
RC23755 (W0510-142) October 21, 2005
Computer Science

IBM Research Report

A Reusable Ontology for Fluents in OWL

Christopher Welty
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Richard Fikes, Selene Makarios
Stanford University

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Reusable Ontology for Fluents in OWL

Christopher Welty, Richard Fikes, and Selene Makarios
welty@us.ibm.com, fikes@ksl.stanford.edu, makarios@ksl.stanford.edu

Abstract

A critical problem for practical KR is dealing with
relationships that change over time. This problem is
compounded by representation languages such as OWL that
are biased towards binary relations, even when the
relationships that vary with time are binary. We discuss
several approaches to this problem in OWL, and focus on
the advantages of a four-dimensionalist (perdurantist)
solution, which allows us to use more of the expressive
power of the language.

Content Areas: Ontologies, Semantic Web, Time, Fluents.

Introduction

A critical problem for practical KR is dealing
with information that changes over time. This
problem is compounded by representation
languages that are biased towards binary
relations. Such languages include OWL, RDF,
description logics in general, and frame-based
and object-oriented languages. Even when the
relationships we wish to represent are binary,
such as being a member of an organization or
living at an address, the fact that they may
change with time complicates matters enough
that many ontologies implemented in these
representation languages ignore the problem of
time completely.
In this paper, we will review different
approaches to representing relationships that
change with time in OWL, and describe how our
needs led us to adopt a four-dimensionalist
approach to this problem. We will then discuss
some practical issues involved with this choice,
and how we interoperate with systems that
represent the same information differently.

Tools of Formal Ontology

The field of ontology begins with the premise
that things exist in the universe, and has the goal
of describing what kinds of things there are in a
way that – as much as possible – removes our
own human perceptions and biases [Smith and
Welty, 2001]. At the most basic level, the field

is divided into two groups distinguished by their
solution to the problem of diachronic identity:
i.e., how do we logically account for the fact that
the “same” entity appears to be “different” at
different times?
The 3D view, sometimes called the endurantist
view, maintains a basic distinction between
endurants (physical objects such as people,
chairs, etc.) and occurrants (events such as
sitting on a chair or going to work). The
difference between the two is that endurants are
wholly present at all times during which they
exist, while occurrants have temporal parts that
exist during the times the entity exists. The
problem of diachronic identity of endurants is
addressed by establishing certain essential
properties of entities through which they are
identified – these properties are essential and
thus must always hold. Other properties, such as
having brown hair (or having hair at all), are
understood to be changeable. This approach has
the problem, however, that Leibniz’s Law (i.e., X
and Y are identical if and only if they share all
and only the same properties) must be qualified
with this distinction.
The 4D view, sometimes called the perdurantist
view, maintains that all entities are perdurants.
The idea is that, on a universal scale, even the
lifetime of a planet is a simple event, and the
prescription that physical objects are somehow
different is a product of our own very fine-
grained perspective on time and space. Thus, all
entities have temporal parts and can be thought
of intuitively as four dimensional “spacetime
worms” whose temporal parts are slices of the
worm [Sider, 2001]. The problem of diachronic
identity becomes trivial since entities are four
dimensional, and the notion of change is
accounted for simply by giving different
properties to different temporal parts of an entity
so that Leibnitz’s law always holds. This
approach has the problem, however, that
determining what is an entity is rather arbitrary;
in fact any mere collection of matter over time
can be an entity.
The 4D approach is clearly not something that
immediately appeals to common sense. However,
its proponents claim that special relativity

necessitates it as a correct view of reality. It was
first introduced into computer science by Hayes
in his seminal work on Naïve Physics [Hayes,
1985]. Its history in philosophy dates back over
a hundred years, though Willard Quine [1950] is
often associated with its origins, and David
Lewis [1971] is probably the first to have
formalized it in a logical theory.
In this paper we will not attempt to offer
evidence in favor of or contrary to these two
views as basic ontologies of the universe, as has
been done elsewhere [Hayes, et al, 2002]. Rather,
we wish to show that understanding these
ontological choices and their tradeoffs gives us
another tool to use when solving a practical
problem, just as understanding the behavior of
different sorting algorithms with respect to the
distribution of data gives the software engineer
choices when designing software.

Background

In our work, we are using OWL to represent an
ontology of entities and relations that are
discussed in general news articles and may be of
interest to analysts in areas such as business,
finance, and government intelligence. The data
that instantiates the ontology is automatically
extracted though text analysis.
Choosing OWL to represent our ontologies gave
us the ability to easily build interoperable
systems to produce, reason over, visualize, etc.,
this data. Further, the large quantity of data we
are producing requires highly optimized
reasoning components, which are available for
several subsets of OWL (e.g. Racer [Haarslev
and Möller, 2001] and Pellet [Parsia and Sivrin,
2004]). We were also able to use off-the-shelf
editors (e.g. Protégé [Noy, et al, 2000]) and user-
interfaces (e.g. TGViz [Alani, 2003]). Finally,
the ability to view the resulting data as a simple
graph has proven very important in
demonstrating the technology because end users
find such visualizations to be natural and easily
understandable.
The ontologies we use are human created, and
the vast amounts of information we reason with
is generated automatically from news articles.
Briefly, we use large-scale information
extraction techniques with a specially designed
integration component that maps the results of
information extraction to instances in the
knowledge-base. This extraction is fairly shallow,
in particular we avoid overloading the
knowledge-base with syntactic information and
parse trees and map only the named entities and

binary relations between them that are identified
by text analysis components. For example, we
would expect that text analysis of the following
sentence:

“IBM appointed a new CEO, Sam Palmisano, a
graduate of The Johns Hopkins University.”

would generate the following data (we employ
here the OWL abstract syntax [Patel-Schneider,
et al, 2004]):
Individual(IBM type(Company))
Individual(JohnsHopkinsUniversity type(University))
Individual(SamPalmisano type(Person)

value(ceoOf IBM)
value(alumnusOf JohnsHopkinsUniversity))

There are a number of difficult research
problems in doing such text analysis and in
mapping the results to OWL that we will not
address in this paper. The principle point here is
that producing these binary relationships (shown
as the value and type statements) is a standard
practice in this community, and we wished to
make use of this existing work to populate a
knowledge-base.

Representation Problems

The main shortcoming of the representation used
in the example above is that it is synchronic, i.e.
it refers to only one point in time. In many
domains, and indeed in natural human
understanding, these relationships are diachronic,
i.e. they vary with time. For example, consider
this sentence:

“Sam Palmisano was named chief executive officer of
the IBM Corporation effective March 1, 2002.”

The sentence clearly indicates that Sam
Palmisano was not always the CEO of IBM, and
that the relationship ceoOf(sam,ibm) will be true
for some period of time that began on March 1,
2002.
Moving from a synchronic to a diachronic
representation, however, creates a significant
representation problem if we are to use RDF and
OWL, even if we limit ourselves to binary
relations that vary with time. In general, this
problem is one of representing fluents.
According to McCarthy and Hayes [1969], a
fluent is a function that maps from objects and
situations to truth. We will simplify this notion
slightly and consider fluents to be relations that
hold within a certain time interval and not in
others. The text analysis we use is based on
TimeML [Ingria and Pustejovsky, 2002], and we
map these results into the OWL-Time ontology
[Hobbs and Pan, 2004] for time points and

intervals. This paper remains neutral to these
representations, however, and any time ontology
that provides an adequate notion of time intervals
will do.
The most common way to represent a binary
fluent in FOL is to simply add a time argument
to the binary predicate, as in McCarthy&Hayes
[1969], and described as a standard practice
already at that time. Thus the synchronic
ceoOf(Sam,IBM) becomes the diachronic
ceoOf(Sam, IBM, t1), where t1 is a time interval
that begins on March 1, 2002. This leaves us
with a ternary predicate, which cannot be
represented in OWL unless we move to
reification, which is discussed below, or to one
of the other approaches described by the W3C
Semantic Web Best Practices working group
[Noy and Rector, 2005].
In the original formulation of fluents discussed
by McCarthy&Hayes, another choice presented
is to add a meta-logical predicate to relate the
relationship to a time interval. That choice has
become the standard in most formalizations (e.g.,
situation calculus and Allen’s Interval Temporal
Logic). In our example, this would be
holds(ceoOf(Sam, IBM), t1). While this seems
prima facie to be within the limits of OWL since
it uses only binary predicates, OWL does not
allow relationships themselves to participate in
relationships, which this would require.
Another important factor in our work is the
requirement that the representation of fluents be
fully round-trip transformable with a
representation in KIF that uses the holds
predicate. Within this representation, we
perform more advanced temporal reasoning with
a special purpose reasoner plug-in for JTP [Fikes,
et al, 2003].

Solution Approaches for OWL

The problem of representing fluents in a binary-
limited representation is not new. Here we
outline some of the choices we considered, and
evaluate their usefulness. A more
comprehensive survey of techniques for
representing higher arity predicates in OWL can
be found at [Noy and Rector, 2005].

Reification

Independent of representing change, the most
common approach to dealing with predicates of
higher arity than 2 in languages like OWL is to
reify the relationships – that is, turn each tuple in
the extension of a relation into an object that

itself has binary relationships, typically called
roles, identifying all the elements of the tuple. A
class, which we will call the reified relationship
class, is created for each relation, whose
extension includes all the objects representing
tuples in the extension of the corresponding
relation.
For example, the ceoOf(Sam, IBM, t1)
relationship would be represented as:
Individual(IBM type(Company))
Individual(JohnsHopkinsUniversity type(University))
Individual(SamPalmisano type(Person))
Individual(Rel1 type(CeoOf)
 value(CeoOf:ceo SamPalmisano)
 value(CeoOf:company IBM)
 value(CeoOf:holds t1))

Note that the “:” character in this example is
used simply for visual purposes, and while it has
a syntactic meaning in OWL, it can be
understood in these examples to simply make the
name of each role of a relationship unique to the
reified relationships of that type.
Reification has a number of known problems that
are outlined in more detail in [Noy and Rector,
2005]. None of these are serious, but they are
important to be aware of. In brief, they are:
• Proliferation of objects. For every tuple a new object is

created, along with an additional binary relationship
for every element of the tuple. For the type of
relations we are interested in (binary relations that
change with time), we end up creating an object and
four relationships (including the type relationship) for
every tuple. This is a mild concern as our application
extracts many relationships per document, and we
would like to scale the corpus to at least one million
documents.

• Redundant Objects. Since relationship reifications are
objects, it is possible to create multiple objects that
reify the same relationship, where in other languages
that permit n-ary predicates there would only be one
tuple in the extension of the corresponding relation.
This can be problematic when using reasoners (such
as Racer [Haarslev and Möller, 2001]) that make a
unique names assumption, as these multiple objects if
present can be counted twice when satisfying counting
axioms such as cardinality constraints.

• Confusing ontology. When classes and their instances
are defined in an ontology, it is important to define
what they refer to. The presence of reified relation
classes and roles can create a confusion between
events and fluents if one is not careful.

• Limited use of OWL reasoning. The use of OWL
language constructs becomes severely limited with
reified relationships.

The final point is of particular interest here, and
deserves further discussion, as this will be the
primary problem our solution will address.
In our ontology, and the circumstances are quite
common, the vast majority of our fluents are
binary relations that vary with time. The
relationships themselves are, again, extracted
automatically through text analysis. Some
examples are ownerOf, managerOf, ceoOf,
employeeOf, memberOf, locatedAt,
colocatedWith, etc. Each of these relations holds
between any two individuals for some period of
time, and does not hold for other periods of time.
Resorting to reification to add the time argument
to each binary relationship prevents us from
employing many of the most practically useful
OWL operators in describing the intended
semantics of the relations, and thus drastically
limits the utility of OWL reasoning.
For example, empirical studies have shown that
simple reasoning about inverses can have the
highest impact, in terms of relevance to the user,
on improvements in recall [Welty, 1998]. For
most binary relations, the inverse is potentially as
important, even if it is not explicitly stated. For
example, the inverse of the ownerOf relation is
hasOwner. There is no a priori way to
determine which direction may be of more use to
an end user. Reification prevents us from being
able to express in OWL the relation inverses,
thus we are stuck with whatever direction is
stated in text.
Reification also prevents usage of the OWL
operators transitive, symmetric, functional, and
inverseFunctional on the intended relation.
Local range restrictions on properties in the
reified relation class must also be understood to
be global restrictions on the intended relation.
To express the equivalent of local range
restrictions on the intended relation, one must
use nested restrictions on the role inverses. For
example, “A person is managed by a person”
would be expressed as:
ObjectProperty(ManagerRel:manages
 inverseOf(ManagerRel:managedBy))
Class(Person partial
 Restriction(ManagerRel:managedBy

allValuesFrom(
restriction(ManagerRel:manager

allValuesFrom(Person)))

ManagerRel:manages and ManagerRel:manager
are the roles of the relation.
Finally, for representing binary fluents,
cardinality and value restrictions on the role
inverses end up restricting the intended relation

for all time. In other words, we cannot express
in OWL that a person can have at most one
manager at a time. The only thing we can say is:
Class(Person partial
 Restriction(ManagerRel:managedBy
 maxCardinality (1)))

which says that every instance of Person can
only ever have one manager. In most cases
where such an axiom may be useful, e.g. the
hasMother relation, it’s not clear the relation
should be a fluent at all. At the very least, in our
ontologies we could not find a use for cardinality
or value restrictions on the role inverses.

Temporal Description Logics

Given our decision to use OWL, whose
semantics is borrowed from description logics
and which has a well-defined description logic
fragment, it may seem natural to pursue temporal
description logics in order to represent fluents.
A good survey of temporal description logics can
be found at [Artale and Franconi, 2001].
Like all description logics, temporal description
logics restrict the operators of the language, and
make critical choices in the formalization, in
order to keep all reasoning problems in the
language decidable. Following in the style of
this community, temporal description logics do
not have variables in the syntax, thus making
quantification implicit. Most importantly for our
purposes, temporal description logics reduce to a
modal logic, in which times (or situations) are
removed from the syntax and instead are part of
the implicit quantification with only one ordering
relation.
The result is that we are unable to talk about
what is true at any particular time in a temporal
DL, we can only quantify over past and future
times. Furthermore, we can not use the full
Allen calculus, which is critical to our
application.

The Four-Dimensional Approach

The basic idea of a 4D ontology is to consider
entities to exist in time the way material objects
exist in space – they occupy spacetime. These
4D entities (perdurants) have temporal parts that
represent the entity during some time interval –
4D entities have arbitrarily many temporal parts.
When two entities participate in some fluent, the
fluent holds between temporal parts of those
entities. Often perdurants are described as 4D
worms whose temporal parts are slices of the

worm. We present below a high-level and
reusable ontology in OWL for 4D fluents:
(Ontology 4dFluents

(Class TimeSlice)
(DisjointClasses TimeSlice TimeInterval)
(Property fluentProperty Symmetric

(domain TimeSlice)
(range TimeSlice))

(Property tsTimeSliceOf Functional
 (domain TimeSlice)

(range complementOf(TimeInterval)))
(Property tsTimeInterval Functional
 (domain TimeSlice)

(range TimeInterval)))

As is often the case with high-level ontologies,
there are more intended semantic constraints than
can be expressed in OWL. To begin with, we
intend that time slices be maximal with respect to
the time interval of all fluents it participates in.
That is, the time interval of a time slice is
defined to be the duration of the fluent holding.
Thus if a time slice participates in more than one
fluent, they must hold for precisely the same
interval. We also intend that two time slices of
the same entity for the same interval are equal.
In our system, it is the responsibility of the
component that transforms the output of text
analysis into the knowledge-base to enforce these
semantics.
The class TimeInterval here is actually a stand-in
for whatever class is provided in a time ontology.
In our work we use a portion of the OWL-Time
ontology without events, and we define:
(Ontology 4dFluentsOwlTime

(Annotation owl:imports 4dFluents)
(Annotation owl:imports OwlTime)
(EquivalentClasses owlTime:Interval TimeInterval))

Given this ontology, we can define a simple
ontology for our example:
(Ontology example1

(Annotation owl:imports 4dFluentsOwlTime)
(Class Person)
(Class Company)
(DisjointClasses Person Company)
(Property ceoOf super(fluentProperty) inverseOf(hasCeo)

(domain
(restriction(tsTimeSliceOf (allValuesFrom Person))))

 (range
 (restriction(tsTimeSliceOf (allValuesFrom Company))))))

The ceoOf relation in our example holds between
the temporal part of Sam Palmisano that begins
on March 1, 2002, and the temporal part of IBM
that begins at the same time:
Individual(SamPalmisano type(Person))
Individual(IBM type(Company))
Individual(IBM1 type(TimeSlice)
 value(timeSliceOf IBM)

 value(timeInterval t1))
Individual(SP1 type(TimeSlice)
 value(timeSliceOf SamPalmisano)
 value(timeInterval t1)
 value(ceoOf IBM1))

The first advantage of the 4D representation is
that we can use the OWL inverse operator in the
expected way, as shown in the example ontology.
With this axiom, the data above would entail the
hasCeo relation between IBM1 and SP1.
Transitivity and symmetry also have the
expected meaning, allowing us to express many
spatial axioms in the OWL ontology:
 (Property colocatedWith Symmetric)
 (Property locatedIn Transitive)

This allows us to use OWL reasoners rather than
more computationally expensive ones to derive
these relationships in the data.
Cardinality restrictions can also be expressed
with this approach in a way that was useful for
our domain. We had several intended relations
whose semantics required temporally qualified
cardinality, such as “a company has at-most one
CEO at a time”. This would be approximated as:

Class(Company partial
 restriction(hasTimeSlice
 allValuesFrom(restriction(hasCeo

 maxCardinality(1)))))

This is only an approximation of the intended
semantics as it does not prevent the unintended
model in which a company has two overlapping
time slices that have a hasCeo relation to
different people, it only eliminates the cases in
which a company has two values of the ceoOf
relation during the same interval. Nevertheless,
that is an improvement over any other approach
to representing binary fluents in OWL, since it
eliminates some unintended models. Note that
this also depends somewhat on the ability to
enforce the identity conditions on time slices
discussed above, which cannot be represented in
OWL.
The 4D approach is the worst among the
approaches discussed here with respect to the
proliferation of objects. A single fluent requires
two extra objects (the time slices) and four triples.
We are exploring heuristic techniques for
pruning this information, depending on the
reasoning task at hand, but in general the amount
of data generated is a shortcoming.

Conclusion

Representing changing information is critical to
practical Knowledge Representation and

Reasoning. OWL is intended to be a practical
KR&R language, and its expressiveness is
limited in favor of desirable computational
properties. One limitation, the restriction to
unary and binary predicates, creates an obstacle
to representing relationships that change with
time, even when the relationships themselves are
binary. We have discussed these obstacles as
well as the most common solution, reification of
relationships, and shown that it further limits the
use of what limited expressiveness OWL already
has.
Our approach, which involves treating entities in
the domain of discourse as four dimensional with
temporal parts that participate in the relation,
corresponds to an established ontological
position in analytical metaphysics called
perdurantism. The perdurantist approach offers
several advantages, and most importantly
increases the amount of OWL expressiveness
that can be utilized to practically describe the
semantics of a domain in which binary
relationships change with time.

Acknowledgements

This work was supported in part by the
Advanced Research and Development Activity
(ARDA)’s Novel Intelligence for Massive Data
(NIMD). The authors would also like to thank
Pat Hayes for extensive discussions that helped
clarify these ideas.

References

Alani, H. 2003. TGVizTab: An Ontology
Visualization Extension for Protégé. In K-Cap'03
Workshop on Visualization Information in
Knowledge Engineering, Sanibel Island.
Artale, Alessandro and Enrico Franconi. 2001. A
Survey of Temporal Extensions of Description
Logics. Annals of Mathematics and Artificial
Intelligence (AMAI), Kluwer Academic Press,
30(1-4):171—210.
Fikes, Richard, Jessica Jenkins, and Gleb Frank.
2003. JTP: A System Architecture and
Component Library for Hybrid Reasoning.
Proceedings of the Seventh World
Multiconference on Systemics, Cybernetics, and
Informatics. Orlando, Florida.
Haarslev, Volker and Ralf Möller. 2001. High
Performance Reasoning with Very Large
Knowledge Bases: A Practical Case Study.
IJCAI-01 Proceedings. Seattle:AAAI.

Hayes, P.J. 1985. The Second Naïve Physics
Manifesto. In Formal Theories of the
Commonsense World. Pp 1-36. Norwood, NJ:
Ablex.
Hayes P.J., Fritz Lehmann and Chris Welty.
2002. Endurantism and Perdurantism: An
Ongoing Debate. Edited by Adam Pease.
http://ontology.teknowledge.com:8080/rsigma/di
alog-3d-4d.html
Hobbs, Jerry R., and Feng Pan, 2004. An
Ontology of Time for the Semantic Web', ACM
Transactions on Asian Language Information
Processing: 3(1).
Ingria, Bob and James Pustejovsky. 2002.
TimeML: A Formal Specification Language for
Events and Temporal Expressions.
http://www.cs.brandeis.edu/~jamesp/arda/time/ti
meMLdocs/TimeML12.htm.
Lewis, David. 1971, "Counterparts of Persons
and their Bodies", Journal of Philosophy, 68:
203-211.
Parsia, B. and Sivrin, E. 2004. Pellet: an OWL-
DL Reasoner. ISWC 2004 Proceedings.
Patel-Schneider, P, Ian Horrocks and Patrick
Hayes. 2004. OWL Web Ontology Language
Semantics and Abstract Syntax. W3C
Recommendation. http://www.w3c.org/TR/owl-
semantics/
Quine, W.V.O. 1950, "Identity, Ostension and
Hypostasis", in From a Logical Point of View. Pp.
65-79. Cambridge: Harvard.
McCarthy, John and P.J. Hayes. 1969. Some
Philosophical Problems from the Standpoint of
Artificial Intelligence'. In D. Michie (ed),
Machine Intelligence: 4. New York: Elsevier.
Noy, N. F., W. Grosso, & M. A. Musen. 2000.
Knowledge-Acquisition Interfaces for Domain
Experts: An Empirical Evaluation of Protege-
2000. SEKE2000 Proceedings. Chicago.
Sider, Theodore. 2001. Four-Dimensionalism.
Oxford University Press. 2001
Smith, B. and C. Welty. 2001. Ontology:
Towards a new synthesis. In Formal Ontology in
Information Systems. Ongunquit:ACM Press.
Welty, C. 1998. Augmenting Abstract Syntax
Trees for Program Understanding. ASE-98
Proceedings. Tahoe: IEEE CS Press.

