
RC23738 (W0503-053) March 9, 2005
Computer Science

IBM Research Report

The Semantic Analysis Workbench (SAW): Towards a
Framework for Knowledge Gathering and Synthesis

Anthony Levas, Eric Brown, J. William Murdock, David Ferrucci
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

The Semantic Analysis Workbench (SAW):
Towards a Framework for Knowledge Gathering and Synthesis

Anthony Levas, Eric Brown, J. William Murdock, and David Ferrucci
IBM TJ Watson Research Center

PO Box 704
Yorktown Heights, NY 10598, USA

{levas, ewb, murdockj, ferrucci }@us.ibm.com

Keywords: Search and Retrieval, All Source Intelligence

Abstract

We describe a tool called the Semantic Analysis Work-
bench (SAW) that integrates a broad set of analysis and
search functions to support the Unstructured Information
Management (UIM) lifecycle. We discuss the SAW and
its application to an intelligence scenario and articulate
the requirements for an underlying framework that sup-
ports Knowledge Gathering and Synthesis (KoGS) tasks.

1. Introduction
Unstructured information is the fastest growing source of
current, high value information available. However, ex-
tracting relevant content from large volumes of multi-
modal data and representing it in forms required by
search and mining applications that can be used by Intel-
ligence Analysts is a challenging problem. Analysts need
tools and techniques to help focus data collections to
manageable sets containing relevant content. Light-
weight analytics, such as that required by keyword
search, may be appropriate for large sets of data. Deep
analytics, such as that required for fact and deductive
search, need to work on smaller volumes of information
to be effective. While incrementally seeking a rich set of
facts and justifying evidence, analysts need to prudently
apply analysis to unstructured information at different
phases of the knowledge gathering and synthesis task.

In this paper we describe a tool called the Semantic
Analysis Workbench (SAW). It was built using the
UIMA SDK (SDK 2004), a Java implementation of the
IBM Unstructured Information Management Architecture
(UIMA) (D. Ferrucci and A. Lally 2004 and 2004b). The
SAW integrates a set of analysis and search functions to
support 1) development of analytics, 2) configuring and
running analysis on collections of data, and 3) exploring
the results using different search paradigms each requir-
ing incrementally complex analysis; these include key-
word and semantic search as well as fact search for view-
ing entities and their relations. We will discuss the SAW
and its application to an intelligence scenario and articu-
late the requirements for an underlying framework to
support knowledge gathering and synthesis tasks.

2. Overview
The success of UIM applications hinges on the availabil-
ity of a set of tools and methodologies that can be used to
rapidly develop components for analysis of artifact and
for searching the analysis results. UIMA has an associ-
ated framework called the UIMA SDK, which is de-
signed to support the development and deployment of
analysis in UIM applications. The SAW application is a
graphical tool that supports building, configuring and
deploying UIMA analytics, as well as providing a basis
for query and delivery of information to the end user.
Together these software tools provide a powerful assem-
bly of function for analysis and search in UIM applica-
tions.

2.1 UIMA
There are five major UIMA components that will be

described here. They are called Collection Reader, Com-
mon Analysis System (CAS), Analysis Engine, CAS
Consumer and Collection Processing Engine (CPE).

The Collection Reader is the first component in the
UIMA processing pipeline, and is responsible for prepar-
ing the unstructured artifacts passed to it for use down-
stream. This may include stripping unwanted header in-
formation and removing extraneous tags or characters
that are not needed for analysis. It inserts this unstruc-
tured artifact into a UIMA data component known as a
CAS. The unstructured artifact is referred to as the Sub-
ject of Analysis (SofA) for that CAS. The CAS travels
through the sequence of Analysis Engines, getting ana-
lyzed in turn by each Analysis Engine it encounters.

An Analysis Engine is the processing component in the
pipeline, that processes and adds structured information
(in the form of annotations) to each CAS analyzed. It
does this by analyzing the SofA, as well as other struc-
tured information that has been added to the CAS by
analysis engines earlier in the pipeline. Analysis Engines
are arranged in a specific sequence to perform the proc-
essing required to extract the desired structure and do not
retain state from any CAS processed previously.

CAS Consumers can retain state across CASs and pro-
duce results over the entire collection. A CAS Consumer

developer is free to build whatever structure they feel is
appropriate to aggregate collection-level results. They are
often used for processing and/or storing structured infor-
mation in persistent storage such as a search index, a
knowledge base, or a database.

The Collection Processing Engine (CPE) is the con-
tainer that aggregates all the components into a single
processing component that essentially defines the com-
plex processing pipeline. The CPE is defined by a de-
clarative description of the configuration of all the indi-
vidual elements as well as their respective connectivity.
It is important to note that there is declarative informa-
tion for each of the UIMA components describing re-
quired inputs and outputs and many other relevant pieces
of information. This declarative information is used to
dynamically assemble the required software components
into an executable form that is deployed in a UIM appli-
cation.

UIMA provides a powerful architecture for reusing and
combining components to create CPEs that can handle
very complex processing. It is designed to be scalable in
deployment and has been successfully employed both
inside and outside IBM. This section provides a very cur-
sory overview of the major UIMA components. Those
interested in a comprehensive description of UIMA are
encouraged to see the following publications (D. Ferrucci
and A. Lally 2004 and 2004b).

2.2 The SAW
The SAW is an application that integrates a broad set

of tools that are used throughout the development process
of UIM applications. Figure 1 illustrates the support that
the SAW provides for managing this life cycle. There are
three orthogonal activities here: 1) Develop Analysis, 2)
Configure and Run Analysis and 3) Explore Results.

To support the Develop Analysis phase, the SAW
launches the Java Eclipse platform (Eclipse 2003) loaded
with the UIMA SDK, along with a set of specialized
plugins. Developers use this IDE to write and test ana-
lytics that are used in UIM applications.

The Configure and Run Analysis phase is supported by
providing access to the Collection Processing Engine
editor tool, a graphical tool for building CPEs. This tool
allows analysts to select, parameterize, and sequence
components, as well as run the analysis. The CPE is used
to analyze a set of unstructured artifacts that have been
aggregated into a collection, and as a result produces
structured information repositories.

The Explore Results phase is supported by a rich set of
search capabilities that are used to query the structured
information derived from the previous phase. The SAW
provides four major search capabilities, each contained in
its own tabbed pane in our graphical user interface. They
are: Keyword Search, Semantic Search, Entity Search and
Fact Search.

The Keyword Search function uses search engine tech-
nology to access artifacts through simple keyword types
of queries. These queries are applied against search in-

dexes produced during the analysis of artifacts. The arti-
facts matching the search query are presented in a hit list,
in a manner similar to most search engines available to-
day.

In Semantic Search, the words of each document have
been annotated with semantic types, or tags. These se-
mantic tags are then the keys that are encoded in the
search index, as well as the actual words themselves.
Queries can be made against these semantic tags to locate
documents of interest. Note that tags can be used by other
tags to form more complex semantic structures. The Se-
mantic Search index is queried by using an XML frag-
ment language (Carmel et. al. 2002).

The SAW provides a tool that allows users to graphi-
cally compose an XML query fragment by selecting se-
mantic types presented in a list derived from the set of all
known types found in the collection. In addition a user
can build nested structures using this editor to compose
complex queries.

Figure 1. UIM lifecycle supported by SAW

Semantic Search provides a very powerful search ca-
pability returning artifacts based on semantic category.
For example, this capability can be used to focus or nar-
row a search e.g. to disambiguate between artifacts refer-
ring to the Person Kennedy, the Airport Kennedy, or the
Facility Kennedy (hotel). In other situations, it can be
used to cast a broad search query, returning all artifacts
that contain a particular tag. For example, <PERSON>
</PERSON> would return all documents that include at
least one Person annotation. We will demonstrate how
narrowing and broadening are very effective search tech-
niques for different situations in our example below.

Entity Search and Fact Search operate at a different
level. Specialized analytics, in this case, have produced
annotations at the Referent Layer. This level uses annota-
tions from prior analytics to produce structured informa-
tion for the entities and relations discovered in the arti-

facts undergoing analysis. Entities can be thought of as
individual things that exist in the data - for example, the
specific person John F. Kennedy, or the specific country,
the United States. Relations are semantic constructs that
relate entities. For example, [John F. Kennedy President
United States] encodes the fact that Kennedy was at one
time the president of the US.

Coreference analysis relates mentions in a document
that have different forms for the same entity. For exam-
ple, IBM, and International Business Machines should
resolve to the same entity. Pronominal reference can also
be resolved. For example, in “John went home. He took
the bus”, both “John” and “he” refer to the same entity,
requiring these facts be associated with the specific entity
John. In addition, coreference must span documents,
enabling facts to be collected for an entity across many
documents. During the analysis phase, we extract entities
and relations and encode their structured information in a
repository called the Extracted Knowledge Data Base
(EKDB). The EKDB is a relational database and can be
queried using a standard SQL API. The graphical user
interface provided by the SAW, however, shields the user
from this level and allows queries to be easily created
without requiring knowledge of SQL. We will illustrate
many of the features described here in the example be-
low.

3. Example Scenario
We will illustrate the various capabilities of the SAW

by working through an example information extraction
and analysis scenario as if we were an intelligence ana-
lyst. For the scenario we will use the document collec-
tion from the ARDA sponsored NIMD program
(http://www.ic-arda.org/Novel_Intelligence/). The collec-
tion includes 250 relatively short documents comprising
four types: FBI reports, CIA reports, telephone call inter-
cepts, and nuclear smuggling abstracts from the Center
for Nonproliferation Studies. The nuclear smuggling
abstracts are real, while the rest are fabricated. We have
also added ten locally generated (fabricated) documents
that are similar in nature to the FBI and CIA reports, for
a total of 260 documents. The fabricated data describes
various activities surrounding a number of terrorist plots.
No single document describes the entire plot, but by piec-
ing together information across a number of documents,
one can uncover the plot in a fair amount of detail. Our
task is to uncover the plot.

3.1 First Iteration
We begin the plot with the following information. Re-
cent network chatter has identified an individual and an
organization involved in the plot. The chatter has been
spotty and noisy, so all we know about the individual is
that the person’s first name is “Muhammed”, and all we
know about the organization is that its name contains the
word “Al”.

Given this information, a typical starting point is to in-
dex the available data using a text search engine and then

run keyword queries to find relevant documents. Build-
ing a search index capable of supporting keyword queries
requires minimal text analysis, with tokenization and
sentence boundary detection the only mandatory process-
ing.

In the SAW, we invoke the Collection Processing En-
gine configuration tool (called the CPE GUI) and identify
the components required to index the document collec-
tion. This includes a Collection Reader capable of read-
ing the document collection, an Analysis Engine that to-
kenizes and detects sentence boundaries, and a CAS Con-
sumer that extracts tokens and sentence boundaries from
the CAS and builds the search index.

After running the configured Collection Processing
Engine (CPE), we navigate to the Search tools, select the
Keyword Search function, and configure it to run against
the index we just built. Given that we are looking for a
person with the name “Muhammed”, we enter the key-
word query “Muhammed”, as shown in figure 2. The
search engine returns a hit-list and we view the top
ranked document with the Document Viewer.

Figure 2. Keyword Search using the SAW

The Document Viewer, as illustrated in figure 3, shows
the document with the query terms highlighted. We im-
mediately see that the document matches the query (i.e.,
it contains the term “Muhammed”), but it does not de-
scribe a person named “Muhammed”. Rather it mentions
the “Muhammed Book Company”. Although the docu-
ment matches our query term, it is not relevant to our
intended query.

We view the second document on the hit-list and dis-
cover the same situation, so we move on to the next
document. After viewing several documents, we still
have not found a relevant document, so we decide to

http://www.ic-arda.org/Novel_Intelligence/

search using the other piece of information we have,
namely that the plot involves an organization with the
word “Al” in its name.

Figure 3. Document viewed with the Annotation Viewer

We enter the keyword query “Al” and view the docu-
ments on the hit-list in a similar fashion. The top ranked
document matches the query (i.e., it contains the term
“Al”), but it does not describe an organization with the
word “Al”. Rather, the document describes a person
named “Al”. Viewing several documents on the hit-list
again fails to return a relevant document.

In both cases, we are suffering from query term ambi-
guity—the query terms have multiple meanings in the
document collection and the simple keyword search in-
terface gives us no way to distinguish which meaning we
want. Often this results in far too many documents for an
analyst to view. Our first attempt at analyzing the docu-
ment collection does not yield an effective search appli-
cation that allows us to uncover the plot. Using the
SAW, we return to the CPE configuration step and see if
we can apply more sophisticated text analysis to the
problem.

3.2 Second Iteration
In the first query, we are looking for a person. In the
second query, we are looking for an organization. Both
of these concepts are entities, which can be detected by a
Named Entity Recognizer. As such, we decide to incor-
porate a Named Entity Recognizer into our text analysis
pipeline. In addition to tokens and sentences, this will
identify semantically meaningful concepts in the docu-
ments and allow us to use a semantic search engine to
search the documents. Using the CPE tool, we add a
Named Entity Recognizer to the analysis and select a
CAS Consumer that will build a semantic search index.

 After processing the data we return to the SAW
Search tools and this time select the Semantic Search
function. Now, rather than enter simple keywords, we
can select semantic concepts from a list of available con-
cepts (generated based on the set of entities and relation-
ships detected by the Named Entity Recognizer) and
build a semantic search query. Returning to our first
query, we start by selecting the semantic concept Person
using the Semantic Search panel of the SAW, as shown
in figure 4. We then further constrain the query to find a

person with the name “Muhammed”. In the XML frag-
ment query language supported by the semantic search
engine, the query is written as: <Per-
son>Muhammed</Person>. This query yields a much
shorter hit-list. We view the top-ranked hit as before and
this time we find a document that mentions the person
“Muhammed bin Harazi”, which not only matches the
query term, but also is relevant to our query. Figure 5
shows this document using the Annotation Viewer, in
this case highlighting the concept Person throughout the
document.

Figure 4. The Semantic Search panel

We then proceed to our second query and build a se-
mantic search query looking for an organization with the
word “Al” in it. The query is written as: <Organiza-
tion>Al</Organization>.

Figure 5. Document with Person annotations

Again, this query returns a much shorter hit-list and
the top ranked document mentions “Al Qaeda”—a rele-
vant document.

Reading through a few relevant documents from these
two queries we start to gather information but still don’t
see a clear plot. We do discover, however, that some of
the documents in our collection describe phone calls
made by Muhammed bin Harazi. This suggests that we
should perform more detailed analysis on phone calls.
Ideally we would automatically identify phone calls de-
scribed in the document collection and index them as
semantically meaningful entities. Using the SAW, we
return to the CPE configuration tool and look to add an-

other analysis engine that identifies phone calls. In this
case, we don’t have a component in our portfolio that
satisfies this requirement. We must enter the third phase
of the SAW methodology and develop a new analytic.

3.3 Third Iteration
Selecting “Develop Analysis” in the SAW takes us to the
analytic development environment where, using the
UIMA SDK, we develop two new Analysis Engines: one
that identifies phone numbers and one that identifies
phone calls, modeled as phone call relationships between
two phone numbers. With the introduction of relation-
ships into our analysis, we can consider other search and
query applications that go beyond keyword and semantic
search. In particular, we can construct an Extracted
Knowledge Database (or EKDB) that stores relationships
between entities and provides a query interface that al-
lows us to search over these relationships, which we call
facts.

Figure 6. Facts with the MadePhoneCallTo relation

The SAW provides a complete environment for devel-
oping, testing, and debugging analytics. When we are
satisfied that our new analytics are operating correctly,
we return to the CPE configuration tool and integrate
them into the analysis pipeline. To build the EKDB, we
incorporate the appropriate CAS Consumer into the CPE.
The EKDB provides a powerful query capability over
information assembled and merged over the entire docu-
ment collection. To fully exploit this, we decide to add
additional analysis engines that identify additional named
entities and relationships, an analysis engine that recon-

ciles annotations made by multiple analysis engines, and
CAS Consumers that perform cross-document co-
reference resolution. This last set of components links
multiple mentions of the same concept (possibly using
different surface forms, called variants) to a single entity
and canonical form.

After processing the document collection with our rela-
tively complex CPE, we navigate to the Search Tools,
select the Fact Search function, and configure it to point
to the EKDB we just built. The Fact Search query inter-
face allows us to search for facts in the database by con-
straining various aspects of the facts that we seek. In
particular, we can specify the domain, the relationship, or
the range of the fact, or some combination of the above.
For the domain and range, we can specify just the annota-
tion type, or further select a specific instance of that type.

Figure 7. Document with MadePhoneCallTo annotations

For example, to see all of the phone calls that the sys-
tem identified in the document collection, we specify
“MadePhoneCallTo” as the desired relationship and leave
the domain and range unspecified. This search returns a
list of all of the phone calls in the EKDB. Selecting a
particular phone call causes the interface to display more
details about that fact along with a list of documents that
contain that fact (i.e., provide evidence to support the
fact) as shown in figure 6. If we view one of the docu-
ments in the Document Viewer (figure 7), we see the
query fact highlighted in the document along with the
participating annotation types and can easily confirm that
the phone call fact was correctly extracted from the
source document.

Exploring phone calls is a powerful way to connect in-
dividuals in the document collection. We can also start
with a particular individual and search for all facts that
involve that individual. This time, we’ll select Person as
the semantic type for the fact domain, and then further
constrain the domain to be the individual “Muhammed
bin Harazi”. We’ll leave the relationship and range un-
specified. The resulting fact list immediately shows that
Muhammed bin Harazi is involved with the Talihan.
Selecting that fact (figure 8) further reveals that the en-
tity Muhammed bin Harazi has other variant forms in the

document collection, including “Abdul Ramazi”. If we
view the document that supports this relationship, we see
that the text explicitly states that Muhammed bin Harazi
uses the alias Abdul Ramazi. The aggregate analysis
engine that we ran on the document collection was able
to detect this relationship and record the link in the
EKDB, thus providing a significantly more powerful
search capability. By resolving multiple variants to a
single canonical form, the analysis allows us to discover
important connections between the different variant
forms and to query at the conceptual level rather than the
lexical level.

Figure 8. Facts with Person [Mohamed bin Harazi]

3.4 Summary
This scenario demonstrates a typical situation faced by an
intelligence analyst at the start of an information gather-
ing task. Very little is known about the available data
and the information contained within it, leading to a rela-
tively shallow and high-level initial approach. As more
information is discovered, the analysis applied to the data
must be tailored and refined based on the information
need and the characteristics of the data. Deeper, more
sophisticated analysis then leads to richer, more powerful
query applications.

The SAW naturally supports this iterative, incremental
approach to data analysis by integrating tools to easily
assemble, configure, and run a CPE, develop new ana-
lytics, and explore results with a variety of search and
query applications.

4. Conclusion
We have shown that the SAW provides a powerful set of
capabilities applicable to the UIM lifecycle. It has proven
to be an effective tool for developers of UIM applications
as well as for those interested in just viewing the results
of analysis. We have used the SAW extensively as a tool
for demonstrating UIMA and the capabilities of the un-
derlying analytics as well as a pedagogical tool in many
tutorials. The SAW is our first prototype application in-
tegrating a broad set of tools that support the UIM lifecy-
cle. This work has motivated us to begin thinking about a
framework we call KnOwledge Gathering and Synthesis
(KoGS), that bridges the UIMA Layer and the Applica-
tion Layer above, enabling the rapid development and
integration of a wide array of UIM applications.
 Our future work in developing the KoGS framework
will focus on a few key areas. Management of results of
analytics, such as Semantic Search indexes and Knowl-
edgeBases has emerged as a key requirement. Issues,
such as, naming; storing; merging new information; re-
moving unwanted information; declaring the type sys-
tems, the analytics and the CAS Consumers used in crea-
tion; re-useable graphics widgets for visualization, and a
host of other concerns need to be addressed to effectively
manage analysis results in UIM applications. Manage-
ment of collections of artifacts is also very important.
Similar issues, such as creating artifact collections, nam-
ing them, merging them, pruning them, etc. are especially
important. Managing the analysis session is also an im-
portant requirement. Allowing an analyst to keep and
browse a history of his activity, along with fruitful results
and provenance information, as well as dead ends en-
countered can help him in this process, as well as allow
sharing this information with colleagues. The three areas
above are just a few of the areas that we will begin to
explore as we develop the KoGS framework.

References
D. Ferrucci and A. Lally 2004a. Building an example appli-
cation with the Unstructured Information Management Ar-
chitecture. IBM Systems Journal 43, No. 3, 455-475.

D. Ferrucci and A. Lally 2004b. UIMA: an architectural
approach to unstructured information processing in the
corporate research environment. Natural Language Engi-
neering 10, No. 3-4, 327-348.

D. Carmel, N. Efraty, G. Landau, Y. Maarek, Y. Mass, 2002
An Extension of the Vector Space Model for Querying
XML Documents via XML Fragments, ACM SIGIR’2002
Workshop on XML and IR, Tampere, Finland.

Eclipse 2003, The Eclipse Platform Technical Overview,
http://www.alphaworks.ibm.com/tech/uima

SDK 2004: The Unstructured Information Management
Architecture. http://www.alphaworks.ibm.com/tech/uima

http://www.research.ibm.com/journal/sj/433/ferrucci.pdf
http://www.research.ibm.com/journal/sj/433/ferrucci.pdf
http://www.research.ibm.com/journal/sj/433/ferrucci.pdf
http://journals.cambridge.org/bin/bladerunner?REQUNIQ=1097514546&REQSESS=1109096&118200REQEVENT=&REQINT1=252254&REQAUTH=0
http://journals.cambridge.org/bin/bladerunner?REQUNIQ=1097514546&REQSESS=1109096&118200REQEVENT=&REQINT1=252254&REQAUTH=0
http://journals.cambridge.org/bin/bladerunner?REQUNIQ=1097514546&REQSESS=1109096&118200REQEVENT=&REQINT1=252254&REQAUTH=0
http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima

