
RC23760 (W0510-197) October 25, 2005
Computer Science

IBM Research Report

One-Benefit Learning:  Cost-Sensitive Learning with
Restricted Cost Information

Bianca Zadrozny
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



One-Benefit learning: Cost-sensitive learning with
restricted cost information

Bianca Zadrozny
IBM T.J. Watson Research Center
1101 Kitchawan Road, Route 134

Yorktown Heights, NY 10598

zadrozny@us.ibm.com

ABSTRACT
This paper presents a new formulation for cost-sensitive
learning that we call the One-Benefit formulation. Instead
of having the correct label for each training example as in
the standard classifier learning formulation, in this formula-
tion we have one possible label for each example (which may
not be the correct one) and the benefit (or cost) associated
with that label. The goal of learning in this formulation
is to find the classifier that maximizes the expected bene-
fit of the labelling using only these examples. We present
a reduction from One-Benefit learning to standard classifier
learning that allows us to use any existing error-minimizing
classifier learner to maximize the expected benefit in this
formulation by correctly weighting the examples. We also
show how to evaluate a classifier using test examples for
which we only the benefit for one of the labels. We present
preliminary experimental results using a synthetic data gen-
erator that allows us to test both our learning method and
our evaluation method.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning - Induction; H.2.8
[Database Management]: Applications - Data Mining

General Terms
Algorithms

Keywords
data mining, cost-sensitive learning

1. INTRODUCTION
In standard classifier learning, we are given a training set
of examples of the form (x, y), where x is a feature vector
and y is a class label. These examples are assumed (at
least, implicitly) to be drawn independently from a fixed
distribution D with domain X × Y, where X is a feature

space and Y is a (discrete) class label space. The goal is to
learn a classifier h : X → Y that minimizes the expected
error rate on examples drawn from D, given by

Ex,y∼D[I(h(x) 6= y)] (1)

where I(·) is the indicator function that has value 1 in case
its argument is true and 0 otherwise.

The traditional formulation assumes that all errors are equally
costly. However, this is not true for many domains for which
one would like to obtain classifiers. For example:

• In one-to-one marketing, the cost of making an offer to
a person who does not respond is small compared to
the cost of not contacting a person who would respond.

• In medicine, the cost of prescribing a drug to an al-
lergic patient can be much higher than the cost of not
prescribing the drug to a nonallergic patient.

• In image or text retrieval, the cost of not displaying a
relevant item may be lower or higher than the cost of
displaying an irrelevant item.

One extension to the standard classifier learning formulation
that has received considerable attention in the past few years
is the cost matrix formulation [2, 4, 3]. In this formulation,
we specify a cost matrix C for the domain in which we would
like to learn a classifier. If there are k classes, the cost matrix
is a k× k matrix of real values. Each entry C(i, j) gives the
cost of predicting class i for an example whose actual class
is j. Now, instead of minimizing the error rate given by
equation 1, we would like to find a classifier h that minimizes
the expected cost of the labeling, given by

Ex,y∼D[C(h(x), y)]. (2)

Research on cost-sensitive learning has traditionally been
couched in terms of costs, as opposed to benefits or rewards.
However, in many domains, it is easier to talk consistently
about benefits than about costs. The reason is that all ben-
efits are straightforward cash flows relative to a baseline
wealth of $0, while some costs are counterfactual oppor-
tunity costs [3]. Instead of specifying a cost matrix, we can
equivalently specify a benefit matrix B, where each entry
of the matrix describes the benefit (or reward) of predicting



class i for an example whose actual class is j. Then, instead
of minimizing 2, we maximize

Ex,y∼D[B(h(x), y)].

The benefit matrix formulation assumes that the benefits
are fixed, i.e., that they only depend on the predicted and
actual classes, but not on the example itself. However, more
often than not, benefits in real-world domains are example-
dependent. For example, in direct marketing, the benefit
of classifying a respondent correctly depends on the profit
that the customer generates. Similarly, in credit card fraud
detection, the benefit of correctly identifying a fraudulent
transaction depends on the amount of the transaction.

Zadrozny and Elkan [6] extend the benefit matrix formula-
tion to the example-dependent case by allowing each entry
to depend on the particular feature vector x. In this case,
the benefits are given by a function B(i, j, x), where i is the
predicted class, j is the actual class and x is the feature
vector of the example. Accordingly, we would now like to
find a classifier h that maximizes the expected benefit of the
labeling, given by

Ex,y∼D[B(h(x), y, x)]. (3)

Because the benefit matrix formulation assumes that the
benefits are fixed for all examples, it also implicitly assumes
that they are known in advance. However, when we allow
example-dependent benefits, it might be the case that the
benefits are not known for all of the possible labels of all
the training examples. An example of an application where
this is the case is direct marketing. In this case, x is the
description of a customer (which may include, for example,
past purchases) and y is a marketing action (such as mailing
a catalog or a coupon). The benefit for each y is the profit
attained if the customer responds to the action or $0 if he
does not respond to it. Therefore, in order to measure the
benefits for each possible y, it would be necessary to take
all possible actions with the same customer, which is not
feasible1 .

A similar situation occurs in medical treatment, here x is
the description of a patient and y is a possible treatment.
Usually only one treatment is assigned to each patient, so
we only have information about the benefit of one treatment
per person. Therefore, the example-dependent formulation
is not directly applicable here.

In this paper, we introduce a new formulation of the cost-
sensitive learning problem that does not require that all of
the benefits (or costs) for each of the labels are known for
each training example. We call this formulation the One-
Benefit formulation. We present an algorithm for learning
under this formulation that is in fact a reduction to standard
classifier learning. In other words, it is an algorithm that
transforms a cost-sensitive learning problem of this type into

1Note that previous work in cost-sensitive learning applied
to direct marketing[6] dealt with a special case in which
there were only two possible actions (mail/not mail). The
“not mail” action had a fixed benefit of zero and all the cus-
tomers in the training set had been mailed. Therefore, the
benefits for each label were known for each training example

a standard classifier learning problem. We call this reduc-
tion the One-Benefit reduction. The main advantage of a
reduction is that it allows the use of any classifier learner
as a black box. For other details and advantages of reduc-
tions, see Beygelzimer et al. [1]. We also present a method
for evaluating classifiers under the One-Benefit formulation.
Finally, we show some preliminary results on a synthetic
dataset.

2. CLASSIFIER LEARNING UNDER THE
ONE-BENEFIT FORMULATION

We assume that we have m training examples (x, y, b) drawn
from a joint distribution D with domain X × Y × B where
X is an (arbitrary) space, Y is a (discrete) label space and
B is a (nonnegative, real) benefit space, where the benefit
of assigning label y to example x is is given by a stochastic
function B : X × Y → [0,∞] (that is b ∼ B(x, y)).

We call this formulation the One-Benefit formulation. Note
that instead of having the correct label for each training
example as in the standard classifier learning formulation,
in this formulation we have one possible label (which may
not be the correct one) and the benefit associated with that
label. If we know the benefit of more than one possible label,
we can create one example per benefit.

Our goal is to find the classifier h : X → Y that maximizes
the expected value of the benefit given by

Ex∼D[B(x, h(x))] (4)

using only the available examples.

We also want to be able to evaluate an existing classifier
using only examples of the form (x, y, b). That is, we want
to be able to obtain an estimate of the expected benefit of
the classifier (given by equation 4).

Standard classifier learners try to find H to maximize the
accuracy

1

m

∑

(x,y)

I(H(x) = y)

but, according to the translation theorem in Zadrozny et al.
[8], can be made to maximize a weighted loss

1

m

∑

(x,y,w)

wI(H(x) = y), (5)

where w is a importance weight given to each example.

The following theorem shows that the expected benefit in (4)
can be rewritten in a way that allows us to use a classifier
learner that maximizes (5) to learn the classifier h.

Theorem 1. For all distributions, D, for any determin-

istic function, h : X → Y and for any stochastic function

B : X × Y → [0,∞], if we assume that P (y|x) > 0 ∀x, y
then

ED[B(x, h(x))] = ED

[

b

P (y|x)
I(h(x) = y)

]



Proof.

ED

[

b

P (y|x)
I(h(x) = y)

]

= Ex,y,b∼D

[

B(x,y)
P (y|x)

I(h(x) = y)
]

= ED

[

B(x,y)
P (y|x)

∣

∣

∣
h(x) = y

]

P (h(x) = y)

= ED

[

b(x,h(x))
P (h(x)=y|x)

∣

∣

∣
h(x) = y

]

P (h(x) = y)

=
∫

x

B(x,h(x))
P (h(x)=y|x)

P (x|h(x) = y)P (h(x) = y)dx

=
∫

x

B(x,h(x))
P (h(x)=y|x)

P (x, h(x) = y)dx

=
∫

x
B(x, h(x))P (x)dx

= ED[B(x, h(x))]

From this theorem, it follows that

1

m

∑

(x,y,b)

b

P (y|x)
I(h(x) = y) (6)

is an unbiased empirical estimate of the expected benefit of
classifier h. Thus, if we know P (y|x), that is, the probability
that label y is assigned to example x in the training data, we
can use a classifier learner to learn the classifier from these
examples. Looking back at (5) we see that we simply have
to weigh each example (x, y, b) by b

P (y|x)
.

Note that the theorem holds only if ∀x, y P (y|x) > 0, that is,
in order to guarantee convergence to the optimal classifier,
we require that in the training data each label have non-zero
probability of being assigned to each example. However, the
reduction degrades gracefully even when this is not the case
if we define that

I(h(x) = y)

P (y|x)
= 0

when I(H(x) = y) = 0 and P (y|x) = 0. In this case, it
is easy to see that the reduction will converge to a classi-
fier that is optimal, except that label y is not allowed for
example x.

This theorem demonstrates that in this formulation we have
to account both for the benefits (given by the numerator in
the first factor of equation 6) and for the fact that the labels
are not assigned at random to the examples (given by the
denominator in the first factor of equation 6).

Zadrozny et al.[8] showed that learning from a weighted dis-
tribution of examples is not straightforward with many clas-
sifier learners but that “costing”, a method based on rejec-
tion sampling, achieves good results in practice. For this
reason, we recommend using costing here, where instead
of using misclassification costs as weights we use the ratio

b

P (y|x)
as a weight for each example (x, y, b). Another option

is to use learners that accept weights directly, such as naive
Bayes and SVM.

In practice, we may not know the probabilities P (y|x) for
the training examples in advance. However, we can estimate
these using the available training data by applying a classi-
fier learning method that estimates conditional probabilities
or by transforming the outputs of a classifier into accurate
probability estimates [7].

One-Benefit Reduction(Training Set S = (x, y, b))

1. Learn a model for P (y|x) using S.

2. Calculate a weight for each example (x, y, b):
w = b

P (y|x)

3. Learn a classifier h using a cost-sensitive learner
on S′ = (x, y, w).

4. Output h.

Table 1: The One-Benefit Reduction.

Table 1 shows the pseudo-code for this reduction. Given
a training set of the form (x, y, b), we first learn a model
for P (y|x). This can be accomplished by using a classifier
learner that outputs class membership probability estimates.
We then calculate weights for each example (x, y, b) by di-
viding b by P (y|x). We can now use a cost-sensitive learning
method that takes examples (x, y, w) as input, such as the
ones presented in Zadrozny et al.[8] to learn a classifier that
maximizes the expected benefit.

3. CLASSIFIER EVALUATION UNDER THE
ONE-BENEFIT FORMULATION

The most obvious way to estimate the expected benefit of
a classifier h in the One-Benefit formulation is to select the
test examples (x, y, b) for which h(x) = y, since these are
the examples that tell us the benefit of the label predicted
by the classifier. Then, we can average the benefits b from
each of the selected examples to obtain an estimate of the
expected benefit of the classifier. This is reasonable if the
number of possible labels is small, so that we can obtain
enough examples that agree with the classifier.

Nonetheless, even when this condition is true, selecting the
examples in this manner may result in a biased estimate of
the expected benefit of the classifier. This can happen be-
cause the examples are being selected according to a criteria
that is not necessarily independent of the feature vector x.
For example, in the direct marketing case, each example x
describes a particular customer. If we have a classifier that
is more likely to agree with the data for the “rich customers”
(who presumably tend to buy more), by using this kind of
evaluation we may think it is a very good classifier. How-
ever, if we apply the classifier to the general population of
customers it may not perform as well.

As we did for learning, we can use theorem 1 for evaluation.
According to theorem 1, the expected benefit of a classifier
h is given by

ED[B(x, h(x))] = ED

[

b

P (y|x)
I(h(x) = y)

]

.

Therefore, an empirical estimate of the expected benefit of
the classifier is the following sum for a set of m test exam-
ples:

1

m

∑

(x,y,b)

b

P (y|x)
I(h(x) = y),

that is, we sum over the test examples whose labels agree
with the label selected by the classifier h, but we weigh



them by the ratio of their benefit divided by the conditional
probability that the label appears in the data. Again, the
probabilities P (y|x) have to be estimated (and validated)
using the training data.

4. EXPERIMENTAL RESULTS
We present experimental results using a synthetic data gen-
erator that is a modification of the IBM Quest Synthetic
Data Generation Code for classification (Quest)[5]. Quest
randomly generates examples for a person data set in which
each person has the nine attributes described below.

• Salary: uniformly distributed between 20000 and 150000.

• Commission: if Salary ≥ 75000, Commission = 0, else
uniformly distributed between 10000 and 75000.

• Age: uniformly chosen from 60 integer values (20 to
80).

• Education: uniformly chosen from 4 integer values.

• CarMake: uniformly chosen from 20 integer values.

• ZipCode: uniformly chosen from 9 integer values.

• HouseValue: uniformly distributed from 50000 k to
150000 k, where 0 ≤ k ≤ 9 and depends on the ZipCode.

• YearsOwned: uniformly distributed from 1 to 30.

• Loan: uniformly distributed between 0 and 500000.

In the original Quest generation code, there are a series of
classification functions of increasing complexity that used
the above attributes to classify people into different groups.
After determining the values of different attributes of an ex-
ample and assigning it a group label according to the clas-
sification function, the values for non-categorical attributes
are perturbed. If the value of an attribute A for an example
x is v and the range of values of A is a, then the value of
A for x after perturbation becomes v + r ∗ a, where r is a
uniform random variable between -0.5 and +0.5.

We modified Quest to include both label generation func-
tions and benefit generation functions. These are used to
generate examples of the form (x, y, b), where x is a person
described by the attributes above, y is a label describing a
marketing action taken for that person (such as mailing a
particular catalog) and b is the benefit received after the ac-
tion described by y is taken (such as the amount purchased
from the catalog).

We use two different label generation functions that were
created based on classification functions already implemented
in Quest. The functions are non-deterministic. For each ex-
ample, they specify a probability for each label. The labels
are then randomly drawn according to these probabilities.
The label generation functions are shown in Table 2.

Given an example x and a label y, the benefit generation
function determines a benefit for labeling person x as be-
longing to class y. We use two different benefit generation
functions, which are shown in Table 3.

Labelling Function 1 Labelling Function 2

if (Age< 40)
if (50000≤Salary≤100000)
probClass1 = 0.3;
else
probClass1 = 0.7;

else
if (40 ≤Age< 60)
if (75000≤Salary≤125000)
probClass1 = 0.1;
else
probClass1 = 0.9;

else
if (25000≤Salary≤75000)
probClass1 = 0.4;
else
probClass1 = 0.6;

if (probClass1>rand())
y=1;
else
y=0;

if (Age<40)
probClass1 = 0.2;

else
if (40≤Age<60)
probClass1 = 0.8;

else
probClass1 = 0.2;

if (probClass1>rand())
y=1;

else
y=0;

Table 2: Label generation functions. The function
rand() generates a random number drawn uniformly
from the interval [0, 1].

Benefit Function 1 Benefit Function 2

if (YearsOwned<20)
equity = 0;
else
equity = 0.1∗YearsOwned

- 2;

disposable = 2*Salary/3

- Loan/5

+ 5000∗Education
+ equity/5

- 10000;

if (disposable>0)
if (y = 0)
b = randn(250,20);
else
b = randn(200,20);

else
if (y = 0)
b = randn(80,20);
else
b = randn(150,20);

if (Age<40)
if (Education∈ {0, 1})
if (y= 0)
b = randn(100,20);
else
b = randn(80,20);

else
if (y= 0)
b = randn(50,20);
else
b = randn(120,20);

else
if (40 ≤Age< 60)
if (Education∈ {1, 2, 3})
if (y= 0)
b = randn(100,20);
else
b = randn(150,20);

else
if (y= 0)
b = randn(120,20);
else
b = randn(140,20);

else
if (Education∈ {2, 3, 4})
if (y= 0)
b = randn(90,20);
else
b = randn(70,20);

else
if (y= 0)
b = randn(50,20);
else
b = randn(70,20);

Table 3: Benefit generation functions. The function
randn(µ,σ) generates a random number drawn from
a Gaussian with mean µ and standard deviation σ.



The advantage of using a synthetic data generator is that
we can evaluate any classifier by generating the benefits for
each possible action, which is not possible with real data.
In the real-world, we cannot “reset” customers to the same
state and mail a different catalog as if the customer had not
received the first one, but we can do this with Quest.

We applied the One-Benefit reduction 1 to three training
sets of 50000 examples generated using three settings of
the label and benefit generation functions (Label1-Benefit1,
Label1-Benefit2 and Label2-Benefit2).For obtaining the es-
timates of P (y|x) we use naive Bayes followed by the PAV
calibration algorithm [7]. For learning the main classifier,
we use three methods:

• weighted Naive Bayes,

• costing with Naive Bayes as base learner,

• costing with C4.5 as base learner.

For evaluating the classifiers, we use the simulator to gen-
erate three test sets of 50000 examples. We evaluate the
classifiers using three methods:

• True: use the generator to obtain benefit values for
the two labels for each test example and average the
benefits for the labels chosen by the classifier (unbiased
but unrealistic in a data mining setting).

• Biased: select only the test examples that agree with
the classifier and average the benefits for those exam-
ples.

• Corrected: select only the test examples that agree
with the classifier and use the bias correction method
proposed in Section 3 to calculate the expected benefit
of the classifier (unbiased and realistic).

The probabilities P (y|x) necessary for the bias correction
method are obtained by applying the model learned on the
training set to the test examples.

Table 4 summarizes the results obtained. For comparison
purposes, it also includes the average benefit of the training
labels, of the best possible labelling and of the worst possible
labelling.

In all cases, the One-Benefit reduction improves upon the
training labels. Furthermore, by comparing the two set-
tings with the same benefit function and different training
labelling, we see that the particular training labelling does
not greatly influence the final result. The different learning
algorithms (weighted NB, costing NB and costing C4.5) in
general led to classifiers that are equally good, except that
costing C4.5 resulted in a better classifier for the settings
with Benefit2.

Whereas using only the selected examples to evaluate the
classifier yields incorrect estimates of the value of the classi-
fier, the evaluation using the bias correction method yields
results that are very close to the true (but unrealistic) eval-
uation.

Labelling Function 1 - Benefit Function 1
Evaluation Method

Classifier True Biased Corrected
worst possible 146.94 - -
best possible 206.31 - -
training labels 178.06 - -
weighted NB 192.74 180.74 191.86
costing NB 192.30 180.80 191.80
costing C.45 190.94 180.23 190.78

Labelling Function 1 - Benefit Function 2
Evaluation Method

Classifier True Biased Corrected
worst possible 73.87 - -
best possible 116.01 - -
training labels 102.99 - -
weighted NB 107.21 115.65 107.85
costing NB 107.06 115.53 107.76
costing C.45 112.45 120.30 112.56

Labelling Function 2 - Benefit Function 2
Evaluation Method

Classifier True Biased Corrected
worst possible 73.87 - -
best possible 116.01 - -
training labels 96.12 - -
weighted NB 107.08 112.20 108.50
costing NB 107.09 112.34 108.56
costing C.45 112.67 116.41 112.52

Table 4: Experimental results.



5. CONCLUSIONS
We present here a new formulation for the cost-sensitive
learning problem that we call the One-Benefit formulation.
Instead of assuming that the benefits for each of the labels is
known for each training example as in previous cost-sensitive
formulations, this formulation only assumes that the bene-
fit for one of the possible labels for each training example
is known at training time. We argue that this is a realistic
setup for some cost-sensitive domains such as direct market-
ing and medical treatment.

We show that it is possible to learn under this formulation
by presenting a reduction from One-Benefit learning into
standard classifier learning. The reduction requires that we
first learn P (y|x), that is, the conditional probability of the
labels that appear in the training data, and then use the
benefits and the conditional probabilities to correctly weigh
the training data before applying the classifier learner. We
also show how to correctly evaluate a classifier when only
One-Benefit test examples are available, again by correctly
weighting the examples.

We present some preliminary experimental results using a
synthetic data generator. The advantage of using the gener-
ator is that we can evaluate the classifiers without resorting
to the proposed evaluation method and, therefore, we can
assess the accuracy of our evaluation method. Our results
show that by using the One-Benefit reduction it is possible
to learn a classifier that has greater expected benefit than
the classifier used to label the training examples. Also, our
proposed evaluation method succeeds in correctly measuring
the expected benefit of the classifiers.

In future work, we would like to apply this method to real
data sets from the direct marketing and medical treatment
domains.

6. ACKNOWLEDGEMENTS
I thank Charles Elkan, John Langford and Roberto Oliveira
for the many helpful conversations about the topic of this
paper.

7. REFERENCES
[1] A. Beygelzimer, V. Dani, T. Hayes, J. Langford, and

B. Zadrozny. Error limiting reductions between
classification tasks. In Proceedings of the

Twenty-Second International Conference on Machine

Learning, 2005. To appear.

[2] P. Domingos. MetaCost: A general method for making
classifiers cost sensitive. In Proceedings of the Fifth

International Conference on Knowledge Discovery and

Data Mining, pages 155–164. ACM Press, 1999.

[3] C. Elkan. The foundations of cost-sensitive learning. In
Proceedings of the Seventeenth International Joint

Conference on Artificial Intelligence, pages 973–978,
Aug. 2001.

[4] D. Margineantu. Class probability estimation and
cost-sensitive classification. In Proceedings of the

Thirteenth European Conference on Machine Learning,
pages 270–281, 2002.

[5] R. Srikant. IBM Quest Synthetic Data Generation
Code, 1999. Available at http://www.almaden.ibm.com/

software/quest/Resources/datasets/syndata.html.

[6] B. Zadrozny and C. Elkan. Learning and making
decisions when costs and probabilities are both
unknown. In Proceedings of the Seventh ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, pages 204–213, 2001.

[7] B. Zadrozny and C. Elkan. Transforming classifier
scores into accurate multiclass probability estimates. In
Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,
pages 694–699, 2002.

[8] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive
learning by cost-proportionate example weighting. In
Proceedings of the Third IEEE International

Conference on Data Mining, pages 435–442, 2003.


