an introduction to
XPath and its semantics, see [18].
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case of mutating semantics for update operations first, since the problem is more
immediate in that case. A standard problem in most imperative languages is
that of data dependence analysis, that is, determining when a read of some
data structure may conflict with a write to that data structure. The ability to
determine that reads do not conflict with writes allows compilers to use tech-
niques such as code motion and common subexpression elimination to improve
the performance of program execution.

Consider the following program fragment written in a pidgin language that
supports imperative updates:

1 x = ...

2 y = read $x//A
3 insert $x/B, <C/>

4 z = read $x//C

The first assignment to y returns all A descendants of the tree referred to
by x. A “read” operation returns references to nodes in x that are in the result
of the evaluation of the XPath expression on x. The “insert” operation adds a
C child to all nodes labeled B that are children of the root of the tree referred
to by x (if there are no B children in the tree, then no nodes are added). x is
mutated in place. Clearly, the read of Line 4 cannot be interchanged with the
insertion of Line 3. If they were to be interchanged, then if x has a B child,
the read $x//C would not “see” the C children added by the insertion opera-
tion. Suppose, however, the read operation of Line 4 were z = read $x//D.
Then, it could safely be interchanged with the insertion of Line 3. This could
enable many optimizations. For example, in searching the tree referred to by
x for A descendants in Line 2, a compiler could generate code to extract the D

descendants as well.
If updates were to have non-mutating (functional) semantics, the ability to

detect update conflicts can be beneficial as well. For example, consider the
fragment below:

1 let x = ... in

2 let y = read $x/ ∗ /A in

3 let z = insert $x/B, <C/> in

4 let u = read $z/ ∗ /A

We can interpret a read operation as evaluating the XPath expression on
x and returning the set of trees consisting of the subtrees rooted at the nodes
in the result of the evaluation. The ∗ symbol used in the XPath expression is
a wildcard symbol — it matches any node in the tree. So, the read operation
of Line 2 selects all nodes labeled A in document such that it is the grandchild
of the root node of the document. The insertion operation is interpreted as
constructing a new copy of $x that has a C node inserted into all B children
of $x; the XPath expression of the insertion statement extracts all B children
of the root of the document. Observe that let u = read $z/ ∗ /A will return
the same result as let y = read $x/ ∗ /A — the insertion cannot add any
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nodes that affect the result of the XPath expressions. The knowledge that the
insertion operation does not change the result of Line 4 would allow a compiler
to replace Line 4 with the simpler assignment let u = y.

The subject of this paper is detecting when update operations on XML data
conflict. We consider three operations — read, insertion, and deletion — the se-
mantics of which are formalized in Section 3. A read R and an insert operation
I conflict if the result of executing R(I(t)) is different from that of executing
R(t) for some XML tree t. We focus on a reference-based semantics, based on
that proposed by the XQuery update standard [16, 21] and XJ [8]. We discuss
alternate semantics as well and how results can be applied in a straightforward
manner to these semantics. The operations we define use a restricted subset of
XPath expressions — only the child and descendant axes will be allowed (along
with wildcards and branching). We show that even for this simple subset, all
conflict detection problems are NP-complete. We provide polynomial-time algo-
rithms for the subset that does not allow the use of branching. The contributions
of this paper are the following:

• A formalization of the update conflict problem for XML data. We present
formalizations of two different reference-based semantics (node conflicts
and tree conflicts) and a value-based semantics (value conflicts). We focus
on node conflict semantics, but discuss how to modify results to apply
them to the other semantics.

• We show that the read-insert conflict problem and the read-delete conflict
problem are NP-complete for XPath expressions that use only the child
and descendant axes, and have branching and wildcard symbols.

• We provide polynomial-time algorithms for the read-insert conflict prob-
lem and the read-delete conflict problem for XPath expressions that use
only the child and descendant axes, and wildcard symbols (no branching).

Section 2 formalizes the abstractions we use for XML and XPath expres-
sions. Section 3 defines the semantics of reads, insertions, and deletions and
provides the formal statement of update conflict detection. Section 4 provides
polynomial time algorithms for read-insert and read-delete detection, when the
XPath expressions used do not contain branching. Section 5 demonstrates that
the detection problem is NP-complete for the general XPath expressions we
consider in the paper. In Section 6, we discuss extending our results to other
domains (for example, schema-based conflict detection). In Section 7, we review
related work, and we conclude in Section 8.

2 Preliminaries

We present mostly conventional abstractions for XML documents and XPath
expressions (adapted from Miklau and Suciu [12]). In the next section, we define
the syntax and semantics of reads, insertions, and deletions which will lead to
the formal statement of the conflict problem.
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2.1 XML Trees

An XML document is modeled as a labeled tree, where each node of a tree is
labeled with a symbol from an infinite alphabet Σ. The set of all trees over Σ
will be denoted TΣ. Since the fragment of XPath expressions we consider in
this paper does not depend on the order between children, the trees in TΣ are
unordered, and as is standard with XML, unranked (that is, the symbols in Σ
do not specify an arity). The subset of Σ that is used as labels of nodes of a
tree t ∈ TΣ will be denoted Σt.

For a tree t ∈ TΣ, we will use nodest and edgest to refer to the sets of
nodes and edges of the tree, respectively; root(t) will refer to the root node of
the tree t, and for a node n ∈ nodest, labelt(n) will refer to the label on n
(labelt(n) ∈ Σ). The size of a tree, |t|, is the number of nodes in nodest. We
assume relations child(t) ⊆ nodest ×nodest and desc(t) ⊆ nodest×nodest

that are defined in the obvious manner.
A path from n1 to nk in a tree is a sequence of edges (n1, n2), (n2, n3), . . . ,

(nk−1, nk) such that (ni, ni+1) ∈ edgesp, 1 ≤ i ≤ k − 1.
A subtree t′ of a tree t rooted at a node n ∈ nodest, Subtreen(t), is defined

as the tree where nodest′ is the set of nodes consisting of n and all descendants
of n in t. The edges of t′ are all edges (u, v) ∈ edgest such that u and v are
both in nodest′ .

2.2 Tree Patterns

Rather than working with XPath expressions directly, we use a more convenient
formalism, tree pattern [12], that corresponds (roughly) to the XPath grammar
below. The symbol ∗ 6∈ Σ denotes a wildcard label (it will match any label),
and σ ∈ Σ:

e → e/e | e//e | e[e] | e[.//e] | σ | ∗

A tree pattern p is a tree over the alphabet Σ ∪ {∗}. The set of edges
of p is partitioned into two disjoint sets, edges/(p) and edges//(p), which
represent child constraints and descendant constraints, respectively. We will
depict descendant edges with double lines, and child edges with single lines in
figures. Each pattern contains a distinguished node O(p) ∈ nodesp. We depict
output nodes by using a thicker border for them than for other nodes. The size
of a pattern, |p|, is defined as the number of nodes in nodesp. The subset of Σ
that is used as labels of nodes of a pattern p will be denoted Σp.

The set of all tree patterns will be denoted P //,[],∗. We will also be interested
in the class of linear patterns, P //,∗, which is defined as the subset of P //,[],∗

where each node has a single outgoing edge, and the output node is the leaf
node of the tree.

The translation of XPath expressions into tree patterns is straightforward,
and is omitted. In Figure 2, the tree pattern p is derived from the XPath
expression a[.//c]/b[d][∗//f ].

The subpattern p′ of a pattern p rooted at a node n ∈ nodesp, Subpatternn(p),
is defined as the subtree of p rooted at n. For our purposes, it will be sufficient
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Figure 2: Example of an XML tree t, a tree pattern p, and an embedding from
p into t. Double-lined edges in the figure depict edges in edges//(p). The node
corresponding to O(p) is marked with a thick border.

to assume that an arbitrary node in p′ is marked as the output node.
Given a pattern p and n, n′ ∈ nodesp, seq

n′

n is the linear pattern p′ derived
from p, where nodesp′ = {ω ∈ nodesp|ω is in the path from n to n′}, and
edgesp′ consists of the edges used in the path from n to n′.

A chain in a pattern p is a sequence of nodes n1, n2, . . . , nk ∈ nodesp, such
that (ni, ni+1) ∈ edges/(t), 1 ≤ i < k. We will also say that the sequence is a
chain from n1 to nk. star-length(p) of a pattern p is the number of nodes in
the longest chain in p, where each node in the chain is labeled with ∗.

2.3 Embeddings

The semantics of the evaluation of an XPath expression is given in terms of
embeddings [12] of a tree pattern p into a tree t. An embedding is a function
E : nodesp → nodest such that all of the following conditions are satisfied:

• (root-preserving) E(root(p)) = root(t)

• (label-preserving) ∀n ∈ nodesp, labelp(n) = ∗ ∨labelp(n) = labelt(E(n))

• (edges/(p)-satisfied) ∀(u, v) ∈ edges/(p), (E(u), E(v)) ∈ child(t)

• (edges//(p)-satisfied) ∀(u, v) ∈ edges//(p), (E(u), E(v)) ∈ desc(t)

For example, Figure 2 depicts the embedding of a tree pattern p into a tree
t.

Given the definition of embeddings, the evaluation of a tree pattern p on a
tree t, JpK(t), is defined as the subset of nodest such that:

JpK(t) = {E(O(p))|E is an embedding from p into t}
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We will sometimes use an alternative evaluation function, JpKT (t), that re-
turns a set of trees rather than a set of nodes:

JpKT (t) = {t′ ∈ TΣ|t
′ = Subtreen(t), n ∈ JpK(t)}

The tree patterns in P //,[],∗ are always satisfiable, that is, there is always
at least one tree t ∈ TΣ such that JpK(t) 6= ∅. For any pattern p, consider the
tree W , where nodesW = nodesp and edgesW = edgesp. If labelp(n) 6= ∗,
labelW (n) = labelp(n); otherwise, labelW (n) = σ, for some arbitrary σ ∈
Σ. It is straightforward to see that there is an embedding of p into W . We shall
refer to W as a model for p, denoted Mp. For example, the tree t in Figure 2 is
a model for the tree pattern p in the figure.

3 Defining Conflicts

We present the semantics for read, insertion, and deletion operations and three
different semantics for determining when conflicts occur. One semantics is value-
based in that equality of operations is based on tree isomorphisms:

Definition 1 Trees t, t′ are isomorphic, denoted t ∼= t′ if:

• labelt(root(t)) = labelt′(root(t′)), and

• Let Ct be the children of root(t) in t, and let Ct′ be the children of
root(t′) in t′. If Ct is empty, Ct′ is empty. Otherwise, there is a bijection
f : Ct → Ct′ such that for each ci ∈ Ct, Subtreeci

(t) ∼= Subtreef(ci)(t).

A set of trees T is isomorphic to a set of trees T ′, T ∼= T ′, if there is a
function f mapping trees in T to trees in T ′ such that for each tree t ∈ T ,
t ∼= f(t), and a function f ′ mapping trees in T ′ to trees in T such that for each
tree t′ ∈ T ′, t ∼= f ′(t).

The other semantics will be reference-based in that equality is based on node
equality.

Definition 2 Trees t, t′ are equivalent if nodest = nodest′ and edgest =
edgest′ . Equivalence of sets of trees is based on this notion of equivalence.

We now define the operations supported on trees:

• readp(t) where p ∈ P //,[],∗ and t ∈ TΣ projects a set of nodes from a tree.
It is defined as JpK(t).

• insertp,X(t), where p ∈ P //,[],∗ and t, X ∈ TΣ: The insertion operation
evaluates p on t and inserts a fresh copy of X as a subtree of each node
in the result of the evaluation.

Let R = JpK(t). Let X1, X2, . . . , X|R| be a set of trees such that Xi
∼= X

and nodesXi
∩ nodesXj

= ∅, 1 ≤ i, j ≤ |R|. Furthermore, the set
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of nodes of each Xi is disjoint from nodest. For each ni ∈ R, 1 ≤
i ≤ |R| add Xi as a child of ni. In other words, construct a tree t′,

such that nodest′ = nodest ∪
⋃|R|

i=1 nodesXi
and edgest′ = edgest ∪

⋃|R|
i=1(edgesXi

∪ {(ni,root(Xi))}).

We will refer to the nodes in R as insertion points. Observe that if the
result of evaluation of p on t is the empty set, t is unchanged.

• deletep(t), where p ∈ P //,[],∗, t ∈ TΣ: The delete operation evaluates
p on t and deletes the subtree rooted at any node in the result of the
evaluation. Let R = JpK(t). Let D be the set consisting of n and all
descendants of n in t. The result of the delete operation is a tree t′, where
nodest′ = nodest−D, and edgest′ consists of the edges (u, v) in edgest

where both u and v are in nodest′ .

We will refer to the nodes in R as deletion points. We require that O(p) 6=
root(p), which ensures that the result of the deletion is a tree.

For notational convenience, we will often conflate the tree pattern associated
with an operation with the tree pattern itself. For example, O(R) will stand for
O(p) in the read operation R = readp(t).

The read, insertion, and deletion operations can be executed on a tree t in
time polynomial in the size of their inputs (that is, |t|,|p|, and |X |). The patterns
we consider are a subset of Core XPath, which can be evaluated in time linear
in the size of the tree and the pattern [7]. Given the result of the evaluation of
a pattern, the insertion and deletion operations can be executed easily in time
linear in the size of t in standard tree representations. We now define what it
means for two operations to conflict. We first provide reference-based semantics
of conflicts.

Definition 3 (read-insert conflict) A read R = readp(t) has a node con-
flict with an insertion I = insertp′,X(t) if there exists t ∈ TΣ, R(I(t)) 6= R(t).
If such a t exists, we call t a witness to the conflict.

A read R = readp(t) has a tree conflict with an insertion I = insertp′,X(t)
if there exists t ∈ TΣ, JpKT (I(t)) 6= JpKT (t).

Intuitively, the difference between node and tree conflicts is that the node
conflict definition only verifies that the nodes returned by R(t) and R(I(t)) are
the same. The tree conflict definition verifies that no node conflict exists and
none of the trees rooted at a node in R(I(t)) contain a modified subtree. For
example, consider the read operation R that returns the root node of a tree,
and an insertion operation I that adds a subtree X to child labeled B of the
root node. According to the node conflict definition, the two operations do not
conflict — R(t) and R(I(t)) both return the root node of the document. The
tree conflict definition, however, would signal a conflict since the subtree of I(t)
rooted at root(I(t)) is not the same as the subtree of t rooted at root(t).

Both definitions are useful in practice. Suppose one had a program of the
form I;...; R (where I is executed before R), and I and R have a node conflict.

8



A compiler could choose to perform the read R before the insert I as long it
ensures that any operation that depends on the result of R, and that observes
the modification made to the B child by I , executes after I . This could lead to
optimizations such as common subexpression elimination. The tree semantics of
conflict is useful to determine when R and any operation that depends solely on
the results of R could be executed before I . We now present a parallel definition
for read-delete conflicts.

Definition 4 (read-delete conflict) A read R = readp(t) has a node con-
flict with a deletion D = deletep′(t) if there exists t ∈ TΣ, R(D(t)) 6= R(t).

A read R = readp(t) has a tree conflict with a deletion D = deletep′(t) if
there exists t ∈ TΣ, JpKT (D(t)) 6= JpKT (t).

Evidently, other kinds of conflicts can arise, for example, delete-insert con-
flicts. In this paper, we mostly focus on read-insert and read-delete conflicts
and defer discussion of other update conflicts to Section 6. We now present
value-based semantics of read-insert and read-delete conflicts. They are simi-
lar to those of tree conflicts in the reference-based semantics, except that tree
isomorphism rather than equality is used.

Definition 5 A read R = readp(t) has a value conflict with an insertion I =
insertp′,X(t) if there exists t ∈ TΣ, JpKT (I(t)) 6∼= JpKT (t).

Definition 6 A read R = readp(t) has a value conflict with a deletion D =
deletep′(t) if there exists t ∈ TΣ, JpKT (D(t)) 6∼= JpKT (t).

Consider the example of Figure 3. The figure depicts a delete operation on a
read that deletes all children of the root labeled δ. The read operation returns
all descendants of the root node that are labeled γ. Consider the node n which
is deleted by D. According to the reference-based semantics, a node conflict
would occur between the read and the delete operation because the node n is
not present in R(D(W )) but is present in R(W ). According to the value-based
semantics, however, there is no conflict. The subtree rooted at the node n′ is
present in both R(W ) and R(D(W )) and is isomorphic to the subtree rooted at
n that is deleted.

Given a tree t, whether t is a witness to a read-insert or read-delete conflict
can be decided in polynomial time for all three semantics of conflicts.

Lemma 1 Given a tree t ∈ TΣ, a read R and an insertion I, it can be de-
termined in polynomial time whether t is a witness to a node conflict, a tree
conflict, or a value conflict between R and I.

Given a tree t ∈ TΣ, a read R and a deletion D, it can be determined in
polynomial time whether t is a witness to a node conflict, a tree conflict, or a
value conflict between R and D.

Proof: The case for node conflict is trivial since it involves evaluating R(t) and
R(I(t)) (which can be performed in polynomial time, as stated previously) and
verifying that the resulting sets are identical.
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Figure 3: Example of a delete operation on a tree that raises a conflict with
reference-based semantics, but not with value-based semantics.

For tree conflicts, one can associate with each node in t a flag marking
whether the subtree under it has been modified. In an appropriate tree repre-
sentation, an insertion or deletion operation can update this information in time
linear in the size of t. Checking for a conflict requires verifying set equality of
the results of R(t) and R(I(t)) and ensuring that none of the nodes in R(I(t))
have been marked.

For value conflicts, observe that tree isomorphisms can be decided in time
linear in the size of the trees. A slight modification to the algorithm in Aho
et al. [1] supports labeled tree isomorphism detection. Since the sizes of R(t)
and R(I(t)) are bounded by |t|, verifying that the sets of trees are isomorphic
to each other can be performed in polynomial time.

The proof for read-delete conflicts is similar.

Consider the set of patterns in P //,∗. For linear patterns, we show that the
reference-based semantics are equivalent to the value-based semantics.

Lemma 2 Given a read R = readp and an insertion I = insertp′,X , where
p, p′ ∈ P //,∗, there is a tree conflict between R and I if and only if there is a
value conflict between R and I.

Proof: The “If” case is trivial — if there is a value conflict, certainly there is a
tree in JpKT (I(t)) that is not equivalent to one in JpKT (t).

Suppose there is a tree conflict in the reference-based semantics and not in
the value-based semantics. There are two cases to consider. Either there is also
a node conflict between I and R, or a subtree of one of trees in JpKT (I(t)) is
a modified tree. In the first case, consider the structure of a node insertion
conflict as shown in Figure 4a. Since there is a node conflict, there is a tree W
such that there is a node v in JpK(I(W )) that is not there in JpK(W ). This node
v must have been one of the nodes in a copy of X that was inserted into t by
I . If not, any embedding of R into I(W ) would also be an embedding of R into
W .

Consider the tree W ′ defined by the path in W from root(W ) to u (shown
in thick lines in Figure 4a). Observe that W ′ is also a witness to a node conflict
between I and R. We construct W ′′ from W ′ by adding for each node in R(W ′),

10
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Figure 4: Structure of a read-insert conflict. (a) Node conflict, and (b) Tree
conflict.

a child node labeled α, where α is a label not used in X . Again, note that W ′′

is a witness to a node conflict between R and I (since it does not contain v).
Observe that all subtrees rooted at a node in R(W ′′) would have a child labeled
α. W ′′ will be a witness to a read-insert value conflict because the subtree
rooted at v in I(W ′′) will not be isomorphic to any tree in JpKT (W ′′). As a
result, if there is a node conflict in the reference based semantics, there is a
read-insert value conflict.

In the other case, there is a tree conflict in the reference-based semantics
because there is a node v′ in R(I(W )) and R(W ) whose subtree has been mod-
ified by the insert operation. Consider the structure of such a conflict, shown in
Figure 4b. The node v′ must be the ancestor of an insertion point u. Consider
the tree W ′ derived from W by adding a node labeled α as a child of v′, such
that α is not used in W or X . W ′ is still a witness to a tree conflict between
R and I . Moreover, it is a witness to a conflict in the value-based semantics as
well. Since v′ is the only node in both W ′ and I(W ′) with a child labeled α,
and the subtree rooted at v′ is modified by the insertion, there can be no tree
in JpKT (W ′) that is isomorphic to the subtree of I(W ′) rooted at v′.
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Figure 5: Structure of a read-delete node conflict.

Therefore, the existence of a tree conflict between a read and an insert in
the reference-based semantics implies that there is a conflict in the value-based
semantics when the patterns used are in P //,∗.

A similar proof technique can be used to show that for linear patterns, tree
conflicts and value conflicts are equivalent in the read-delete case.

In this paper, based on the proposed semantics for XQuery and XJ, we focus
mainly on node conflicts with reference-based semantics (all future references to
“conflict” should be interpreted as such, unless stated otherwise explicitly). All
results can be extended to other kinds of conflicts as well, and where appropriate,
we will discuss the modifications necessary.

4 ptime Algorithms for P
//,∗

We provide polynomial-time algorithms for detecting read-delete and read-insert
conflicts when the patterns are linear. What is perhaps surprising is that only
the read pattern need be linear — the pattern for the insert and delete can
be any pattern in P //,[],∗. This is surprising because as we show in the next
section, when both patterns are in P //,[],∗, read-insert and read-delete conflict
detection is NP-complete.

4.1 Read-Delete Node Conflicts

We start with examining the read-delete case, since it is more straightforward
than the read-insert case. Consider an example of a conflict when the deletion
and the read are linear patterns. Figure 5 shows the structure that any conflict
must have. The figure depicts a deletion D and a read R and the tree that is
the result of applying D to a tree W (the shaded subtree rooted at u is deleted
from W ).

The existence of a node conflict implies that there is an embedding of R into
W that maps O(R) to some node v that is deleted in D(W ). There is a node
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u in nodesW that is either an ancestor of v or v itself (there must be at least
one for v to have been deleted), where u is a node in JDK(W ).

Consider the edge (n, n′) in Figure 5. The nodes in the path from root(R)
to n are mapped to nodes in W in the path from root(W ) to node u. The
nodes in D from root(D) to O(D) can be embedded into nodes in W in the
path from root(W ) to u as well (since u ∈ JDK(W )). Since portions of both
R and D are mapped to the nodes in the path root(W ) to u, the nodes in R
from root(R) to the node n must “match” the nodes in D from root(D) to
O(D). In other words, the sequence of nodes in W from root(W ) to u supports
embeddings E1 from D, and E2 from seqn

root(R). We formalize this notion of
matching and show how we can use it to detect read-delete node conflicts.

Definition 7 Linear patterns l and l′ match weakly if there exists a tree t ∈ TΣ

such that there is an embedding E1 from l into t and an embedding E2 from l′

into t, and E1(O(l)) = E2(O(l′)) or E1(O(l)) is a descendant of E2(O(l′)).
Two linear patterns l and l′ match strongly if they match weakly and E1(O(l)) =

E2(O(l′)).

Lemma 3 Consider a read R = readp and a deletion D = deletep′ . There
is a read-delete node conflict between R and D if and only if there exists an edge
(n, n′) in edgesR such that:

• (n, n′) ∈ edges//(p), D and seqn
root(R) match weakly, or

• (n, n′) ∈ edges/(p), D and seqn′

root(R) match strongly.

Proof: (Only if) If there is a read-delete conflict between R and D, there must
a witness tree W such that R(W ) 6= R(D(W )). Consider a node v ∈ JRK(W )
such that v 6∈ JRK(D(W )). Let E be any embedding of R into W that maps
O(R) to v. We assert that v 6∈ nodesD(W ). If v ∈ nodesD(W ), it implies that
all ancestors of v in W are present in nodesD(W ). E uses only ancestors of v
in W (because, by the definition of linear patterns, O(R) is the leaf node of R),
and therefore, E is a valid embedding of R into D(W ). This contradicts the
assumption that v 6∈ JRK(D(W )). Therefore, v must be a deleted node.

Since v is a deleted node, let (n, n′) be the edge in R such that E maps n
to a node that exists in nodesD(W ) and n′ to a node that has been deleted in
D(W ). Since E maps root(R) to root(W ) which exists in D(W ) and O(R) to
v, which is deleted in D(W ), there must be such an edge. Let u be the ancestor
of v in W such that u 6∈ nodesD(W ) and all ancestors u′ of u are in nodesD(W ).
u must be a deletion point. Therefore, there must be an embedding from D
to the sequence of nodes in the path from root(W ) to u. Furthermore, since
E(n) ∈ nodesD(W ), the sequence of nodes in the path from root(R) to n must
be mapped to the sequence of nodes in the path from root(W ) to u. As a
result, D and seqn

root(R) match weakly. If (n, n′) is a child edge, E(n′) must

map n′ to u. Since n is mapped to a node in nodesD(W ) and u is the only
node that is an ancestor of v that has a parent node in nodesD(W ), n′ must be
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mapped to u. As a result, we can conclude that in this case, D and seqn′

root(R)

match strongly.
(If) The fact that D and R′ = seqn

root(R) match (weakly or strongly) implies

that there is a tree W such that D and R′ can be embedded into W . Let E be
an embedding of D into W , and let u = E(O(D)). Let R′′ = seq

O(R)
n′ .

Suppose (n, n′) is a descendant edge in edgesR. We can construct a witness
W ′ to a read-delete conflict by inserting MR′′ as a child of u in W . Let E1 be
an embedding of R′ into W and let E2 be an embedding of R′′ into MR′′ . We
can compose the two embeddings to derive an embedding for R into W ′. Since
by the definition of weak matching, E1 maps n to an ancestor of u or u itself,
and MR′′ is inserted as a descendant of u, the edge constraint between n and
n′ would be satisfied. Since R can be embedded in W ′ and returns a result in
the subtree rooted at u (which will be deleted by D), R(W ′) 6= D(R(W ′)).

Suppose (n, n′) is a child edge in edgesR. If n′ = O(R), by the definition of
strong matching, there is an embedding of R into W that maps n′ to u. Since
n′ is the output node of R, u will be in R(W ), but will be deleted in D(R(W )).
If n′ is not the output node of R, let n′′ be the child of n′ in R. We construct
W ′ from W by adding a model for the subpattern rooted at n′′ as a child of
u. It is straightforward to show that we can construct an embedding from R
into W ′ that selects a node in the subtree rooted at u. This subtree would be
deleted by D, and therefore, R(W ′) 6= D(R(W ′)).

Lemma 3 suggests a mechanism for detecting read-delete conflicts — find an
edge (n, n′) ∈ edgesR that matches D strongly or weakly as appropriate. We
sketch an algorithm for determining whether two patterns match.

Given linear patterns l and l′, we construct regular expressions from the
patterns and use language intersection to check whether l and l′ match strongly
or weakly. First, some technicalities. Since Σ is infinite, we assert that we
can restrict the alphabet to the symbols used in l and l′, that is Σl ∪ Σl′ . Let
Σl,l′ = Σl ∪ Σl′ . If there is a witness tree W to a matching that uses symbols
other than those in Σl,l′ , observe that we can replace those symbols with ones
from Σl,l′ ; only nodes labeled ∗ in l and l′ could have mapped to them. Secondly,
note that the size of Σl,l′ depends solely on the sizes of l and l′.

We now describe the construction of regular expressions from linear patterns.
Let (.) be stand for any symbol in Σl,l′ , that is, it is equivalent to σ1|σ2| . . . for
each σi ∈ Σl,l′ . For a node n in a pattern l, let sym(n) be defined as labell(n)
if labell(n) 6= ∗, and (.), otherwise.

We define a function R : nodes → regexp as follows (for a pattern l):

• R(root(l)) = sym(n),

• R(n 6= root(l)): Let n′ be the parent of n in l. If (n′, n) is a descendant
edge, R(n) = R(n′) · (.)∗ · sym(n). If (n′, n) is a child edge, R(n) =
R(n′) · sym(n).

Let r1 = R(O(l)) and r2 = R(O(l′)). We state (the proof is omitted for
space) that the linear patterns l and l′ match strongly if and only if L(r1) ∩
L(r2) 6= ∅, where L(r1) and L(r2) are the languages denoted by r1 and r2,
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respectively. l and l′ match weakly if and only if L(r1) ∩ L(r2 · (.)∗) 6= ∅. As is
customary, we can construct non-deterministic finite state automata from the
regular expressions, and verify in time polynomial in the size of l and l′ whether
the intersection is non-empty.

Since we can detect whether a linear pattern matches one another (weakly
or strongly) in polynomial time, the following theorem is immediate — for each
edge (n, n′) in edgesR in a read R, we can verify whether a deletion D matches
seqn

root(R) or seqn′

root(R) (as appropriate).

Theorem 1 For a read R = readp and a deletion D = deletep′ , where
p, p′ ∈ P //,∗, a read-delete node conflict can be detected in polynomial time.

remarks: In practice, rather than verifying whether each edge in R matches D
separately, one can use an algorithm based on dynamic programming to deter-
mine whether a match exists. With respect to alternate semantics of updates,
observe that a tree conflict occurs if and only if either there is a node conflict
or D is weakly matched by R. Recall that for linear patterns, the value-based
and reference-based semantics (for tree conflicts) are equivalent. Therefore, the
theorem above applies to all discussed kinds of conflicts.

We show now that the deletion operation need not be linear. As long as
the read operation is in P //,∗, we can detect read-delete conflicts in polynomial
time.

Lemma 4 A read R = readp and a deletion D = deletep′ , where p is a
linear pattern and p′ ∈ P //,[],∗, have a node conflict if and only if R and D′ =

seq
O(D)
root(D) have a node conflict. Note D is not necessarily a linear pattern.

Proof: If R and D have a conflict, there is a tree W that is a witness to
the conflict. W is also a witness to a read-delete conflict between D′ and R.
JDK(W ) ⊆ JD′K(W ), because any embedding of D into W defines an embedding
of D′ into W . Since the set of deletion points in the evaluation of D′ on W
contains all the deletion points of that of D on W , any node whose deletion is
necessary to show the conflict in R(D(W )) will also be deleted in R(D′(W )).

(If) If D′ and R have a conflict, let W be a witness to the conflict. We con-
struct a tree W ′ from W as follows. Consider any node n ∈ nodesD′ . Let c be
a child of n in D that is not in D′, and let Mc be a model for Subpatternc(D).
Add Mc as a child of each node in W . This will ensure that any embedding of
D′ into W can be extended easily into an embedding of D into W ′.

Given an embedding E of D′ into W , let n be a node in nodesD′ and let
c 6∈ nodesD′ be a child of n in D. The extension of E maps the subpattern of
D rooted at c to the child of E(n) in W ′ that corresponds to Mc. Since any
embedding of D′ into W can be extended into one of D into W ′, JD′K(W ) ⊆
JDK(W ′). Moreover, since W ′ only adds nodes to W , JRK(W ) ⊆ JRK(W ′). Let
v be a node in R(W ) that is deleted in R(D′(W )). v will be a node in R(W ′)
and the deletion point that causes v to be deleted will be present in JDK(W ′).
Therefore, there is a read-delete conflict between R and D.
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Corollary 1 For a read R = readp and a deletion D = deletep′X, where p ∈
P //,∗ and p′ ∈ P //,[],∗, a read-delete node conflict can be detected in polynomial
time.

4.2 Read-Insert Node Conflicts

Consider an example of a node conflict when the insert I and the read R are
linear patterns. Figure 4a shows the structure that any such node conflict must
have. The figure depicts I and R and the tree that is the result of applying I
to a tree W (a subtree X is inserted as a child of a node u).

While the structure is similar to the read-delete case, the read-insert case
is somewhat more complicated. Unlike the read-delete case, where the subtree
rooted at u can be any tree, in the read-insert case, the nodes in R from n′

to O(R) should be mappable to X for a conflict to occur. The existence of a
conflict implies that there is an embedding that maps O(R) to some node v in
X and maps the nodes in R in the path from root(R) to O(R) to nodes in the
path from root(W ) to v in I(W ). Since v is in X , it must be the descendant of
an insertion point u ∈ nodesW (the insertion point where X is inserted). For u
to have been selected as an insertion point, there must have been an embedding
of I to the nodes in the path from root(W ) to u.

Consider the edge (n, n′) in Figure 4a. It is the edge in R in the path from
root(R) to O(R) that straddles W and X in the sense that n is mapped to a
node in W and n′ is mapped to a node in X . In any witness to a conflict, there
must always be such an edge because root(R) is always mapped to root(W )
and O(R) is mapped to v which is a node in X .

Definition 8 Given a read R and an insert I, let (n, n′) be an edge in edgesR.
(n, n′) is the cut edge for R and I if there exists a tree W ∈ TΣ and an embedding
E of R into I(W ) such that E(n) ∈ nodesW and E(n′) 6∈ nodesW .

Lemma 5 There is a read-insert conflict between R and I if and only if there
is a cut edge for R and I.

Proof: If there is a read-insert conflict, let W ∈ TΣ be a tree such that
R(I(W )) 6= R(W ). Any node v in R(I(W )) that is not in R(W ) must not
be in nodesW . Otherwise, suppose v is in nodesW . In a linear pattern, the
output node is the leaf node of the pattern; all other nodes in the pattern are
mapped to ancestors of v. Therefore, the embedding of R into I(W ) also defines
an embedding of R into W , and v ∈ R(W ), contradicting our earlier assump-
tion. Let E be an embedding of R in I(W ) that maps O(R) to v. Since all
embeddings map root(R) to root(W ), which is in nodesW , there must be
some edge (n, n′) in edgesR such that E(n) ∈ nodesW and E(n′) 6∈ nodesW .
(n, n′) is a cut edge for R and I .

If there is a cut edge for R and I , by definition, there is a witness tree W and
embedding E of R into I(W ) such that E(n) ∈ nodesW and E(n′) 6∈ nodesW .
Since O(R) is the leaf node of R, it must either be n′ or be mapped to a
descendant of E(n′). In either case, E(O(R)) 6∈ nodesW . Therefore, R(I(W ))
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contains at least one node not in R(W ) implying that a read-insert conflict
exists.

Since any embedding of R into I(W ) that causes a conflict must have a cut
edge (n, n′), we can use a similar strategy as for the read-delete case to detect
conflicts:

• Choose an edge (n, n′) in edgesR.

• Construct a witness tree W such that (n, n′) is a cut edge for an embedding
of R into I(W ).

• If no such tree can be constructed, choose another edge until all edges
have been tried.

• If no edge can be found, R and I do not have a read-insert conflict.

From Figure 4a, it should be clear that for an edge (n, n′) ∈ edgesR to be a
cut edge, it must satisfy two constraints. The insert I must match seqn

root(R),

and there should be an embedding of seq
O(R)
root(n′) into X . We formalize these

requirements below.

Lemma 6 Consider a read R = readp and an insert I = insertp′,X . Let
(n, n′) be an edge in edgesp. (n, n′) is a cut edge for R and I if and only if:

• If (n, n′) ∈ edges/(p), I and seqn
root(R) match strongly. If (n, n′) ∈

edges//(p), I and seqn
root(R) match weakly, and

• If (n, n′) ∈ edges/(p), there is an embedding from seq
O(R)
n′ to X. If

(n, n′) ∈ edges//(p), there is an embedding from seq
O(R)
n′ to X or some

subtree of X.

Proof: (Only if) If (n, n′) is a cut edge for R and I , then there must be a witness
tree W and an embedding E of R into I(W ) such that E(n) ∈ nodesW and
E(n′) 6∈ nodesW . Let v = E(n′). Consider the nearest ancestor of v in I(W ),
u, that is in nodesW . u must be an insertion point. As a result, there must be
an embedding of I into W using only the nodes from root(W ) to u. Moreover,
E(n) must be mapped to an ancestor of v that is in nodesW . Therefore, it
must be mapped to either u or to an ancestor of u. The restriction of E to the
nodes in the path from root(R) to n shows that there is an embedding from
seqn

root(R) into W using only the nodes from root(W ) to u. Therefore, one

can conclude that seqn
root(R) and I match weakly (using W as a witness). If

(n, n′) is a child edge, E must map n to u because it is the only ancestor of v
that has a child not in nodesW , which implies that seqn

root(R) and I match
strongly.

If (n, n′) is a cut edge, the nodes in R in the path from n′ to O(R) must be
mapped to nodes in the clone of X inserted at u. Therefore, there must be an

embedding from seq
O(R)
n′ to X or some subtree of X . If (n, n′) is a child edge,
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n′ must be mapped to the root of the subtree corresponding to X because it is
the only node that has a parent that is in nodesW .

(If) Let (n, n′) be an edge in edgesR. The fact that R′ = seqn
root(R) and

I match (strongly or weakly), implies that there is a tree W and embeddings
EI from I into W and E1 from R′ into W such that E1(O(R′)) is mapped to an
ancestor of or to the same node as EI(O(I)). Moreover, there is an embedding

E2 of R′′ = seq
O(R)
n′ into X . Consider the embedding ER of R into I(W ) defined

as E1(w) if w is n or an ancestor of n, and E2(w), if w is n′ or a descendant of
n′. If (n, n′) is a descendant edge, clearly ER satisfies the edge. Since E1 maps
n to O(I) or to an ancestor of O(I), and E2 maps n′ to a node not in nodesW ,
ER(n′) must be a descendant of ER(n). If (n, n′) is a child edge, I and R′ match
strongly. Therefore, O(R′) must be mapped to O(I). Moreover, root(R′′),
which is n′, must be mapped to the root of X . Therefore, ER satisfies the edge
constraint between n and n′. Clearly, ER is an embedding. Since ER maps n to
a node in nodesW and n′ to a node not in nodesW , (n, n′) is a cut edge.

Using the mechanisms described in the previous section for determining
whether an edge matches another (weakly or strongly), we can identify cut
edges in polynomial time.

Lemma 7 Given a read R and and insert I, we can verify in polynomial time
whether an edge (n, n′) in edgesR is a cut edge for R and I.

Proof: Given R and (n, n′), we can verify whether seqn
root(R) and I match

weakly or strongly as appropriate in polynomial time. We can also verify

whether there is an embedding of seq
O(R)
n′ into X or a subtree of X as ap-

propriate. By Lemma 6, these facts are sufficient to determine whether (n, n′)
is a cut edge for R and I .

As a result, we can conclude that read-insert conflicts can be detected in
polynomial time.

Theorem 2 For a read R and an insert I, a read-insert node conflict can be
detected in polynomial time if R and I use patterns in P //,∗.

remarks: As in the read-delete case, R and I have a tree conflict if and only
if I and R have a node conflict or I and R match weakly. We can conclude,
therefore, that the theorem above applies to all discussed types of conflicts
between update operations.

As in the read-delete case, we can show that only the read needs to be a
linear pattern.

Lemma 8 A read R = readp and an insert I = insertp′,X , where p is a linear

pattern and p′ ∈ P //,[],∗, have a node conflict if and only if R and I ′ = seq
O(I)
root(I)

have a node conflict. Note I is not necessarily a linear pattern.

Proof: Similar to the proof of Lemma 4.
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Corollary 2 For a read R = readp and an insert I = insertp′,X , where p ∈
P //,∗ and p′ ∈ P //,[],∗, a read-insert node conflict can be detected in polynomial
time.

5 NP-completeness of P
//,[],∗

We show that the read-insert and read-delete node conflict problems are NP-
complete when the patterns used are from P //,[],∗.

5.1 Read-Insert Node Conflicts

Suppose a read operation R = readp(t) conflicts with an insertion I = insertp′,X(t),
we show that there is an XML tree W that witnesses the conflict, where the
size of W is polynomial in the size of R and I . This fact allows one to present
a non-deterministic polynomial time algorithm for deciding whether a read-
insert conflict exists. One can guess a tree W of size polynomial in the inputs,
and execute R(W ) and R(I(W )) to verify whether W acts as a witness. For
the NP-hardness result, we reduce the problem of containment of XPath ex-
pressions [12] to the read-insert conflict problem (actually, we reduce the dual
non-containment problem).

5.1.1 Membership in NP

If a witness W to a read-insert conflict exists, there must be at least one node n
in R(I(W )) that is not in R(W ) (since insertion only adds nodes, any embedding
in R(W ) is valid in R(I(W )). We show how to construct a W ′ from W such
that R(I(W ′)) still contains n, but R(W ′) does not. This construction consists
of two steps:

• Marking nodes in W that are essential to the conflict. In trimming a wit-
ness tree to polynomial size, we ensure that these nodes and relationships
between them are maintained. Marking will guarantee that the witness
node n is retained in R(I(W )).

• An operation, called reparenting, for constructing a smaller tree W ′ from
a tree W . Reparenting guarantees that if n 6∈ R(W ), then n 6∈ R(W ′).

We formalize the definitions of these terms and then show how successive
reparenting can be used to prune a witness tree to size polynomial in the inputs,
while ensuring that the pruned tree is still a witness.

Definition 9 (Marking) Given a tree W that is a witness to a read-insert
conflict:

1. Let nwitness be a node that is in R(I(W )) but not in R(W ); if there is a
node conflict on W , there must be at least one such node.
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Figure 6: Structure of a reparent operation. The subtree rooted at v is moved
and reconnected to u using k + 1 nodes labeled α, where k is star-length(p)
for the pattern p.

2. Let eR be an embedding of R into I(W ) such that eR(O(R)) = nwitness.
Mark nodes in W based on eR as follows. For all n ∈ image(eR):

(a) Mark n if n ∈ nodesW (Observe that root(W ) is marked since it
is in the range of every embedding by definition),

(b) If n 6∈ nodesW , mark the nearest ancestor n′ of n in I(W ) such
that n′ ∈ nodesW . Choose an embedding eI of I in W such that
eI(O(I)) = n′. Mark all nodes in image(eI).

Observe that the total number of nodes marked using this mechanism is at
most |I | · |R|. Now, the definition of reparenting:

Definition 10 (Reparent) Given a tree t and a pattern p with star-length(p) =
k. Let u, v be two nodes in t such that u is an ancestor of v and the number of
nodes in the path from u to v is greater than k + 3. Let vp be the parent of v in
t. The reparenting of v with respect to u and p is defined as the tree t′ derived
from t by:

1. Deleting (vp, v) from edgest.

2. Adding {a1, a2, . . . , ak+1} to nodest (where the ai, 1 ≤ i ≤ k + 1 are not
in nodest originally). Each of the ai is labeled with a symbol α 6∈ Σp.

3. Adding (u, a1), (a1, a2), . . . , (ak+1, v) to edgest.

Figure 6 depicts the basic structure of a reparent operation. We show that
the reparenting operation does not add any new results in the sense that JpK(t′)
contains either new nodes labeled α or a subset of the nodes in JpK(t), where t′

is the result of reparenting t with respect to p.
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Lemma 9 If a node v is reparented with respect to u and p, u, v ∈ nodest, t ∈
TΣ, then JpK(t′) ∩ nodest ⊆ JpK(t).

Proof: We need to show that for o ∈ nodesT , o ∈ JpK(t′) =⇒ o ∈ JpK(t).
Suppose there is a node o ∈ nodest, o ∈ JpK(t′), but o 6∈ JpK(t). Let E1 be
an embedding of p into t′ that maps O(p) to o. We show that given E1, there
is an embedding E2 of p into t that maps O(p) to o as well, contradicting the
assumption that o 6∈ JpK(t).

E1 must map at least one node in nodesp to one of the newly inserted
nodes labeled α. Otherwise, E1 would also be an embedding of p into t, since
the derivation of t′ does not change the parent-child or ancestor-descendant
relationships or labels of any of the other nodes in t′. If E1 maps nodes to one
or more of the nodes labeled α, any node in p that maps to such a node must
be labeled with ∗ (since, by definition, α does not occur in p).

We define two sets:

• Ru is the empty set if E1 does not map any node in p to u. Otherwise, let
E = {ω ∈ nodesp | E1(ω) = u}. Then, Ru = {ω′ ∈ nodesp | there is a
chain from ω to ω′ in p for some ω ∈ E, labelt′(E1(ω

′)) = α}. In other
words, Ru is the set of nodes in p that are mapped to a newly inserted
node and are reachable from a node in E using only child edges.

• Rv is the empty set if E1 does not map any node in p to v. Otherwise, let
E = {ω ∈ nodesp | E1(ω) = v}. Rv = {ω′ ∈ nodesp | there is a chain in
p from ω′ to ω for some ω ∈ E, labelt′(E1(ω

′)) = α}. In other words, Rv

is the set of nodes that are mapped to a newly inserted node such that a
node in E is reachable using only child edges. We will say that a node ω
in nodesp is reachable from Rv if ω ∈ Rv or ω is the descendant in p of
a node in Rv .

We refer to the k + 1 nodes labeled α in t′ as a1, a2, . . . , ak+1, and the
l > k + 1 nodes between u and v in t as n1, n2, . . . , nl. The construction of E2

is straightforward. For each ω ∈ nodesp:

1. If E1 maps ω to a node in nodest (that is, it does not assign ω to one of
the newly inserted nodes labeled α), E2 assigns ω to the same node. More
precisely, if E1(ω) = n, n ∈ nodest, then E2(ω) = n.

2. If E1(ω) = ai, 1 ≤ i ≤ k + 1 and ω ∈ Ru, then E2(ω) = ni.

3. If E1(ω) = ai, 1 ≤ i ≤ k + 1, and ω is reachable from Rv , then E2(ω) =
nl−k−1+i.

Observe that Ru and Rv are disjoint. Otherwise, there would be a chain
ω1, ω2, . . . , ωk+3 in p, where E1(ω1) = u and E1(ωk+3) = v and the re-
maining nodes would be mapped to the k+1 nodes labeled α. This would
contradict the assumption that star-length(p) = k. So, this assignment
is well defined.
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4. If E1(ω) = ai, 1 ≤ i ≤ k +1 and ω is in neither Ru nor reachable from Rv ,
then E2(ω) = ni.

It remains to be shown that E2 is a valid embedding. By construction, it
should be clear that E2 is root-preserving and label-preserving since only nodes
in p labeled ∗ are mapped to different nodes in E2 and E1.

We first consider child edges constraints, where (ω, ω′) ∈ edges/(p). If ω, ω′

are both mapped to nodes that are not labeled α in E1, then E2 assigns them to
the same nodes in W ′. Reparenting does not change the relationship between
these nodes and the edge is satisfied.

If ω′ is mapped to a node labeled α in E1 and ω is not, then ω must be
mapped to u (it is the only node in W that is the parent of a node labeled α).
By construction E2 maps ω to u as well, and ω′ must be in Ru. E1(ω

′) must be
a1, and therefore, E2(ω

′) = n1, which satisfies the constraint. Similarly, if ω is
mapped to a node labeled α in E1 and ω′ is not, E1(ω

′) must be v. This implies
that E2(ω

′) is v as well, and ω must be in Rv . E1(ω) must be ak+1 implying
E2(ω) = nl−k−1+(k+1) = nl, which is the parent of v in t.

The remaining case is when ω, ω′ are both mapped to nodes labeled α. If
both ω and ω′ are reachable from Rv , then by construction (Step 3), both
will be assigned to nodes that satisfy the parent-child relationship. If E1(ω) =
ai, E1(ω

′) = ai+1, 1 ≤ i ≤ k, Step 3 would assign ω and ω′ to nl−k−1+i and
nl−k+i respectively, which satisfy the parent-child relationship. If both ω and
ω′ are not reachable from Rv , then again, the construction (Step 2 or Step 4) of
E2 would assign them to nodes that satisfy the parent-child relationship. There
can never be a child edge from an ω not in Rv to a node in Rv. Otherwise, by
the definition of Rv , ω would be in Rv — there would be a chain from ω (via
ω′) to a node in p that is mapped to v.

Now let us consider descendant edge constraints. If ω, ω′ are not mapped to
nodes labeled α by E1, E2 maps to the same nodes as E1. Observe that repar-
enting preserves descendant constraints between these nodes. If ω is mapped
to a node not labeled α by E1, and ω′ is, again E2 preserves this relationship.
All of the nodes in the chain n1 to nl would be descendants of E2(ω) = E1(ω).
Similarly, if ω is mapped to a node labeled α by E1, and ω′ is not, again E2

preserves this relationship. All of the nodes in the chain n1 to nl are ancestors
of E2(ω

′) = E1(ω
′).

Finally, we verify the case where ω, ω′ are mapped to nodes labeled α by E1.
if ω is reachable from Rv , then ω′ must be too. The construction preserves the
appropriate relationship between E2(ω) and E2(ω

′). The same is true if both ω
and ω′ are not reachable from Rv. Finally, if ω′ is reachable from Rv , and ω
is not, then observe that if E2(ω) = ni and E2(ω

′) = nj , then E1(ω) = ai and
E1(ω

′) = am, where j = l − k − 1 + m. Since l > k + 1 =⇒ j > m, the
descendant relationship is maintained.

Since we can recreate any embedding that results in an output node in
nodest in JpK(t′), JpK(t′) ∩ nodest ⊆ JpK(t).

Given a witness of a read-insert conflict, we use reparenting to whittle it
down to a size polynomial in the size of the inputs. While doing so, we have to
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ensure that the pared-down tree still causes a conflict. We assert that if W is
a witness to a read-insert conflict, appropriate reparenting will result in a tree
that is still a witness to the conflict.

Lemma 10 Let n and n′ be nodes in W that are marked such that n is the
nearest ancestor of n′ that is marked, that is, ∀n′′, (n, n′′) ∈ desc(t)∧ (n′′, n′) ∈
desc(t) =⇒ n′′ is unmarked. Moreover, let the number of nodes in the path
from n to n′ be greater than k + 3, where k = star-length(R). Consider the
tree W ′ derived from W by reparenting n′ with respect to n and R. W ′ is a
witness to the read-insert conflict.

Proof: W ′ contains all nodes that are marked in W and retains the relationships
between the marked nodes and node labels on these nodes. As a result, it can be
shown that the embedding eI of Definition 9 is preserved. Since eI is preserved
all insertions necessary to preserve eR (of Definition 9) will be performed and
eR will be preserved in I(W ′). Therefore, nwitness ∈ JRK(I(W ′)). Furthermore,
by Lemma 9, nwitness 6∈ JRK(W ) =⇒ nwitness 6∈ JRK(W ′). Therefore, W ′ is
still a witness to the read-insert conflict.

We can now conclude that a there is a witness tree polynomial in the size of
the inputs.

Lemma 11 If a read R conflicts with an insertion I, there exists a tree W of
size |R| · |I | · (k + 1) such that R(I(W )) 6= R(W ), where k = star-length(R).

Proof:[Sketch] Given any witness tree W ′, we mark all nodes as described in
Definition 9, and iteratively, reparent nodes n for which the number of nodes in
the path from the nearest marked ancestor n′ to n is greater than k + 3. Once
this process ends, we discard all nodes that are unmarked and do not contain a
marked node as a descendant (observe that at the end of this stage, all leaves
of the tree will be marked). There are at the most |R| · |I | marked nodes and
the distance of each node to its nearest marked ancestor is at the most k + 1.
The total number of nodes in the tree W is bounded by |R| · |I | · (k + 1).

Observe that the alphabet of the labels in the witness tree can be limited to
labels from ΣR ∪ ΣI ∪ α, where α is a symbol not in ΣR. Therefore, the total
size of the tree is polynomial in the size of the inputs.

Theorem 3 Read-insert node conflict detection for P //,[],∗ is in NP.

Proof: Given Lemma 11, we can non-deterministically guess a tree of size less
than |R| · |I | · (k + 1) with labels from ΣR ∪ ΣI ∪ α, where α is a symbol not
in ΣR. By Lemma 1, we can verify in polynomial time whether a tree t is a
witness to the read-insert conflict.

remarks: Extending the results to tree and value conflicts mainly involves
modifying which nodes are marked. In the tree conflict case, if one has a witness
W , let n be the root of a tree in R(I(W )) that is not equivalent to any in R(W ).
If n is not present in R(W ) then we can mark the tree as in the node conflict
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case and prove that there exists a tree polynomial in the size of the inputs such
that the same tree conflict would occur. If n is present in R(W ), then let v
be an insertion point in the subtree rooted at n. Choose an embedding of R
into W that selects n and mark all nodes in W in the image of the embedding.
Then, choose an embedding of I into W that selects v and mark all nodes that
participate in that embedding. Reparenting with respect to this set of marked
nodes will ensure that the tree conflict exists in a tree polynomial in the size of
the inputs.

To show that read-insert conflict detection is in NP for value-based seman-
tics, we pursue the same strategy of marking as for the tree conflict case. When,
at the end of the reparenting stage, subtrees consisting of unmarked nodes are
discarded (as in Lemma 11), one must ensure that the conflict still occurs in
the pruned tree. Let p be a node that is not discarded and that is the parent
of such a discarded tree. We add a child node to each such p, where each child
node is labeled with a separate distinct symbol that is not already used in the
tree (or in R, I, X). This addition will guarantee that any conflict present in W
will also be present in the pruned tree.

5.1.2 NP-Hardness

For the NP-hardness result, we reduce the non-containment problem for XPath
expressions:

Definition 11 A pattern p is contained in another pattern p′, denoted p ⊆ p′,
if ∀t ∈ TΣ, JpK(t) 6= ∅ =⇒ Jp′K(t) 6= ∅. In other words, the existence of an
embedding of p into t implies the existence of an embedding of p′ into t.

Let p, p′ be two patterns in P //,[],∗. Miklau and Suciu [12] have shown
that the decision problem of whether p 6⊆ p′ is NP-hard. We reduce the non-
containment problem to that of determining whether a read-insert conflict exists.

Theorem 4 Read-insert node conflict detection for P //,[],∗ is NP-hard.

Proof: Given an instance of the non-containment problem, that is, two patterns
p, p′ ∈ P //,[],∗, we construct an instance of the read-insert conflict problem.
We construct an insertion operation I = insertqI ,X and a read operation,
R = readqR

, where qI , X , and qR are constructed from p and p′ as depicted in
Figure 7a-c; qI is the pattern equivalent to the XPath expression α[β[p][γ]]/β[p′],
qR is equivalent to α[β[p′][γ]], and X is the tree consisting of a single node labeled
γ, where α, β, γ are symbols not used in p and p′. Observe that the construction
can be performed easily in polynomial time.

We show that there is a read-insert node conflict between R and I if and
only if p 6⊆ p′. If p 6⊆ p′, then we can construct a witness tree W as shown in
Figure 7d, where the root node is labeled α and contains two distinct children
labeled β. One β child contains a subtree tp for which there is an embedding
of p into t, but no embedding of p′ into tp. Since p 6⊆ p′, the existence of such
a tp is guaranteed. This β child also contains a node labeled γ. The other β
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Figure 7: (a) Query qI used in insertion operation (b) Tree added in insertion
operation (c) query qR used in read operation (d) Structure of witness tree.

child contains a tree tp′ for which there is an embedding of p′ into tp′ , but no γ
child. R has no embedding in W because the β child of root(W ) that matches
p′ does not have a γ child. R does have an embedding after the execution of
the insertion operation, which inserts a γ node into the appropriate point. As
a result, R(W ) = ∅, but R(I(W )) = {root(W )}, which implies a read-insert
conflict.

If there is an read-insert conflict, there is a tree W that is a witness to the
conflict. Observe that for all t ∈ TΣ, R(t) returns at the most a single node
(root(t)). Since R(W ) 6= R(I(W )), R(W ) must be empty and R(I(W )) must
be root(W ). Since R(I(W )) and R(W ) are different, the insert operation
modifies the tree W . There must be, therefore, an embedding of I into W .
Consider the subtree of W , tp, to which an embedding maps the subpattern of
I corresponding to p. There can be no embedding from p′ into this subtree;
this would imply that there is an embedding of R into W where the subpattern
corresponding to p′ is mapped to tp. As a result, tp is a tree that has an
embedding from p but not from p′, proving the assertion that p 6⊆ p′.

Since R and I conflict if and only if p 6⊆ p′, the read-insert node conflict
problem is NP-hard.

Corollary 3 Read-insert node conflict detection for patterns in P //,[],∗is NP-
complete.
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Remarks: Observe that the reduction shown for node conflicts cannot be used
directly for tree conflicts. Every tree that causes an insertion to occur would
be a witness to a tree conflict. We modify R slightly, where we add a child
node labeled δ to root(R) and mark this child node as the output node. Since
the subtree under node matching δ is never modified by I , there will be a tree
conflict between the modified R and I if and only if there is a node conflict
between the modified R and I .

For the value conflicts, note that in this reduction, the value and tree conflict
semantics match (in a sense). A modified R, R′, as suggested for the tree conflict
case, can be used to show that the problem is NP-hard for value conflicts as
well. If p 6⊆ p′, there is a tree W such that R′(W ) = ∅ and R′(I(W )) 6= ∅ (which
would raise a conflict in the value-based semantics). We claim that read-insert
detection is NP-complete for all three kinds of conflicts.

5.2 Read-Delete Node Conflicts

The characteristics of the read-delete conflict detection problem for P //,[],∗ are
similar to that of the read-insert problem. We, therefore, only sketch the proofs
of membership in NP and NP-hardness.

Theorem 5 Read-delete node conflict detection for P //,[],∗ is in NP.

Proof:[Sketch] The idea behind the proof of membership in NP is similar to the
read-insert case — demonstrate that any witness W to a read-delete conflict can
be pruned into a witness of size polynomial in the inputs. Let R be the read
operation and D be the delete operation. Let v be a node in R(W ) that is not
in R(D(W )). We select an embedding of R into W where O(R) is mapped to v
and mark all nodes in W that participate in the embedding. We also consider
the ancestor of v in W , u, such that u is not in R(D(W )) and the parent of
u is in R(D(W )). There must be at least one such node since root(W ) is in
R(D(W )). u must be a deletion point — we select an embedding of D in W
that selects u as the output node, and mark all nodes that participate in the
embedding. As in the read-insert case, we then reparent to reduce W to a new
tree W ′ polynomial in the size of the inputs such that all marked nodes and the
relationships between them are preserved. R(W ′) will contain v, but R(D(W ′))
will not. As a result, W ′ will be a witness to the read-delete conflict.

Since any conflict can be found in a tree of size less than k where k is
polynomial in the size of D and R, we can non-deterministically guess a tree
and verify whether it is a witness to the conflict. As a result, the read-delete
problem is in NP.

Theorem 6 Read-delete node conflict detection for P //,[],∗ is NP-hard.

Proof: As in the read-insert case, we provide a reduction to the non-containment
problem. Given an instance of the non-containment problem, that is, two pat-
terns p, p′ ∈ P //,[],∗, we construct an instance of the read-delete conflict prob-
lem. We construct a deletion operation D = deleteqD

and a read opera-
tion, R = readqR

, where qD, qR are constructed from p and p′ as depicted
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Figure 8: (a) Query qD used in deletion operation (b) query qR used in read
operation (c) Witness W to read-delete conflict.

in Figure 8a-b; q is the pattern equivalent (roughly) to the XPath expression
qD = α[β[p]]/γ[p′], and qR is equivalent to α[∗[p′]], where α, β, γ are arbitrary
symbols. Observe that the construction can be performed easily in polynomial
time.

We show that p 6⊆ p′ if and only if D and R have a read-delete conflict. If
p 6⊆ p′, there must be a tree tp such that there is no embedding from p′ into tp.
We use the witness tree in Figure 8c to show a read-delete node conflict. In W ,
tp′ is some tree for which there is an embedding of p′ into tp′ . Clearly JRK(W )
contains root(W ) since root(W ) contains a grandchild that has an embedding
from p′. The delete operation, D, will remove the subtree of W rooted at the
node labeled γ. Therefore, R(D(W )) will not contain root(W ) since D(W )
does not contain any child of root(W ) into which p′ can be embedded (by
assumption, p′ cannot be embedding into tp). As a result W is a witness to a
read-delete conflict.

If there is a read-delete conflict, let W be a witness to the conflict. Since
R(D(W )) 6= R(W ) and R(t) for any tree in TΣ contains at most one node
(the root of t), R(D(W )) = ∅. Suppose p ⊆ p′. Since the deletion operation
modifies W , there must be an embedding of D into W . Therefore, root(W )
must contain a child u labeled β such that there is an embedding of p into a
subtree under u, tp, where the root of p is mapped to the root of tp. This tree
is not deleted by D — only children of root(W ) labeled γ are affected by the
delete operation. As a result, since p ⊆ p′, there must be an embedding of R
into D(W ), where the node labeled ∗ in R is mapped to u and p′ in R is mapped
to tp. The existence of an embedding contradicts the fact that R(D(W )) = ∅.
Therefore, p 6⊆ p′.

Since p 6⊆ p′ if and only if D and R have a read-delete conflict, we can
conclude that the read-delete problem for patterns in P //,[],∗ is NP-hard.

Corollary 4 Read-delete conflict detection for patterns in P //,[],∗is NP-complete.
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remarks: As in the read-insert case, a slight modification to R (adding a child
labeled δ of root(R) as the output node) will ensure that p 6⊆ p′ if and only
if the modified R and D do not have a tree or value conflict. The details are
omitted for space.

6 Discussion

We now examine extensions to the problems discussed in the paper.

Complex Updates While we have focused on read-delete and read-insert con-
flicts, the other conflicts (delete-insert, delete-delete, and insert-delete) are of
interest as well. Informally, we can define conflicts in these situations as two
operations o1, o2 conflict if there is a tree t ∈ TΣ such that o1(o2(t)) is not equal
to o2(o1(t)), where o1 and o2 can be either an insert or a delete.

In the reference-based semantics, the definition of these conflicts is not com-
pletely straightforward. Two insertions I1 and I2 ought not to have an insert-
insert conflict if I1 and I2 are identical; in this case, for any t ∈ TΣ, I1(I2(t))
ought to be considered equivalent to I2(I1(t)). In the reference semantics, the
problem is with the clones of X (in insertp,X) that are inserted into any tree
— they do not preserve node equality. A suitable reference-based semantics
of conflicts would have to distinguish these nodes appropriately. Value-based
semantics do not have this problem.

The reductions from XPath containment provided in Section 5 can be modi-
fied in a straightforward manner to show that each of these conflicts is NP-hard.
We conjecture it possible to extend the techniques of Section 5 to show mem-
bership in NP as well.

Fragments of XPath A question we have not considered in this paper is the
complexity of tree patterns in P //,[], that is, the subset of P //,[],∗ that allows
branching, but not the use of the wildcard operator. Containment for this subset
is in ptime [2].

For other subsets of XPath, we remark that the satisfiability problem (P //,[],∗is
always satisfiable) can be encoded as a read-delete (or read-insert) problem. A
read that selects all nodes in a tree would always conflict with a delete unless
the delete pattern were not satisfiable. For subsets of XPath that can result
in unsatisfiable tree patterns (for example, those involving parent or ancestor),
this reduction may be useful.

Schema Information The complexity of conflicts when schema information
(for example, DTDs) is available is an open problem. In general, the addition of
DTDs appears to raise the complexity of issues related to XPath. For example,
as mentioned before, containment of P //,[] in in ptime. When the problem of
containment is constrained to detect whether for all trees conforming to a DTD,
one XPath is contained in another, the problem is coNP-complete [13].
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7 Related Work

The subject of updates in XML has only recently started getting attention.
Efforts have been focused on the specification of an appropriate set of update
operations [16, 17, 21] and incremental validation of XML [3, 14]. There has
been a significant amount of work on containment [2, 12] and satisfiability [9]
for various fragments of XPath expressions. Update conflict detection has some
similarity to these problems in that the properties of fragments of XPath ex-
pressions play a role, but the ability to change trees through updates adds an
interesting new dimension.

The field of data dependencies in programs has been well-studied — mostly
for programs that operate on arbitrary data structures. Some analyses, for
example, shape analysis [15], use properties of data structures (for example,
being a tree). XPath expressions, considered as pointer expressions, are fairly
powerful (they support transitive closure with the descendant axis). We are
unaware of any static analysis results that apply directly to the update conflict
problem.

8 Conclusion

We believe that update operations (with value-based or reference semantics)
are useful additions to current XML-based programming languages. With the
presence of update operations, a natural question is when modifications to data
cause two operations to conflict. We have provided three alternate formula-
tions of semantics for conflicts, two that are reference-based, and one that is
value-based. For linear XPath expressions that do not support branching, but
allow child and descendant axes, and the wildcard operator, we have shown that
polynomial-time algorithms exist for all three semantics. If the branching op-
erator is also allowed, the problem becomes NP-complete. The development of
an understanding of updates can lead to more efficient compilers for languages
such as XQuery and XJ.
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