
RC23752 (W0510-132) October 19, 2005
Computer Science

IBM Research Report

Trusted Mobile Computing

Ramón Cáceres, Reiner Sailer
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Trusted Mobile Computing
Ramón Cáceres and Reiner Sailer
IBM T.J. Watson Research Center

{caceres, sailer}@us.ibm.com

Abstract
Mobility leads to unplanned interactions between computer systems as people use
devices to access services in varied environments. Before two systems agree to interact,
they must trust that each will satisfy the security and privacy requirements of the other.
In this paper we introduce trust overlays, a systematic approach to building such trust.
Our solution exploits the increasing availability of trusted computing hardware on
commodity systems, including portable computers. We argue that key pieces of this
solution are coming into place, for example ways to dynamically establish a distributed
trusted computing base. We also point out that difficult challenges remain, for example
how to set compatible security policies across administrative domains.

1. Introduction
In the context of computer systems, we can informally define trust as the expectation that a

system will behave in a particular manner for a specific purpose [19]. Mobile computing presents
many scenarios that require mutual trust between mobile devices and infrastructure systems.

For example, with SoulPad [2], the user carries an auto-configuring operating system (OS)
and a suspended virtual machine (VM) on a portable device. When the user connects the device
to a host PC, the PC boots the OS from the device and resumes the VM. In this scenario, the
device must trust that the PC is not running software that will compromise the user’s privacy. For
instance, a VM environment on the PC could fool the OS into thinking it is booting on a bare
physical machine instead of a VM that can snoop on the user’s data. At the same time, the PC
must trust that the OS and VM it obtains from the device will not harm the infrastructure, say by
launching a denial of service attack from the PC. Internet Suspend/Resume [9] introduces similar
concerns, as it involves a host PC loading a user’s VM from a mobile device or remote server.

There are many other more commonplace situations, for example downloading software or
other digital content to a personal device from a public server; using a personal device to
purchase goods or services from a public server; using a public PC to check personal mail stored
on a remote server; and so on. The Trusted Computing Group (TCG) has identified similar
scenarios that focus on the need for the infrastructure to establish trust on the mobile device [19].
We feel it is equally important for the mobile device to establish trust in the infrastructure.

Today the prevailing way to establish trust between systems is to exchange and verify
cryptographic certificates via the Secure Sockets Layer protocol (SSL) [13]. Certificates verify
the identities of communicating parties by proving the origin of data. However, they do not
guarantee any system properties such as software integrity. It is common knowledge that various
forms of malware (viruses, worms, etc.) tamper with software on large numbers of personal
computers and servers on a daily basis. In addition, there are increasingly frequent reports of
malware being developed for smart phones and other mobile devices, including a virus that can
jump from a phone to infect a PC [20]. A system thus compromised can present a valid SSL
certificate and yet behave maliciously.

We propose a more comprehensive solution based on trust overlays. As shown in Figure 1, a
trust overlay spans multiple systems connected via untrusted networks. On the systems that are
members of an overlay, our solution verifies software integrity, enforces isolation between
workloads, and secures communication. We build trust bottom-up by starting with trusted

- 1 -

hardware and adding layers of trusted software. It is a system-level solution available to all
applications running on the member platforms. An important goal is to reduce the security
burden on applications in order to simplify application programming.

This paper makes two contributions. One, it identifies security and privacy properties
required to establish trust across systems. Two, it describes how to provide such properties using
a combination of technologies, some of which are established, some of which are emerging, and
some of which require further work.

 Trust Overlay

App

 Untrusted
network

Authenticated
and encrypted
communication

Compatible
security
policies

Isolated
application
workloads

Attested
software
integrity

App

AppApp

Figure 1: A trust overlay provides security and privacy properties that span

networked systems, including mobile devices, proxies, and servers.

2. Properties and Components of Trust Overlays
Figure 1 shows an example of a trust overlay spanning four systems: a mobile device and

three stationary systems. The stationary systems represent proxies and servers. Proxies offload
computation and communication from resource-limited devices; they often act as intermediaries
between devices and servers. All the systems communicate over an untrusted network such as the
public Internet.

The purpose of a trust overlay is to provide four security and privacy properties: attested
software integrity, isolated application workloads, authenticated and encrypted communication,
and compatible security policies. The rest of this section discusses these properties together with
the hardware and software components necessary to implement them.

2.1. Software integrity
To establish mutual trust, systems must prove their integrity to each other through a process

called attestation. Attestation allows a remote party to verify that the software stack running on a
system is the one expected and has not been tampered with. Secure attestation is made possible
by cryptographic hardware that is resistant to software attacks.

An example of such hardware is the Trusted Platform Module (TPM) [19]. The TPM
specification is an open standard. TPM chips are widely deployed on laptop and desktop PCs, and

- 2 -

are becoming increasingly available on server-class machines. An effort is underway to produce
a similar specification tailored to the constraints of small mobile devices. We can expect TPM-
like hardware for mobile devices in the near future.

TPM enables attestation by providing secure storage as well as cryptographic primitives like
hashes and signatures. Attestation typically works bottom-up through the software stack by
having each level measure the next higher level and store the result in the TPM. A common
measurement is to compute a hash of a software component just before it is loaded for execution.
For example, on a standard PC, the BIOS would measure the boot loader, which would measure
the operating system kernel, which would measure applications. At any point the TPM chip can
be requested to produce a signed message containing the measurement results so far.

A number of TPM-based attestation schemes have been developed. Trusted Platform on
Demand (TPoD) implements a trusted boot sequence by attesting to BIOS and GRUB boot loader
integrity [11]. The Integrity Measurement Architecture extends the trust chain established by
TPoD by attesting to the load-time integrity of the Linux OS and its applications [15].

Figure 2 shows a general representation of the layers used for attestation. Concrete examples
for each layer are:

• Root of Trust: TPM or a secure coprocessor like the IBM 4758 and 4764 [3].
• Supervisor: Linux operating system or Xen hypervisor / virtual machine monitor [4].
• Container: Java virtual machine or Xen virtual machine.

Figure 2 also depicts a trust overlay containing a mobile device and a server that have attested
their integrity to each other. In deference to the resource limitations of mobile devices, the device
is shown to run a simpler software stack, perhaps a Symbian OS supporting one Java VM and
application workload at a time. In contrast, the server is shown to run a more complex stack,
perhaps a Xen hypervisor supporting multiple Xen VMs, each running a different OS and
workload.

Container

App

Mobile Device

Trust Overlay

Supervisor
Root of Trust

Supervisor
Root of Trust

Container

App

Container

App
Secure Tunnel

Server
Figure 2: Layers of trusted hardware and software combine to enforce software

integrity, workload isolation, and secure communication.

2.2. Workload isolation
Attested software integrity is necessary but not sufficient for establishing distributed trust.

Many usage scenarios also place restrictions on information flow that cannot be left to

- 3 -

applications to enforce. A comprehensive solution to the distributed trust problem must provide
system-level guarantees on isolation of application workloads.

Mandatory access control (MAC) has proven to be an effective mechanism for making such
guarantees [1]. MAC policies ensure that system security goals are achieved regardless of user
action, in contrast with discretionary policies that let users grant rights to the objects they own.
Security-Enhanced Linux (SELinux) adds MAC to the Linux kernel in order to control resource
access by application processes [12]. The sHype security architecture adds MAC to hypervisors
like Xen in order to control resource access by virtual machines [16].

We believe that virtual-machine environments augmented with mandatory access control are
an ideal platform for providing the workload isolation we seek for trust overlays. VM monitors
have naturally good isolation properties because they mediate VM access to all physical resources.
The addition of MAC further allows us to reason formally about the correctness of the system.

To continue with the example in Figure 2, the server could offer strong isolation guarantees
by using the following software stack:

• Supervisor: Xen hypervisor with sHype security.
• Container: Xen virtual machine running SELinux.

The mobile device could offer more moderate guarantees by using this stack:
• Supervisor: Linux, Palm OS, Symbian, or Windows Mobile.
• Container: Java virtual machine with Java 2 Platform Security [18].

Isolation guarantees on mobile devices would be strengthened by the adoption of operating
systems with mandatory access control. Possibilities include a stripped-down version of SELinux
or a new operating system designed with this requirement in mind.

2.3. Secure communication
Another piece of the trust overlay picture is secure communication between the overlay

members. Authentication and encryption are necessary to work over untrusted networks like the
Internet. Establishing such communication is a solved problem with two well-known solutions:

• Internet Protocol Security (IPSec) [10].
• Secure Sockets Layer (SSL) [13].

Either of these solutions can be used to implement the Secure Tunnel between the mobile device
and server shown in Figure 2.

The operation of these secure tunnels needs to be integrated with the other aspects of trust
overlays. For example, a tunnel should not be established if either attestation fails or
communication between the endpoints is forbidden by the isolation requirements. We are
working on this integration.

2.4. Compatible policies
The final aspect of trust overlays involves setting compatible security policies across

administrative domains. Together with colleagues, we have been prototyping the other three
aspects previously described. We have determined that it is possible to establish a distributed
trusted computing base using a common security policy, such as may be in force within a single
administrative domain. However, the world at large is heterogeneous, with many different and
sometimes competing administrative domains, particularly in the mobile computing context.
What is needed is a way to negotiate and enforce different but compatible policies across
administrative domains.

This is a difficult open problem. However, there is a great deal of activity around policy
management throughout the security and privacy research community. We have started work in
this area and plan to contribute to a solution.

- 4 -

3. Related Work
This section presents a brief survey of related work that is not already mentioned elsewhere in

this paper. In the area of attestation, the Terra project [5] uses trusted third-party certificates to
establish a remote basis for believing the authenticity of a virtual operating environment, and to
demonstrate that both the environment and the applications running therein are unmodified.
Smith [17] explores an approach for attesting to all software layers running inside a cryptographic
coprocessor [3]. Haldar and colleagues [7] build upon a trusted Java environment to implement
language-based VMs that enable remote attestation of complex, dynamic, and high-level
application properties in a platform-independent way. Work by Sadeghi and Stüble [14] aims to
enable evaluating which security properties a remote system upholds, while abstracting the details
of which hardware and software components are used in the system.

In the area of enforcing security policies in a distributed system, Ioannidis and colleagues [8]
introduce the concept of a Virtual Private Service (VPS). A VPS captures, in a single policy
specification, the complete access-control requirements of a service to produce a consistent
environment across multiple independent enforcement points. Finally, Trusted Virtual Domains
[6] offer an abstraction of security properties so that computing services can be dependably
offloaded into execution environments that demonstrably meet a desired set of security
requirements. The work described in this paper complements this related work with a systematic
approach to building trust in mobile computing environments.

4. Summary
We hope that this paper has conveyed the desirability and viability of trusted mobile

computing. Our concept of trust overlays applies not only to mobile computing environments but
to distributed systems in general. However, the dynamic nature of interactions between mobile
devices and their surroundings makes the need for trusted computing particularly acute in the
mobile context. We urge the mobile computing research community to address trust in their
systems sooner rather than later.

Acknowledgements
This work has benefited from collaborations on many aspects of trusted computing with other

members of the Secure Systems Department at the IBM T.J. Watson Research Center. This work
has also benefited from discussions on Trusted Virtual Domains with colleagues at the IBM
Tokyo Research Lab and IBM Zurich Research Lab.

References
[1] J. P. Anderson et al., “Computer Security Technology Planning Study,” Technical Report

ESD-TR-73-51, Vol. I+II, Air Force Systems Command, USAF, 1972.
[2] R. Cáceres, C. Carter, C. Narayanaswami and M. Raghunath, “Reincarnating PCs with

Portable SoulPads,” Proc. of 3rd ACM/USENIX International Conference on Mobile
Systems, Applications and Services (MobiSys), June 2005.

[3] J.G. Dyer, M. Lindemann, R. Perez, R. Sailer, S.W. Smith, L. van Doorn and S. Weingart,
“The IBM Secure Coprocessor: Overview and Retrospective,” IEEE Computer, October
2001.

[4] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham and R.
Neugebauer, “Xen and the Art of Virtualization,” Proc. of the ACM Symposium on
Operating Systems Principles, October 2003.

- 5 -

[5] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum and D. Boneh, “Terra: A Virtual Machine-
Based Platform for Trusted Computing,” Proc. of 9th ACM Symposium on Operating
Systems Principles (SOSP), 2003.

[6] J. L. Griffin, T. Jaeger, R. Perez, R. Sailer, L. van Doorn. and R. Cáceres, “Trusted Virtual
Domains: Toward Secure Distributed Services,” Proc. of 1st IEEE Workshop on Hot
Topics in System Dependability (HotDep), June 2005.

[7] V. Haldar, D. Chandra, and M. Franz, “Semantic Remote Attestation: A Virtual Machine
Directed Approach to Trusted Computing,” Proc. of USENIX Virtual Machine Research
and Technology Symposium, May 2004.

[8] S. Ioannidis, S. M. Bellovin, J. Ioannidis, A. D. Keromytis, and J. M. Smith, “Design and
Implementation of Virtual Private Services,” IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, June 2004.

[9] M. Kozuch and M. Satyanarayanan, “Internet Suspend/Resume,” Proc. of IEEE Workshop
on Mobile Computing Systems and Applications (WMCSA), 2002.

[10] P. Loshin, Big Book of IPSec RFCs: Internet Security Architecture, Morgan Kauffman
Publishers, 1999.

[11] H. Maruyama, F. Seliger, N. Nagaratnam, T. Ebringer, S. Munetoh, S. Yoshihama and T.
Nakamura, “Trusted Platform on Demand,” Research Report RT0564, IBM Corporation,
February 1, 2004.

[12] National Security Agency, Security-Enhanced Linux (SELinux).
http://www.nsa.gov/selinux

[13] Netscape, SSL 3.0 Specification. http://www.netscape.com/eng/ssl3

[14] A.-R. Sadeghi and C. Stüble, “Property-based Attestation for Computing Platforms: Caring
about policies, not mechanisms,” Proc. of New Security Paradigm Workshop (NSPW),
2004.

[15] R. Sailer, X. Zhang, T. Jaeger and L. van Doorn, “Design and Implementation of a TCG-
based Integrity Measurement Architecture,” Proc. of 13th USENIX Security Symposium,
August 2004.

[16] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez, S. Berger, J. L. Griffin and L. van
Doorn, “Building a MAC-Based Security Architecture for the Xen Open-Source
Hypervisor,” to appear in Proc. of 22nd Annual Computer Security Applications
Conference (ACSAC), December 2005.

[17] S. W. Smith, “Outbound authentication for programmable secure coprocessors,” Proc. of
7th European Symposium on Research in Computer Security (ESORICS), 2002.

[18] Sun Microsystems, Java 2 Platform Security.
http://java.sun.com/j2se/1.3/docs/guide/security

[19] Trusted Computing Group. https://www.trustedcomputinggroup.org
[20] Yahoo! News, “New Mobile Virus Can Jump to PCs,” September 23, 2005.

http://news.yahoo.com/news?tmpl=story&u=/nf/20050923/tc_nf/38306

- 6 -

	Abstract
	1. Introduction
	2. Properties and Components of Trust Overlays
	2.1. Software integrity
	2.2. Workload isolation
	2.3. Secure communication
	2.4. Compatible policies
	3. Related Work
	4. Summary
	Acknowledgements
	References

