
RC23756 (W0510-174) October 21, 2005
Computer Science

IBM Research Report

Architectural Trade-Offs for Collaboration Services
Supporting Contextual Collaboration

Roberto S. Silva Filho1, Werner Geyer2, Beth Brownholtz2, Ido Guy3,
David F. Redmiles1, David R. Millen2

1Department of Informatics
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Irvine, CA 92697

2IBM Research Division
One Rogers Street

Cambridge, MA 02142

3IBM Research Division
Haifa Research Laboratory

Mt. Carmel 31905
Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Architectural Trade-Offs for Collaboration Services
Supporting Contextual Collaboration
Roberto S. Silva Filho1, Werner Geyer2, Beth Brownholtz2,

 Ido Guy3, David F. Redmiles1, David R Millen2
1 Department of Informatics

Donald Bren School of Information
and Computer Sciences

University of California, Irvine
Irvine, CA, 92697 USA

{rsilvafi, redmiles}@ics.uci.edu

2 IBM T.J. Watson Research Center
One Rogers Street

Cambridge, MA 02142, USA
{werner.geyer, beth_brownholtz,

david_r_millen}@us.ibm.com

3 IBM Research Haifa Labs
 University Campus
Carmel Mountains
 Haifa 31905, Israel

ido@il.ibm.com

ABSTRACT
Contextual collaboration services seamlessly integrate existing
groupware technologies into a single consistent interaction model.
This model is usually implemented by a contextual collaboration
infrastructure that needs to efficiently cope with the fast switching
between different modes of interaction. This paper introduces a
new model for contextual collaboration based on the notion of
generic shared objects. We describe a native implementation of
this model and evaluate its behavior under different traffic condi-
tions. We also explore an alternative implementation of the col-
laboration model integrating existing notification and meeting
servers to deliver the same model behavior. We discuss trade-offs
and limitations of those two implementations.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems – Client/server, C.4 [Performance of Systems]: Design
studies

General Terms
Performance, Design, Experimentation, Human Factors.

Keywords
Collaboration, architecture, activity-centric, synchronous / asyn-
chronous collaboration, performance, scalability, responsiveness.

1. INTRODUCTION
Collaboration is moving away from dedicated tools or specialized
solutions, to highly integrated, contextualized user experiences.
Contextual collaboration promises new levels of productivity by
the seamless integration of collaboration channels, shared arti-
facts, communication, and collaboration tools under a common
interaction paradigm. For example, through the integration of
communication channels and office tools, users can easily switch
between individual and collaborative work through a single click
of a button. In other words, they can start a chat from within their
document editors, share a document on their desktops by dragging
it on their buddy lists, start a remote presentation by right-clicking
on a presentation file on their desktop, or send the content of a
spreadsheet by email from within the document itself. Contextual
collaboration lowers the barrier to engage in collaboration by
transparently integrating existing groupware technologies in a
single consistent interaction model. By doing so, it reduces end
user’s cognitive cost of switching between applications, by pro-

viding a single point of access to a set of inter-related applications
and the artifacts they produce.

In our research, we are particularly interested in the infrastructural
implications of contextual collaboration. A highly contextualized
user experience entails frequent changes in work mode and mo-
dalities. For example, imagine the following scenario: Alice starts
work on a presentation by creating a few slides and an outline.
She then shares her original slides with Bob in order to get some
feedback. From within the document Alice adds Bob as a member
to her document and adds the document to a shared workspace.
When Bob becomes available online, he is notified about the new
presentation Alice shared with him. When Bob opens the presen-
tation and starts reviewing it, a status indicator in the document
alerts Alice that Bob is currently active on the document. Seizing
the opportunity, Alice starts a chat from within the open docu-
ment by clicking on Bob’s name in her buddy list. After a few
turns in the chat, they open an audio channel and a real-time
screen sharing session from within the chat to discuss the docu-
ment in more detail.

In this scenario, Alice moves seamlessly from an individual work
mode, to an asynchronous sharing mode, and then to real-time
collaboration all from within the context of the document. In or-
der to implement this scenario, several backend collaboration
services are usually required: A document repository to share the
document, an event notification service to push notifications to
users, and a real-time conferencing/meeting service for chat, au-
dio, and screen sharing support. Ideally, when delivering this user
experience, the use of these infrastructural components should be
transparent to the end user. Hence, they need to be integrated in
smart ways to deliver their services in conjunction with each
other. Integrating existing collaboration services agnostic of the
user experience poses many challenges including but not limited
to data consistency, scalability, or service responsiveness. An
alternative solution, however, is to create a new collaboration
service that merges all those interaction modes into a common
model that provides such contextualized experience.

In this paper, we present a new model for contextual collaboration
based on generic shared objects that work as building blocks for
supporting contextual collaboration applications. We describe our
experiences with a native implementation of this interaction
model and study its behavior with different interaction patterns.
We also describe an integrated implementation (where existing
services such as meeting and notification servers are used), deliv-
ering the same contextual user experience as in the native imple-

mentation. Our work is in the context of a special instance of a
contextual collaboration called activity-centric collaboration [1].
In our previous works we have discussed architecture [2, 3], us-
ability and usefulness [1], as well as patterns of media use [4]
involving an application called Activity Explorer, build on top of
our model. Activity Explorer introduced a new collaboration
paradigm by integrating collaboration technologies horizontally
through the concept of a work activity (a logical unit of work that
incorporates all the tools and resources to get the job done). In
this paper, our goal is to study the contextual collaboration model
behind Activity Explorer, understanding its scalability, respon-
siveness and implementation trade-offs.

This paper is organized as follows. Section 2 describes the con-
textual user experience in Activity Explorer in more detail. In
Section 3, we describe the contextual collaboration model behind
Activity Explorer. We use this model as the basis for our study.
Section 4 describes the native implementation of this model. Sec-
tion 5 describes our simulation environment, the experiments
performed, as well as the simulation results for the native imple-
mentation. In Section 6 we describe an alternative integrated im-
plementation combining existing collaboration technologies and
we discuss simulation results and trade-offs between the two solu-
tions. We close with related work and a summary of this work.

2. ACTIVITY EXPLORER
Activity Explorer (AE) is a contextual collaboration application
based in the concept of activities. It is build upon the concept of
generic shared objects supported in our contextual collaboration
model. It is presented here as an application that illustrates the of
our model in supporting contextual collaboration.

In AE, an activity represents an interaction involving one or more
users, which context (membership and persistent content) is made
persistent thought the use of shared objects. An activity thread is a
set of related, shared objects that can be hierarchically composed,
representing a complex task or project. Hence, activity threads
combine different types of persistent objects, membership, and
alerts. Users start new activity threads by creating root objects
from any type of content or communication. The AE research
prototype supports sharing of six types of persistent objects: mes-
sage, chat transcript, file, folder, annotated screen shot, and to-do
item. Users add items to an activity thread by posting either a
response or a resource addition to its parent object.

As presented in , in AE, the activity structure and mem-
bership are managed by several UI components: My Activities
(A) is a multi column “inbox-like” activity list, supporting sorting
and filtering. Selecting a shared object in this list populates a
read-only info pane (B). The Activity Thread pane (C), maps a
shared object as a node in a tree representing an entire “activity
thread.” Activity Thread and My Activities are synchronized by
object selection. My People (D) is a buddy list showing all mem-
bers the current user shares activities with. Users interact with
objects or members, as displayed in these views, through right-
click context menus. Representative icons are highlighted green to
cue users of shared object access and member presence (2a, 2b).

Figure 1

Figure 1. Activity Explorer User Interface

The following scenario illustrates a contextual user experience in
which shared objects are used in a collaborative context, as part of
an activity. The activity starts from a document:

1a

2a

3b

2d

2c

2b

1b

3c

3a

A
B

C

D

1a

2a

3b

2d

2c

2b

1b

3c

3a

A
B

C

D

Bob and Dan are working on a project (a file) using Activity Ex-
plorer. Bob right clicks on the file object in his list to add a mes-

sage asking Dan for his comments (1b). A few hours later, Dan
returns to his desktop (2a). In the system tray, Dan is alerted to

the new activity. Clicking on the alert, he is taken to the activity
thread. He opens the message and while he is reading it, Bob can
see Dan is looking at the message because the shared object is lit
green (2b). Bob seizes the opportunity to expedite their progress;
he right clicks on the initial message and adds a chat to this activ-
ity (2c). A chat window pops up on Dan’s desktop and they start a
chat session (2d). Bob refers to a detail in the project description;
for clarity he wants to show Dan what he would like changed. By
right clicking on the chat object, Bob creates a shared screen
object (3a). A transparent window allows Bob to select and
“screen scrape” any region on his desktop. He freezes the trans-
parent window over the project text. The screen shot pops up on
Dan’s desktop (3b). Bob and Dan begin annotating the web con-
tent in real-time like a shared whiteboard (3c).

3. COLLABORATION MODEL
The contextual collaboration server for Activity Explorer imple-
ments a simple and generic collaboration model based on the
concept of Generic Shared Objects (GSO) introduced at [3].
GSOs are persistent collaboration objects that can be used as
building blocks to create new collaborative applications. They
support the implementation of a seamless user experience with
blended synchronous and asynchronous collaboration. GSOs
combine different communication styles, data representations,
notifications, and membership control policies into objects that
can be hierarchically composed. This section describes in detail
the main aspects of the GSO model with which our experiments
were performed.

3.1 Communication
In this paper, we assume a client/server architecture in which
many clients interact with each other through a collaboration
server (or service) implementing the concept of GSOs. Note that
the model can be also implemented in a peer-to-peer fashion as
described in [3].

The communication protocol is based on three basic primitives:
Request, Response, and Notification: A client asks for some ser-
vice by issuing a Request to the server. The server replies with a
Response to inform the requesting client about the result of its
request.1 Depending on the type of request, the server also sends
out Notifications to other connected clients (see Figure 2).

3.2 Data Model
The data model allows sharing of any type of content based on the
notion of GSOs. Our contextual collaboration service manages a
collection of GSOs and their relationships, i.e. by containment
and/or reference. This facilitates the aggregation of GSOs into
hierarchical structures, thus modeling complex collaborations
such as the previously mentioned activity threads. Each GSO
holds one or more pieces of persistent information and defines a
list of members (actual users) permitted to access its information.
Each GSO provides a simple content model that defines a set of
general properties and a set of variable properties for content.
General properties of GSOs include unique id, name, author, crea-
tion time, modifier, modification time, reader, last access time,

member list, and member status pertinent to the GSO. The vari-
able properties of a GSO describe its actual content. A GSO does
not provide any means for semantically describing the content.
Content is associated with a GSO by adding arbitrary numbers of
<name, value> pairs (or tuples). The interpretation and use of
those <name, value> pairs is left to client applications. The value
field can be of various types, e.g. String, Integer, Double, Boo-
lean. In particular, a GSO supports binary content, allowing the
storage of arbitrary content.

GSO

persistent:
- content
- properties

Client A

add or set
content

content change
notification +
content

content change
notification

Client B

Client C

Members:
A, B, C

Figure 2. Generic Shared Object behavior

3.3 Membership
Each GSO also manages a list of members (e.g. A, B, and C in
Figure 2). The GSO member list controls the access to its content
and represents a distribution list for broadcasting notifications
about the creation and modifications of a GSO. The member list is
dynamic and allows adding new members or removing existing
members at runtime. Since the member list is also a property of
the GSO, any modification to the member list is also broadcast to
all online GSO members. As noted earlier, our collaboration ser-
vice supports more complex collaboration through the aggrega-
tion of GSOs into hierarchical structures. Each GSO within such a
structure can have different membership supporting fine-grained
access control policies within those hierarchies. The contextual
collaboration service may provide convenience functions to help
manage the membership within these structures; e.g. when adding
to or removing members from a single GSO, the server might
provide options to propagate membership to other related GSOs.

3.4 Notifications
Each GSO can be considered a persistent conferencing session
between its members who are currently online. Any modification
to the set of fixed properties or the set of variable properties (con-
tent) of a GSO is not only stored in the underlying data store but
also automatically broadcast to all the other members of that GSO
by means of notifications. The default behavior is that every
modification to a GSO is broadcast to all its members. Using pub-
lish/subscribe vernacular, whenever a member is added to an ob-
ject, it is implicitly subscribed to all change events of that object.

Notifications on content (property) come in two different flavors:
They can only indicate that content was changed, or they can
transport the actual new/modified content. This is controlled by
the use of open and close semantics. Change notifications (with-
out the actual content) are sent to all online members of the object
whose open status of this object is false; whereas notifications
with the actual content are sent to all online members whose open
status of this object is true. Setting open to true basically sub-

1 Note that, depending on the implementation, request and re-

sponse might be represented through a single operation, e.g.
when using remote procedure calls.

4. NATIVE IMPLEMENTATION scribes a member to receive the content together with the content
change notification. These semantics are important because they
make sure that members of an object, who are not interested in
collaborating on the object at the same time (real-time), are not
flooded with unnecessary data. They only receive low volume
content change notifications.

In order to study and better understand the implications of com-
bining various interaction modes of collaboration into a single
model, we have built a reference (or native) implementation of a
collaboration server implementing the new collaboration model
from scratch, i.e. without using/integrating existing collaboration
services. In the example in Figure 2, clients A, B, and C are all members of

the same GSO. Hence, whenever client A changes a content prop-
erty in the GSO (through a set property Request), clients A and C,
which are online, receive notifications of that change. Client C’s
open status on the object is false, i.e. it receives only notification
of changes. Client B previously set open to true and receives the
entire new / modified content.

In our native implementation, the GSO concept is mapped to per-
sistent objects (using the OO programming paradigm). The im-
plementation of the GSO manages every aspect of the model, i.e.
property management, membership management, access control,
notifications, and data persistency. The GSO service manages a
collection of GSOs and their aggregation into hierarchical struc-
tures (trees). The collaboration service not only sends notifications about modi-

fications to GSOs but also about the creation of new GSOs and
the deletion of existing GSOs. Those notifications are sent to all
online members of these objects. Since the state of a GSO is per-
sistent, GSO properties are still available when clients disconnect
and later reconnect to the service. This allows clients to interact
asynchronously. In summary, the described behavior of GSOs
inherently merges real-time conferencing with content manage-
ment and asynchronous collaboration modes.

Clients access the GSO service through a client side GSO API
See). The GSO objects in the server manage the notifica-
tion process and data transfer with the clients.

Figure 3

Figure 3. Native implementation of the GSO model
Figure 3

I – Clients A and B open the object. C is online does not have the
GSO open.

GSO

persistent:
- content
- properties

Client A
(1) openSO()

Client B

Client C

(3) openSO()

Members:
A, B, C

A
P
I

A
P
I

A
P
I

(4) openSONotify()

(2) openSONotify()

(4) openSONotify()

(2) openSONotify()

II – Client A changes the content data. B receives a change con-
tent notification together with the new content whereas C gets
only a change content notification.

GSO

persistent:
- content
- properties

Client A

(5) setProperty()

(7) content change
notification +
content data

(6) content change
notification

Client B

Client C

Members:
A, B, C

A
P
I

A
P
I

A
P
I

3.5 Example: Activity Explorer
The Activity Explorer (AE) research prototype, described in Sec-
tion 2, is a stand-alone desktop application that connects to a con-
textual collaboration server implementing the model described in
the previous sections. AE makes use of this collaboration model
in the following way: each Shared Object in AE is represented by
a GSO; the activity thread in AE is represented through a hierar-
chical structure of GSOs; the different shared object types use the
property fields of a GSO to manage their content. The persistent
chat object in AE, for example, works as follows: Each chat mes-
sage is stored as a property. In order to send a chat message, the
client (representing a member) adds a variable property to the
GSO, representing another line in the chat, by submitting a re-
quest to the collaboration service. The collaboration service adds
and stores the property and then sends the new property to all
members of this GSO. The members of the chat receive this prop-
erty change and add the chat message at the end of their tran-
script. Note only members whose open statuses are true will re-
ceive the actual chat message; all others will receive only notifi-
cation that content was changed. This example illustrates that our
collaboration model assumes a different paradigm for real-time
collaboration. It is based on persistent state and state change noti-
fications. Other objects in AE also map their content in a similar
way: For example, the shared screen objects store background
images and strokes as properties of the GSOs, the shared message
objects store the content of the message as single properties, and
so forth.

Note that while AE exposes an almost direct mapping to this
model, the collaboration service does not assume any particular
use of its GSOs. Hence, GSOs can be used in various ways as
building blocks for other collaborative application. Jazz [5] and
C&BSeen [6] are two example applications that implement con-
textual collaboration by using GSOs in a different way than AE.

In the example of , clients A, B, and C are all members of
a GSO object. In (I) client A and B open the object for real-time
interaction by submitting an openSO() requests to the server (1,
3). The server GSO then sends open notifications to all its mem-
bers, by iterating over the member list and invoking the registered
callback interface methods (2, 4). The open state of the GSO is
now changed to true for clients A and B. Sending notifications to
every member of the GSO keeps all connected clients in a consis-
tent state (i.e. with the latest view of the GSOs they are members

of). Client C, for example, knows that A and B are working on the
GSO content in real-time. Based on this information, client C can
decide to open the GSO object and start receiving the actual new
content as it gets changed. In (II), client A changes the content of
the GSO (add or set) by submitting a setProperty() request (5);
client B receives a content change notification including the con-
tent data (7). Client C is online but receives only a content change
notification without the data because its open state is false (6).
However, knowing that the content has changed, Client C could
now read the updated content of the object by submitting a get-
Content() request to the server.

Table 1: Media pattern programming

Table 1

Data Content change
probabilities

Media
Pattern

no
Mem-
bers Size

(char
s)

no

msg
inter
val

Set Add Del

Streaming 5 64K 100 50
ms

0.5 0.5 0.0

Chat 2 40 10 15
sec

0.0 1.0 0.0

File
Sharing

4 100K 10 5
min

0.7 0.1 0.2

Message
Exchange

8 1K 1 1
sec

1.0 0.0 0.0
The server is implemented in Java and communicates via Remote
Method Invocation (RMI) with its clients. Notifications are sent
to clients through RMI too. Upon logon, each client registers an
RMI callback interface with the server. Since we assume storage
to be a constant throughout this paper, we did not implement a
particular storage mechanism in our native implementation.

The main differences between the four media traffic patterns are
the size of the data messages, the number of messages exchanged
by each member, and the frequency (defined by the interval be-
tween messages). For example, a typical chat session in our simu-
lator corresponds to an interaction with a GSO with two members
on average exchanging an average of 10 messages each member.
Each message has an average length of 40 characters. Each chat
GSO also has an average of seven properties that are modified
with 16 characters on average. Chat message are send with a fre-
quency of 15 seconds on average. During this interaction, periods
of inactivity may occur with an average of 15 seconds.

5. SIMULATION
The model described in Section 3 unifies characteristics of pub-
lish/subscribe systems, real-time collaboration servers, and con-
tent management. As such, it facilitates the development of col-
laborative applications that have contextual collaboration charac-
teristics that typically require the blending of synchronous and
asynchronous interaction models.

We assume that this blending of synchronous and asynchronous
communication in a single model requires the compromising of
different requirements from these two interaction modalities. For
example, traditional synchronous communication infrastructures,
such as meeting servers, are usually designed to support the col-
laboration of a small group of members, under more strict timing
and bandwidth conditions such as audio or video. Notification
servers, on the other hand, generally are employed in applications
with less strict timing and synchronous constraints, such as appli-
cations for awareness and messaging, where the number of clients
is potentially large and the data traffic is relatively small.
Combining various interaction modes in one collaboration model
raises interesting questions regarding scalability, delays, respon-
siveness, robustness, and implementation complexity.

In our GSO implementation, a property can be set (overwritten or
created), added (appended to the end of the current content), or
deleted. Table 1 shows the probabilities for these content change
actions. In the chat pattern, for example, all chat content changes
are of type “Add” because chat transcripts are typically not ran-
domly modified, but grow over time as new messages are ex-
changed.

For each pattern, we reproduce the actions of a typical work day
with 8 hours. For easier handling, we simulated each workday in
4 minutes. During one simulated workday, the following actions
take place on average: A total of 15 shared objects are created
with five objects being root objects (representing a new activity
thread). Each client listens to an average number of 10 objects. 15
open and 15 closed objects on average are modified that day. The
simulated patterns also differ in respect to the time span that each
client is working either online or offline.

5.1 Experimental Setup
We used our native implementation of the model to evaluate its
response to different traffic conditions. In order to understand the
behavior of the model under regular use conditions, we developed
a “user simulator” client program. The user simulator interacts
with the server API performing regular actions such as create new
object, set properties, open, close, add member and so forth. Ac-
tions are executed according to predefined media patterns. We
defined four different patterns approximating the traffic condi-
tions of chat, file sharing, message exchange, and streaming me-
dia. The streaming media pattern was especially defined to ana-
lyze the server behavior under heavier load, testing its scalability
limits. Note that these patterns are only approximations of actual
real world patterns. Table 1 describes the programming of pa-
rameters and probabilities of each media pattern. Parameters are
randomly varied.

Unless otherwise noted, all our simulations are carried out on
three client machines (IBM T30, 1.6GHz, 512MB) and one server
machine (IBM MPro, 3 GHz, 1.5 GB). Client machines are
equally loaded with simulator clients in steps of one, i.e. the first
simulations starts with 3 clients (one in each client machine), then
6 clients (two per client machine) and so forth. Please note the
number of simulator clients running on a single client machine
impacts the overall simulation results. Based on tests, we decided
to limit the number of simulator clients to eight per client machine
in order to minimize this effect.

5.2 Simulation Results
In order to understand the response of the system to the different
media patterns described in , we plotted the total average
execution times of the four patterns against the number of clients
as shown in Figure 4.

The notification time is the time from calling a method in the
client API to the delivery of its notification to the other members
of a GSO. The notification time basically describes how fast a
collaborative system updates remote clients. In a collaborative
setting, it is desirable to keep this number as low as possible be-
cause it expresses how much clients are in sync with their col-
laborators. shows the average execution time versus
notification delays for creating new GSOs.

3.5

3.7

3.9

4.1

4.3

4.5

4.7

4.9

5.1

5.3

0 3 6 9 12 15 18 21 24
Number of clients

A
ve

ra
ge

 to
ta

l e
xe

cu
tio

n
tim

e
(m

in
ut

es
)

chat

f ile sharing

message

streaming

Poly. (streaming)

Figure 6

Figure 6. Average execution vs. notification time for creating
new GSOs in the native implementation

0

1

2

3

4

5

6

7

8

9

3 6 9 12 15 18 21 24
Number of clients

m
s

Execution time

Notif ication time

Linear (Notif ication time)

Linear (Execution time)

Figure 4. Average total simulation execution times of the na-

tive implementation under different activity patterns
The system scales well for low-frequency traffic such as chat,
message exchange, and file sharing. The size of the data, as in the
case of file sharing does not impact performance as much as the
frequency of the messages. Streaming media has a high frequency
of relatively large data messages. As expected, our reference im-
plementation does not scale very well for this pattern. One reason
is related to the behavior of the model. Since each GSO in our
model comes with data persistency, we currently send out content
change notification (without or without the content) to every
member of the GSO. Given the high data frequency of streaming
media, (each data message triggers a series of content change
notifications, typically one for each member of the objects in-
volved), the server becomes pretty busy with sending out notifica-
tions.

Notification times are slightly lower than execution times. At an
almost constant difference of about 1 ms (in the trend lines) each
local user interaction is visible in remote clients at about the same
time. Except for streaming media setContent() calls, the respon-
siveness of the native implementation is relatively high (below
10ms) and the notification delays are extremely low. The responsiveness of a collaborative system describes how fast

the system reacts to user input, i.e. how fast actions are reflected
in the user interface of the client executing the action. Respon-
siveness in our model is determined by the execution time of the
client API calls. Figure 5 shows the average method execution
times for setting the content property of a GSO.

As a general conclusion, the performance of the model is a func-
tion of the data frequency of the interaction pattern (number of
data messages/second), and the number of members of a GSO.
For general traffic the system scales very well having good
responsiveness and optimal notification delays. However, for
streaming media traffic, with a relatively medium number of
members, the system delays increase quadratically.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Number of clients

av
er

ag
e

ex
ec

ut
io

n
de

la
y

(m
s)

chat

f ile sharing

message

streaming

Linear (f ile sharing)

Linear (message)

Poly. (streaming)

Linear (chat)

6. INTEGRATED IMPLEMENTATION
Pursuant on better understanding design implications, implemen-
tation complexity, and performance trade-offs of using traditional
collaboration services to implement a contextual user experience
as described by our model, versus the native implementation of
the same model, we have implemented an alternative collabora-
tion server. Our alternative implementation integrates existing
technologies in the backend but provides exactly the same GSO
behavior at the GSO API level to its clients.

The results in the previous section indicate that our native imple-
mentation is not very well suited to handle high bandwidth, high
frequency data. Existing real-time collaboration servers, however,
are optimized for online meetings with a smaller number of par-
ticipants but relatively high data volume, e.g. audio, video.
Hence, real-time collaboration servers would very well support
frequent and high volume property changes in a GSO. It seemed
that supporting the real-time aspects of our model with a meeting
server would increase the overall system performance. Conse-
quently, we decided to use a meeting server for handling real-time

Figure 5. Average execution time of the setContent() call in the
native implementation with different media patterns

The execution times are low and grow linearly except for the
streaming media pattern. For a low number of clients (and conse-
quently a lower number of method calls on the server), the
streaming media pattern is comparable to the other patterns but, as
the number of method calls increases with the number of clients,
this pattern grows quadratically. Interestingly, the message pat-
tern initially has higher execution times than streaming media.
The reason is the higher number of eight members on average.

content changes of a GSO, i.e. whenever members decide to work
on an object at the same time.

Notifications are another aspect of our model that we believed to
be well understood today. Publish/subscribe systems have been
around for a while. They are typically optimized for a very large
number of subscribers and small to medium data volumes for each
subscriber. GSO events such as create, delete, add member, re-
move member, or infrequent property changes (e.g. changing the
presence status of a member on an object) would be very well
supported by a publish/subscribe system. Publish/subscribe sys-
tem are general purpose distributed implementations of the ob-
server design pattern [7], usually implemented in the form of
notification servers. Those servers receive anonymous notifica-
tions and route them to interested parties. This routing is orches-
trated by subscriptions: queries on the content or order of notifica-
tions published to the server.

We expected that integrating these two technologies to our model,
would result in better scalability of both the notification process
(asynchronous mode in our model), and the real-time collabora-
tion through content exchange (the synchronous mode of our
model). However, in return we expected an extra cost in terms of
complexity of the architecture and a higher toll on execution
times for some API calls and notification times.

6.1 Implementation Details
The integration of the two new backend technologies is com-
pletely transparent to the clients (see). They interact as
usual through the client API. In the backend, however, the im-
plementation complexity increased. For example, in order to inte-
grate the meeting server with our model, we introduced the con-
cept of a server-side client (SSC) that acts as a connector between
the real-time meeting and the persistent aspects of the model. A
SSC is a special client in the meeting (a meeting is a session cre-
ated between two or more participants/clients). It provides a non-
persistent shared space where messages are multicast to all the
meeting members. The SSC is responsible for persisting session
data and for updating the model when content has changed
through the meeting, e.g., when a chat message is posted to a
meeting session, the SSC for that session stores the message in the
GSO. This approach provides a generic mechanism that can be
used to integrate any meeting server implementation in a way
agnostic to our GSO server.

Figure 7

Figure 7. Integrated implementation of the GSO model

Whenever a GSO’s properties and content change it produces a
single notification (and not one for each member as before) that is
sent using a notification server. We decided to keep the imple-
mentation simple: Each client subscribes/un-subscribes to a global
GSO notification topic when logging on and off. In this approach,
the notification server acts as a broadcast channel; a bus connect-
ing all online clients. Notifications are subsequently filtered in
the client side API, i.e. the client API ignores notifications that
are not addressed to that particular client.

As illustrated in Figure 7 (I) when client A first opens the GSO
(1), a new meeting session (2) together with a hidden SSC (3) are
created. The GSO object is also open. Consequently, an open
notification is sent to all clients (5, 6, 7) through the notification
server. The SSC joins the meeting (8) and listens to messages in
that channel. The openSO() call returns the meeting id to client A.
Upon receiving the meeting id, client A also joins the meeting and
is ready to transmit data. Client B decides to open the GSO as

well and submits an openSO() request to the GSO server (10) (for
simplicity notifications are omitted in the picture). The open call
is propagated to the GSO object (11), which returns the existing
meeting id. Client B also automatically joins the meeting (12). As
content messages are exchanged between members A and B and
the SSC (14, 15, 16), the SSC makes the content persistent by
invoking setContent() on the GSO (17). The GSO server contacts
the notification server to deliver content change notifications
(without content) to the other members of the object who are not
in the open state (18, 19).

I – Client A opens an object, resulting in the creation of a meeting
session and a server-side client. Open notifications are sent.

GSO

persistent:
- content
- properties

Client A

Client B

Client C
Members:

A, B, C

Meeting server

(1) openSO
A
P
I

(2) new

Meeting session

Notification server

(4) openSO

(3) new SSC

A
P
I

A
P
I

(5) openNotifica
tion

(6) openNotification

(7) openNotification

II – Client B also opens the object, becoming member of the
“meeting”, and the SSC updates the model

GSO

persistent:
- content
- properties

Client A

Client B

Client C
Members:

A, B, C

Meeting server

A
P
I

(9) join
Meeting session

Notification server

(8) join

SSC

(12) join
A
P
I

A
P
I

(10) openSO

(11) openSO

III – Client A changes the GSO content; and client B gets the new
content as notification. The SSC updates the data model and noti-
fications are sent to the clients

GSO

persistent:
- content
- properties

(14) Data
message

Client C
Members:

A, B, C

Meeting session

Meeting server

SSC

Client A

(13)
setContent

A
P
I

(17)
setContent

A
P
I

A
P
I

Notification server

(15)

(16)

(18) content
change notification

(19) change
notification

Client B

The integrated solution is also completely implemented in Java.
We used YANCEES [8], an extensible and configurable event
service, as the notification server. This server was chosen because
of its ability to be configured with a simple topic based core, and

for having a simple API, similar to Elvin [9]. YANCEES, written
in Java, was previously developed by one of the authors of this
paper. We also used a simple Java-based meeting server devel-
oped by one of the authors. The meeting server was previously
used in the TeamSpace project [10].

0

2

4

6

8

10

12

14

16

3 6 9 12 15 18 21 24
Number of clients

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Integrated

Native
Linear (Native)
Linear (Integrated)

For the integrated implementation we carefully modified our core
native implementation where required. Both implementations
share the same common GSO model and externalize the same
GSO API to the end users (clients). However, where necessary,
we adjusted the code to integrate the meeting server and the noti-
fication server. For example, we intercept some client API calls in
order to send messages to the meeting server (instead of setting
the properties directly in the GSO). The implementation of the
notification interfaces send messages through the notification
server, instead of notifying the clients directly.

Figure 9. Comparison of the average execution times for set-
Content() calls for the message exchange pattern

Using a meeting server introduces additional complexity as de-
scribed in Section 6.1. We expected that the price for better scal-
ability during the real-time phase of a GSO would be additional
delays in getting started. The data in Figure 10 compares the cost
for opening GSOs in both implementations. The data confirms
that the open call has become one of the most costly calls in the
integrated implementation. However, it still scales in a linear
fashion indicated by the trend line.

We tried to keep the two implementations as similar as possible in
order to get meaningful results for a comparison. However, given
the number of different existing publish/subscribe and real-time
collaboration systems, the results may vary depending on the
backend technologies used.

6.2 Simulation Results
As described in previous sessions, our native implementation did
not expose good scalability properties for streaming media traffic
patterns. In this session, we want to study the response of the
alternative integrated implementation to this kind of traffic.

 compares the cost of the set/add content calls in both
implementations.

0

10

20

30

40

50

60

3 6 9 12 15 18 21 24
Number of clients

Ex
ec

ut
io

n
tim

e
(m

s)

Integrated

Native

Linear (Integrated)

Linear (Native)

Figure 8

Figure 8. Comparison of the average execution times for set-
Content() calls for the stream media pattern

0

2

4

6

8

10

12

14

16

3 6 9 12 15 18 21 24
Number of clients

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Integrated

Native
Linear (Integrated)
Expon. (Native)

Figure 10. Comparison of the average execution times for
openSO() calls

Table 2 shows a summary of the average execution times of GSO
API calls. We can see that not only the open call stands out rela-
tive to other calls in the integrated implementation but also regis-
terMember() and loginMember(). The reason for such relatively
high numbers is our notification server. Creating subscriptions
when registering members and when logging in comes at an addi-
tional expense. Note that subscriptions in our native implementa-
tion were implicit through the member list. Another interesting
observation in Table 2 is that the execution times of most calls in
the integrated implementation are generally higher. The code
executed is the same for most API calls (except for open and
close, which create SSC objects, and for set and add content, that
route data through the meeting server). We can only explain this
as a consequence of higher load on the server machine imposed
by three server processes running at the same time, in the same
host (GSO server, meeting server, notification server).

As expected, the integrated implementation scales well in a linear
fashion compared to the native implementation. Using a dedicated
meeting server seems to pay off for this type of traffic.

The chat and the file sharing media patterns did not expose any
significant differences in the integrated implementation with re-
gards to the cost of the setContent() call. However, the message
exchange pattern yielded some interesting results. Figure 9 shows
that the use of our meeting server is more costly than the native
implementation for this pattern. Both implementations though
seem to expose linear behavior as indicated by the trend lines.
One of the major differences between the message exchange pat-
tern and the other patterns is the number of members per GSO,
which in the message pattern case are 8 on average. While our
meeting server seems to handle high bandwidth, high frequency
traffic well, performance seems to degrade with an increased
number of meeting participants.

While we expected that subscription management would come at
an extra cost, we were surprised to see that the notification server
introduced high delays in delivering notifications. Figure 11 com-
pares execution times for creating GSOs against the notification
time.

7. LESSONS LEARNED AND DISCUSSION Table 2. Average cost of GSO API calls (24 clients)
Our data indicates that the use of a simpler native implementation
scales well for the majority of traffic patters we propose except
for high frequency, high-bandwidth data. The overall responsive-
ness of the model, including its notification delays and API exe-
cution times, for the number of clients we tested, looks very good.

GSO API Call Native Integrated

 getIds 9 24

 addMember 4 17

 getContent 6 13

 open 6 52

 create 8 19

 setProperty 6 13

 close 5 14

 logout 9 20

 registerMember 178 1699

 setContent 7 10

 getGSOs 43 68

 addContent 6 6

 login 17 130

The use of a specialized meeting server in the way proposed in
our integrated implementation can improve the overall response
of the system for frequent synchronous mode traffic patterns such
as streaming media. However, when applied to more regular traf-
fic such as messages or chat, it does not improve the overall
performance of the system. Its use comes with extra integration
complexity and startup costs such as for the creation of the ses-
sion and the server-side clients.

The use of the publish/subscribe model, provided by notification
servers, did not meet our original expectations. During the tests,
the notification server was the most CPU demanding component,
more than the meeting server was, and the notification traffic did
not scale linearly. We tested the implementation with two sub-
scription models: server-side filtering and client-side filtering.
Client-side filtering was the approach that better scaled in our
implementation. Both approaches have trade-offs and limitations:
client-side filtering requires the delivery of extra notifications
through the network but makes the routing process easier (topic-
based). Server-side filtering limits the amount of traffic to the
clients and relief them from discarding uninterested notifications.
This approach, however, loads the notification server that needs to
handle with more complex subscriptions and constant re-
subscriptions issued by the clients to reflect their new member-
ship condition.

The integrated implementation has a high responsiveness given
the low and linear execution times but does not scale well with
regards to notifications. On average, under a load of 24 clients,
remote clients are updated only 0.5 second after the GSO was
created locally. The notification times seem to grow exponentially
according to the trend line.

0

100

200

300

400

500

600

3 6 9 12 15 18 21 24
Number of clients

m
s

Execution time

Notif ication time

Expon. (Notif ication time)

Hence, as a general conclusion, the use of notification servers
(distributed publish/subscribe implementations) were not a good
choice for this particular problem. The GSO model requires a
simple observer model, as implemented in the native solution, and
not a fully distributed publish/subscribe model, whose adaptation
to our model introduces more overhead.

One advantage of using separate components such as a meeting
server and a notification server, however, is the ability to distrib-
ute those servers throughout other hosts in a network. In our tests
comparing a distributed server (notification server in one host and
meeting server in another machine versus all together in the same
host), did not show any significant improvements up to 27 clients.
With more than 30 clients, however, the distributed configuration
begins to perform better than a single server does, indicating that
with a significant number of clients, this approach may be an
option for scalability.

Figure 11: Average responsiveness vs. notification delay for
creating new GSOs in the integrated implementation

One could argue that the use of the notification server as a shared
bus is one of the reasons for the notification server behavior ob-
served in Figure 11. In another alternative implementation, we
opted to perform server-side filtering of events, i.e. the configura-
tion of the notification server with more accurate subscriptions
that filter out events that are not of interest of the client. This
approach, however, required constant update of the subscriptions
(each client manages one or more subscriptions filtering out
events that do not belong to the objects they are members of). As
new objects are created, members logged off or got re-
moved/added to different objects, the subscription needs to be
updated. Given the high subscription costs presented in Table 2
(part of registerMember() and login() operations), this solution
did not scale. These membership and object life-cycle dynamics
resulted in similar or worse delays than the ones observed in
Figure 11.

Overall, with respect to the implementation complexity, the native
implementation is more simple and straightforward; it has less
synchronization and integration problems and scales well. The
integrated implementation, however, is more complex and de-
mands special attention to matters such as timing and synchroni-
zation, it is more prone to implementation failures and incurs in
higher startup times, including delays associated to member log-in
and opening objects. In addition, as shown by our experience with
the notification server, delays associated to one or another com-
ponent can negatively impact the whole system performance.

8. RELATED WORK
The GSO characteristics of persistency, change notifications, and
membership are also found in other collaboration infrastructures.
Those systems alone, however, do not provide all the combined
characteristics of the GSO model.

The Tuple Space concept, originally proposed by Gelernter as
part of the Linda coordination language [11], and currently imple-
mented by systems such as IBM’s TSpaces [12] and SUN’s
JavaSpaces [13], provides a persistent and shared memory (or
space), accessed through an API that allows distributed processes
to read, write, and remove information represented as tuples
(type, attribute, value pairs). Tuples can be concurrently read or
removed from the space by different processes. In this program-
ming paradigm, concurrency and interoperability mechanisms can
be easily implemented, as well as more advanced communication
and coordination mechanisms such as distributed queues and
locks. Even tough very powerful, this model does not provide
concepts such as group, membership or object hierarchies.

Notification servers, as defined by Patterson et al. [14], provide a
simple common service for sharing state in synchronous multi-
user applications. They address the problem of maintaining con-
sistency in real-time collaborative applications and supporting
awareness. They are similar to tuple spaces with regard to the
addition of specialized services for managing the event space and
for supporting different notification policies required to improve
all sorts of activity awareness. Membership, hierarchy of informa-
tion, and persistency of the data are not covered by that work.

Event notification servers such as Elvin [9] are usually employed
as event routing infrastructure to support the development of
awareness applications. Elvin provides a relatively simple but
optimized set of functionalities, efficiently processing large quan-
tities of events based on content-based routing of tuple-based
events. In such systems, however, event persistency is not usually
addressed moreover, as previously discussed, they usually are not
designed to support synchronous meeting interaction. In fact,
during the development of our system, Elvin was originally used
as the notification server in the integration solution, and became a
bottleneck for the scalability of the system. The use of a simpler
routing strategy as the one programmed in YANCEES solved this
problem.

9. CONCLUSIONS
This paper introduced a new collaboration model that seamlessly
integrates existing collaboration modalities into a single consis-
tent interaction model. This model facilitates the development of
contextual collaboration applications such as Activity Explorer.
Our simulation data indicted that our native implementation
proves to scale sufficiently well except for high-bandwidth, high-
frequency data traffic. Depending on the application scenario,
real-time collaboration servers can improve the performance of
the model. The use of notification servers to support the model
was problematic. In the future, we would like to better understand
the limits of the model by schematically varying the size of the
data messages, frequency, and the number of members per object
instead of using traffic patterns. Also, our model currently treats
asynchronous and synchronous modifications of the content of a
GSO in a very similar way. We are exploring alternative ways of

improving the performance of the system by reducing the number
of persistent GSO content updates and notifications (to members
who do not have the object open) during phases of synchronous
collaboration.

10. ACKNOWLEDGEMENTS
We would like to express our gratitude to John Patterson and the
Activity Explorer product team for their inspiring discussions.

11. REFERENCES
[1] M. Muller, W. Geyer, B. Brownholtz, E. Wilcox, and D.

Millen, "One Hundred Days in an Activity-Centric Collabo-
ration Environment based on Shared Objects," presented at
ACM SIGCHI, Vienna, Austria, 2004.

[2] W. Geyer and L. Cheng, "Facilitating Emerging Collabora-
tion through Light-weight Information Sharing," presented
at CSCW'02, New Orleans, LA, 2002.

[3] W. Geyer, J. Vogel, L. Cheng, and M. Muller, "Supporting
Activity-Centric Collaboration through Peer-to-Peer Shared
Objects," presented at ACM GROUP, Sanibel Island, FL,
2003.

[4] D. Millen, M. Muller, W. Geyer, E. Wilcox, and B. Brown-
holtz, "Patterns of Media Use in an Activity-Centric Col-
laborative Environment," presented at ACM SIGCHI, Port-
land, Oregon, WA, 2005.

[5] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson, "Jazzing
up Eclipse with collaborative tools," presented at OOP-
SLA'03 workshop on eclipse technology eXchange, Ana-
heim, CA, 2003.

[6] P. Moody and J. Feinberg, "C+B Seen Project," presented at
http://domino.research.ibm.com/cambridge/research.nsf/pag
es/projects.html.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software:
Addison-Wesley Publishing Company, 1995.

[8] R. S. Silva Filho, C. R. B. de Souza, and D. F. Redmiles,
"The Design of a Configurable, Extensible and Dynamic
Notification Service," presented at DEBS'03, San Diego,
CA, 2003.

[9] G. Fitzpatrick, T. Mansfield, D. Arnold, T. Phelps, B.
Segall, and S. Kaplan, "Instrumenting and Augmenting the
Workaday World with a Generic Notification Service called
Elvin," at ECSCW '99, Copenhagen, Denmark, 1999.

[10] W. Geyer, H. Richter, L. Fuchs, T. Frauenhofer, S. Dai-
javad, and S. Poltrock, "A Team Collaboration Space Sup-
porting Capture and Access of Virtual Meetings," presented
at ACM 2001 International Conference on Supporting
Group Work, Boulder, CO, USA, 2001.

[11] D. Gelernter, "Generative communication in Linda," ACM
Transactions on Programming Languages and Systems
(TOPLAS, vol. 7, 1985.

[12] P. Wyckoff, "TSpaces," IBM Systems Journal, vol. 37,
1998.

[13] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces Princi-
ples, Patterns, and Practice: Book News, Inc, 1999.

[14] J. F. Patterson, M. Day, and J. Kucan, "Notification servers
for synchronous groupware," presented at CSCW'96, Bos-
ton, Massachusetts, 1996.

http://domino.research.ibm.com/cambridge/research.nsf/pages/projects.html
http://domino.research.ibm.com/cambridge/research.nsf/pages/projects.html

