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ABSTRACT 
Contextual collaboration services seamlessly integrate existing 
groupware technologies into a single consistent interaction model. 
This model is usually implemented by a contextual collaboration 
infrastructure that needs to efficiently cope with the fast switching 
between different modes of interaction. This paper introduces a 
new model for contextual collaboration based on the notion of 
generic shared objects. We describe a native implementation of 
this model and evaluate its behavior under different traffic condi-
tions. We also explore an alternative implementation of the col-
laboration model integrating existing notification and meeting 
servers to deliver the same model behavior. We discuss trade-offs 
and limitations of those two implementations. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems – Client/server, C.4 [Performance of Systems]: Design 
studies 

General Terms 
Performance, Design, Experimentation, Human Factors. 

Keywords 
Collaboration, architecture, activity-centric, synchronous / asyn-
chronous collaboration, performance, scalability, responsiveness. 

1. INTRODUCTION 
Collaboration is moving away from dedicated tools or specialized 
solutions, to highly integrated, contextualized user experiences. 
Contextual collaboration promises new levels of productivity by 
the seamless integration of collaboration channels, shared arti-
facts, communication, and collaboration tools under a common 
interaction paradigm. For example, through the integration of 
communication channels and office tools, users can easily switch 
between individual and collaborative work through a single click 
of a button. In other words, they can start a chat from within their 
document editors, share a document on their desktops by dragging 
it on their buddy lists, start a remote presentation by right-clicking 
on a presentation file on their desktop, or send the content of a 
spreadsheet by email from within the document itself. Contextual 
collaboration lowers the barrier to engage in collaboration by 
transparently integrating existing groupware technologies in a 
single consistent interaction model. By doing so, it reduces end 
user’s cognitive cost of switching between applications, by pro-

viding a single point of access to a set of inter-related applications 
and the artifacts they produce.  

In our research, we are particularly interested in the infrastructural 
implications of contextual collaboration. A highly contextualized 
user experience entails frequent changes in work mode and mo-
dalities. For example, imagine the following scenario: Alice starts 
work on a presentation by creating a few slides and an outline. 
She then shares her original slides with Bob in order to get some 
feedback. From within the document Alice adds Bob as a member 
to her document and adds the document to a shared workspace. 
When Bob becomes available online, he is notified about the new 
presentation Alice shared with him. When Bob opens the presen-
tation and starts reviewing it, a status indicator in the document 
alerts Alice that Bob is currently active on the document. Seizing 
the opportunity, Alice starts a chat from within the open docu-
ment by clicking on Bob’s name in her buddy list. After a few 
turns in the chat, they open an audio channel and a real-time 
screen sharing session from within the chat to discuss the docu-
ment in more detail.  

In this scenario, Alice moves seamlessly from an individual work 
mode, to an asynchronous sharing mode, and then to real-time 
collaboration all from within the context of the document. In or-
der to implement this scenario, several backend collaboration 
services are usually required: A document repository to share the 
document, an event notification service to push notifications to 
users, and a real-time conferencing/meeting service for chat, au-
dio, and screen sharing support. Ideally, when delivering this user 
experience, the use of these infrastructural components should be 
transparent to the end user. Hence, they need to be integrated in 
smart ways to deliver their services in conjunction with each 
other. Integrating existing collaboration services agnostic of the 
user experience poses many challenges including but not limited 
to data consistency, scalability, or service responsiveness. An 
alternative solution, however, is to create a new collaboration 
service that merges all those interaction modes into a common 
model that provides such contextualized experience.  

In this paper, we present a new model for contextual collaboration 
based on generic shared objects that work as building blocks for 
supporting contextual collaboration applications. We describe our 
experiences with a native implementation of this interaction 
model and study its behavior with different interaction patterns. 
We also describe an integrated implementation (where existing 
services such as meeting and notification servers are used), deliv-
ering the same contextual user experience as in the native imple-



mentation. Our work is in the context of a special instance of a 
contextual collaboration called activity-centric collaboration [1]. 
In our previous works we have discussed architecture [2, 3], us-
ability and usefulness [1], as well as patterns of media use [4] 
involving an application called Activity Explorer, build on top of 
our model. Activity Explorer introduced a new collaboration 
paradigm by integrating collaboration technologies horizontally 
through the concept of a work activity (a logical unit of work that 
incorporates all the tools and resources to get the job done). In 
this paper, our goal is to study the contextual collaboration model 
behind Activity Explorer, understanding its scalability, respon-
siveness and implementation trade-offs. 

This paper is organized as follows. Section 2 describes the con-
textual user experience in Activity Explorer in more detail. In 
Section 3, we describe the contextual collaboration model behind 
Activity Explorer. We use this model as the basis for our study. 
Section 4 describes the native implementation of this model. Sec-
tion 5 describes our simulation environment, the experiments 
performed, as well as the simulation results for the native imple-
mentation. In Section 6 we describe an alternative integrated im-
plementation combining existing collaboration technologies and 
we discuss simulation results and trade-offs between the two solu-
tions. We close with related work and a summary of this work. 

2. ACTIVITY EXPLORER 
Activity Explorer (AE) is a contextual collaboration application 
based in the concept of activities. It is build upon the concept of 
generic shared objects supported in our contextual collaboration 
model. It is presented here as an application that illustrates the of 
our model in supporting contextual collaboration. 

In AE, an activity represents an interaction involving one or more 
users, which context (membership and persistent content) is made 
persistent thought the use of shared objects. An activity thread is a 
set of related, shared objects that can be hierarchically composed, 
representing a complex task or project. Hence, activity threads 
combine different types of persistent objects, membership, and 
alerts. Users start new activity threads by creating root objects 
from any type of content or communication. The AE research 
prototype supports sharing of six types of persistent objects: mes-
sage, chat transcript, file, folder, annotated screen shot, and to-do 
item. Users add items to an activity thread by posting either a 
response or a resource addition to its parent object.  

As presented in , in AE, the activity structure and mem-
bership are managed by several UI components: My Activities 
(A) is a multi column “inbox-like” activity list, supporting sorting 
and filtering. Selecting a shared object in this list populates a 
read-only info pane (B). The Activity Thread pane (C), maps a 
shared object as a node in a tree representing an entire “activity 
thread.” Activity Thread and My Activities are synchronized by 
object selection. My People (D) is a buddy list showing all mem-
bers the current user shares activities with. Users interact with 
objects or members, as displayed in these views, through right-
click context menus. Representative icons are highlighted green to 
cue users of shared object access and member presence (2a, 2b). 

Figure 1

Figure 1. Activity Explorer User Interface 

The following scenario illustrates a contextual user experience in 
which shared objects are used in a collaborative context, as part of 
an activity. The activity starts from a document: 
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Bob and Dan are working on a project (a file) using Activity Ex-
plorer. Bob right clicks on the file object in his list to add a mes-

sage asking Dan for his comments (1b). A few hours later, Dan 
returns to his desktop (2a). In the system tray, Dan is alerted to 



the new activity. Clicking on the alert, he is taken to the activity 
thread. He opens the message and while he is reading it, Bob can 
see Dan is looking at the message because the shared object is lit 
green (2b). Bob seizes the opportunity to expedite their progress; 
he right clicks on the initial message and adds a chat to this activ-
ity (2c). A chat window pops up on Dan’s desktop and they start a 
chat session (2d). Bob refers to a detail in the project description; 
for clarity he wants to show Dan what he would like changed. By 
right clicking on the chat object, Bob creates a shared screen 
object (3a). A transparent window allows Bob to select and 
“screen scrape” any region on his desktop. He freezes the trans-
parent window over the project text. The screen shot pops up on 
Dan’s desktop (3b). Bob and Dan begin annotating the web con-
tent in real-time like a shared whiteboard (3c). 

3. COLLABORATION MODEL 
The contextual collaboration server for Activity Explorer imple-
ments a simple and generic collaboration model based on the 
concept of Generic Shared Objects (GSO) introduced at [3]. 
GSOs are persistent collaboration objects that can be used as 
building blocks to create new collaborative applications. They 
support the implementation of a seamless user experience with 
blended synchronous and asynchronous collaboration. GSOs 
combine different communication styles, data representations, 
notifications, and membership control policies into objects that 
can be hierarchically composed. This section describes in detail 
the main aspects of the GSO model with which our experiments 
were performed. 

3.1 Communication 
In this paper, we assume a client/server architecture in which 
many clients interact with each other through a collaboration 
server (or service) implementing the concept of GSOs. Note that 
the model can be also implemented in a peer-to-peer fashion as 
described in [3].  

The communication protocol is based on three basic primitives: 
Request, Response, and Notification: A client asks for some ser-
vice by issuing a Request to the server. The server replies with a 
Response to inform the requesting client about the result of its 
request.1 Depending on the type of request, the server also sends 
out Notifications to other connected clients (see Figure 2). 

3.2 Data Model 
The data model allows sharing of any type of content based on the 
notion of GSOs. Our contextual collaboration service manages a 
collection of GSOs and their relationships, i.e. by containment 
and/or reference. This facilitates the aggregation of GSOs into 
hierarchical structures, thus modeling complex collaborations 
such as the previously mentioned activity threads. Each GSO 
holds one or more pieces of persistent information and defines a 
list of members (actual users) permitted to access its information. 
Each GSO provides a simple content model that defines a set of 
general properties and a set of variable properties for content. 
General properties of GSOs include unique id, name, author, crea-
tion time, modifier, modification time, reader, last access time, 

member list, and member status pertinent to the GSO. The vari-
able properties of a GSO describe its actual content. A GSO does 
not provide any means for semantically describing the content. 
Content is associated with a GSO by adding arbitrary numbers of 
<name, value> pairs (or tuples). The interpretation and use of 
those <name, value> pairs is left to client applications. The value 
field can be of various types, e.g. String, Integer, Double, Boo-
lean. In particular, a GSO supports binary content, allowing the 
storage of arbitrary content. 

GSO

persistent:
- content
- properties

Client A

add or set
content

content change
notification +
content

content change
notification

Client B

Client C

Members:
A, B, C

 
Figure 2. Generic Shared Object behavior 

3.3 Membership 
Each GSO also manages a list of members (e.g. A, B, and C in 
Figure 2). The GSO member list controls the access to its content 
and represents a distribution list for broadcasting notifications 
about the creation and modifications of a GSO. The member list is 
dynamic and allows adding new members or removing existing 
members at runtime. Since the member list is also a property of 
the GSO, any modification to the member list is also broadcast to 
all online GSO members. As noted earlier, our collaboration ser-
vice supports more complex collaboration through the aggrega-
tion of GSOs into hierarchical structures. Each GSO within such a 
structure can have different membership supporting fine-grained 
access control policies within those hierarchies. The contextual 
collaboration service may provide convenience functions to help 
manage the membership within these structures; e.g. when adding 
to or removing members from a single GSO, the server might 
provide options to propagate membership to other related GSOs. 

3.4 Notifications 
Each GSO can be considered a persistent conferencing session 
between its members who are currently online. Any modification 
to the set of fixed properties or the set of variable properties (con-
tent) of a GSO is not only stored in the underlying data store but 
also automatically broadcast to all the other members of that GSO 
by means of notifications. The default behavior is that every 
modification to a GSO is broadcast to all its members. Using pub-
lish/subscribe vernacular, whenever a member is added to an ob-
ject, it is implicitly subscribed to all change events of that object.  

Notifications on content (property) come in two different flavors: 
They can only indicate that content was changed, or they can 
transport the actual new/modified content. This is controlled by 
the use of open and close semantics. Change notifications (with-
out the actual content) are sent to all online members of the object 
whose open status of this object is false; whereas notifications 
with the actual content are sent to all online members whose open 
status of this object is true. Setting open to true basically sub-

                                                                 
1 Note that, depending on the implementation, request and re-

sponse might be represented through a single operation, e.g. 
when using remote procedure calls. 



4. NATIVE IMPLEMENTATION scribes a member to receive the content together with the content 
change notification. These semantics are important because they 
make sure that members of an object, who are not interested in 
collaborating on the object at the same time (real-time), are not 
flooded with unnecessary data. They only receive low volume 
content change notifications. 

In order to study and better understand the implications of com-
bining various interaction modes of collaboration into a single 
model, we have built a reference (or native) implementation of a 
collaboration server implementing the new collaboration model 
from scratch, i.e. without using/integrating existing collaboration 
services. In the example in Figure 2, clients A, B, and C are all members of 

the same GSO. Hence, whenever client A changes a content prop-
erty in the GSO (through a set property Request), clients A and C, 
which are online, receive notifications of that change. Client C’s 
open status on the object is false, i.e. it receives only notification 
of changes. Client B previously set open to true and receives the 
entire new / modified content.  

In our native implementation, the GSO concept is mapped to per-
sistent objects (using the OO programming paradigm). The im-
plementation of the GSO manages every aspect of the model, i.e. 
property management, membership management, access control, 
notifications, and data persistency. The GSO service manages a 
collection of GSOs and their aggregation into hierarchical struc-
tures (trees). The collaboration service not only sends notifications about modi-

fications to GSOs but also about the creation of new GSOs and 
the deletion of existing GSOs. Those notifications are sent to all 
online members of these objects. Since the state of a GSO is per-
sistent, GSO properties are still available when clients disconnect 
and later reconnect to the service. This allows clients to interact 
asynchronously. In summary, the described behavior of GSOs 
inherently merges real-time conferencing with content manage-
ment and asynchronous collaboration modes. 

Clients access the GSO service through a client side GSO API 
See ). The GSO objects in the server manage the notifica-
tion process and data transfer with the clients. 

Figure 3

Figure 3. Native implementation of the GSO model 
Figure 3

I – Clients A and B open the object. C is online does not have the 
GSO open. 
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II – Client A changes the content data. B receives a change con-
tent notification together with the new content whereas C gets 
only a change content notification. 

GSO

persistent:
- content
- properties

Client A

(5) setProperty()

(7) content change
notification +
content data

(6) content change
notification

Client B

Client C

Members:
A, B, C

A
P
I

A
P
I

A
P
I

 

3.5 Example: Activity Explorer 
The Activity Explorer (AE) research prototype, described in Sec-
tion 2, is a stand-alone desktop application that connects to a con-
textual collaboration server implementing the model described in 
the previous sections. AE makes use of this collaboration model 
in the following way: each Shared Object in AE is represented by 
a GSO; the activity thread in AE is represented through a hierar-
chical structure of GSOs; the different shared object types use the 
property fields of a GSO to manage their content. The persistent 
chat object in AE, for example, works as follows: Each chat mes-
sage is stored as a property. In order to send a chat message, the 
client (representing a member) adds a variable property to the 
GSO, representing another line in the chat, by submitting a re-
quest to the collaboration service. The collaboration service adds 
and stores the property and then sends the new property to all 
members of this GSO. The members of the chat receive this prop-
erty change and add the chat message at the end of their tran-
script. Note only members whose open statuses are true will re-
ceive the actual chat message; all others will receive only notifi-
cation that content was changed. This example illustrates that our 
collaboration model assumes a different paradigm for real-time 
collaboration. It is based on persistent state and state change noti-
fications. Other objects in AE also map their content in a similar 
way: For example, the shared screen objects store background 
images and strokes as properties of the GSOs, the shared message 
objects store the content of the message as single properties, and 
so forth. 

Note that while AE exposes an almost direct mapping to this 
model, the collaboration service does not assume any particular 
use of its GSOs. Hence, GSOs can be used in various ways as 
building blocks for other collaborative application. Jazz [5] and 
C&BSeen [6] are two example applications that implement con-
textual collaboration by using GSOs in a different way than AE. 

In the example of , clients A, B, and C are all members of 
a GSO object. In (I) client A and B open the object for real-time 
interaction by submitting an openSO() requests to the server (1, 
3). The server GSO then sends open notifications to all its mem-
bers, by iterating over the member list and invoking the registered 
callback interface methods (2, 4). The open state of the GSO is 
now changed to true for clients A and B. Sending notifications to 
every member of the GSO keeps all connected clients in a consis-
tent state (i.e. with the latest view of the GSOs they are members 



of). Client C, for example, knows that A and B are working on the 
GSO content in real-time. Based on this information, client C can 
decide to open the GSO object and start receiving the actual new 
content as it gets changed. In (II), client A changes the content of 
the GSO (add or set) by submitting a setProperty() request (5); 
client B receives a content change notification including the con-
tent data (7). Client C is online but receives only a content change 
notification without the data because its open state is false (6). 
However, knowing that the content has changed, Client C could 
now read the updated content of the object by submitting a get-
Content() request to the server. 

Table 1: Media pattern programming 

Table 1

Data Content change 
probabilities 

Media 
Pattern 

no 
Mem-
bers Size 

(char
s) 

no 

msg 
inter
val 

Set Add Del 

Streaming 5 64K  100 50 
ms 

0.5 0.5 0.0 

Chat 2 40  10 15 
sec 

0.0 1.0 0.0 

File  
Sharing 

4 100K  10 5 
min 

0.7 0.1 0.2 

Message 
Exchange 

8 1K  1 1 
sec 

1.0 0.0 0.0 
The server is implemented in Java and communicates via Remote 
Method Invocation (RMI) with its clients. Notifications are sent 
to clients through RMI too. Upon logon, each client registers an 
RMI callback interface with the server. Since we assume storage 
to be a constant throughout this paper, we did not implement a 
particular storage mechanism in our native implementation. 

The main differences between the four media traffic patterns are 
the size of the data messages, the number of messages exchanged 
by each member, and the frequency (defined by the interval be-
tween messages). For example, a typical chat session in our simu-
lator corresponds to an interaction with a GSO with two members 
on average exchanging an average of 10 messages each member. 
Each message has an average length of 40 characters. Each chat 
GSO also has an average of seven properties that are modified 
with 16 characters on average. Chat message are send with a fre-
quency of 15 seconds on average. During this interaction, periods 
of inactivity may occur with an average of 15 seconds. 

5. SIMULATION 
The model described in Section 3 unifies characteristics of pub-
lish/subscribe systems, real-time collaboration servers, and con-
tent management. As such, it facilitates the development of col-
laborative applications that have contextual collaboration charac-
teristics that typically require the blending of synchronous and 
asynchronous interaction models.  

We assume that this blending of synchronous and asynchronous 
communication in a single model requires the compromising of 
different requirements from these two interaction modalities. For 
example, traditional synchronous communication infrastructures, 
such as meeting servers, are usually designed to support the col-
laboration of a small group of members, under more strict timing 
and bandwidth conditions such as audio or video. Notification 
servers, on the other hand, generally are employed in applications 
with less strict timing and synchronous constraints, such as appli-
cations for awareness and messaging, where the number of clients 
is potentially large and the data traffic is relatively small. 
Combining various interaction modes in one collaboration model 
raises interesting questions regarding scalability, delays, respon-
siveness, robustness, and implementation complexity. 

In our GSO implementation, a property can be set (overwritten or 
created), added (appended to the end of the current content), or 
deleted. Table 1 shows the probabilities for these content change 
actions. In the chat pattern, for example, all chat content changes 
are of type “Add” because chat transcripts are typically not ran-
domly modified, but grow over time as new messages are ex-
changed.  

For each pattern, we reproduce the actions of a typical work day 
with 8 hours. For easier handling, we simulated each workday in 
4 minutes. During one simulated workday, the following actions 
take place on average: A total of 15 shared objects are created 
with five objects being root objects (representing a new activity 
thread). Each client listens to an average number of 10 objects. 15 
open and 15 closed objects on average are modified that day. The 
simulated patterns also differ in respect to the time span that each 
client is working either online or offline. 

5.1 Experimental Setup 
We used our native implementation of the model to evaluate its 
response to different traffic conditions. In order to understand the 
behavior of the model under regular use conditions, we developed 
a “user simulator” client program. The user simulator interacts 
with the server API performing regular actions such as create new 
object, set properties, open, close, add member and so forth. Ac-
tions are executed according to predefined media patterns. We 
defined four different patterns approximating the traffic condi-
tions of chat, file sharing, message exchange, and streaming me-
dia. The streaming media pattern was especially defined to ana-
lyze the server behavior under heavier load, testing its scalability 
limits. Note that these patterns are only approximations of actual 
real world patterns. Table 1 describes the programming of pa-
rameters and probabilities of each media pattern. Parameters are 
randomly varied. 

Unless otherwise noted, all our simulations are carried out on 
three client machines (IBM T30, 1.6GHz, 512MB) and one server 
machine (IBM MPro, 3 GHz, 1.5 GB). Client machines are 
equally loaded with simulator clients in steps of one, i.e. the first 
simulations starts with 3 clients (one in each client machine), then 
6 clients (two per client machine) and so forth. Please note the 
number of simulator clients running on a single client machine 
impacts the overall simulation results. Based on tests, we decided 
to limit the number of simulator clients to eight per client machine 
in order to minimize this effect. 

5.2 Simulation Results 
In order to understand the response of the system to the different 
media patterns described in , we plotted the total average 
execution times of the four patterns against the number of clients 
as shown in Figure 4. 



The notification time is the time from calling a method in the 
client API to the delivery of its notification to the other members 
of a GSO. The notification time basically describes how fast a 
collaborative system updates remote clients. In a collaborative 
setting, it is desirable to keep this number as low as possible be-
cause it expresses how much clients are in sync with their col-
laborators.  shows the average execution time versus 
notification delays for creating new GSOs.  
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Figure 6. Average execution vs. notification time for creating 
new GSOs in the native implementation 
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Figure 4. Average total simulation execution times of the na-

tive implementation under different activity patterns 
The system scales well for low-frequency traffic such as chat, 
message exchange, and file sharing. The size of the data, as in the 
case of file sharing does not impact performance as much as the 
frequency of the messages. Streaming media has a high frequency 
of relatively large data messages. As expected, our reference im-
plementation does not scale very well for this pattern. One reason 
is related to the behavior of the model. Since each GSO in our 
model comes with data persistency, we currently send out content 
change notification (without or without the content) to every 
member of the GSO. Given the high data frequency of streaming 
media, (each data message triggers a series of content change 
notifications, typically one for each member of the objects in-
volved), the server becomes pretty busy with sending out notifica-
tions. 

Notification times are slightly lower than execution times. At an 
almost constant difference of about 1 ms (in the trend lines) each 
local user interaction is visible in remote clients at about the same 
time. Except for streaming media setContent() calls, the respon-
siveness of the native implementation is relatively high (below 
10ms) and the notification delays are extremely low. The responsiveness of a collaborative system describes how fast 

the system reacts to user input, i.e. how fast actions are reflected 
in the user interface of the client executing the action. Respon-
siveness in our model is determined by the execution time of the 
client API calls. Figure 5 shows the average method execution 
times for setting the content property of a GSO. 

As a general conclusion, the performance of the model is a func-
tion of the data frequency of the interaction pattern (number of 
data messages/second), and the number of members of a GSO. 
For general traffic the system scales very well having good 
responsiveness and optimal notification delays. However, for 
streaming media traffic, with a relatively medium number of 
members, the system delays increase quadratically. 
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6. INTEGRATED IMPLEMENTATION 
Pursuant on better understanding design implications, implemen-
tation complexity, and performance trade-offs of using traditional 
collaboration services to implement a contextual user experience 
as described by our model, versus the native implementation of 
the same model, we have implemented an alternative collabora-
tion server. Our alternative implementation integrates existing 
technologies in the backend but provides exactly the same GSO 
behavior at the GSO API level to its clients.  

The results in the previous section indicate that our native imple-
mentation is not very well suited to handle high bandwidth, high 
frequency data. Existing real-time collaboration servers, however, 
are optimized for online meetings with a smaller number of par-
ticipants but relatively high data volume, e.g. audio, video. 
Hence, real-time collaboration servers would very well support 
frequent and high volume property changes in a GSO. It seemed 
that supporting the real-time aspects of our model with a meeting 
server would increase the overall system performance. Conse-
quently, we decided to use a meeting server for handling real-time 

Figure 5. Average execution time of the setContent() call in the 
native implementation with different media patterns 

The execution times are low and grow linearly except for the 
streaming media pattern. For a low number of clients (and conse-
quently a lower number of method calls on the server), the 
streaming media pattern is comparable to the other patterns but, as 
the number of method calls increases with the number of clients, 
this pattern grows quadratically. Interestingly, the message pat-
tern initially has higher execution times than streaming media. 
The reason is the higher number of eight members on average. 



content changes of a GSO, i.e. whenever members decide to work 
on an object at the same time. 

Notifications are another aspect of our model that we believed to 
be well understood today. Publish/subscribe systems have been 
around for a while. They are typically optimized for a very large 
number of subscribers and small to medium data volumes for each 
subscriber. GSO events such as create, delete, add member, re-
move member, or infrequent property changes (e.g. changing the 
presence status of a member on an object) would be very well 
supported by a publish/subscribe system. Publish/subscribe sys-
tem are general purpose distributed implementations of the ob-
server design pattern [7], usually implemented in the form of 
notification servers. Those servers receive anonymous notifica-
tions and route them to interested parties. This routing is orches-
trated by subscriptions: queries on the content or order of notifica-
tions published to the server.  

We expected that integrating these two technologies to our model, 
would result in better scalability of both the notification process 
(asynchronous mode in our model), and the real-time collabora-
tion through content exchange (the synchronous mode of our 
model). However, in return we expected an extra cost in terms of 
complexity of the architecture and a higher toll on execution 
times for some API calls and notification times. 

6.1 Implementation Details 
The integration of the two new backend technologies is com-
pletely transparent to the clients (see ). They interact as 
usual through the client API. In the backend, however, the im-
plementation complexity increased. For example, in order to inte-
grate the meeting server with our model, we introduced the con-
cept of a server-side client (SSC) that acts as a connector between 
the real-time meeting and the persistent aspects of the model. A 
SSC is a special client in the meeting (a meeting is a session cre-
ated between two or more participants/clients). It provides a non-
persistent shared space where messages are multicast to all the 
meeting members. The SSC is responsible for persisting session 
data and for updating the model when content has changed 
through the meeting, e.g., when a chat message is posted to a 
meeting session, the SSC for that session stores the message in the 
GSO. This approach provides a generic mechanism that can be 
used to integrate any meeting server implementation in a way 
agnostic to our GSO server.  

Figure 7

Figure 7. Integrated implementation of the GSO model 

Whenever a GSO’s properties and content change it produces a 
single notification (and not one for each member as before) that is 
sent using a notification server. We decided to keep the imple-
mentation simple: Each client subscribes/un-subscribes to a global 
GSO notification topic when logging on and off. In this approach, 
the notification server acts as a broadcast channel; a bus connect-
ing all online clients. Notifications are subsequently  filtered in 
the client side API, i.e. the client API ignores notifications that 
are not addressed to that particular client.  

As illustrated in Figure 7 (I) when client A first opens the GSO 
(1), a new meeting session (2) together with a hidden SSC (3) are 
created. The GSO object is also open. Consequently, an open 
notification is sent to all clients (5, 6, 7) through the notification 
server. The SSC joins the meeting (8) and listens to messages in 
that channel. The openSO() call returns the meeting id to client A. 
Upon receiving the meeting id, client A also joins the meeting and 
is ready to transmit data. Client B decides to open the GSO as 

well and submits an openSO() request to the GSO server (10) (for 
simplicity notifications are omitted in the picture). The open call 
is propagated to the GSO object (11), which returns the existing 
meeting id. Client B also automatically joins the meeting (12). As 
content messages are exchanged between members A and B and 
the SSC (14, 15, 16), the SSC makes the content persistent by 
invoking setContent() on the GSO (17). The GSO server contacts 
the notification server to deliver content change notifications 
(without content) to the other members of the object who are not 
in the open state (18, 19). 

I – Client A opens an object, resulting in the creation of a meeting 
session and a server-side client. Open notifications are sent. 
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II – Client B also opens the object, becoming member of the 
“meeting”, and the SSC updates the model 
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III – Client A changes the GSO content; and client B gets the new 
content as notification. The SSC updates the data model and noti-
fications are sent to the clients 
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The integrated solution is also completely implemented in Java. 
We used YANCEES [8], an extensible and configurable event 
service, as the notification server. This server was chosen because 
of its ability to be configured with a simple topic based core, and 



for having a simple API, similar to Elvin [9]. YANCEES, written 
in Java, was previously developed by one of the authors of this 
paper. We also used a simple Java-based meeting server devel-
oped by one of the authors. The meeting server was previously 
used in the TeamSpace project [10]. 
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For the integrated implementation we carefully modified our core 
native implementation where required. Both implementations 
share the same common GSO model and externalize the same 
GSO API to the end users (clients). However, where necessary, 
we adjusted the code to integrate the meeting server and the noti-
fication server. For example, we intercept some client API calls in 
order to send messages to the meeting server (instead of setting 
the properties directly in the GSO). The implementation of the 
notification interfaces send messages through the notification 
server, instead of notifying the clients directly. 

Figure 9. Comparison of the average execution times for set-
Content() calls for the message exchange pattern 

Using a meeting server introduces additional complexity as de-
scribed in Section 6.1. We expected that the price for better scal-
ability during the real-time phase of a GSO would be additional 
delays in getting started. The data in Figure 10 compares the cost 
for opening GSOs in both implementations. The data confirms 
that the open call has become one of the most costly calls in the 
integrated implementation. However, it still scales in a linear 
fashion indicated by the trend line. 

We tried to keep the two implementations as similar as possible in 
order to get meaningful results for a comparison. However, given 
the number of different existing publish/subscribe and real-time 
collaboration systems, the results may vary depending on the 
backend technologies used. 

6.2 Simulation Results 
As described in previous sessions, our native implementation did 
not expose good scalability properties for streaming media traffic 
patterns. In this session, we want to study the response of the 
alternative integrated implementation to this kind of traffic. 

 compares the cost of the set/add content calls in both 
implementations. 
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Figure 8

Figure 8. Comparison of the average execution times for set-
Content() calls for the stream media pattern 
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Figure 10. Comparison of the average execution times for 
openSO() calls 

Table 2 shows a summary of the average execution times of GSO 
API calls. We can see that not only the open call stands out rela-
tive to other calls in the integrated implementation but also regis-
terMember() and loginMember(). The reason for such relatively 
high numbers is our notification server. Creating subscriptions 
when registering members and when logging in comes at an addi-
tional expense. Note that subscriptions in our native implementa-
tion were implicit through the member list. Another interesting 
observation in Table 2 is that the execution times of most calls in 
the integrated implementation are generally higher. The code 
executed is the same for most API calls (except for open and 
close, which create SSC objects, and for set and add content, that 
route data through the meeting server). We can only explain this 
as a consequence of higher load on the server machine imposed 
by three server processes running at the same time, in the same 
host (GSO server, meeting server, notification server). 

As expected, the integrated implementation scales well in a linear 
fashion compared to the native implementation. Using a dedicated 
meeting server seems to pay off for this type of traffic. 

The chat and the file sharing media patterns did not expose any 
significant differences in the integrated implementation with re-
gards to the cost of the setContent() call. However, the message 
exchange pattern yielded some interesting results. Figure 9 shows 
that the use of our meeting server is more costly than the native 
implementation for this pattern. Both implementations though 
seem to expose linear behavior as indicated by the trend lines. 
One of the major differences between the message exchange pat-
tern and the other patterns is the number of members per GSO, 
which in the message pattern case are 8 on average. While our 
meeting server seems to handle high bandwidth, high frequency 
traffic well, performance seems to degrade with an increased 
number of meeting participants. 

While we expected that subscription management would come at 
an extra cost, we were surprised to see that the notification server 
introduced high delays in delivering notifications. Figure 11 com-
pares execution times for creating GSOs against the notification 
time.  



7. LESSONS LEARNED AND DISCUSSION Table 2. Average cost of GSO API calls (24 clients) 
Our data indicates that the use of a simpler native implementation 
scales well for the majority of traffic patters we propose except 
for high frequency, high-bandwidth data. The overall responsive-
ness of the model, including its notification delays and API exe-
cution times, for the number of clients we tested, looks very good.  

GSO API Call Native Integrated 

 getIds 9 24 

 addMember 4 17 

 getContent 6 13 

 open 6 52 

 create 8 19 

 setProperty 6 13 

 close 5 14 

 logout 9 20 

 registerMember 178 1699 

 setContent 7 10 

 getGSOs 43 68 

 addContent 6 6 

 login 17 130 

The use of a specialized meeting server in the way proposed in 
our integrated implementation can improve the overall response 
of the system for frequent synchronous mode traffic patterns such 
as streaming media. However, when applied to more regular traf-
fic such as messages or chat, it does not improve the overall 
performance of the system. Its use comes with extra integration 
complexity and startup costs such as for the creation of the ses-
sion and the server-side clients. 

The use of the publish/subscribe model, provided by notification 
servers, did not meet our original expectations. During the tests, 
the notification server was the most CPU demanding component, 
more than the meeting server was, and the notification traffic did 
not scale linearly. We tested the implementation with two sub-
scription models: server-side filtering and client-side filtering. 
Client-side filtering was the approach that better scaled in our 
implementation. Both approaches have trade-offs and limitations: 
client-side filtering requires the delivery of extra notifications 
through the network but makes the routing process easier (topic-
based). Server-side filtering limits the amount of traffic to the 
clients and relief them from discarding uninterested notifications. 
This approach, however, loads the notification server that needs to 
handle with more complex subscriptions and constant re-
subscriptions issued by the clients to reflect their new member-
ship condition. 

The integrated implementation has a high responsiveness given 
the low and linear execution times but does not scale well with 
regards to notifications. On average, under a load of 24 clients, 
remote clients are updated only 0.5 second after the GSO was 
created locally. The notification times seem to grow exponentially 
according to the trend line. 
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Hence, as a general conclusion, the use of notification servers 
(distributed publish/subscribe implementations) were not a good 
choice for this particular problem. The GSO model requires a 
simple observer model, as implemented in the native solution, and 
not a fully distributed publish/subscribe model, whose adaptation 
to our model introduces more overhead. 

One advantage of using separate components such as a meeting 
server and a notification server, however, is the ability to distrib-
ute those servers throughout other hosts in a network. In our tests 
comparing a distributed server (notification server in one host and 
meeting server in another machine versus all together in the same 
host), did not show any significant improvements up to 27 clients. 
With more than 30 clients, however, the distributed configuration 
begins to perform better than a single server does, indicating that 
with a significant number of clients, this approach may be an 
option for scalability. 

Figure 11: Average responsiveness vs. notification delay for 
creating new GSOs in the integrated implementation 

One could argue that the use of the notification server as a shared 
bus is one of the reasons for the notification server behavior ob-
served in Figure 11. In another alternative implementation, we 
opted to perform server-side filtering of events, i.e. the configura-
tion of the notification server with more accurate subscriptions 
that filter out events that are not of interest of the client. This 
approach, however, required constant update of the subscriptions 
(each client manages one or more subscriptions filtering out 
events that do not belong to the objects they are members of). As 
new objects are created, members logged off or got re-
moved/added to different objects, the subscription needs to be 
updated. Given the high subscription costs presented in Table 2 
(part of registerMember() and login() operations), this solution 
did not scale. These membership and object life-cycle dynamics 
resulted in similar or worse delays than the ones observed in 
Figure 11. 

Overall, with respect to the implementation complexity, the native 
implementation is more simple and straightforward; it has less 
synchronization and integration problems and scales well. The 
integrated implementation, however, is more complex and de-
mands special attention to matters such as timing and synchroni-
zation, it is more prone to implementation failures and incurs in 
higher startup times, including delays associated to member log-in 
and opening objects. In addition, as shown by our experience with 
the notification server, delays associated to one or another com-
ponent can negatively impact the whole system performance. 



8. RELATED WORK 
The GSO characteristics of persistency, change notifications, and 
membership are also found in other collaboration infrastructures. 
Those systems alone, however, do not provide all the combined 
characteristics of the GSO model. 

The Tuple Space concept, originally proposed by Gelernter as 
part of the Linda coordination language [11], and currently imple-
mented by systems such as IBM’s TSpaces [12] and SUN’s 
JavaSpaces [13], provides a persistent and shared memory (or 
space), accessed through an API that allows distributed processes 
to read, write, and remove information represented as tuples 
(type, attribute, value pairs). Tuples can be concurrently read or 
removed from the space by different processes. In this program-
ming paradigm, concurrency and interoperability mechanisms can 
be easily implemented, as well as more advanced communication 
and coordination mechanisms such as distributed queues and 
locks. Even tough very powerful, this model does not provide 
concepts such as group, membership or object hierarchies. 

Notification servers, as defined by Patterson et al. [14], provide a 
simple common service for sharing state in synchronous multi-
user applications. They address the problem of maintaining con-
sistency in real-time collaborative applications and supporting 
awareness. They are similar to tuple spaces with regard to the 
addition of specialized services for managing the event space and 
for supporting different notification policies required to improve 
all sorts of activity awareness. Membership, hierarchy of informa-
tion, and persistency of the data are not covered by that work. 

Event notification servers such as Elvin [9] are usually employed 
as event routing infrastructure to support the development of 
awareness applications. Elvin provides a relatively simple but 
optimized set of functionalities, efficiently processing large quan-
tities of events based on content-based routing of tuple-based 
events. In such systems, however, event persistency is not usually 
addressed moreover, as previously discussed, they usually are not  
designed to support synchronous meeting interaction. In fact, 
during the development of our system, Elvin was originally used 
as the notification server in the integration solution, and became a 
bottleneck for the scalability of the system. The use of a simpler 
routing strategy as the one programmed in YANCEES solved this 
problem. 

9. CONCLUSIONS 
This paper introduced a new collaboration model that seamlessly 
integrates existing collaboration modalities into a single consis-
tent interaction model. This model facilitates the development of 
contextual collaboration applications such as Activity Explorer. 
Our simulation data indicted that our native implementation 
proves to scale sufficiently well except for high-bandwidth, high-
frequency data traffic. Depending on the application scenario, 
real-time collaboration servers can improve the performance of 
the model. The use of notification servers to support the model 
was problematic. In the future, we would like to better understand 
the limits of the model by schematically varying the size of the 
data messages, frequency, and the number of members per object 
instead of using traffic patterns. Also, our model currently treats 
asynchronous and synchronous modifications of the content of a 
GSO in a very similar way. We are exploring alternative ways of 

improving the performance of the system by reducing the number 
of persistent GSO content updates and notifications (to members 
who do not have the object open) during phases of synchronous 
collaboration. 
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