
RC23747 (W0510-087) October 12, 2005
Computer Science

IBM Research Report

Evaluation of a Dynamic Processor Overclocking
Implementation for Power-Constrained Systems

Juan Rubio, Karthick Rajamani, Freeman Rawson,
Heather Hanson, Soraya Ghiasi, Tom Keller

IBM Research Division
Austin Research Laboratory

11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Evaluation of a Dynamic Processor Overclocking Implementation for
Power-Constrained Systems

Juan Rubio, Karthick Rajamani, Freeman Rawson, Heather Hanson,
Soraya Ghiasi, Tom Keller

Power Aware Systems Group
IBM Research, Austin, TX 78758

{rubioj,karthick,frawson,hansonh,ghiasi,tkeller}@us.ibm.com

Abstract
Power and thermal constraints are proving to be limiting factors for computer system performance. Current

approaches set the nominal frequency of a system to meet the timing, power, and cooling limits of the system,
while running a worst-case workload. This limits the systemto operate at this frequency even for workloads
that have lower power and cooling requirements. As a consequence real workloads pay a performance cost for
operating at a design point defined by the worst-case workloads.

We proposeDynamic Processor Overclocking(DPO) as a way of reducing the performance impact of the
chosen power and thermal design point on workloads that havesufficient slack in their power and cooling re-
quirements. Dynamic Voltage and Frequency Scaling (DVFS) has been widely studied in recent years, while
solutions exploiting it have focused on saving energy, DPO uses this technique to obtain increased performance.
To do so, the DPO module monitors the workload behavior and adjusts the frequency of the system at run-time
to improve performance while maintaining the power below the designed limit.

The paper presents a prototype DPO implementation and evaluates its benefits using the SPEC CPU2000
benchmarks. We identify the workload characteristics thataffect the speedups obtained from overclocking as
well as how the power constraints affect the performance improvement we obtain from DPO.

1 Introduction

The last twenty years have seen a steady increase in the performance of computer systems at a rate unmatched

by any other industry. But the increasing capacity and density of components in systems has resulted in a steady

growth in power supply and cooling requirements. This growth in power and cooling requirements has now

reached a point where power and thermal constraints are barriers to the continuation of cost-effective growth in

computing performance.

1.1 Power Constraints Dictate Performance

A computer system or a component may bepower-limitedby:

• Power delivery: a limit in the amount of power that can be supplied to a module or system. This limitation

can occur because of factors such as a limit in the capacity ofthe wires that feed current to the module, or

1

the maximum current a specific voltage regulator design can deliver.

• Power dissipation: a limit in the rate at which power (in the form of heat) can be removed from a system.

This limitation is directly connected with the characteristics of the cooling system such as the thermal

resistance and capacity of the heat sink and airflow through the system.

Both of these limitations can result from a combination of factors including physical and cost constraints.

In many systems, the primary consumer of power and generatorof heat is the processor. Peak processor

power consumption and heat are related to peak switching activity. So the conventional approach for ensuring

a working system is to design the power and cooling systems for specific capacities tied to an estimate of the

switching activity for the chip operating at a target frequency and associated voltage. Alternatively, for a system

with specified power supply and cooling capabilities, the conventional approach is to fix the frequency of the chip

and the voltage needed to support it at a value low enough to limit the switching power and, consequently, the

total power to the specified capabilities. The chosen frequency of operation that matches the supply and cooling

capabilities then dictates the performance of the system.

1.2 Fixing Frequency to Meet Power-Constraints Impedes Performance

Using a fixed operating frequency to obtain a known power consumption assumes that the operating frequency

solely determines the switching activity and consequentlythe power consumption. However, the switching power

is actually dependent on the both the frequency of the circuit operation and a highly workload-dependent switch-

ing factor:P ∝ Capacitance ∗V 2 ∗ frequency ∗ switching factor. Applications that cause intense processor

core activity either from a high degree of instruction-level parallelism (e.g., high instructions retired per cycle)

or higher speculative execution tend to have higher core power consumption than those that do not. At the

chip-level, high level of on-chip cache activity can also increase power consumption. As a consequence it is

impossible to adopt a workload-agnostic approach for determining the power consumption even at a fixed fre-

quency. The current way of meeting power constraints under variable switching activity and power consumption

for different workloads is to have the chip vendors test their chips at a desired operating frequency for a spe-

cial (set of) worst-case workload(s) which impose switching factors that they expect no practical workload can

match, appropriately de-rate the power consumption for realistic workloads and provide the de-rated number

to system designers building the cooling and power supply sub-systems. Most workloads still fall short of the

vendor-specified (derated) power consumption numbers but have to pay the price in performance by using the

2

fixed frequency and resulting performance level that are guaranteed to be safe by the vendor specifications.

1.3 Dynamic Processor Overclocking to Boost Performance

In this paper, we present an adaptive approach for meeting power constraints that avoids the performance

impact seen by real workloads when forced to operate at a frequency determined by worst-case workloads.

Our scheme uses the voltage and frequency scaling capabilities of processors and the systems supporting them

to boost application performance throughDynamic Processor Overclocking(DPO) whenever permitted by the

power constraints. Essentially, we dynamically trade off frequency with workload-dependent switching activity

to ensure that the power consumption is just within its limits.

Dynamic frequency and voltage scaling (DFVS) technology was initially adopted in processors designed for

embedded devices such as IBM PowerPC 405LP [1] and Intel PXA (Xscale) processors [2]. The technology

was used for energy savings in battery-operated environments. Even when variations of the technology moved to

larger system environments as with the Intel PentiumM [3] for laptops and the IBM PowerPC 970[4, 5] and newer

Intel Xeon processors in desktop and server systems, current systems exploit DVSonly to save powerwhen the

system utilization falls below pre-specified thresholds. Examples include Windows XP’s built-in power-saving

modes exploiting the Pentium-M’s DFVS capability, the PowerTune technology in the Apple G5 system ex-

ploiting the PowerPC970’s frequency-scaling abilities, and Intel’s Demand-Based Switching (DBS) for systems

using some of Intel’s newer Xeon processors. When DFVS is used just for power savings, the static margins for

setting the maximum operating frequency have to ensure thatthe power constraints will be met irrespective of

workloads. Thus, DVFS saves power by lowering the frequencyand voltage when the machine is largely idle,

but it does not attempt to do anything to increase the upper bound on frequency imposed by the design.

In contrast, our proposal utilizes DFVS to do two things.

• Meet system power constraints - We lower frequency when the workload-dependent switching activity at

the operating frequency causes too high a power consumptionrelative to the supply and cooling capabili-

ties.

• Increase performance for real workloads - We increase frequency whenever the workload-dependent switch-

ing activity and associated power consumption is sufficiently low relative to system capabilities.

The newly announced Intel Montecito [6, 7] processor adoptsa dynamic approach to processor clocking

somewhat similar to the one we describe, but it is managed by an on-chip embedded microcontroller, Foxton. In

3

contrast, we rely on features commonly found in a wide range of modern processors. Our work also provides a

general methodology that can be used by a variety of implementations to improve performance while remaining

under a power constraint. Section 3.2 provides more detailson our implementation and differences with the

Foxton approach.

The major contributions of this paper are

• the introduction of the notion of Dynamic Processor Overclocking as way of extracting additional perfor-

mance while keeping the power within the design limits of thesystem

• the evaluation of the benefits of DPO on hardware that implements DFVS

• a study of the relationship between the workload and the system characteristics which determine how much

the workload benefits from DPO.

The rest of the paper is organized as follows. The following section gives a broad overview of the related work.

Section 3 provides a broader description of our DPO proposal. Section 4 describes our experimental platform,

which is based around the Intel Pentium M processor, and our evaluation methodology for analyzing DPO’s

performance impact. In Section 5, we present the results of our evaluation, and we summarize our conclusions

in Section 6.

2 Related Work

2.1 Performance-aware Processor Activity Scaling

There have been a number of efforts over the years examining the implementation and effectiveness of dynamic

voltage and frequency scaling (DVFS) for saving power in embedded and laptop systems [8, 9, 10, 11, 12, 13].

Performance-oriented explorations include attempts to quantify and/or reduce the performance loss encountered

when using DVFS to save energy and prolong battery life. In contrast, our work targets performance increases

from the use of DVFS in a power-constrained environment.

Annavaram, et al., use energy per instruction to guide processor configuration in a four-processor system [14].

It focuses on exploiting thread-level parallelism in a workload to choose using multiple low-frequency cores

instead of a single high-frequency core for a more efficient and potentially higher performance execution. Al-

though this work does focus on performance improvement, it is applicable only to situations in which the degree

of thread-level parallelism varies and the number of available processors can be dynamically varied.

4

There are a number of schemes that use feedback control to select DVFS settings. For example, Uht and

Vaccaro’s TEAPC uses a feedback control system to adapt to changes in system temperature by decreasing

or increasing the frequency of the processor clock but makesno attempt to exceed the nominal frequency in

situations where the temperature remains below their threshold under full CPU load [15]. An earlier work along

somewhat similar lines but done for power control is that of Minerick, et al [16].

Felter, et al, examine the possibility of maximizing performance in the presence of reduced, fixed power

budgets by dynamically changing the allocation of power between the processor and memory [17]. For example,

during memory-intensive phases, more power can be allocated to the memory subsystem and less to the processor.

Recently, there has been more attention to the problems of power management for server and high-performance

computing systems. For example, the work of Kappiah, et al, attempts to save power in high-performance

computing environments by using DVFS to reduce the voltage and frequency on nodes that have less computation

to do [18]. Femal and Freeh apply a similar scheme to the data center environment [19].

2.2 Power Modeling with Performance Counters

Although processor performance counters are designed to monitor performance, they also provide an indica-

tion of processor and system activity, useful indicators for indirectly inferring or predicting power. One of the

earliest studies of using performance event counters as a proxy for power monitoring is [20], in which Bellosa,

et al. develop an energy model using event counters for the XScale processor.

Bircher, et al. investigate the correlation of several performance monitoring counters with power for a Pen-

tium4 system in [21]. They create an accurate model of average power with two event counters: fetched uops

and microcode ROM-delivered uops.

Isci and Martonosi also monitor power and collect performance counter data on a Pentium 4 system, devel-

oping a per-component power model for the processor core. They also report similarity matrices, demonstrating

power signatures that indicate distinct phases in the benchmark power behavior [22]. Contreras and Martonosi

construct, using regression techniques, power models for the Intel XScale architecture, which like our Pentium M

platform, has a limited number of performance counters [23].

Lee and Skadron develop a performance-counter-based temperature model which can model system tempera-

ture while an application is running [24].

5

2.3 Performance-Aware DFVS with Performance Counters

Power and temperature models based on performance counterscan be used to evaluate management decisions

and choose appropriate frequency and voltage settings for current conditions. For example, Weissel and Bellosa

develop an energy-efficient operating system scheduler known as Process Cruise Control that adapts to changes

in the composition of the instruction mix [25] as recorded byprocessor event counters. However, their goal is to

save as much energy as possible within the constraint of a particular, allowable performance loss.

Kotla, et al., instead use dynamic program classification and scheduling techniques to adjust the frequency

and voltage of a system to minimize the power consumption forexisting performance levels [26]. Ghiasi, et.

al., introduce an operating system scheduler that dynamically places tasks on the processor that most closely

matches the application’s ideal frequency setting [27] in amulti-processor system with heterogeneous-frequency

processors. Both rely on performance counter-based prediction to guide decision making. Neither attempts

to provide an explicit model of the power consumption or to ensure that any particular power constraint is met.

Instead, they assume that the power associated with a particular voltage and frequency has a fixed, constant value.

In contrast, we have a dynamic power model based on the performance counters, and exploit the variability in

power consumption at the same frequency from different workload activities enabling the choice of a higher

frequency than would be otherwise possible.

3 Dynamic Processor Overclocking

Although manufacturing technology and circuit design considerations both limit processor clock speed, in-

creasingly the first-order limitation for a particular processor family on a specific platform is power.

System vendors set the nominal clock frequency of the processor in a system by using a worst-case test of the

machine’s power, even thought there are many programs that can run at higher clock frequencies without crossing

this power limit. This slack in the power consumption for many workloads creates an opportunity to extract

more performance for these workloads by dynamically increasing the processor clock beyond the nominal value

dictated by the worst-case test. One can also take advantageof a power-adaptive processor clocking mechanism

in other scenarios. In a data-center power management situation, one can envision placing power caps on different

systems. A dynamic processor clocking system could be used to adapt to the set power limit while obtaining the

maximum performance under that limit. The solution we have developed is equally adept at fitting those needs.

6

3.1 Definition

Dynamic Processor Overclocking (DPO) increases the processor frequency to values that are within its range

of correct execution but which would exceed the power limitation imposed on the processor by the system envi-

ronment, if not carefully controlled. It does so dynamically using the standard mechanisms for dynamic voltage

and frequency slewing that are increasingly provided by thepower management features of modern micropro-

cessors, and it increases the clock speed only when the powerconsumed by running the current workload would

remain below the defined power limit. For many programs and workload mixes, this means that the processor

often runs at a higher than nominal frequency since the executing work requires less power than the worst-case

workload used to set the nominal frequency.

Figure 1 illustrates the behavior of a system using dynamic processor overclocking with two possible frequency

settings,f1 andf2, such thatf1 > f2. The top two curves show that the power constraint is exceeded during

portions of the system timeline when the processor uses onlyf1 but never when it uses onlyf2. The third graph

depicts the behavior when the processor dynamically chooses betweenf1 andf2 by picking the higher value of

f1 whenever the power is low enough andf2 otherwise.

Figure 1: Example of Dynamic Processor Overclocking. All traces show the same number of instructions. The
top plot is for a high frequencyf1, the second for a lower frequencyf2, and the bottom plot for a run using DPO.

.

7

3.2 Implementation

For a DPO implementation, it is important to correctly determine when it is safe to overclock the processor.

This requires some idea of the current power consumption – either a good real-time power feedback or real-time

access to good proxies for power. One would also need to have the ability to make a good estimate of the new

power consumption when a frequency change is to be made or alternatively a very fast and fine-grain adjustment

mechanism that one can use in atest-and-setfashion. Furthermore, a DPO implementation may be either in-band

or out-of-band. An in-band implementation requires software running on the main processor(s) to implement

the DPO algorithms. This software can potentially compete with the current workload for CPU cycles and

additional resources. An out-of-band implementation could be either completely in hardware or with additional

firmware support. Montecito’s Foxton microcontroller is anexample of an out-of-band hardware implementation

for dynamic frequency adaptation [7] that operates using the test-and-setapproach mentioned earlier.

In this paper, we present an in-band DPO solution prototype.In contrast to thetest-and-setapproach it uses

microarchitecture performance counters and an activity-based power model [28] to estimate both the current

power consumption and also predict the new power consumption if a frequency change were to be made. As

we use the now conventional DVS mechanisms instead of a specially architected, fine-grain slewing mechanisms

we have to couple it with good estimation models to avoid overshoots when the frequency is changed. The

power model we use is tuned to our specific processor and cooling conditions – to avoid processor manufacturing

variations and long-term temperature dependent effects – and can estimate the power consumption under different

voltages and frequencies1. The model is formulated as a group of piece-wise linear equations, which are easily

implemented in the form of lookup tables. We program and readthe processor performance counters to obtain

this information. In a real-world implementation one wouldneed a dedicated copy of the same counter for

effective deployment (conventional counters are for performance analysis capabilities and can be hijacked by

tools providing such services).

Our DPO software is implemented in the form of a service that continually monitors the performance counters

and estimates the power consumed while the main workload is running. This service is invoked approximately

every 10 ms and was designed to be brief and robust to avoid negatively impacting the main workload (we target

150 samples per second for the results discussed in the paper). On each invocation, the DPO service reads the

performance counters that are needed by the power model. Since these counters are read at a given frequency

1A document that presents a detailed description and evaluation of the power model is being prepared for a separate submission.

8

setting, a separate invocation of the model is needed to estimate the effect that frequency has over the measured

performance counters before we can estimate the power at those frequencies. Rate of some architectural events

would scale linearly with frequency (f ′

f
× Counter(f)) while some are unchanged by frequency scaling [28].

So we not only use a different set of coefficients in our piece-wise model for a frequency change but also used

an estimated value for the model inputs as well. All terms in the power model have positive coefficients. Thus,

to produce a conservative power estimate, we follow a scaling of the form:

Counter(f ′) =

Counter(f), f ′ ≤ f

f ′

f
× Counter(f), f ′ ≥ f

(1)

Once we obtain the estimated counters at each frequency, theDPO algorithm determines the highest frequency

setting that can be used without breaking the power limit. For the results discussed in this paper, the equations

employ a single counter-based model using the Instruction Decoded counts. Once we decide to change a fre-

quency we can do so immediately or implement a sliding windowthat reduces the occurrence of unnecessary and

potentially harmful transitions for workloads that exhibit a bursty behavior. For the results discussed, we make

down-scaling decisions immediately and delay up-scaling decisions to confirm that the opportunity for boosting

exists across multiple samples. Section 5.3 briefly discusses the need for this approach.

4 Evaluation Methodology

4.1 Processor and system board

To study the value of DPO, this paper uses a real machine rather than simulation. The specific platform studied

here is a Pentium M-based system running Windows XP. The 90 nmPentium M processor “Dothan” has a 32 KB

primary instruction cache, 32 KB primary data cache, and a 2MB, 8-way unified secondary cache [3]. The

processor has programmable performance counters to track events such as the number of instructions decoded or

memory references during program execution.

Dynamic voltage and frequency scaling (DVFS) allows the system to operate throughout a range of power and

performance levels. The processor supports dynamic voltage and frequency scaling from 600 MHz to 2.0 GHz,

with its corresponding supply voltage in the range of 0.988 Vto 1.34 V. The driver we developed can adjust the

processor frequency within its full operating range in steps of 100 MHz, and results in processor stalls of up to

10 µs. The processor chip is paired with an Intel 855GME chipset and 512 MB of DDR SDRAM memory on a

9

Radisys uni-processor motherboard [29].

4.2 Power Measurement

We modified the hardware to allow us to measure and record the power consumption of the processor. We used

on-board sense resistors placed between each voltage regulator module (VRM) and the processor and placed data

acquisition probes to monitor processor supply voltage andcurrent levels. Figure 2 shows the system under test

and the ribbon cables that connect the probe points to the data acquisition system. We collect and analyze power

data on a separate computer to avoid interference with the workloads executing on the system under test. A

National Instruments data acquisition system samples current and voltage values and interfaces with a system

that executes a custom LabView program to capture a voltage trace of each probe.

Figure 2: Experimental platform: system under test with sense resistors and data acquisition probes to measure
processor power.

4.3 Performance Measurement

In addition to application execution time, we monitor performance events throughout execution of each bench-

mark. We developed light-weight software to collect performance data. This software configures the performance

counters sets the processor’s frequency and voltage and then spawns the benchmark under test. During bench-

mark execution, the software reads performance counter values with the RDPMC instruction at approximately

10 ms intervals2 and then generates an output file of timestamps and counter values.

The Pentium M performance registers hold two performance counter values. Some counters use additional

bits to specify variations of the data collected, such as including or excluding prefetched lines in a cache access

2This value is limited by the resolution of the timer mechanisms in Windows XP

10

count [30].

4.4 Workloads

For this dynamic processor overclocking study, we characterized the full suite of SPEC CPU2000 benchmarks,

both integer and floating-point applications [31]. We used the “reference” input set with therunspec script

supplied by the SPEC organization to run each benchmark in the suite with appropriate options and input files.

Some programs, such asgzip, run multiple times with different input files. In those cases, we follow the SPEC

standard of summing the individual run times to produce a total result for the benchmark. The study uses highly

optimized binaries compiled for execution on Windows XP with Intel compilers.

4.5 Methodology

The experiments reported here use a frequency range between1.8 GHz and 2.0 GHz. This range provides a

very noticeable power difference as well as a measurable effect on the performance of programs that are sensitive

only to the clock speed of the processor. But it is narrow enough to represent a realistic overclocking across a

range of processors and processor families.

Since the machine used in the experiments is based on commercially available parts, we have direct access to

information about its design limits. However, for the purposes of some of the experiments that we describe, we

determined a power limit using a worst-case methodology. Weassume that 1.8 GHz is the nominal frequency

and that 1.9 and 2 GHz are overclocking frequencies. A highlyoptimized version of the Linpack benchmark run

at 1.8 GHz provides a value for the assumed processor power limit. The peak power from the worst-case Linpack

test of 16.5 W is the power limit used in much of our analysis ofdynamic processor overclocking although we

report some results with higher and lower power limits.

For each run, the instrumentation gathers 100 processor voltage and current samples per second. Our DPO

implementation adjusts the frequency to the desired value,configures the performance counters, and creates

a process that will run the benchmark with the highest user-level priority. It is also responsible for gathering

performance samples of instructions executed and elapsed cycles every 10 ms. Further, it is also designed to

raise the voltage of a general purpose I/O pin (marker) to indicate the power instrumentation that a managed

application is running. The voltage of the marker pin is lowered once the application signals its completion.

11

5 Results and Discussion

This section presents the results for our DPO implementation discussed in Section 3. The high-level results

are summarized first. Sections 5.2 and 5.3 present additional material regarding workload characteristics and

implementation issues that impact the benefits obtained from DPO.

5.1 Results for DPO

Our experiments are done with a nominal (default) operatingpoint of 1.8 GHz. As indicated above, the default

power limit set for the nominal operating point is 16.5W. DPOis allowed to exploit higher level operating points

of 1900MHz and 2.0 GHz while attempting to meet the 16.5W power limit. Speedups relative to performance at

1.8 GHz and the maximum obtainable at 2.0 GHz serve as the performance comparisons. Behavior with respect

to the power limit is measured as a percentage of execution time for which the power signal filtered at 10Hz

exceeds the given power limit. Power excursions at this frequency are relatively critical for supply designs.

Figure 3: Speedup for SPEC CPU 2000 applications over 1.8GHzfrom Dynamic Processor Overclocking with a
16.5 W power limit.

Figure 3 shows the speed-up achieved by using DPO with a 16.5 Wpower limit in the form of a stacked

bar chart. In each stacked-bar, the lower bar represents thespeedup with DPO and the upper bar the additional

speedup that can be obtained at 2.0 GHz if there was no power limit (essentially an upper bound on speedup

for that application). The applications are sorted left-to-right in the order of increasing speedup from DPO. The

12

first point to note is there are many applications that obtaina significant boost in performance from DPO. This

validates the motivation behind DPO that dynamic adaptation of operating points to workload-specific power

consumption can have significant performance benefits over astatic fixed operating point solution (which is 1.8

GHz for these experiments). The next point to note is that there is significant variation among the benefits seen by

the applications. For discussion purposes, we break the applications into three groups by the range of speedups:

• Below 4% –swim, lucas, equake, mcf, applu, andmgrid

• Between 4% and 8% –bzip2, galgel, crafty, facerec, gap, cc1, perlbmk, fma3d, gzip,

vortex, art, parser, wupwise, andapsi.

• Above 8% –vpr, ammp, eon, mesa, twolf, andsixtrack.

Note that for applications in the lowermost speedup group there is little additional performance improvement

even at 2.0 GHz with unlimited power. Same is true for the highest performance group. There are two sub-

groups in the middle performance group.bzip2, galgel, crafty, gap, cc1, perlbmk, gzip, vortex

andparser can all benefit from higher frequency and unlimited power butcannot reach that speedup with DPO.

The rest of the applications in the middle performance groupcannot get any additional speedup even at 2.0 GHz.

Figure 4: Elimination of Overshoots at 16.5W Budget

The other aspect of DPO besides adaptive performance improvement is adherence to the power limit. Figure 4

shows the extent of overshoot above the 16.5W limit. Again the graphs shows stacked bars. The lower bar

13

represents the overshoots for the DPO implementation and the upper bar represents the additional overshoot if

operating always at 2.0 GHz. Overshoots with DPO are zero formost applications. The very high fraction of time

in overshoots for 2.0 GHz shows how inconceivable it is to operate the system for this collection of applications

at a fixed frequency of 2.0 GHz.

Figure 5: Adapting to Power Limit with Dynamic Processor Overclocking

An additional point to note is that the applications with thelonger duration overshoots with 2.0 GHz –

galgel, crafty, perlbmk andgzip are also in that sub-group of the medium speedup applications that

have big gaps between DPO speedups and the upper bounds for speedups at 2.0 GHz. Figure 5 provides an ex-

planation for this behavior. It shows the speedups with DPO for three different power limits – 15.5W, 16.5W, and

17.5W. Again it is a stacked-bar chart with each stack showing the additional speedup over the previous limit.

The medium speedup applications that could not reach their potential with DPO in Figure 3 all reach their

potential when the power limit is increased to 17.5W. These same applications also exhibit significant overshoots

at 2.0 GHz over DPO. Thus, DPO gives up performance on these applications to meet the power limit. But, if for

some reason, the power limits can be raised it can take full advantage of the increased power to obtain maximum

performance for these applications.

In the following discussion, we will refer to this subset of medium speedup applications aspower-limited

applications. Such a labeling of these applications may seem power-limit-specific. For example, if our power

limit for the nominal operating point were 15.5W, all the applications in the highest speedup group, fromvpr

on the left tosixtrack on the right, would also be “power-limited”. However, at thesame power-limit, our

14

medium performance “power-limited” sub-group is more constrained by the limit than the higher performance

group.

In the next section, we look at some of the reasons for this behavior and, in general, the variable speedups

from DPO for the different applications.

5.2 Application Characteristics that Impact DPO Benefits

To investigate the variable performance of DPO for different applications, we collect more detailed activity

data for the the applications using processor performance counters. The counters can be programmed to collect

counts of different microarchitecture events. For our discussion here, we present the data collected from seven

performance counters in Table 1. The data is presented in theform of rates for each of these events, with

applications in each column sorted in descending order by the event rates shown in that column.

Table 1: Relative ranking of the SPEC CPU 2000 benchmarks (sorted in descending rank) in terms of architecture
performance events.

DCU M O RESOURCE INST INST L2 LD L2 RQSTS MEM RQSTS
STALLS RETIRED DECODED demand

per cycle per cycle per cycle per cycle per cycle per cycle per cycle

art 2.29 mcf 0.876 sixtrack 1.41 crafty 1.67 art 0.091 art 0.057 swim 0.012
mcf 1.17 swim 0.845 crafty 1.35 gzip 1.49 gzip 0.044 gzip 0.031 equake 0.011
swim 1.12 applu 0.795 perlbmk 1.33 sixtrack 1.44 galgel 0.039 twolf 0.025 lucas 0.011
fma3d 1.1 art 0.792 mesa 1.28 perlbmk 1.41 mcf 0.036 galgel 0.023 mgrid 0.011
equake 0.89 equake 0.788 vortex 1.21 mesa 1.33 twolf 0.031 vpr 0.020 mcf 0.001
apsi 0.84 lucas 0.703 wupwise 1.19 parser 1.32 equake 0.026 mcf 0.019 applu 0.009
applu 0.55 ammp 0.677 gap 1.12 bzip2 1.27 swim 0.025 cc1 0.015 fma3d 0.008
ammp 0.52 apsi 0.671 galgel 1.12 twolf 1.25 mgrid 0.023 swim 0.015 art 0.007
mgrid 0.47 fma3d 0.634 gzip 1.1 vortex 1.23 vpr 0.022 vortex 0.014 wupwise 0.006
vpr 0.46 mgrid 0.604 eon 1.06 wupwise 1.23 parser 0.019 parser 0.013 facerec 0.006
galgel 0.38 facerec 0.518 parser 1.01 gap 1.2 cc1 0.019 ammp 0.013 gap 0.005
wupwise 0.3 sixtrack 0.48 mgrid 0.97 eon 1.17 ammp 0.017 apsi 0.013 apsi 0.004
vortex 0.28 wupwise 0.463 bzip2 0.95 galgel 1.13 vortex 0.014 mgrid 0.012 vpr 0.003
gzip 0.27 galgel 0.455 cc1 0.91 vpr 1.13 apsi 0.014 equake 0.011 galgel 0.003
bzip2 0.27 gap 0.443 twolf 0.9 cc1 1.09 wupwise 0.013 bzip2 0.011 ammp 0.003
cc1 0.27 vpr 0.44 facerec 0.9 mgrid 0.97 facerec 0.011 crafty 0.010 bzip2 0.003
lucas 0.21 twolf 0.422 vpr 0.75 facerec 0.9 bzip2 0.011 lucas 0.009 vortex 0.003
parser 0.19 parser 0.338 ammp 0.74 ammp 0.79 fma3d 0.010 applu 0.007 parser 0.002
facerec 0.19 vortex 0.336 apsi 0.69 apsi 0.7 lucas 0.01 facerec 0.006 cc1 0.002
twolf 0.18 bzip2 0.311 lucas 0.58 lucas 0.58 applu 0.01 fma3d 0.006 mesa 0.001
gap 0.09 eon 0.309 fma3d 0.55 fma3d 0.57 gap 0.005 wupwise 0.005 gzip 0.001
perlbmk 0.04 mesa 0.277 applu 0.44 equake 0.44 crafty 0.005 perlbmk 0.005 perlbmk 0.001
crafty 0.03 gzip 0.271 equake 0.42 applu 0.44 perlbmk 0.004 gap 0.004 sixtrack 0.000
sixtrack 0.01 cc1 0.266 art 0.36 art 0.38 mesa 0.001 mesa 0.002 crafty 0.000
mesa 0.01 crafty 0.134 swim 0.18 mcf 0.24 sixtrack 0.001 sixtrack 0.001 twolf 0.000
eon 0 perlbmk 0.097 mcf 0.16 swim 0.18 eon 0.000 eon 0.001 eon 0.000

15

The first two columns DCU Miss Outstanding and Resource Stalls represent incidence of stalls in the memory

hierarchy and processor pipeline. In general, the higher these values the less effective the application is in making

use of a higher frequency. It is also potentially less power consumptive as it cannot make effective use of the

memory hierarchy or the pipeline. Instruction Decoded/cycle and Instruction Retired/cycle represent measures

of pipeline throughput – the former accounting for speculative activity and consequently a truer measure of

power consumption and the latter of actual completed activity. The last three counters are indicative of memory

hierarchy dependence. Relative L2 Requests activity is used below to explain relative power differences from

on-chip cache activity. L2 Demand Loads and Memory (DRAM) Requests are used to identify dependence on

lower speed memory hierarchies and consequently lower effectiveness in exploiting higher frequencies.

From the table it can be seen that the applications in the lowest speedup group –swim, lucas, equake,

mcf,applu, andmgrid – share the characteristics of relatively high Resource Stalls per cycle and/or DCU Miss

Outstanding per cycle. They have relatively high values in the Memory Requests per cycle column indicating

that the DCU stalls are from waiting for DRAM, which does not scale with processor frequency rather than just a

high fraction of L2 requests, whose access speeds scale withprocessor frequency. These stalls effectively restrict

the applications from exploiting higher frequencies for performance gain. This applies to both DPO and a fixed

2.0 GHz chip. This result is consistent with those from an earlier study of memory hierarchy usage for SPEC

benchmarks by Kotla et al. [32].

The non power-limited applications in the medium speedup group –facerec, gap, fma3d, wupwise,

apsi andart – also share some of these characteristics but are less extreme in their stall rates allowing for

higher speedups. For some of them, memory hierarchy dependence is stronger on the L2 than on DRAM. For

instance,art occurs higher in the L2 Requests column than in the Memory Requests column. This makes it

possible for it to take advantage of an increase in frequencyas the on-chip L2 access also speeds up.

The most power-limited applications –crafty, gzip, perlbmk, bzip2, andgalgel – display different

characteristics . They have relatively high Instructions Decoded per cycle and/or L2 Requests per cycle. That

is, they have a high activity rate in the core or in the L2, accounting for their higher power consumption at the

same frequency. In the table one can see them near the top of these two columns. Also they are relatively low in

the stall cycle columns indicating that if run at higher frequency (i.e. if power was not limited), they would see

higher speedups.

The high speedup group applications share the characteristics of relatively low dependence on the slower

16

memory hierarchy levels. They are towards the bottom of the DCU Stalls and Memory Requests per cycle

columns. At the same time they are not pushing against the power limits by being at the top of both the Instruction

Decoded per cycle and L2 Requests per cycle columns. For instance,sixtrack is quite noticeable at the top

of the Instructions Decoded column, but it is towards the bottom of the L2 Requests per cycle column.

To summarize the variable benefits for applications with DPO, applications that scale best have low memory

hierarchy dependency and resource stalls. Applications that see little benefit are the ones that encounter many

memory stalls due to heavy usage of slower levels of the memory hierarchy or significant numbers of processor

resource stalls. High-intensity use of the on-chip memory hierarchy and processor pipeline, even if not resulting

in stalling, can also result in the application encountering a power-constraint bottleneck, preventing it from ex-

ploiting higher frequencies with DPO. More details about the impact of application characteristics can be found

in our technical report that investigates the maximum benefits obtainable from DPO based on application analysis

on the same platform [33].

In the following section, we look at characteristics of key components of the DPO implementation and how

they could affect its benefits.

5.3 Considerations for a good DPO Implementation

5.3.1 Impact of Monitoring Facilities Characteristics

A key aspect of the DPO implementation is the ability to periodically sample the architectural events. This is

required to estimate the impact of a change in frequency on the power consumption. As this input is used to

control/regulate the power consumption, it has to be done ata rate more than an order of magnitude higher than

the power consumption signal of interest. We use the Windowstimer facilities to schedule the monitoring and

control events in our in-band control system. Figure 6[a] shows the desired interval time versus the most common

bin of actual interval time obtained when we are runninggalgel. It appears to show a relatively adequate timer

mechanism for our purposes at the 150 samples per second rateused for the results presented here. However,

Figure 6[b] reveals a troublesome detail. It shows the histogram for the monitoring intervals during the run, timed

using the processor TSC counter. A significant fraction of the samples are at much longer intervals than at the

desired rate. This means we can miss the opportunity to boostperformance or take corrective action by lowering

the frequency because we detect the change in workload behavior too late.

The latter appeared to be the case withgalgel, which is one of the highest power consumptive applications

in the set, and leading to a high fraction of overshoots. (Theresults presented earlier with low overshoots are

17

with corrective action, described below). When we discovered the overshoots, we considered two changes to our

basic algorithm.

• (a) boost frequency only when our model indicated that favorable conditions for doing so for a duration

significantly longer than one interval

• (b) boost the frequency only when favorable conditions for doing so exist for multiple number of samples

If the samples were uniformly distributed, we should see thesame impact from both alternatives if the number of

samples used for (b) matched an equivalent boost-delay duration for (a). Figure 7 shows the power-performance

trade-offs among the three alternatives: single interval (6.7ms at 150 samples per second) boost window, 67ms

boost window, and an equivalent 10 sample boost window for two of the power-limited applications -galgel

andperlbmk (there was no noticeable overshoot for the other applications even with the single interval model).

We see that the higher-samples-based option does a much better job at avoiding the overshoots - most clearly

with galgel. Investigating the cause for this led us to discover the Windows timer behavior presented earlier.

The longer duration samples hide the more recent increasingactivity information by combining it with past low

activity phase. Based on such a sample, the implementation expects a low activity phase and boosts the frequency,

not realizing that the more recent high activity phase (and high power consumption phase) has begun. Increasing

the boost-decision window to 67 ms (from 6.7ms) does not overcome the averaging out behavior by the long

samples. However, waiting out the long samples by using a sample-count-based boost window of 10 samples

dramatically reduces the amount of overshoot. This is the approach used for all our results discussed earlier.

While we tackled this infrastructure limitation by a short-term solution of an algorithm change, we did so at

the cost of the opportunity to boost performance for other applications not similarly power-constrained. A better

long-term solution would be to fix the underlying cause of thetimer variability. Alternatively, we could adopt an

out-of-band implementation for our control algorithms.

5.3.2 Impact of Power Model on DPO Performance

Another key component of our DPO implementation is the activity-based power prediction model we use. While

our single-counter based model is fast and appears very effective for our purposes from the results, there is still

room for improvement. Figure 8 shows some of the issues related to the model. It depicts a short portion of a

galgel run showing the measured power, estimated power, the instructions decoded rate (counter used for the

power model) and the operating frequency controlled by DPO.

18

(a) Actual versus Desired Interval Durations (b) Histogram of Interval Durations

Figure 6: Windows Timer Behavior

The first observation is the gap between estimated power (green) and measured power (red). For galgel the

measured power almost always rides on top of the estimated power. Since our model is based on the averaged

behavior of a collection of power traces and galgel is at the high-power end for such traces, this is to be expected.

While we use a ’safety margin’ of 0.5 Watts over and above our estimated power to make our decisions, the gap

in the figure can be seen to be greater than this. A model that bridges this gap would be useful both for avoiding

power excursions as well as increasing performance (when the gap is the other way). The second observation

is that there are a couple of places in the trace, where the extent of a change in measured power is not suitably

tracked by the estimated power. The first point occurs just before 579 seconds and the second between 580 and

581. While at the first point, the model underestimates the impact of the change at the second point it appears to

react too soon to the applied frequency change unlike the measured power (one could adjust for the latter more

effectively in the model if detected reliably). A thorough evaluation of the impact of the model on DPO is beyond

the scope of this paper and not discussed because of the extent of effectiveness of our current models. However,

we have identified potential shortcomings and are currentlyinvestigating approaches to improve the fit of the

basic models and also incorporate real-time power feed-back for online model refinements.

6 Conclusions

We propose the use ofDynamic Processor Overclockingfor boosting application performance in power-

constrained systems. Dynamic Processor Overclocking (DPO) uses the DFVS capabilities of modern proces-

sors to obtain increased performance by increasing the processor frequency when it is possible to do while

19

Figure 7: Algorithm Alternatives to Combat Overshoot from Timer Behavior

still meeting the power constraint. In contrast to existingpower management solutions where DFVS is used

solely for energy savings, we provide a DFVS-based solutionfocused on performance improvement in power-

constrained environments. We designed a prototype implementation for DPO using facilities common in recent

systems. We use the implementation to evaluate the benefits of DPO. We evaluated the benefits of DPO with the

SPEC CPU2000 benchmarks on a Pentium M-based platform for a frequency range of frequency of 11.1%, from

1.8 GHz to 2 GHz. The applications exhibited a wide range of performance improvements right up to 11%. With

analysis using the processor performance counters, we identify the application characteristics that determine the

extent of performance improvement. We also show the relationship between the level of power constraint and the

performance benefit. We quantify the value of DPO in alleviating the performance limitations imposed by power

constraints and our analysis provides an approach for estimating the benefits of this solution for new workloads.

Lastly, we identify the implementation issues that affect DPO performance and suggest potential remedies.

References
[1] International Business Machines Corporation, “PowerPC 405LP Embedded Processor Product Brief.”

www.ibm.com, January 2003.

[2] Intel Corporation, “Intel XScale microarchitecture technical summary.”

[3] Intel, “Pentium M processor on 90 nm process with 2-MB L2 cache datasheet.”
http://www.intel.com/design/mobile/datashts/302189.htm, Jan. 2005.

20

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 575 576 577 578 579 580 581
 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

w
at

ts

ev
en

ts
 p

er
 s

ec
on

d

seconds

measured power
estimated power

instr decoded per second

power limit - 16.5 Watts
frequency

Figure 8: Estimated Power Compared to Measured Power forgalgel

[4] N. J. Rohrer, et al, “PowerPC 970 in 130nm and 90nm technologies,” in IEEE International Solid-States
Circuits Conference 2004, February 2004.

[5] C. Lichtenau, et al, “PowerTune: Advanced frequency andpower scaling on 64b PowerPC microprocessor,”
in IEEE International Solid-States Circuits Conference 2004, February 2004.

[6] C. McNairy and R. Bhatia, “Montecito: A dual-core dual-thread itanium processor,” inIEEE International
Solid-States Circuits Conference 2005, March-April 2005.

[7] C. Poirier, R. McGowen, C. Bostak, and S. Naffzigr, “Power and temperature control on a 90nm itanium-
family processor,” inIEEE International Solid-States Circuits Conference 2005, March-April 2005.

[8] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithms for dynamic speed-setting of a low-power
CPU,” in Proceedings of the ACM International Conference on Mobile Computing and Networking, pp. 13–
25, November 1995.

[9] T. Pering, T. Burd, and R. Brodersen, “Dynamic voltage scaling and the design of a low-power micropro-
cessor system,” inPower Driven Microarchitecture Workshop, attached to ISCA98, June 1998.

[10] D. Grunwald, P. Levis, K. Farkas, C. Morrey, and M. Neufeld, “Policies for dynamic clock scheduling,” in
Proceedings of the Symposium on Operating System Design andImplementation, October 2000.

[11] J. Lorch and A. Smith, “Improving dynamic voltage scaling algorithms with PACE,” inProceedings of the
ACM SIGMETRICS 2001 Conference, June 2001.

[12] K. Flautner and T. Mudge, “Vertigo: Automatic Performance-Setting for Linux,” inProceedings of the Fifth
Symposium on Operating Systems Design and Implementation (OSDI), pp. 105–116, December 2002.

[13] B. Brock and K. Rajamani, “Dynamic power management forembedded systems.” IEEE International SOC
Conference, September 2003.

[14] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating Amdahl’s law through EPI throttling,” inProceed-
ings of the 32nd Annual International Symposium on ComputerArchitecture (ISCA-32), 2005.

21

[15] A. K. Uht and R. J. Vaccaro, “TEAPC: Adaptive computing and underclocking in a real PC,” inProceedings
of the 1st WatsonP = ac2 Conference, Oct. 2004.

[16] R. J. Minerick, V. W. Freeh, and P. M. Kogge, “Dynamic power management using feedback,” inProceed-
ings of Workshop on Compilers and Operating Systems for Low Power, pp. 6–1–6–10, September 2002.

[17] W. Felter, K. Rajamani, C. Rusu, and T. Keller, “A performance-conserving approach for reducing peak
power consumption in server systems,” inProceedings of the 19th ACM International Conference on Su-
percomputing, June 2005.

[18] N. Kappiah, V. W. Freeh, D. K. Lowenthal, and F. Pan, “Exploiting slack time in power-aware, high-
performance programs,” inIEEE/ACM Supercomputing 2005 (SC—05), November 2005.

[19] M. E. Femal and V. W. Freeh, “Boosting data center performance through non-uniform power allocation,”
in Proceedings of the Second International Conference on Autonomic Computing (ICAC), pp. 250–262,
June 2005.

[20] F. Bellosa, “The case for event-driven energy accounting,” Tech. Rep. TR-I4-01-07, Friedrich-Alexander-
Universitat Erlangen-Nurnberg, 2001.

[21] W. L. Bircher, M. Valluri, J. Law, and L. K. John, “Runtime identification of microprocessor energy saving
opportunitites,” inInternational Symposium on Low Power Electronics and Design (ISLPED), August 2005.

[22] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Methodology and empirical
data,” in36th Annual ACM/IEEE International Symposium on Microarchitecture, December 2003.

[23] G. Contreras and M. Martonosi, “Power prediction of intel xscale processors using performance monitoring
unit events,” in2005 International Symposium on Low Power Electronics and Design, August 2005.

[24] K. S. Kyeong-Jae Lee, “Using performance counters for runtime temperature sensing in high-performance
processors,” inProceedings of the 19th International Parallel and Distributed Processing Symposium
(IPDPS 2005), April 2005.

[25] A. Weissel and F. Bellosa, “Process cruise control: Event-driven clock scaling for dynamic power man-
agement,” inProceedings of the International Conference on Compilers,Architecture and Synthesis for
Embedded Systems (CASES 2002), pp. 238–246, October 2002.

[26] R. Kotla, S. Ghiasi, T. W. Keller, and F. L. Rawson, “Scheduling processor voltage and frequency in server
and cluster systems,” inProceedings of the 19th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2005), April 2005.

[27] S. Ghiasi, T. W. Keller, and F. L. Rawson, “Scheduling for heterogeneous processors in server systems,” in
Proceedings of the International Conference on Computing Frontiers (CF 2005), May 2005.

[28] K. Rajamani, H. Hanson, J. Rubio, S. Ghiasi, and F. Rawson, “Activity-based models for online power and
performance estimation enabling dynamic power management,” Tech. Rep. RC, IBM Research, Jan. 2006.

[29] Radisys Corporation, “Endura LS855 Product Data Sheet.” http://www.radisys.com/oemproducts/ds-
page.cfm?productdatasheetsid=1158, Oct. 10 2004.

[30] Intel Corporation, “IA-32 intel architecture software developer’s manuals, volume 3.” Document Number:
25366816.

22

[31] Standard Performance Evaluation Corporation, “SPEC CPU2000 v1.2,” Jan. 2 2002.
http://www.spec.org/cpu2000/.

[32] R. Kotla, A. Devgan, S. Ghiasi, T. W. Keller, and F. L. Rawson, “Characterizing the impact of different
memory intensity levels,” inProceedings of the Seventh Annual IEEE International Workshop on Workload
Characterization (WWC-7), October 2004.

[33] J. Rubio, K. Rajamani, F. Rawson, H. Hanson, S. Ghiasi, and T. Keller, “Dynamic processor overclocking
for improving performance of power-constrained systems,”Tech. Rep. RC23666, IBM Research, July 14
2005.

23

