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Abstract 

A critical problem for practical KR is dealing with 
relationships that change over time.  This problem is 
compounded by representation languages such as OWL that 
are biased towards binary relations,  even when the 
relationships that vary with time are binary. We discuss 
several approaches to this problem in OWL, and focus on 
the advantages of a four-dimensionalist (perdurantist) 
solution, which allows us to use more of the expressive 
power of the language. 
 
Content Areas: Ontologies, Semantic Web, Time, Fluents. 

Introduction  

A critical problem for practical KR is dealing 
with information that changes over time.  This 
problem is compounded by representation 
languages that are biased towards binary 
relations.  Such languages include OWL, RDF, 
description logics in general, and frame-based 
and object-oriented languages.  Even when the 
relationships we wish to represent are binary, 
such as being a member of an organization or 
living at an address, the fact that they may 
change with time complicates matters enough 
that many ontologies implemented in these 
representation languages ignore the problem of 
time completely. 
In this paper, we will review different 
approaches to representing relationships that 
change with time in OWL, and describe how our 
needs led us to adopt a four-dimensionalist 
approach to this problem.  We will then discuss 
some practical issues involved with this choice, 
and how we interoperate with systems that 
represent the same information differently.   

Tools of Formal Ontology 

The field of ontology begins with the premise 
that things exist in the universe, and has the goal 
of describing what kinds of things there are in a 
way that – as much as possible – removes our 
own human perceptions and biases [Smith and 
Welty, 2001].  At the most basic level, the field 
                                                 
 

is divided into two groups distinguished by their 
solution to the problem of diachronic identity:  
i.e., how do we logically account for the fact that 
the “same” entity appears to be “different” at 
different times?   
The 3D view, sometimes called the endurantist 
view, maintains a basic distinction between 
endurants (physical objects such as people, 
chairs, etc.) and occurrants (events such as 
sitting on a chair or going to work).  The 
difference between the two is that endurants are 
wholly present at all times during which they 
exist, while occurrants have temporal parts that 
exist during the times the entity exists. The 
problem of diachronic identity of endurants is 
addressed by establishing certain essential 
properties of entities through which they are 
identified – these properties are essential and 
thus must always hold.  Other properties, such as 
having brown hair (or having hair at all), are 
understood to be changeable.  This approach has 
the problem, however, that Leibniz’s Law (i.e., X 
and Y are identical if and only if they share all 
and only the same properties) must be qualified 
with this distinction. 
The 4D view, sometimes called the perdurantist 
view, maintains that all entities are perdurants.  
The idea is that, on a universal scale, even the 
lifetime of a planet is a simple event, and the 
prescription that physical objects are somehow 
different is a product of our own very fine-
grained perspective on time and space.  Thus, all 
entities have temporal parts and can be thought 
of intuitively as four dimensional “spacetime 
worms” whose temporal parts are slices of the 
worm [Sider, 2001]. The problem of diachronic 
identity becomes trivial since entities are four 
dimensional, and the notion of change is 
accounted for simply by giving different 
properties to different temporal parts of an entity 
so that Leibnitz’s law always holds.  This 
approach has the problem, however, that 
determining what is an entity is rather arbitrary; 
in fact any mere collection of matter over time 
can be an entity. 
The 4D approach is clearly not something that 
immediately appeals to common sense.  However, 
its proponents claim that special relativity 



 

necessitates it as a correct view of reality.  It was 
first introduced into computer science by Hayes 
in his seminal work on Naïve Physics [Hayes, 
1985].  Its history in philosophy dates back over 
a hundred years, though Willard Quine [1950] is 
often associated with its origins, and David 
Lewis [1971] is probably the first to have 
formalized it in a logical theory. 
In this paper we will not attempt to offer 
evidence in favor of or contrary to these two 
views as basic ontologies of the universe, as has 
been done elsewhere [Hayes, et al, 2002].  Rather, 
we wish to show that understanding these 
ontological choices and their tradeoffs gives us 
another tool to use when solving a practical 
problem, just as understanding the behavior of 
different sorting algorithms with respect to the 
distribution of data gives the software engineer 
choices when designing software. 

Background 

In our work, we are using OWL to represent an 
ontology of entities and relations that are 
discussed in general news articles and may be of 
interest to analysts in areas such as business, 
finance, and government intelligence.  The data 
that instantiates the ontology is automatically 
extracted though text analysis. 
Choosing OWL to represent our ontologies gave 
us the ability to easily build interoperable 
systems to produce, reason over, visualize, etc., 
this data.  Further, the large quantity of data we 
are producing requires highly optimized 
reasoning components, which are available for 
several subsets of OWL (e.g. Racer [Haarslev 
and Möller, 2001] and Pellet [Parsia and Sivrin, 
2004]). We were also able to use off-the-shelf 
editors (e.g. Protégé [Noy, et al, 2000]) and user-
interfaces (e.g. TGViz [Alani, 2003]).  Finally, 
the ability to view the resulting data as a simple 
graph has proven very important in 
demonstrating the technology because end users 
find such visualizations to be natural and easily 
understandable. 
The ontologies we use are human created, and 
the vast amounts of information we reason with 
is generated automatically from news articles.  
Briefly, we use large-scale information 
extraction techniques with a specially designed 
integration component that maps the results of 
information extraction to instances in the 
knowledge-base. This extraction is fairly shallow, 
in particular we avoid overloading the 
knowledge-base with syntactic information and 
parse trees and map only the named entities and 

binary relations between them that are identified 
by text analysis components.   For example, we 
would expect that text analysis of the following 
sentence: 

“IBM appointed a new CEO, Sam Palmisano, a 
graduate of The Johns Hopkins University.” 

would generate the following data (we employ 
here the OWL abstract syntax [Patel-Schneider, 
et al, 2004]): 
Individual(IBM type(Company)) 
Individual(JohnsHopkinsUniversity type(University)) 
Individual(SamPalmisano type(Person) 

value(ceoOf IBM) 
value(alumnusOf JohnsHopkinsUniversity)) 

There are a number of difficult research 
problems in doing such text analysis and in 
mapping the results to OWL that we will not 
address in this paper.  The principle point here is 
that producing these binary relationships (shown 
as the value and type statements) is a standard 
practice in this community, and we wished to 
make use of this existing work to populate a 
knowledge-base.   

Representation Problems 

The main shortcoming of the representation used 
in the example above is that it is synchronic, i.e. 
it refers to only one point in time.  In many 
domains, and indeed in natural human 
understanding, these relationships are diachronic, 
i.e. they vary with time.   For example, consider 
this sentence: 

“Sam Palmisano was named chief executive officer of 
the IBM Corporation effective March 1, 2002.” 

The sentence clearly indicates that Sam 
Palmisano was not always the CEO of IBM, and 
that the relationship ceoOf(sam,ibm) will be true 
for some period of time that began on March 1, 
2002.  
Moving from a synchronic to a diachronic 
representation, however, creates a significant 
representation problem if we are to use RDF and 
OWL, even if we limit ourselves to binary 
relations that vary with time. In general, this 
problem is one of representing fluents.  
According to McCarthy and Hayes [1969], a 
fluent is a function that maps from objects and 
situations to truth.  We will simplify this notion 
slightly and consider fluents to be relations that 
hold within a certain time interval and not in 
others. The text analysis we use is based on 
TimeML [Ingria and Pustejovsky, 2002], and we 
map these results into the OWL-Time ontology 
[Hobbs and Pan, 2004] for time points and 



 

intervals. This paper remains neutral to these 
representations, however, and any time ontology 
that provides an adequate notion of time intervals 
will do. 
The most common way to represent a binary 
fluent in FOL is to simply add a time argument 
to the binary predicate, as in McCarthy&Hayes 
[1969], and described as a standard practice 
already at that time. Thus the synchronic 
ceoOf(Sam,IBM) becomes the diachronic 
ceoOf(Sam, IBM, t1), where t1 is a time interval 
that begins on March 1, 2002.  This leaves us 
with a ternary predicate, which cannot be 
represented in OWL unless we move to 
reification, which is discussed below, or to one 
of the other approaches described by the W3C 
Semantic Web Best Practices working group 
[Noy and Rector, 2005]. 
In the original formulation of fluents discussed 
by McCarthy&Hayes, another choice presented 
is to add a meta-logical predicate to relate the 
relationship to a time interval.  That choice has 
become the standard in most formalizations (e.g., 
situation calculus and Allen’s Interval Temporal 
Logic).  In our example, this would be 
holds(ceoOf(Sam, IBM), t1).  While this seems 
prima facie to be within the limits of OWL since 
it uses only binary predicates, OWL does not 
allow relationships themselves to participate in 
relationships, which this would require. 
Another important factor in our work is the 
requirement that the representation of fluents be 
fully round-trip transformable with a 
representation in KIF that uses the holds 
predicate.  Within this representation, we 
perform more advanced temporal reasoning with 
a special purpose reasoner plug-in for JTP [Fikes, 
et al, 2003].   

Solution Approaches for OWL 

The problem of representing fluents in a binary-
limited representation is not new.  Here we 
outline some of the choices we considered, and 
evaluate their usefulness.  A more 
comprehensive survey of techniques for 
representing higher arity predicates in OWL can 
be found at [Noy and Rector, 2005]. 

Reification 

Independent of representing change, the most 
common approach to dealing with predicates of 
higher arity than 2 in languages like OWL is to 
reify the relationships – that is, turn each tuple in 
the extension of a relation into an object that 

itself has binary relationships, typically called 
roles, identifying all the elements of the tuple.  A 
class, which we will call the reified relationship 
class, is created for each relation, whose 
extension includes all the objects representing 
tuples in the extension of the corresponding 
relation. 
For example, the ceoOf(Sam, IBM, t1) 
relationship would be represented as: 
Individual(IBM type(Company)) 
Individual(JohnsHopkinsUniversity type(University)) 
Individual(SamPalmisano type(Person)) 
Individual(Rel1 type(CeoOf) 
  value(CeoOf:ceo SamPalmisano) 
  value(CeoOf:company IBM) 
  value(CeoOf:holds t1)) 

Note that the “:” character in this example is 
used simply for visual purposes, and while it has 
a syntactic meaning in OWL, it can be 
understood in these examples to simply make the 
name of each role of a relationship unique to the 
reified relationships of that type.   
Reification has a number of known problems that 
are outlined in more detail in [Noy and Rector, 
2005].  None of these are serious, but they are 
important to be aware of. In brief, they are: 
• Proliferation of objects. For every tuple a new object is 

created, along with an additional binary relationship 
for every element of the tuple.  For the type of 
relations we are interested in (binary relations that 
change with time), we end up creating an object and  
four relationships (including the type relationship) for 
every tuple.  This is a mild concern as our application 
extracts many relationships per document, and we 
would like to scale the corpus to at least one million 
documents. 

• Redundant Objects.  Since relationship reifications are 
objects, it is possible to create multiple objects that 
reify the same relationship, where in other languages 
that permit n-ary predicates there would only be one 
tuple in the extension of the corresponding relation.  
This can be problematic when using reasoners (such 
as Racer [Haarslev and Möller, 2001]) that make a 
unique names assumption, as these multiple objects if 
present can be counted twice when satisfying counting 
axioms such as cardinality constraints. 

• Confusing ontology.  When classes and their instances 
are defined in an ontology, it is important to define 
what they refer to.  The presence of reified relation 
classes and roles can create a confusion between 
events and fluents if one is not careful. 

• Limited use of OWL reasoning.  The use of OWL 
language constructs becomes severely limited with 
reified relationships. 



 

The final point is of particular interest here, and 
deserves further discussion, as this will be the 
primary problem our solution will address. 
In our ontology, and the circumstances are quite 
common, the vast majority of our fluents are 
binary relations that vary with time.  The 
relationships themselves are, again, extracted 
automatically through text analysis.  Some 
examples are ownerOf, managerOf, ceoOf, 
employeeOf, memberOf, locatedAt, 
colocatedWith, etc.  Each of these relations holds 
between any two individuals for some period of 
time, and does not hold for other periods of time. 
Resorting to reification to add the time argument 
to each binary relationship prevents us from 
employing many of the most practically useful 
OWL operators in describing the intended 
semantics of the relations, and thus drastically 
limits the utility of OWL reasoning.   
For example, empirical studies have shown that 
simple reasoning about inverses can have the 
highest impact, in terms of relevance to the user, 
on improvements in recall [Welty, 1998].  For 
most binary relations, the inverse is potentially as 
important, even if it is not explicitly stated.  For 
example, the inverse of the ownerOf relation is 
hasOwner.  There is no a priori way to 
determine which direction may be of more use to 
an end user.  Reification prevents us from being 
able to express in OWL the relation inverses, 
thus we are stuck with whatever direction is 
stated in text. 
Reification also prevents usage of the OWL 
operators transitive, symmetric, functional, and 
inverseFunctional on the intended relation.   
Local range restrictions on properties in the 
reified relation class must also be understood to 
be global restrictions on the intended relation.  
To express the equivalent of local range 
restrictions on the intended relation, one must 
use nested restrictions on the role inverses. For 
example, “A person is managed by a person” 
would be expressed as: 
ObjectProperty(ManagerRel:manages  
  inverseOf(ManagerRel:managedBy)) 
Class(Person partial  
  Restriction(ManagerRel:managedBy 

allValuesFrom( 
restriction(ManagerRel:manager 

allValuesFrom(Person))) 

ManagerRel:manages and ManagerRel:manager 
are the roles of the relation. 
Finally, for representing binary fluents, 
cardinality and value restrictions on the role 
inverses end up restricting the intended relation 

for all time.  In other words, we cannot express 
in OWL that a person can have at most one 
manager at a time.  The only thing we can say is: 
Class(Person partial  
  Restriction(ManagerRel:managedBy 
   maxCardinality (1))) 

which says that every instance of Person can 
only ever have one manager.  In most cases 
where such an axiom may be useful, e.g. the 
hasMother relation, it’s not clear the relation 
should be a fluent at all.  At the very least, in our 
ontologies we could not find a use for cardinality 
or value restrictions on the role inverses. 

Temporal Description Logics 

Given our decision to use OWL, whose 
semantics is borrowed from description logics 
and which has a well-defined description logic 
fragment, it may seem natural to pursue temporal 
description logics in order to represent fluents.  
A good survey of temporal description logics can 
be found at [Artale and Franconi, 2001]. 
Like all description logics, temporal description 
logics restrict the operators of the language, and 
make critical choices in the formalization, in 
order to keep all reasoning problems in the 
language decidable.  Following in the style of 
this community, temporal description logics do 
not have variables in the syntax, thus making 
quantification implicit.  Most importantly for our 
purposes, temporal description logics reduce to a 
modal logic, in which times (or situations) are 
removed from the syntax and instead are part of 
the implicit quantification with only one ordering 
relation. 
The result is that we are unable to talk about 
what is true at any particular time in a temporal 
DL, we can only quantify over past and future 
times.  Furthermore, we can not use the full 
Allen calculus, which is critical to our 
application. 

The Four-Dimensional Approach 

The basic idea of a 4D ontology is to consider 
entities to exist in time the way material objects 
exist in space – they occupy spacetime.  These 
4D entities (perdurants) have temporal parts that 
represent the entity during some time interval – 
4D entities have arbitrarily many temporal parts. 
When two entities participate in some fluent, the 
fluent holds between temporal parts of those 
entities. Often perdurants are described as 4D 
worms whose temporal parts are slices of the 



 

worm.  We present below a high-level and 
reusable ontology in OWL for 4D fluents: 
(Ontology 4dFluents 

(Class TimeSlice) 
(DisjointClasses TimeSlice TimeInterval) 
(Property fluentProperty  Symmetric 

(domain TimeSlice) 
(range TimeSlice)) 

(Property tsTimeSliceOf Functional 
 (domain TimeSlice) 

(range  complementOf(TimeInterval))) 
(Property tsTimeInterval Functional 
 (domain TimeSlice)  

(range TimeInterval))) 

As is often the case with high-level ontologies, 
there are more intended semantic constraints than 
can be expressed in OWL.  To begin with, we 
intend that time slices be maximal with respect to 
the time interval of all fluents it participates in.  
That is, the time interval of a time slice is 
defined to be the duration of the fluent holding.  
Thus if a time slice participates in more than one 
fluent, they must hold for precisely the same 
interval. We also intend that two time slices of 
the same entity for the same interval are equal.  
In our system, it is the responsibility of the 
component that transforms the output of text 
analysis into the knowledge-base to enforce these 
semantics. 
The class TimeInterval here is actually a stand-in 
for whatever class is provided in a time ontology.  
In our work we use a portion of the OWL-Time 
ontology without events, and we define: 
(Ontology 4dFluentsOwlTime 

(Annotation owl:imports 4dFluents) 
(Annotation owl:imports OwlTime) 
(EquivalentClasses owlTime:Interval TimeInterval)) 

Given this ontology, we can define a simple 
ontology for our example: 
(Ontology example1 

(Annotation owl:imports 4dFluentsOwlTime)  
(Class Person) 
(Class Company) 
(DisjointClasses Person Company) 
(Property ceoOf super(fluentProperty) inverseOf(hasCeo) 

(domain 
(restriction(tsTimeSliceOf (allValuesFrom Person)))) 

 (range 
  (restriction(tsTimeSliceOf (allValuesFrom Company)))))) 

The ceoOf relation in our example holds between 
the temporal part of Sam Palmisano that begins 
on March 1, 2002, and the temporal part of IBM 
that begins at the same time: 
Individual(SamPalmisano type(Person)) 
Individual(IBM type(Company)) 
Individual(IBM1 type(TimeSlice) 
  value(timeSliceOf IBM) 

  value(timeInterval t1)) 
Individual(SP1 type(TimeSlice) 
  value(timeSliceOf SamPalmisano) 
  value(timeInterval t1) 
  value(ceoOf IBM1)) 

The first advantage of the 4D representation is 
that we can use the OWL inverse operator in the 
expected way, as shown in the example ontology. 
With this axiom, the data above would entail the 
hasCeo relation between IBM1 and SP1.   
Transitivity and symmetry also have the 
expected meaning, allowing us to express many 
spatial axioms in the OWL ontology: 
 (Property colocatedWith Symmetric) 
 (Property locatedIn Transitive) 

This allows us to use OWL reasoners rather than 
more computationally expensive ones to derive 
these relationships in the data. 
Cardinality restrictions can also be expressed 
with this approach in a way that was useful for 
our domain.  We had several intended relations 
whose semantics required temporally qualified 
cardinality, such as “a company has at-most one 
CEO at a time”.  This would be approximated as: 

Class(Company partial 
  restriction(hasTimeSlice  
   allValuesFrom(restriction(hasCeo 

 maxCardinality(1))))) 

This is only an approximation of the intended 
semantics as it does not prevent the unintended 
model in which a company has two overlapping 
time slices that have a hasCeo relation to 
different people, it only eliminates the cases in 
which a company has two values of the ceoOf 
relation during the same interval.  Nevertheless, 
that is an improvement over any other approach 
to representing binary fluents in OWL, since it 
eliminates some unintended models.  Note that 
this also depends somewhat on the ability to 
enforce the identity conditions on time slices 
discussed above, which cannot be represented in 
OWL. 
The 4D approach is the worst among the 
approaches discussed here with respect to the 
proliferation of objects.  A single fluent requires 
two extra objects (the time slices) and four triples.  
We are exploring heuristic techniques for 
pruning this information, depending on the 
reasoning task at hand, but in general the amount 
of data generated is a shortcoming.  

Conclusion 

Representing changing information is critical to 
practical Knowledge Representation and 



 

Reasoning.  OWL is intended to be a practical 
KR&R language, and its expressiveness is 
limited in favor of desirable computational 
properties. One limitation, the restriction to 
unary and binary predicates, creates an obstacle 
to representing relationships that change with 
time, even when the relationships themselves are 
binary.  We have discussed these obstacles as 
well as the most common solution, reification of 
relationships, and shown that it further limits the 
use of what limited expressiveness OWL already 
has. 
Our approach, which involves treating entities in 
the domain of discourse as four dimensional with 
temporal parts that participate in the relation, 
corresponds to an established ontological 
position in analytical metaphysics called 
perdurantism.  The perdurantist approach offers 
several advantages, and most importantly 
increases the amount of OWL expressiveness 
that can be utilized to practically describe the 
semantics of a domain in which binary 
relationships change with time. 
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