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Abstract

We derive an exact matrix-analytic analysis of a general stochastic model of parallel processing
systems under dynamic spacesharing, which yields a closed-form solution for certain model instances.
An analysis of a general nearly completely decomposable model of parallel program memory reference
behavior is also derived, which provides measures of the distribution of the memory overhead incurred
by a parallel program as a function of its server allocation. These theoretical results can be exploited to
investigate the design and performance space of parallel processing systems with respect to fundamental
tradeoffs related to the server and memory allocation strategies and their interactions.

1 Introduction

Stochastic modeling and related queueing-theoretic results have played a fundamental role in the design of

scheduling strategies of both theoretical and practical interest. This has been especially the case in single-

server queues; refer to [16, 38, 45, 19, 58] and the references cited therein. Some important principles

have also been derived for parallel-server queues, but these results have been restricted to certain parallel

processing systems, such as those with customers having serial service demands (e.g., [5, 57, 51, 4, 40]) or

parallel fork-join service demands (e.g., [28, 23, 24, 44, 52]).

With the significant advances of computer and communication technology and the considerable de-

velopment of parallel scientific and engineering applications, several classes of scheduling strategies have

emerged over time each differing in the way the parallel servers are shared among the parallel jobs submitted

for execution. Our present study seeks to derive stochastic modeling and related queueing-theoretic results

for some of these classes of scheduling strategies. Of particular theoretical and practical interest, and the

focus of this paper, is the class of spacesharing strategies that share the parallel servers in space by parti-

tioning them among different parallel jobs. This is based on the widespread use of spacesharing in parallel

processing systems, possibly in combination with other strategies [47, 15]. We do not consider the classes

1



of scheduling strategies that combine spacesharing with different forms of timesharing, where the servers

are shared by rotating them among a set of jobs in time. See [43, 53, 41, 55] and the references therein for a

stochastic analysis of various scheduling strategies based on both spacesharing and timesharing.

A number of empirical studies have demonstrated the benefits and superiority of dynamic spaceshar-

ing over other forms of spacesharing strategies in single-class parallel processing systems where jobs are

statistically identical and have sublinear speedup characteristics, and no prior knowledge of service time

characteristics is available or used in scheduling decisions; refer to [31, 13, 59, 25, 26, 18] and the refer-

ences cited therein. We therefore focus on this important class of scheduling strategies in which the number

of servers allocated to a parallel job can be adjusted dynamically throughout its execution in response to

changes in the state of the system. In particular, dynamic spacesharing tends to decrease the number of

servers allocated to jobs with increasing system loads in order to increase the efficiency of parallel exe-

cution at heavier traffic intensities. The assumption that parallel applications are malleable, in the sense

that their server allocations can be changed at any time, provides the greatest flexibility with respect to the

scheduling of such applications. (See [47, 15] and the references therein for a discussion on other types of

parallel application models.) This flexibility and its benefits, however, are gained at some cost as the reallo-

cation, or reconfiguration, of the servers among a set of jobs under dynamic spacesharing causes the system

to incur various overhead penalties. In fact, the fundamental parallel scheduling tradeoff between the ben-

efits of dynamic spacesharing and its costs is central to the design and performance of dynamic scheduling

in parallel processing systems.

The memory requirements of parallel applications are another critical factor in the design and perfor-

mance of dynamic scheduling in parallel processing systems; refer to [35, 42, 27, 33, 32] and the references

cited therein. More specifically, the working set size of a parallel job on each of the servers allocated to

it increases with reductions in the size of this server allocation, since the job’s memory requirements are

spread over fewer servers. Reducing the number of servers allocated to a sufficiently large job below a

certain point can cause excessive memory overhead as the job’s working set on each server no longer fits in

the server’s local memory, thus increasing the number of page faults incurred by the job. While dynamic

spacesharing strategies decrease the server allocation size with increasing system loads, memory consider-

ations in parallel processing systems tend to argue in the opposite direction. Hence, there is a fundamental

tradeoff between the impact of program efficiency towards allocating fewer servers to jobs at heavier traffic

intensities and the performance impact of memory requirements towards larger allocations. This tradeoff

is also central to the design and performance of dynamic scheduling in parallel processing systems. We

therefore derive stochastic modeling and related queueing-theoretic results on the memory requirements of

parallel applications at each of the servers allocated to them in our analysis of dynamic spacesharing.

In this paper we formulate a general stochastic model of parallel processing systems under dynamic
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spacesharing. An exact matrix-analytic analysis of this model is derived, which yields closed-form solutions

under certain instances of the model based on their probabilistic structure. We also derive expressions

for several performance measures of interest, including the tail distribution of the queue length process

and its asymptotic decay rate, the mean sojourn time of parallel jobs, and the long-run proportion of time

the system spends reconfiguring the allocation of servers among the jobs. These stochastic modeling and

analysis results generalize and extend those presented in [50]. In this paper we also formulate and derive

an analysis of a general nearly completely decomposable model of parallel program memory reference

behavior that introduces and analyzes the inter-locality miss ratio which includes the memory overhead

caused by the reloading of pages upon return visits to localities (especially in iterative programs), as well

as a more accurate representation of the page faults due to transitions between localities. This stochastic

analysis solves a fundamental problem with previous nearly completely decomposable models and analyses

that had remained open since the early 1970s. The results of our analysis are then used to construct a

probability distribution for the total memory overhead incurred by a parallel program as a function of its

server allocation, which can be directly incorporated in our analysis of parallel processing systems under

dynamic spacesharing. These stochastic modeling and analysis results generalize and extend those presented

in [35].

The remainder of the paper is organized as follows. In Section 2 we present our parallel processing

system model. A matrix-analytic analysis of this model and a nearly completely decomposable analysis of

the corresponding memory overheads are derived in Sections 3 and 4, respectively. Our concluding remarks

are provided in Section 5. Throughout this paper we shall use ZZ+ and ZZ+ to denote the set of positive

and non-negative integers, respectively, with IR+ and IR+ denoting the corresponding subsets of the real

numbers. Furthermore, the term partition will be used to refer to a (disjoint) set of servers allocated to a

single parallel job.

2 Model of Parallel Processing Systems

Consider a parallel processing system that consists of P identical servers, each having its own local memory,

under a single-class parallel application workload with sublinear speedup characteristics. The servers are

scheduled according to a dynamic spacesharing strategy that attempts to equally allocate the servers among

a set of parallel jobs, where no information about service time characteristics is used in making scheduling

decisions. Let U denote the minimum number of servers allocated to any parallel job, and therefore the

maximum number of server partitions is given by N = �P/U�. Upon the arrival of a job when the system

is executing i jobs, 0 ≤ i < N , the P servers are repartitioned among the set of i + 1 jobs such that each

job is allocated a server partition either of size �P/(i+ 1)� or of size �P/(i+ 1)�. Arrivals that find i ≥ N

jobs in the system are placed in a first-come first-serve infinite-capacity queue to wait until a server partition
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becomes available. When one of the i jobs in the system departs, 2 ≤ i ≤ N , the system reconfigures the

server allocations among the remaining i−1 jobs such that there are only partitions of sizes �P/(i−1)� and

�P/(i − 1)�. A departure when the system contains more than N jobs simply causes the job at the head of

the queue to be allocated the available server partition, and no reconfiguration is performed. Every parallel

job is executed to completion without interruption and all of the servers in the partition are reserved by the

application throughout this duration.

Parallel jobs are assumed to arrive from an exogenous source according to a Markovian Arrival Process

(MAP) [30, 20] having descriptors (SA
0 ,SA

1 ) of order mA <∞ with (positive) mean rate λ = (xSA
1 e)−1 <

∞, where e denotes the column vector of appropriate dimension containing all ones and x is the invariant

probability vector of the generator SA = SA
0 +SA

1 , i.e., the (unique) solution of xSA = 0 and xe = 1. (Our

results can be easily extended to handle a batch MAP (BMAP) arrival process using standard methods [30,

20, 50].) The parallel service times depend upon the number of servers allocated to the jobs. When executed

on partitions of size p, the service times of the parallel jobs are assumed to be independent and identically

distributed (i.i.d.) following an order mB
p < ∞ phase-type distribution [29, 20] with parameters (β

p
,SB

p )

and (positive) mean µ−1
p = −β

p
(SB

p )−1e < ∞, p ∈ {U, . . . , P}. The times required to repartition the

servers among the i jobs to be executed (either due to a departure when the system contains i+ 1 jobs or an

arrival when the system contains i − 1 jobs) are assumed to be i.i.d. according to a phase-type distribution

having parameters (ζ
i
,SC

i ) of order mC
i < ∞ with (positive) mean γ−1

i = −ζ
i
(SC

i )−1e < ∞, i ∈
{1, . . . , N}. All of the above stochastic processes are assumed to be mutually independent.

The execution behavior of the parallel jobs on each possible server allocation is an important aspect

of any parallel processing model. Our formulation takes the general approach of modeling the execution

behavior of the parallel jobs by a separate probability distribution for each possible number of servers p,

p ∈ {U, . . . , P}. This supports the inclusion of any factors that may affect the execution behavior of the

parallel applications of interest (e.g., see [14, 46, 22, 47, 36, 37] and the references therein), especially

given the known closure properties of phase-type distributions such as the convolution of a finite number

of phase-type distributions being phase-type [29, 20]. The only requirement we have is that there exists a

probabilistic mapping from the residual life of the service demands on each server allocation at the point of a

reconfiguration to any other possible server allocation within the same collection of phase-type distributions.

Using this mapping, the details of the relatively complex server allocation decisions that can be made by

the dynamic spacesharing strategy in each case, as well as the overheads of making these decisions and of

reconfiguring the applications involved, are captured in the probability distributions and the state transitions

of the corresponding stochastic process. Moreover, the memory overheads incurred by a parallel job as a

function of the dynamic scheduling decisions can be captured directly in the corresponding service time

distributions as described in Section 4.
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The use of MAPs and phase-type distributions for all model parameters is of theoretical importance in

that we exploit their properties to derive an exact solution of our general parallel processing model. It is also

of practical importance in that, since the class of phase-type distributions is dense within the set of probabil-

ity distributions on [0,∞), and since the class of MAPs provides a similar general framework for capturing

the dependence structure and variability of a process, any stochastic process on this space for the parallel

processing systems of interest can in principle be represented arbitrarily closely by a MAP or a phase-type

distribution. Moreover, a considerable body of research has examined the fitting of phase-type distributions

and MAPs to empirical data, and a number of algorithms have been developed for doing so; refer to [1, 21]

and the references cited therein. This includes recent work that has considered effectively approximating

long-range dependent and heavy-tailed behaviors with instances of the classes of MAPs and phase-type dis-

tributions in order to analyze performance models. By appropriately setting the parameters of our model, a

wide range of parallel application and system environments can be investigated [47, 15]. In particular, the

subexponential tails of the marginal interarrival distribution and the dependence structure of the interarrival

process found in some parallel processing systems [54] can be captured by a MAP. Furthermore, most of the

results of our analysis in the next section will continue to hold when the order of the MAP and phase-type

distributions mA, mB
p and mC

i are infinite, under a proper formulation.

3 Analysis of Dynamic Spacesharing

The parallel processing model of the previous section can be represented by a continuous-time stochastic

process {X(t) ; t ∈ IR+} on the state space given by Ω =
⋃∞

i=0 Ωi where Ω0 ≡ {(0, jA) | jA ∈ ωA},

Ωi ≡ {(i, jA
, j

B
−,�, j

B
+,�, j

C
� ) | i ∈ ZZ+, j

A ∈ ωA, j
B
w,� ∈ ωB

w,�, w ∈ {−,+}, � = min{i,N}, jC� ∈
{0, . . . ,mC

� }}, ωA ≡ {(jAc , jAh , jAp ) | jAc ∈ {1, . . . ,mA
c }, jAh ∈ {1, . . . ,mA

h }, jAp ∈ {1, . . . ,mA
p }}, ωB

w,� ≡

{(jBw,�,1, j
B
w,�,2, . . . , j

B
w,�,mB

n̂
) | jBw,�,k ∈ {0, . . . ,P�

w}, k ∈ {1, . . . ,mB
n̂ },

∑mB
n̂

k=1 j
B
w,�,k = P�

w, n̂ = n�
w, w ∈

{−,+}}, n�
+ ≡ �P/��, n�− ≡ �P/��, P�

+ ≡ mod (P/�), P�− ≡ � − P�
+, for � ∈ {1, . . . , N}. The state-

vector variable i denotes the total number of parallel jobs in the system; j
A

denotes the state of the MAP

arrival process; jBw,�,k denotes the number of jobs executing on n�
w servers whose service time process is in

phase k; and jC� denotes the phase of the reconfiguration overhead process when jC� ∈ {1, . . . ,mC
� } and

it indicates no reconfiguration when jC� = 0 (i.e., the � parallel jobs are executing). Moreover, n�− and n�
+

represent the two partition sizes when the system contains i jobs, for � = min{i,N}, and P�
w denotes the

number of such partitions of size n�
w, for w ∈ {−,+}.

Let xi,d ∈ Ωi, d ∈ {1, . . . ,Di}, i ∈ ZZ+, be a lexicographic ordering of the elements of Ωi, and

define D ≡ ∑N−1
i=0 Di, where Di = |Ωi|. The set Ωi is also called the ith level of the process. We then
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define π ≡ (π0,π1,π2, . . .), πi ≡ (π(xi,1), π(xi,2), . . . , π(xi,Di)) and π(xi,d) ≡ limt→∞ P[X(t) = xi,d],

i ∈ ZZ+, xi,d ∈ Ωi, d ∈ {1, . . . ,Di}. The limiting probability vector π is the stationary distribution for

the stochastic process {X(t) ; t ∈ IR+}. Assuming this process to be irreducible and positive recurrent,

the invariant probability vector is uniquely determined by solving the global balance equations πQ = 0

together with the normalizing constraint πe = 1, where Q is the infinitesimal generator matrix for the

process.

The generator matrix Q, organized in the same order as the elements of π, has a structure given by

Q =


B00 B01 0 0 0 . . .
B10 B11 A0 0 0 . . .
0 A2 A1 A0 0 . . .
0 0 A2 A1 A0 . . .
...

...
...

...
...

. . .

 , (1)

where B00, B01, B10, B11 and An, n = 0, 1, 2, are finite matrices of dimensions D×D,D×DN ,DN ×D,

DN ×DN and DN × DN , respectively. The matrices corresponding to the non-homgeneous boundary of

the state space Ω have the structures

B00 =


Ψ0 Λ0 0 0 · · · 0 0
Φ1 Ψ1 Λ1 0 · · ·
0 Φ2 Ψ2 Λ2 · · · ...

...
...

...
...

...
. . .

0 0 0 0 · · · ΦN−1 ΨN−1

 , B01 =


0
0
...
0

ΛN−1

 , (2)

B10 =
[

0 0 · · · 0 ΦN

]
, B11 = ΨN , (3)

where Φi, Ψi and Λi have dimensions Di × Di−1, Di × Di and Di × Di+1, respectively. The matrix Φi

defines the transitions from states in Ωi to states in Ωi−1, i ∈ {1, . . . , N}, Λi defines the transitions from

states in Ωi to states in Ωi+1, i ∈ {0, . . . , N − 1}, and the off-diagonal elements of Ψi define the transitions

between states within Ωi, i ∈ {0, . . . , N}. These level-dependent matrices define the exact server allocation

behavior of the dynamic spacesharing strategy under consideration, the arrival, service and reconfiguration

processes of the workload being modeled, and the various interactions of each of these aspects of the system.

The same holds true for the A matrices with respect to the homogeneous portion of the state space.

Let sp(C) denote the spectral radius of a matrix C and let I denote the identity matrix of appropriate

dimension. The stationary probability vector π of the process {X(t) ; t ∈ IR+} with generator Q then can

be obtained from the following standard matrix-analytic results (see Theorems 1.7.1 and 1.5.1 in [29]).

Theorem 3.1. Let Q be irreducible and in the form of (1). This stochastic process is positive recurrent if

and only if sp(R) < 1, where R is the minimal non-negative matrix that satisfies

R2A2 + RA1 + A0 = 0. (4)
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Furthermore, there exists a positive vector (π0,π1, . . . ,πN ) such that

(π0, π1, . . . , πN )
[

B00 B01

B10 B11 + RA2

]
= 0. (5)

The remaining components of the invariant probability vector π are then given by

πN+n = πNRn, n ∈ ZZ+, (6)

where (π0,π1, . . . ,πN ) is normalized by

(π0, π1, . . . , πN−1) e + πN (I − R)−1e = 1. (7)

The time and space complexities of computing equations (5) and (7) can be significantly reduced with

the use of the following matrix-analytic results (refer to [49, 17, 55]).

Theorem 3.2. Let Q be irreducible and in the form of (1) through (3). If the minimal non-negative solu-

tion R of equation (4) satisfies sp(R) < 1, and if there exists a positive probability vector (π0, . . . ,πN )

satisfying equation (5), then the components of this probability vector are given by

πn = −πn+1 Φn+1 R̃−1
n , n ∈ {0, . . . , N − 1}, (8)

πN = −πN−1 ΛN−1 R̃−1
N , (9)

where R̃0 ≡ Ψ0, R̃n ≡ Ψn −ΦnR̃−1
n−1Λn−1, n ∈ {1, . . . , N − 1}, R̃N ≡ ΨN +RA2. Furthermore, when

N > 1, the vector πN−1 can be determined up to a multiplicative constant by solving

πN−1

[
ΨN−1 − ΦN−1 R̃−1

N−2 ΛN−2 − ΛN−1R̃−1
N ΦN

]
= 0, (10)

πN−1 e = θ, θ > 0. (11)

Otherwise, when N = 1, the vector π1 can be determined up to a multiplicative constant by solving

π1

[
R̃1 − Φ1 R̃−1

0 Λ0

]
= 0, (12)

π1 e = θ, θ > 0. (13)

In either case, the vector (π0,π1, . . . ,πN ) then can be obtained from (8), (9) and the normalizing equa-

tion (7).
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3.1 Irreducibility and Stability Criterion

While the irreducibility of the stochastic process {X(t) ; t ∈ IR+} is often obvious, it can be verified for

any specific instance of our model by determining whether the first N + 2 levels of the state space (the

boundary plus the first level of the homogeneous portion) and the corresponding transitions among these

states, when viewed as a directed graph, is strongly connected. This follows directly from the fact that

transitions between the states of levels N + 1 and N + 2 are identical to those between the states of levels

N and N + 1, and the fact that the process is skip-free to the right and to the left with respect to levels.

Hence, upon verifying that the non-homogeneous boundary plus the first level of the homogeneous portion

is irreducible, it follows that the entire process is irreducible.

The stability conditions for the system are provided in Theorem 3.1. When the generator matrix A ≡
A0 + A1 + A2 is irreducible, Neuts [29] determined the following necessary and sufficient conditions for

sp(R) < 1.

Theorem 3.3. Let the generator A be irreducible. Then sp(R) < 1 if and only if

yA0e < yA2e, (14)

where y is the stationary probability vector of A.

3.2 Special Case: Exponential Model Parameters

We now consider instances of the model where U evenly divides P and the interarrival time, service time

and reconfiguration overhead distributions are all exponential, and obtain closed-form expressions for the el-

ements of the R matrix satisfying (4). In this case, we have A0 = λI, A1 =
[ −(λ+ µN ) 0

γN −(λ+ γN )

]
and A2 =

[
µN 0
0 0

]
. Note further that the generator Q has the form given in (1) with D0 = 1, Di = 2,

i ∈ {1, . . . , N}, and D = 2N − 1.

The probabilistic significance of the element ru,v of the matrix R ≡ [ru,v]u,v∈{0,1} is the expected

amount of time spent in the state (i + 1, v) before the first return to any state of level i, expressed in units

of the mean sojourn time for the state (i, u), given that the process started in state (i, u) [29], i ≥ N .

Upon uniformizing {X(t) ; t ∈ IR+} to obtain an equivalent discrete-time version {X0
t ; t ∈ ZZ+} with the

corresponding R0 ≡ [r0u,v]u,v∈{0,1}, where

ru,v =

(
r0u,v

δv,v

)
δu,u, u, v ∈ {0, 1}, (15)
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and ∆ ≡ [δu,v]u,v∈{0,1} = −diag(A1), the probabilistic interpretation of the element r0u,v is the expected

number of visits to the state (i + 1, v) before the first return to any state of level i, given that the process

started in state (i, u) [29], i ≥ N . We then have the following result for the exponential case of our parallel

processing model.

Theorem 3.4. Let Q be irreducible and in the form of (1), under exponential distributions for the model

parameters and with U evenly dividing P . Then this stochastic process is positive recurrent if and only if

λ

µN
< 1, (16)

and the elements of the minimal non-negative matrix R satisfying (4) are given by

r0,0 =
λ

µN
, (17)

r0,1 = 0, (18)

r1,0 =
λ

µN
, (19)

r1,1 =
λ

λ + γN
. (20)

Proof: Equation (18) follows directly from the probabilistic interpretation of r0,1 and the fact that there

are no paths from the state (i, 0) to the state (i+ 1, 1) which do not first visit a state of level i, i > N .

Now consider the uniformized process {X0
t ; t ∈ ZZ+} starting in state (i, 0), i > N , observing that

the only transitions involving the probabilistic interpretation of r00,0 in this process are from (v, 0) to (v +

1, 0) with probability λ(λ+ µN )−1 and from (v, 0) to (v − 1, 0) with probability µN (λ+ µN )−1, v ≥ i.

The expected number of visits to (i + 1, 0) before the first return to (i, 0) in this case is then given by

µN (λ+ µN )−1∑∞
n=0 n(λ/(λ+ µN ))n, and thus r00,0 = λ/µN which in combination with (15) yields

equation (17).

Next consider the uniformized process {X0
t ; t ∈ ZZ+} starting in state (i, 1), i > N , and note that this

process makes 0 visits to state (i+1, 0) before returning to level iwith probability γN (λ+ γN )−1 and other-

wise makes 1+n visits to state (i+1, 0) before returning to level iwith probability λ(λ+ γN )−1µN (λ+ µN )−1(λ/(λ+ µN )

n ∈ ZZ+. The expected number of visits to (i+1, 0) before the first return to level i in this case is then given

by λ(λ+ γN )−1µN (λ+ µN )−1∑∞
n=0(n + 1)(λ/(λ + µN ))n, yielding r01,0 = λ(λ+ γN )−1[λ/µN + 1]

from which, together with (15), we obtain equation (19).
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Now consider the uniformized process {X0
t ; t ∈ ZZ+} starting in state (i, 1), i > N , observing that

this process makes 0 visits to state (i+ 1, 1) before returning to level i with probability γN (λ+ γN )−1 and

otherwise makes only 1 visit to state (i + 1, 1) before returning to level i with probability λ(λ+ γN )−1.

Hence, r01,1 = λ(λ+ γN )−1 which in combination with (15) yields equation (20).

Finally, the matrix R is lower triangular, and thus its eigenvalues are given by its diagonal elements.

Since r1,1 is always less than 1 with γN > 0, it follows from Theorem 3.1 that the stability criterion is given

by (16).

Intuitively, the condition λ < µN ensures a positive recurrent process because, given γN > 0, the

expected drift of the system in the homogeneous portion of the state space is toward level N when λ < µN .

3.3 Performance Measures

Using the components of the invariant vector π, we can obtain various performance measures of interest. In

particular, the tail distribution of the queue length process can be expressed as

P[Q > z] =



N−1∑
n=z+1

πne +
∞∑

n=N

πne =
N−1∑

n=z+1

πne + πN (I − R)−1e, 0 ≤ z < N − 1,

∞∑
n=z+1

πne = πNRz+1−N (I −R)−1e, z ≥ N − 1,

(21)

with the corresponding expectation given by

E[Q] =
N−1∑
n=1

nπne +
∞∑

n=0

(N + n)πN+ne =
N−1∑
n=1

nπne +NπN (I − R)−1e + πNR(I − R)−2e. (22)

The expected sojourn time of a job can then be calculated using Little’s law [58] and (22), which yields

E[T ] = λ−1

(
N−1∑
n=1

nπne +NπN (I − R)−1e + πNR(I − R)−2e

)
. (23)

The asymptotic decay rate of the tail distribution of the queue length process is another measure of

interest. Let η denote this decay rate, which is also called the caudal characteristic [30]. Note that η = sp(R)

under the assumptions of this paper. Let u and v be the left and right eigenvectors corresponding to η that

are strictly positive and normalized by ue = 1 and uv = 1. Under the assumptions herein, it is well known

that [39]

Rz = ηz v · u + o(ηz), as z → ∞,
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which together with equation (6) yields

πN+ze = πNv ηz + o(ηz), as z → ∞. (24)

It then follows that

P[Q ≥ N + z] =
πNv
1 − η

ηz + o(ηz), as z → ∞, (25)

and thus

lim
z→∞

P[Q ≥ N + z]
ηz

=
πNv
1 − η

, (26)

or equivalently

P[Q ≥ N + z] ∼ πNv
1 − η

ηz, as z → ∞, (27)

where f(z) ∼ g(z) denotes that limz→∞ f(z)/g(z) = 1. Hence, in addition to providing the stability

criterion for the parallel processing system, η is indicative of the tail behavior of the stationary queue length

distribution.

Note that the caudal characteristic can be obtained without having to first solve for the matrix R. Define

the matrix A∗(s) ≡ A0 + sA1 + s2A2, for 0 < s ≤ 1. When the generator matrix A is irreducible, this

matrix A∗(s) is irreducible with nonnegative off-diagonal elements. Let χ(s) denote the spectral radius

of the matrix A∗(s). Then, under the above assumptions, η is the unique solution in (0,1) of the equation

χ(s) = 0. This solution can be directly computed, although more efficient methods have been developed [3].

Another performance measure of interest is the long-run proportion of time the system spends executing

reconfigurations. This can be expressed as

pr = (π0,π1, . . . ,πN−1)νb +
∞∑

n=0

πN+nνr = (π0,π1, . . . ,πN−1)νb + πN (I − R)−1νr, (28)

where the vth position of the vector νb (respectively, νr) contains a 0 if jC� = 0 in the corresponding

state of the boundary (respectively, homogeneous portion) and contains a 1 otherwise (i.e., when jC� ∈
{1, . . . ,mC

� }).

4 Analysis of Memory Reference Behavior

Our analysis of dynamic spacesharing in the previous section does not explicitly include the memory re-

quirements of parallel applications as a function of the number of servers allocated to the applications. This

requires a stochastic analysis of the memory reference behavior of the parallel programs at each server al-

located to them, which in turn depends upon the parallel processing system and parallel applications of

interest.
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In this section we derive such an analysis for a general class of parallel processing systems and parallel

applications whose memory reference behaviors are consistent with the findings of many empirical studies

since the early 1970s of serial applications on single-server systems. Specifically, the parallel program

behavior tends to consist of (not necessarily disjoint) locality phases that clearly dominate the fraction of

total memory references and transitions that account for a considerable fraction of the program’s page faults.

Phase periods tend to be of much longer duration than transition periods, but both phases and transitions are

of equal importance in the program’s memory reference behavior. While these properties may differ from

those found in parallel environments where the entire memory reference set at each server must be entirely

loaded in the physical memory of the server [42, 27, 6, 33, 32], they indeed have been shown to hold for an

important class of computationally-intensive parallel applications that consist of numerical computations on

large amounts of data in an iterative manner [34, 35].

A classical approach to derive a stochastic analysis of memory reference behavior consists of formu-

lating a nearly completely decomposable model of program behavior that exploits its locality properties

and obtaining an approximate solution of the model using the methods of decomposition and aggregation;

see [9, 2] and the references therein. The model solution is based on extensions of the Simon-Ando approx-

imations for the stationary probabilities of the corresponding Markov chain. This solution is then used to

estimate the miss ratios of a program as a function of the physical memory capacity, which are computed as

weighted sums of the miss ratios for the individual locality phases where the weights correspond to the long-

run proportion of time the program spends in the respective localities. Error bounds also can be obtained

within this framework; e.g., refer to [10, 56].

On the other hand, the iterative nature of the parallel applications of interest cause program localities to

be visited multiple times in some, potentially non-deterministic, manner. This aspect of parallel programs

is not taken into account in any of the previous models of program behavior, even though the impact of

this behavior on system performance can be quite significant [35]. The reason for this is easily illustrated

with a simple example. Consider a program consisting of multiple localities whose sizes are individually

less than, but cumulatively greater than, the physical memory capacity. Previous modeling approaches,

including those in [9, 2] and their references, will yield a miss ratio of zero in this case because the miss

ratio for each locality is zero and thus the weighted sum (for any set of weights) is zero. However, if the

program iterates among the different locality phases then it can experience a significant memory overhead

as potentially large portions of each locality are reloaded upon return to the locality. This represents a

fundamental problem with previous nearly completely decomposable models and analyses of the memory

reference behavior of programs that remained open since the early 1970s until it was first observed and

addressed in [35]. While our focus here is on parallel processing systems and parallel applications, our

solution to this longstanding open problem and corresponding results are completely general and can be
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applied in any computing environment with the foregoing program behavior properties, especially given the

large size of physical memory in contemporary computer systems.

4.1 Program Behavior Models

We now develop models of memory reference behavior that are used to approximate the paging overhead

incurred by a program on each server allocated to it. This consists of modeling the memory reference

behavior of the program at each server and deriving approximations for the corresponding miss ratio realized

by the program when executed with a finite capacity memory. The page replacement policy defines which

page currently residing in memory will be replaced upon the reference to a page that is not in memory, and

thus it determines the set of pages that are in memory at any given time. Computer systems, including the

servers comprising parallel processing systems, often employ (or approximate) the least recently used (LRU)

replacement algorithm in which the page chosen for replacement is the one that has not been referenced for

the longest time. We therefore assume an LRU page replacement algorithm.

There has been a significant amount of research concerning the stochastic modeling and analysis of the

page reference behavior of programs; see [11, 8, 9, 48, 12, 2] and the references therein. The independent

reference model (IRM) has many advantages from the mathematical modeling viewpoint, but this model can

produce very poor approximations in practice because it does not capture any concept of locality. In fact,

IRM goes to the other extreme by assuming that the probability of the next page reference is independent

of the page currently being referenced. The LRU stack model (LRUSM), on the other hand, specifies the

distribution for the inter-stack distances in an LRU stack. While this model can be parameterized to give

a high probability for referencing the pages at (or near) the top of the stack, it still does not capture the

idea that there could be sudden jumps between localities, which has been empirically shown to occur in real

programs, nor does it capture changing locality sizes. In our study, we use the Markov reference model

(MRM) of program behavior because it captures quite well the concepts of program locality and dynamic

transitions between localities during program execution.

The page reference string generated by a program, denoted by a sequence {Yn ; n ∈ ZZ+}, is assumed to

be a realization of a time-homogeneous Markov process with irreducible page transition matrix [pij ] where

pij = P[Yn+1 = j | Yn = i].

The miss ratio is defined as the ratio of the total number of page faults to the total number of references.

Let LRU(n) denote the set of all pages in the LRU stack after the nth reference. Then we can calculate the

page fault probability as

lim
n→∞P[Yn+1 /∈ LRU(n)].
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Assuming the measurement interval to be sufficiently long, the miss ratio converges to the page fault proba-

bility.

Computing the page fault probability directly from the probability transition matrix P = [pij] can be

prohibitively expensive both in terms of time and space. This is due to the fact that the computation involves

a sum over each of the states of the LRU stack, which grows exponentially. This direct approach, however,

ignores the important properties of program behavior. The structural properties of this behavior result in a

type of system that has been termed nearly completely decomposable by Simon and Ando [9]. We reduce

the complexity of the problem at hand by exploiting these structural properties to facilitate our analysis of

the dynamic behavior of parallel programs.

Assume for the moment that the program localities are disjoint and that no additional pages are refer-

enced in transition from one locality to the next. Arrange the rows and columns of the probability transition

matrix P such that the pages of each locality are grouped together consecutively. We then block partition P

according to these locality sets, which yields the following structure

P =


P11 P12 · · · P1L

P21 P22 · · · P2L
...

...
...

...
PL1 PL2 · · · PLL


where PIJ defines transitions from pages in locality I ∈ {1, . . . , L} to pages in locality J ∈ {1, . . . , L},

and L denotes the number of program localities. It follows from the locality property of program behavior

that the submatrices along the main diagonal (i.e., P11, · · · ,PLL) consist of relatively large probability

measures, while the elements of the other submatrices are very small in comparison (i.e., PIJ ≈ 0, J 
= I).

Matrices of this type are called nearly completely decomposable [9]. In general, the matrix P can be

written in the form

P = Q∗ + εC (29)

where Q∗ = diag(Q∗
1,Q

∗
2, · · · ,Q∗

L), the matrices Q∗
I are stochastic, I ∈ {1, . . . , L}, ε is small compared

to the elements of Q∗, and |cij | ≤ 1. The matrix Q∗ is said to be completely decomposable because

all elements off the main diagonal of submatrices are zero. We refer the interested reader to [9] for a

comprehensive treatment of completely and nearly completely decomposable matrices and their solutions.

Intuitively, we decompose the probability transition matrix P into a macro model and L individual micro

models. This is consistent with the use of macro and micro models in [12]. The key idea is that the macro

model characterizes the transitions between localities, while each micro model characterizes the references

within a particular locality. From this perspective, the matrices Q∗
I are the probability transition matrices

for each of the individual micro models. The macro model is defined by the matrix [p̂IJ ] of dimension

L×L whose elements represent the probability of referencing some page in locality J on the next memory
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reference, given that the current reference is to some page in locality I . More formally, we have

p̂IJ = P[Yn+1 ∈ J | Yn ∈ I].

Note that the subscripts are capitalized to emphasize that they refer to the macro model. Letting ψ
I

denote

the invariant probability vector of the matrix Q∗
I , the elements p̂IJ are then computed as

p̂IJ =
∑
i∈I

∑
j∈J

ψI,i pij . (30)

In the interest of space, we do not describe here our approaches for adding within the above framework

the case of overlapping localities and of pages that are referenced in transitions between localities. These

technical details can be found in [34]. We note, however, that the page faults due to transitions between

localities, together with those resulting from multiple visits to localities in an iterative manner, are included

in our analysis of the macro model (see Section 4.3).

As a consequence of the Simon-Ando theorems [9], we can make the following important observations

regarding the model of program behavior developed above. In the short-term period, equilibrium is (approxi-

mately) reached separately by each locality Q∗
I . These equilibrium states are (approximately) preserved over

the long-term period such that the distribution of references among the different localities approaches the

distribution π̃ = (π̃1, π̃2, . . . , π̃I , . . . , π̃L), where π̃I is the stationary probability that a memory reference is

directed to locality I .

We next consider the miss ratio and memory overhead realized by the program at each server within the

context of our program behavior model. Let M denote the number of pages comprising the finite capacity

memory available to a parallel application at each of the V servers allocated to it. To elucidate the exposition,

we divide the page faults incurred by a program at each server into two different classes. The first consists of

faults that occur within each locality, whereas the second class of page faults consists of those resulting from

transitions between localities and from the iterative nature of parallel programs in which localities are visited

multiple times in some (non-deterministic) fashion. We refer to the miss ratios and memory overheads due to

these different types of page faults as the intra-locality and inter-locality miss ratios and memory overheads,

respectively, and consider each type in turn. These methods are then used to approximate the total memory

overhead incurred by a parallel application as a function of its server allocation.

4.2 Intra-Locality Memory Overhead

Given a nearly completely decomposable model of program behavior with irreducible page transition matrix

P = [pij] of the form in equation (29), we compute the intra-locality miss ratio Rw� (i.e., the miss ratio

within a �ocality) under the LRU page replacement algorithm as follows. Let F (P,M) denote the stationary
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page fault probability for a program model P and a finite memory of M pages. More formally,

F (P,M) = lim
n→∞P[Yn+1 = i | i /∈ LRU(n)].

It follows from the properties of the nearly completely decomposable matrix P that the page fault probability

can be approximated as

F (P,M) ≈
L∑

I=1

π̃IF (Q∗
I ,M), (31)

the accuracy of which is known to be (at least) within O(ε) [9]. Due to the locality property exploited in the

construction of the matrix P, such errors are expected to be very small. The intra-locality miss ratio is then

obtained from equation (31) by recalling that Rw� converges to F (P,M) for sufficiently long measurement

intervals.

The intra-locality miss ratio of the program model P is therefore obtained by solving L much smaller

micro models to calculate their corresponding miss ratios (i.e., F (Q∗
I ,M), I ∈ {1, . . . , L}) and combining

these results with the solution to the macro model (i.e., π̃). If the matrices Q∗
I are fairly small, then the

intra-locality page fault probability can be computed by analyzing the Markov chain over the state space

of all possible LRU stacks. While this Markov chain is also irreducible, since the Q∗
I are irreducible, and

a closed-form solution exists for the page fault probability, the state space can become prohibitively large

even for moderate size Q∗
I matrices. Some of the methods in Section 3 can be exploited to address this

problem when the appropriate structure exists. However, it is important to note that there is significant

evidence [2, 12, 34] suggesting that in the short-term (micro model) the IRM and LRUSM assumptions may

be satisfied. This is especially the case for the LRUSM in part because sudden jumps between localities are

directly handled outside of the micro model for each locality. We further note that closed-form expressions

exist for F (Q∗
I ,M) when Q∗

I corresponds to the IRM or LRUSM [2].

The intra-locality memory overhead of the program model P as a function of the memory capacity M

on each of the V servers allocated to the program, Mw�
V M , is then obtained in terms of the corresponding

miss ratio as

Mw�
V M = Rw�

V M RV M C, (32)

where RV M is a non-negative discrete random variable representing the total number of memory references

for the program, and C is the cost to load a page in memory. Note that the product RV MRw�
V M represents

the number of page faults incurred by the program.

Equation (31) is a very valuable result in that it greatly simplifies the computation involved in calculating

Rw�. This approximation, however, does not account for the page faults generated during repeated visits

to each locality. The importance of these effects were previously noted above, although now the problem
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can be understood even more precisely. Consider a program that visits each of its localities multiple times,

where every locality fits in memory but the total number of pages far exceeds the capacity of memory. Thus,

F (Q∗
I ,M) = 0, I ∈ {1, . . . , L}, and from equation (31) the miss ratio F (P,M) is equal to 0, which is

clearly not correct given the multiple visits to localities with the number of pages comprising the program

far exceeding M . We capture this important aspect of program behavior in the inter-locality miss ratio and

memory overhead.

4.3 Inter-Locality Memory Overhead

We develop an approximation to the inter-locality miss ratio Ra� and inter-locality memory overhead Ma�

(i.e., the miss ratio and memory overhead across �ocalities) under LRU page replacement based primarily

on the macro model. Since the program reference behavior is assumed to be Markovian, the process repeats

itself (i.e., regenerates) on each return to locality I . Thus, the measures we need to consider concern the

number of pages in locality I that must be reloaded on return to locality I .

Let CI be a non-negative discrete random variable that represents the number of pages in locality I that

have to be reloaded on return to I , and let N∗
I be a non-negative discrete random variable that represents

the number of returns to locality I , for I ∈ {1, . . . , L}. The inter-locality memory overhead then can be

calculated as

Ma� =
L∑

I=1

N∗
I∑

j=1

CI,j, (33)

whereCI,1, CI,2, . . . , CI,N∗
I

is a sequence of i.i.d. random variables such thatCI,j
d=CI , j = 1, 2, . . . , CI,N∗

I
.

Under the assumptions herein, the random variable N∗
I is a stopping time for this sequence and thus the

moments of Ma� can be determined by applications of Wald’s equation; e.g., see [58]. Dividing the inter-

locality memory overhead by the total number of references yields the corresponding inter-locality miss

ratio. All that remains is the calculation of measures of the random variables N∗
I and CI , I ∈ {1, . . . , L}.

4.3.1 Calculation of N∗
I

We can calculate measures of N∗
I from the distribution of first passage times and the corresponding recur-

rence time random variable τ∗
I representing the elapsed time between first entry into locality I and the next

return to I . Following [35], we focus on the recurrence time τ∗I . Let {Zn ; n ∈ ZZ+} be a Markov chain

with one-step transition matrix corresponding to the macro model of Section 4.1, defined over the state space

S = {1, 2, . . . L} of localities. The mean recurrence time to state I , E[τI ], is then defined as

E[τ I ] =
∞∑

n=1

nP[Zn = I, Zν 
= I, 0 < ν < n | Z0 = I]. (34)
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Note that τ I is not the measure we are interested in because it includes events of the form [Z1 =

I | Z0 = I], which clearly do not imply any change of locality, and because it does not include the time

spent in locality I upon first entry. Instead we need τ∗I whose expectation is defined by

E[τ ∗
I ] =

∞∑
n=1

nP[Zn = I, Zν 
= I, 1 < ν < n | Z1 
= I, Z0 = I] +
∞∑

n=1

np̂n
II(1 − p̂II)

=
∞∑

n=1

nP[Zn = I, Zν 
= I, 1 < ν < n | Z1 
= I, Z0 = I] +
p̂II

1 − p̂II
.

Equation (34) can be rewritten as

E[τ I ] = P[Z1 = I | Z0 = I] +
∞∑

n=2

nP[Zn = I, Zν 
= I, 0 < ν < n | Z0 = I]

= p̂II +
∞∑

n=2

{
nP[Zn = I, Zν 
= I, 1 < ν < n | Z1 
= I, Z0 = I]P[Z1 
= I | Z0 = I]

}

= p̂II + (1 − p̂II)
(

E[τ ∗
I ] −

p̂II

1 − p̂II

)
,

from which it follows that

E[τ ∗
I ] =

E[τ I ]
1 − p̂II

. (35)

For a recurrent Markov chain, E[τI ] = 1/π̃I where π̃I is the invariant probability for state I of the Markov

chain Zn. Upon substituting for E[τI ] in equation (35) we obtain

E[τ ∗
I ] =

1
π̃I − π̃I p̂II

. (36)

4.3.2 Calculation of CI

The calculation of measures of CI can be obtained exactly or approximately by an analysis of the program

reference matrix P and its properties developed above. Since the details of this analysis can depend upon

the specific details of the matrix P, in what follows we calculate general upper and lower estimates of the

moments of CI .

To illustrate our general approach, consider a particular sample path that takes us through the localities

K1,K2, . . . ,Kr in any order and any number of times, before returning to locality I . Since P is an irre-

ducible and nearly completely decomposable Markov reference matrix, it is reasonable to assume that the

program spends enough time in each of the localities K1,K2, . . . ,Kr to have referenced all of their pages
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at least once. Let G = {K1,K2, . . . ,Kr}, and define ‖G‖ to be the number of distinct pages in all of the

localities comprising G. Observe that if all of the localities in G were referenced at least once before a

return to locality I , then ‖G‖ pages would have been loaded in memory. If ‖G‖ + ‖{I}‖ ≤ M , no pages

need to be reloaded on return to locality I , whereas if M − ‖{I}‖ < ‖G‖ < M , then the number of pages

to be reloaded on return to locality I is between ‖G‖ + ‖{I}‖ −M and ‖{I}‖. Finally, if ‖G‖ ≥M , then

all ‖{I}‖ pages have to be reloaded on return to I .

More precisely, we define a lower estimate of the overhead αl
I(G) as

αl
I(G) ≡


0, ‖G‖ + ‖{I}‖ ≤M,
‖G‖ + ‖{I}‖ −M, M − ‖{I}‖ < ‖G‖ < M,
‖{I}‖, ‖G‖ ≥M,

and an upper overhead estimate αu
I (G) as

αu
I (G) ≡

{
0, ‖G‖ + ‖{I}‖ ≤M,
‖{I}‖, otherwise.

Now let GξII denote the probability that upon leaving locality I , all (and only) the localities in G are visited

in any order and any number of times before returning to locality I . More formally,

Gξ
(n)
II = P[Zn = I, {Zν : 1 < ν < n} = G | Z1 
= I, Z0 = I],

GξII =
∑
n>1

Gξ
(n)
II .

With this formulation we can compute an upper and lower estimate for E[Ck
I ] as follows

∑
G:G⊂S,I /∈G

GξII(αl
I(G))k ≤ E[Ck

I ] ≤
∑

G:G⊂S,I /∈G

GξII(αu
I (G))k . (37)

Note that the summation in equation (37) can be reduced to only those G for which αu(G) > 0.

To calculate GξII we define a measure related to taboo probabilities [7]. Consider a set H of localities

(we are actually interested in H = Gc). For all J ∈ S\H and n ∈ ZZ+, define

HP
(n)
JI ≡ P[Zn = I, Zν /∈ H, 1 < ν < n,Z1 
= J | Z0 = J ]

and

HPJI ≡
∑

n∈ZZ+

HP
(n)
JI . (38)

19



We then can decompose HP
(n)
JI by the method of first entrance (refer to [7]) as follows

HP
(n)
JI =

∑
K /∈H
K �=J

p̂JK

n−2∑
ν=0

p̂ν
KK HP

(n−ν−1)
KI , n ≥ 2;

∑
n≥2

HP
(n)
JI =

∑
n≥2

∑
K /∈H
K �=J

p̂JK

n−2∑
ν=0

p̂ν
KK HP

(n−ν−1)
KI , (39)

=
∑
K /∈H
K �=J

p̂JK

∞∑
ν=0

∑
n≥ν+2

p̂ν
KK HP

(n−ν−1)
KI , (40)

=
∑
K /∈H
K �=J

p̂JK

1 − p̂KK
HPKI . (41)

Rewriting the left hand side of equation (41) in terms of equation (38) yields a system of ‖S\H‖ equations

which can be solved for the same number of unknowns. That is, for each J ∈ S\H, we obtain

HPJI =



∑
K /∈H
K �=J

p̂JK

1 − p̂KK
HPKI + p̂JI , J 
= I,

∑
K /∈H
K �=J

p̂JK

1 − p̂KK
HPKI , J = I.

To compute GξII , we actually need

∑
n≥2

P[Zn = I, Zν /∈ H, 1 < ν < n | Z1 
= I, Z0 = I] = HPII

P[Z1 
= I | Z0 = I]

= HPII

1 − p̂II
. (42)

Upon substituting H = Gc in equation (42), GξII can be calculated via the following recursion

GξII = GcPII

1 − p̂II
−
∑

F:F⊂
�=G

FξII . (43)

Hence, we calculate the upper and lower estimate for moments of CI by substituting (43) in equa-

tion (37). Once again, we only need to compute GξII in (43) for those G for which αu(G) > 0. As

previously noted, one can often obtain a more accurate approximation for the moments of CI by exploiting

properties of the matrices P and Q∗
I in the above analysis. In fact, exact values of E[CI ] are obtained for

the parallel applications considered in [34, 35], and the same approach can be exploited to obtain higher

moments of CI in such cases.
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4.4 Total Memory Overhead

The total memory overhead of the program model P as a function of the memory capacity M on each of

the V servers allocated to the program, MV M , can be expressed in terms of the corresponding intra-locality

and inter-locality memory overheads as

MV M = Mw�
V M + Ma�

V M . (44)

Assuming Mw�
V M and Ma�

V M are independent, the moments of MV M can be obtained from the analysis

in Sections 4.2 and 4.3. We then construct a phase-type distribution with parameters (β′
V
,S ′B

V ) of order

m′B
V < ∞ by matching as many moments (and/or density function) of MV M as are of interest, using any

of the best known methods for doing so; e.g., see [1, 21] and the references therein.

The total service times of parallel jobs when executed on partitions of size V are comprised of the com-

bination of their corresponding original service requirements and total memory overheads. By exploiting

the known closure properties of phase-type distributions [29, 20], this combined service time distribution

can be appropriately constructed as a (possibly more compact) phase-type distribution based on (β
V
,SB

V )

and (β′
V
,S ′B

V ) with mean µ′−1
V = µ−1

V + E[MV M ], V ∈ {U, . . . , P}, and substituted into the dynamic

spacesharing model of Section 2. The analysis of this dynamic spacesharing model that includes the mem-

ory overheads incurred by each parallel application as a function of its server allocation is then directly given

by our analysis derived in Section 3.

5 Conclusions

In this paper we have presented a mathematical analysis of server and memory resource allocation in par-

allel processing systems. First, a general stochastic model of parallel processing systems under dynamic

spacesharing was formulated, and an exact matrix-analytic analysis of this model was derived. Our results

included closed-form solutions for certain model instances based on their probabilistic structure and closed-

form expressions for several performance measures of interest, such as the tail distribution of the queue

length process and its asymptotic decay rate, the mean sojourn time of parallel jobs, and the long-run pro-

portion of time the system spends reconfiguring the allocation of servers among the jobs. Second, a general

nearly completely decomposable model of parallel program memory reference behavior was formulated,

and a stochastic analysis of this model was derived. Our results included probability measures of the total

memory overhead incurred by a parallel program as a function of its server allocation, which in turn can

be directly incorporated in our stochastic analysis of parallel dynamic spacesharing systems. Moreover, we

solved a longstanding open problem with previous nearly completely decomposable models and analyses

by introducing and deriving results for the inter-locality miss ratio in addition to the classical intra-locality

21



miss ratio. The collection of theoretical results presented in this paper can be exploited to investigate the

design and performance space of parallel processing systems with respect to fundamental tradeoffs related

to the server and memory allocation strategies and their interactions.
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