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Abstract

In this paper, we focus on diagnosis in distributed computer systems using end-to-end
transactions, or probes. Diagnostic problem is formulated as a probabilistic inference in
a bipartite noisy-OR Bayesian network. Due to general intractability of exact inference
in such networks, we apply belief propagation (BP), a popular approximation technique
proven successful in various applications, from image analysis to probabilistic decoding.
Another attractive property of BP for our application is it natural parallelism that allows
a distributed implementation of diagnosis in a distributed system to improve diagnostic
speed and robustness. We derive lower bounds for diagnostic error in bipartite Bayesian
networks, and particularly in noisy-OR networks, and provide promising empirical results
for belief propagation on both randomly generated and realistic noisy-OR problems.

1 Introduction

One of the central problems in management of complex distributed systems is real-time di-
agnosis of various faults and performance degradations. However, there is always a trade-off
between the quality of diagnosis (e.g., diagnostic accuracy and speed) and its cost, which
involves both the cost of collecting various measurements and performing tests, as well as
computational cost of diagnosis.

Particularly, in this paper, we will focus on fault diagnosis in distributed computer systems
usingprobes. A probe is an end-to-end transaction (e.g., ping, webpage access, database query,
an e-commerce transaction, etc.) sent through the system for the purposes of monitoring and
testing. Usually, probes are sent from one or more designated machines called probing stations;
probes ”go through” multiple system components, including both hardware (e.g. routers and
servers) and software components (e.g. databases and various applications). A probe can be
viewed as a disjunctive test over the components involved in the probe: indeed, a probe is OK if
and only if all the involved components are OK, otherwise the probe fails. The problem of se-
lecting minimal number of probes for diagnosis is closely related to thegroup testing problem
[4] but is more complex due to constraints on probe construction, such as the network topol-
ogy, and available application-level transactions. For more detail on existing probe selection
approaches see [7].

In case of noisy probe outcomes, we address diagnosis as a probabilistic inference in a
Bayesian network that represents the dependencies between the unobserved states of system
components and observed probe outcomes; conditional probabilities for probe outcomes given



the corresponding components are defined by thenoisy-OR model which generalizes disjunc-
tive tests to the case of noisy environment. However, exact inference in such networks is known
to be NP-hard, and approximate approaches are required.

Motivated by recent success ofbelief propagation [9] in various applications, from proba-
bilistic decoding [5] to image processing and medical diagnosis, we decided to investigate the
applicability of this algorithm to our noisy-OR problems. Belief propagation is particularly
attractive for distributed system’s diagnosis since it allows a naturally distributed implementa-
tion, and thus a distributed monitoring/diagnosis architecture that eliminates the computational
bottleneck associated with a central monitoring server.

We start with a theoretical analysis of diagnostic error and provide a lower bound on ”bit-
error rate”, assuming most-likely diagnosis for each unobserved variable (”bit-wise decoding”)
provided by belief propagation1. Next, we demonstrate empirical results for belief propagation
diagnosis both on randomly generated networks and on realistic Internet-like topologies simu-
lated by INET generator [12]. The results are quite encouraging: belief propagation achieves
a high-accuracy diagnosis, especially for realistic cases of low prior fault probability. There
is also an interesting observation regarding the effect of the probe length on the error in ran-
domly generated networks (lower error is achieved with shorter probes), which requires further
theoretical investigation.

2 Background

We consider a system that containsn components that we are interested in diagnosing, each
of which can be either be “OK” (functioning correctly) or “faulty” (functioning incorrectly).
Thestate of the system is denoted by a vectorX = (X1, ..., Xn) of Boolean variables, where
Xi = 1 denotes faulty state andXi = 0 denotes OK state of thei-th component. Lower-
case letters denote the values of the corresponding variables, e.g.x = (x1, ..., xn) denotes a
particular assignment of node values.

The outcome of aprobe, or test, T depends on the states of a subset of system components.
A probe either succeeds or fails: if it succeeds (denotedT = 0), then every component in the
subset is OK; it fails (denotedT = 1) if any of the components in the subset is faulty.

In the presence of noisy probes and various probabilities of fault, it is convenient to use a
probabilistic framework of Bayesian networks [9] that allows a compact representation of the
joint probability distribution over the system states and test outcomes. A Bayesian network
is a directed acyclic graph, where the nodes correspond to variables, and edges denote direct
dependencies between the variables. Graphical structure encodes independence assumptions
among the variables: namely, nodeY is independent of its non-descendants in the graph given
its parents pa(Yi) (nodes pointing toY ). Each nodeYi is associated with aconditional prob-
abilities distribution (CPD) P (Yi|pa(Yi)), and the joint probabilityP (Y) represented by the
Bayesian network is written in factorized form asP (Y) =

∏
i P (Yi|pa(Yi)).

We assume that a probe outcome is independent on other probe outcomes given the states
of probe’s components, and that node failures are marginally independent. These assumptions
are captured by a bipartite Bayesian network, such as one shown in Figure 1a. The network

1See [10] for analysis of block-error rate, or MAP diagnosis; note that in general, MAP diagnosis is more
accurate than the bit-wise diagnosis since the MAP diagnosis aims at finding the optimal (most-likely) assignment
to all Xi simultaneously.



represent a joint probabilityP (x, t):

P (x, t) =
n∏

i=1

P (xi)
m∏

j=1

P (tj|pa(tj)). (1)

Since a probe succeeds if and only if all its components are OK, a probe outcome is a logical-
OR function of its components, i.e.Ti = Xi1 ∨ ... ∨ Xik , where∨ denotes logical OR, and
Xi1 , ..., Xik are all the nodes probeTi goes through. In practice, however, this relationship
may be disturbed by noise. For example, a probe can fail even though all the nodes it goes
through are OK (e.g., due to another reason, or ”hidden cause”). Conversely, there is a chance
that a probe succeeds even if a node on its path has failed (e.g., dynamic routing may result
in the probe following a different path). Such uncertainties can be described by annoisy-OR
model, where every probeTj and componentXi on probe’s path are associated with anoise
parameterqij, also calledinhibition probability, or link probability – a small probability that
probeTj succeeds even if nodeXi on its path fails. There is also a parameterqleak called the
leak probability which corresponds to inhibition probability for the additional ”hidden cause”:
if this additional cause of probe failure is not completely inhibited, i.e.qleak < 1, then a probe
may fail even when all the nodes on its path are OK. Finally, noisy-OR model assumescausal
independence, i.e. it assumes that different causes (e.g., node failures) contribute independently
to a common effect (probe failure). The the conditional probability distribution for each probe
Tj can be written as

P (tj = 0|x1, . . . , xk) = qleak

∏n
i=1 qxi

ij

whereX1, . . . , Xk is the set of parentspaj of Tj.

3 Probabilistic Diagnosis in Distributed Systems

Given the probe outcomes, we wish to find the most-likely assignment (calledmaximum apos-
teriory probability, or MAP) to allXi nodes given the probe outcomes, i.e.x∗ = arg maxx P (x|t).
SinceP (x|t) = P (x,t)

P (t)
, whereP (t) does not depend onx, we getx∗ = arg maxx P (x, t). An

alternative approach is to find the most likely valuex∗
i of each nodeXi separately, i.e. to find an

assignmentx′ = (x′
1, ..., x

′
n) wherex′

i = arg maxxi
P (xi|t), i = 1, ..., n. We refer to the latter

approach asbit-wise diagnosis (bit-wise decoding), while the MAP approach can be viewed
as ablock-wise diagnosis (block-wise decoding). Bit-wise diagnosis is more suited when us-
ing belief updating algorithms that compute posterior probabilityP (Xi|T) for eachXi, rather
than perform global optimization to find MAP, using either search or dynamic programming
[3]. Clearly, bit-wise diagnosis may be suboptimal to MAP since in general,x∗ �= x′. Never-
theless, it is often used in various practical applications, e.g., in LDPC decoding using belief
propagation, where it seem to work quite well.

Unfortunately, both MAP inference and belief updating are known to be NP-hard [1],
and the complexity of best-known inference techniques is exponential in the graph parame-
ter known astreewidth, or induced width [2], which reflects the size of a largest clique in the
graph (and thus the largest dependency) created by an inference algorithm. Treewidth depends
on the graph structure of a Bayesian network: e.g., it is small (just 1) for trees, but tends to
grow with size and density of the network; in our diagnostic applications, it was often observed
to be intractable so that exact inference could not be used for diagnosis2.

2There exist an alternative exact inference algorithm, calledQuickscore[6], which is specifically derived for
noisy-OR networks; its computational complexity does not depend on the treewidth but is exponential in the
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Figure 1: (a) A two-layer Bayesian network structure for a setX = (X1, X2, X3) of system’s
components and a set of probesT = (T1, T2), and (b) a corresponding factor graph.

3.1 Belief Propagation

In order to cope with the complexity of inference, approximation algorithms are commonly
used. For example,belief propagation algorithm [9], designed for networks without undi-
rected cycles (polytrees), was successfully applied as an approximation to cyclic networks, e.g.
to decoding LDPC codes (which are intractable for exact decoding schemes), and recently be-
came the state-of-art approach that outperforms many previously known decoding techniques;
surprisingly accurate decoding using LDPC codes with belief propagation decoder was even
called a ”revolution” in coding theory [5]3.

Belief propagation (BP) is a simple linear-time message-passing algorithm that is provably
correct on polytrees and can be used as an approximation on general networks. Belief propa-
gation passes probabilistic messages between the nodes and can be iterated until convergence
(guaranteed only for polytrees); otherwise, it can be stopped at certain number of iterations.
The algorithm computes approximate beliefs (posterior probability distributions given obser-
vations) for each node.

We describe the algorithm in a more recent terminology of factor graphs rather than Bayesian
network. A factor graph is a convenient representation generalizing directed (Bayesian net-
works) and undirected (Markov networks) probabilistic graphical models. It assumes that joint
distributionP (x) is represented as a productP (x) = 1

Z

∏
a fa(xa) whereZ is a normalization

constant called thepartition function, and the indexa ranges over all factorsfa(xa), defined on
the corresponding subsetsXa of X. A factor graph is an undirected bipartite graph that contains
factor nodes, shown as squares, and variable nodes, shown as circles; there is a link between
variable node and factor node if and only if the variable participates in the corresponding. It
is easy to convert a Bayesian network to a factor graph: every CPD and prior distribution will
correspond to a factor node. For example, Figure 1b shows the factor graph for the Bayesian
network in 1a.

The principle of belief propagation is simple and intuitive: each node sends messages to
its neighbors about its belief regarding its own state. The messages are then multiplied by the
local potential functions to update the neighbor’s beliefs. The process is iterated until belief

number of faulty probes; this algorithm can work well when faults are rare and not many probes go through a
faulty component. However, the number of simultaneous faults grows with the size of the system, especially if
faults denote performance degradations rather than ”hard” faults; besides, realistic distributed systems tend to
have ”hub” nodes which belong to multiple probes, e.g., in Internet-like network topologies, sometimes causing
multiple probes to fail simultaneously.

3Belief propagation was also successfully applied to other domains, such as image processing and medical
diagnosis, and recent progress in understanding belief propagation and its relation to free energy minimization
lead to generalization of the algorithm to even better approximations [8].



fluctuations fall below a small threshold, or until patience runs out, at which point one declares
divergence.

Let a denote a factor node andi one of its variable nodes.N(a) represents the neighbors
of a, i.e., the set of variable nodes connected to that factor;N(i) denotes the neighbors ofi,
i.e., the set of factors nodes to which variable nodei belongs. The BP messages are defined as
follows [8]:

ni→a :=
∏

c∈N(i)\a
mc→i(xi), and ma→i(xi) :=

∑
xa\xi

fa(xa)
∏

j∈N(a)\i
nj→a(xj) (2)

Based on these messages, we can compute the beliefs about each node and about the probability
potential for each factor, respectively:

bi(xi) ∝
∏

a∈N(i)

ma→i(xi) and ba(xa) ∝ fa(xa)
∏

i∈N(a)

ni→a(xi). (3)

Observations are incorporated into the process viaδ-functions as local potential for each node
in E. When that is done,bi(xi) becomes the approximation of the posterior probabilityP (xi|e).

One of the attractive features of belief propagation for our application is that the algorithm
is naturally suited for parallel and/or distributed implementation, which can be quite helpful
if we wish to perform diagnosis of a distributed system in a distributed way, e.g. to avoid
computational bottleneck, as well as to improve the robustness of monitoring and diagnosis by
avoiding single point of failure represented by a central monitoring server. Namely, we can
designate several ”diagnostic nodes” in the distributed computer system to perform inferences
on subsets of probes (and thus associated with one or more factors in a factor graph) and
exchange probabilistic messages between each other, effectively running belief propagation in
a distributed way. For details on architecture and implementation of such approach, see [11].

4 Lower bound on Diagnostic Error

We will now derive a lower bound on diagnostic error when using bit-wise most-likely diagno-
sis (measured as thebit error rate (BER)), for bipartite Bayesian networks defined above, and
particularly for noisy-OR bipartite networks.

The bit-error rate (BER) of diagnosis can be defined asBER =
∑n

i=1 P (Xi �=X′
i(T))

n
, where

X ′
i(T) = arg maxx P (Xi = x|T ) is the most-likely assignment toXi given observed vector

T. Note thatX ′
i(T) is a deterministic function if a deterministic tie-breaking rule is used for

most-likely assignment (e.g.,X ′
i = 0 if P(Xi = 0|T ) = 0.5).

Theorem 1. Given a bipartite Bayesian network that defines a joint distribution P (x, t) as
specified by the equation 1, the bit error rate (BER) of bit-wise most-likely diagnosis is bounded
from below as follows

BER ≥ LBER = 1 − pmax(α0 + α1)
c, (4)

where c = maxi |chi|, |chi being the number of Xi’s children, pmax = maxi maxj∈{0,1} P (Xi =
j) is the maximum prior probability over all nodes, and αk = maxj∈{1,...,m} maxpaj(tj) P (tj =
k|paj(tj)) is the maximum conditional probability of the test outcome k ∈ {0, 1}, over all test
variables and over all assignments to their corresponding parent nodes.



Proof. Without loss of generality, we will first compute a bound onBER(X1) = P (X1 �=
X ′

1(T)), and then use it to compute the BER. LetI(s) denote theindicator function for Boolean
arguments, i.e. I(s) = 1 if s is true andI(s) = 0 otherwise. Then

BER(X1) = P (X1 �= X ′
1(T)) =

∑
x,t

P (x, t)I(x1 �= x′
1(t)) = 1 −

∑
x1,...,xn

∑
t

P (x′
1, x2, ..., xn, t).

By definition,P (x′
1, x2, ..., xn, t) = arg maxx1

{
P (x1)

∏n
i=2 P (xi)

∏m
j=1 P (tj|paj)

}
; group-

ing together factors that involvex1, we get

P (x′
1, x2, ..., xn, t) = arg max

x1

{
P (x1)

∏
tj∈ch1

P (tj|paj)
}[ n∏

i=2

P (xi)
∏

tj /∈ch1

P (tj|paj)
] ≤

≤ pmaxα
r
0α

|ch1|−r
1

[ n∏
i=2

P (xi)
∏

tj /∈ch1

P (tj|paj)
]
,

wherer is the number of 0’s in the assignment to a subset of teststj ∈ ch1, and|ch1| is the
number of children ofX1. Then

BER(X1) = 1 −
∑

x1,...,xn

∑
t

P (x′
1, x2, ..., xn, t) ≥

≥ 1 −
∑

tj∈ch1

pmaxα
r
0α

|ch1|−r
1

n∑
i=2

P (xi)
∑

tj /∈ch1

[ n∏
i=2

P (xi)
∏

tj /∈ch1

P (tj|paj)
]

=

= 1 − pmax

|ch1|∑
r=0

(|ch1|
r

)
αr

0α
|ch1|−r
1 = 1 − pmax(α0 + α1)

|ch1|.

Similarly expression can be obtained for eachBER(Xi). Note that1 ≥ α0 + α1 ≤ 2, and
thus mini BER(Xi) ≥ 1 − pmax(α0 + α1)

c wherec = maxi|chi|. Therefore,BER =∑n
i=1 P (Xi �=X′

i(T))

n
≥ mini BER(Xi) = 1 − pmax(α0 + α1)

c.

We can now derive a specific lower bound for noisy-OR networks. To simplify our analysis,
let us assume a particular structure that we will call a(k,c)-regular bipartite graph, where each
node in the lower layer has exactlyk parents in the upper layer, and each node in the upper
layer hasc = km/n children in the lower layer (recall that there aren nodes in the upper layer
andm nodes in the lower layer).

Corollary 2. Given a Bayesian network having the (k,c)-regularbipartite graph structure,
where n is the number of hidden nodes, m is the number of tests, and where all conditional
probabilities P (tj|pa(tj)) are noisy-OR functions having the link probability at least q and
the leak probability at most qleak, the bit error rate (BER) of bit-wise most-likely diagnosis is
bounded from below as follows

BER ≥ LNOR
BER = 1 − pmax(1 + qleak(1 − qk))km/n. (5)

Proof. Note thatα0 = maxj∈{1,...,m} maxpaj(tj) P (tj = 0|paj(tj)) = qleak is achieved when
all parentspaj are 0’s, andα1 = maxj∈{1,...,m} maxpaj(tj) P (tj = 1|paj(tj)) = 1 − qleakq

k

is achieved when all parentspaj are 1’s. Then the result easily follows from the previous
theorem.
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Figure 2: (a) A lower bound on ratem/n necessary for achieving zero-error diagnosis, plotted
the versus fault priorp, for different probe length k. (b) Empirical results for belief propagation
on realistic Bayesian network obtained for Internet-like topologies: the effect of prior fault
probability and noise in probes on the diagnostic error.

Corollary 3. Given a bipartite Bayesian network that defines a joint distribution P (x, t) as
specified by the equation 1, a necessary condition for achieving error-free bit-wise diagnosis
is

LBER ≤ 0 ↔ c ≥ log(1/pmax

log(α0 + α1)
, (6)

where c, α0 and α1 are defined as in Theorem 2. Particularly, for noisy-OR networks defined
in Corollary 5, the necessary condition is

LNOR
BER ≤ 0 ↔ m

n
≥ log(1/pmax

k log(1 + qleak(1 − qk))
. (7)

Assuming equal prior fault probabilitiesp = P (Xi = 1), wherep < 0.5 (typically, sys-
tem’s components are unlikely to be faulty), we getm

n
≥ log(1/(1−p)

k log(1+qleak(1−qk))
. In Figure 2a, we

illustrate the growth of the lower bound on ratem/n with the increasing prior fault probability
p, for different probe sizesk, and for a fixed noise parameters. As expected, higher probe to
node ratio is necessary for higher fault probabilityp. Also, somewhat intuitively, longer probes
(larger k) allow to reduce the required number of probes per node. However, as we will see in
empirical section, this is often not the case in practice, which indicates that the bound is not
tight, and indeed provides only necessary, but not sufficient, conditions4.

5 Empirical Results

We performed initial experiments with belief propagation diagnosis on two classes of Bayesian
networks: random bipartite graphs and realistic networks obtained by simulating end-to-end
probing on Internet-like topologies built by INET generator [12].

4Ideally, one would like to provide an analog of Shannon limit for a constrained code that only permits dis-
junctive codes, and a particular type of channel defined by noisy-OR model. Namely, one would like to know if
asymptotically error-free diagnosis is actually achievable at finite ratem/n, and under what conditions on prior
p, noise parameters, and probe set construction. While there is a large amount of related work in the area of group
testing (e.g., see [4]), this particular setting does not seem to be studied before. Moreover, taking into account
constraints on probe construction (e.g., due to the network topology restrictions) makes the analysis much more
complicated.
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Figure 3: Diagnostic error of belief propagation on randomly generated bipartite networks with
20 nodes, and varying number of probesm, probe lengthk, and noiseq.

Internet-like topologies. Realistic Bayesian network were created as follows. First, we gener-
ated computer network topology using INET generator [12], which simulates an arbitrary-size
Internet-like topology (at the Autonomous Systems level) by enforcing a power-law node de-
gree distribution that coincides with the one empirically observed for the Internet. Next, we
were generating probe sets for fault detection and fault diagnosis, as described in [7]. A detec-
tion probe set needs to cover all network components, so that at least one probe has a positive
probability of returning 1 when a component fails. A diagnosis probe set needs to further dis-
tinguish between faulty components. Optimal probe set design is NP-hard for either detection
or diagnosis [7], but the greedy approaches based on selecting most-informative probe next
appear to work quite well in practice, and were used here for creating probe sets. For each
probe set, we construct the corresponding bipartite Bayesian network, and simulate different
prior fault probabilities and different levels of noise.

Figure 2b presents the result of running belief propagation on a Bayesian network built
on top of INET-topology with 487 nodes and 387 probes sufficient for single-fault diagnosis
(single-fault assumptions are made in [7] to simplify the probe selection process). We plot the
bit-error rate against the prior fault probabilityp at each node, for different levels of noiseq.
As expected, the error increases with growing probability of faultp and noise levelq. Note
that the error is quite low, especially for low values ofp, which are more realistic (e.g., in a
reliable system, we may not expect more thanp = 0.1 probability of fault, which yields BER
less than0.05). Interestingly, the fault probability has much more impact on the error than the
noise level.
Random bipartite networks. In order to investigate the effect of different network properties



on the diagnostic error, we also experimented with randomly generated networks, where we
had a full control over the parameters. Namely, we generated random bipartite graphs with
parametersn,m, k, p, q and qleak, wheren is the number of components, or hidden nodes
(”input bits”), m is the number of tests (”code bits”),k is the number of randomly selected
parents of a test node5, i.e. probe length,p is the prior probability of a fault,q andqleak are the
inhibition (”noise”) and the ”leak” (hidden cause inhibition) parameters, respectively, in the
noisy-OR model.

Figure 3 plots the diagnostic accuracy of belief propagation, measured as the bit-error rate,
on random bipartite networks withn = 20 nodes and varyingm, k, andq; for these experi-
ments, we assumed there are no additional hidden causes that can affect the probe outcome,
thus setting the ”leak” inhibition probability toqleak = 1 (always inhibited hidden cause).

Figures 3a and 3b plot the average error, where averaging is performed over several values
of noise (particularly,q = 0.1, 0.2, 0.3, 0.4 and0.5), against the increasing number of probes
m, for two particular values of prior fault probability,p = 0.2 (Figure 3a) andp = 0.5 (Figure
3b), and for different probe lengthk = 2, 4, 6, 8, 10. As expected, we observe that, the error
tends to decrease with increasing number of probes, for all values ofk at higher priorp = 0.5,
and for almost all values ofk whenp = 0.2, except for cases ofk = 8 andk = 10. Also, as
expected, the errors are generally much lower for lower fault priorp. However, a much less
intuitive result is that the error seem to be consistently lower for smaller values ofk, i.e. for
shorter probes.

Another view of the results, now for fixed number of probesm = 30, is shown in Fig-
ures 3c and 3d. Namely, Figure 3c plots the error averaged over different fault priors (p =
0.10.2, 0.3, 0.4 and0.5), versus the noiseq, for different probe lengthk, while Figure 3d plots
the error averaged over different noise levels versus the number of probesk, for different pri-
ors. As expected, error increases with increasing noise level and prior fault probability. Again,
we clearly observe the not so intuitive dependence of error on the probe lengthk: the error is
clearly lower for smallerk. This behavior is not explained by the error bound we provided in
the previous section, and requires further theoretical explanation.

6 Conclusions

Automated diagnosis is a challenging problem that arises in various application domains, from
medicine to probabilistic decoding. In this paper, we consider the problem of cost-efficient
diagnosis in distributed computer systems via end-to-end test transactions, or probes, which
can be viewed as disjunctive tests over subsets of system components. In the presence of noise
in the probe outcomes, our problem can be formulated as probabilistic diagnosis of unobserved
variables in a noisy-OR Bayesian network. We derive a lower bound on diagnostic error in
such networks, measured by bit-error-rate (BER), and also provide experimental evaluation
on various noisy-OR networks. Due to computational complexity of exact inference in our
networks, approximate techniques must be used. An appealing candidate is belief propagation
(BP), a popular approximate inference algorithm successfully used in probabilistic decoding,
e.g., for LDPC and Turbo-codes; moreover, BP allows a naturally distributed implementation
since it is based on local message-passing; this is a particularly attractive feature that allows a
distributed monitoring/diagnosis and eliminates the computational bottleneck associated with
a central monitoring server. We provide experimental results for BP diagnosis on various

5We did not enforce the(k, c)-regularity condition defined before, i.e., the number of children varied for
different hidden nodesXi, however, it is easy to see that the average number of children in such random graph is
still km/n, as in(k, c)-regular graphs.



noisy-OR networks, both randomly generated and realistic ones, derived from Internet-like
topologies. The results for realistic networks are quite promising, showing low diagnostic
error, especially when prior fault probabilities are sufficiently low. Experiments with randomly
generated networks lead to an interesting observation that shorter probes lead to more accurate
diagnosis, which remains to be explained theoretically.
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