
RC23765 (W0405-015) May 4, 2004
Computer Science

IBM Research Report

Elix0r: Cost-Effective Incident Response

Suresh Chari1, Sudhakar Govindavajhala2, Daisuke Nojiri3,
Josyula R. Rao1, Michael Steiner1

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

2Department of Computer Science
Princeton University

35 Olden Street
Princeton, NJ 08544

3Department of Computer Science
UC Davis

1 Shields Avenue
Davis, CA 95616

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Elix0r: Cost-Effective Incident Response

Suresh Chari Sudhakar Govindavajhala Daisuke Nojiri

Josyula R. Rao Michael Steiner

Abstract

In this paper, we describe Elix0r, a system designed to plan proac-
tively and respond automatically to security incidents such as fast mov-
ing intrusions and reported vulnerabilities. Elix0r attempts to contain
such incidents while trying to minimize the impact to supported business
processes. The containment actions are executed by a robust, flexible
response infrastructure whose core is a rich and expressive scripting lan-
guage designed explicitly for response. The system is designed to work in a
wide variety of environments ranging from highly managed environments
like DMZs to completely unmanaged networks.

1 Introduction

1.1 The Problem

Vulnerabilities in deployed computer systems and intrusions that exploit them
are a major threat to enterprise networks and datacenter environments today.
Such incidents are catastrophic, in the sense, that they immediately result in
the interruption of critical business processes as well as cascading in the sense
that they can spread and paralyze the entire target network. A recent exam-
ple is that of the W32/Blaster worm which successfully infected approximately
300,000 machines on the Internet and then performed a denial of service attack
against web servers distributing patches for the security vulnerability that the
worm exploits. The Blaster worm is especially illustrative since the underlying
vulnerability in the DCOM RPC service was known before the release of the
worm.

When a system vulnerability is publicized or when activities indicative of an
security intrusion are deduced, swift action must be taken to contain damage and
to remediate the network so that critical business processes are not interrupted.
Response mechanisms in practice today tend to be reactive, overwhelmingly
manual and labor intensive, and largely ignore business process considerations.
Effectively, system administrators scramble when notified of an incident with
little automation to assist in their tasks.

This state of affairs is woefully inadequate for several reasons. Firstly, the
damage to the infrastructure due to an intrusion such as the spread of a worm is
so quick that a manual response is often too slow to be effective. Secondly and

1

more importantly, containing a security intrusion comprehensively is difficult to
achieve by manually chosen response actions at the time of the incident. Even if
this were possible, manual response actions tend to be error-prone and overkill
and result in the unnecessary termination of network connectivity and/or server
programs, which unduly penalizes unaffected systems and adds to the cost of
response.

Thus, it is increasingly clear that any scalable response architecture should
take advantage of proactive preparation to avoid scrambling at the time of the
security incident and must automate as many aspects of analysis and execu-
tion as possible. Automation is perhaps the only way to ensure a timely and
comprehensive containment response to vulnerabilities and security intrusions.
With the high false positive rates of current intrusion detection systems, it is
clear that the trigger for automated response must be manual.

While there have been some attempts[HM03, MM01] to automate response,
these approaches ignore the impact of the response on the business process being
realized by the target network. The implemented business process inherently
assigns a value to each host element in the network and the value of the services
it offers. A response action which terminates a service on a host or shuts down
a host incurs a cost which is proportional to the value of these services/hosts.
In the absence of such considerations, response actions can be correct but are
not meaningful from a business perspective.

A very important requirement for automating response is a robust infras-
tructure that can be used to contain the impact of a vulnerability or intrusion
quickly. While a number of network and systems management tools exist, there
are very few languages, frameworks and tools that enable the execution of a
wide spectrum of response actions securely and comprehensively. In the event
of a security intrusion, such a response platform would be key to limiting the
total number of hosts attacked and containing the damage.

In this paper, we describe Elix0r, a system designed to automate response
actions, while optimizing the cost of response and ensuring that response actions
are executed in a flexible and robust response framework.

1.2 Contributions

The Elix0r system has two main features which directly address the shortcom-
ings of current proposals to automate response to vulnerabilities and intrusions:

• It attempts to use combinatorial optimization techniques to minimize the
impact of response actions on the business process given the available
control points in the target network.

• Response actions are executed in a framework comprising of a rich and
expressive scripting language and a robust actuation platform.

In order to optimize the cost of response, we require that a value be assigned
to the host elements in the network and to the services they offer. It is our belief
that this valuation of hosts and services can be derived from the business process

2

supported by the target network. This is fairly straightforward in DMZs where
it is much easier to quantify the value of elements. Alternately, our system can
also work with qualitative assignment of values such as a high, medium or low
style classification. The cost of a set of response actions is the resulting net loss
in the value of the hosts and services in the target network. We assume that the
discovery of all the hosts and services in the target network and the assignment
of value from the business process is done periodically offline.

Elix0r makes no assumptions about what control points are available in the
target network for response and does not mandate response capabilities for host
or network elements. The cost of response will clearly be dependent on the
availability of enough control points in the target network to actuate response
actions. It is our aim to work in a wide variety of environments ranging from
highly managed datacenter type environments where we could potentially have
the fine grained ability to control or even reconfigure a service running on a
host to completely unmanaged environments where the only response that can
be taken will be on infrastructure elements such as switches and routers. Our
optimization techniques will try to identify the best possible set of response
actions, to contain a vulnerability or intrusion, given the control points actually
resident on the target network.

A concept we find particularly advantageous in our design is that of a target
class signature. This is a quick and succinct characterization of the class of hosts
or services that are affected by the current vulnerability/intrusion. For instance,
the target class signature for the W32/Blaster worm would be Win2000/XP
machines running the DCOM RPC service. We envision that our system could
be used for effective containment using successive refinement of target classes as
more information about the affected class of machines becomes known.Target
classes are also of use in proactive planning for response.

Elix0r does not address the issue of detection of vulnerabilities/ intrusions
since there is a large universe of such tools readily available. Also, in the current
design of our system the triggers for identifying and actuating response actions
is manual through a target class signature given by the operator. Given the high
degree of false positives in current detection systems, we believe that it is not
feasible to have detection systems automatically triggering response actions.

When triggered, Elix0r will use the target class signature to identify an opti-
mal set of response actions, given the current set of control points in the target
network. We use combinatorial optimization techniques to minimize the cost
of response actions. In a number of cases, we are able to reduce this problem
of optimal containment to the graph-theoretic problem of computing the mini-
mum cut[CLR90]. This optimization component will identify an explicit set of
high level actions that need to be taken to contain this vulnerability/intrusion.
Examples of such actions are disabling ports of a switch or router, reconfiguring
filtering rules on switches and routers, terminating server programs, shutting
down hosts, applying new local firewall rules etc. Since the minimum cut prob-
lem can be efficiently solved[CLR90], we can compute the optimal set of response
actions for a number of cases. To effect such response strategies, we have archi-
tected and are prototyping a distributed response platform which provides an

3

abstract and coherent interface to the various previously identified actions and
their platform dependencies. To support administrators in fail–safe and timely
ad–hoc remediation actions, we also provide them with a simple yet powerful
scripting language and shell. The key features of the language are the possibil-
ity to intelligently aggregate resources based on various characteristics and to
execute operations jointly on the whole aggregate. We believe that the response
platform component of our system is rich enough to cleanly express a large class
of response actions and is a very valuable tool independent of what strategies
are used in response.

Another important feature of Elix0r is that in a number of cases, responses
can be planned proactively. For highly managed environments such as DMZs
where elements have a high business value, we can proactively identify a set
of prepared response plans for a number of target classes. This can be done
by a wargaming-like offline simulation of available containment strategies as
well as actuator placement to identify the best strategy for these target classes.
For these cases, essentially the optimal response actions can be computed a
priori. Upon receiving a trigger, one could directly jump to the deployment of
such response actions. With similar war–gaming, we can also evaluate the most
cost-effective selection and placement of actuators.

1.3 Related work

The closest related work [HM03, MM01] derives reactive strategies based on
control-theoretic methods to act locally on host-intrusions. While they mention
the possibility of using it offline, they seem to focus more on real-time planning.
Furthermore, their current attack model is rather ad-hoc and they completely
ignore the issue of sensors and their false positive and negative characteristics.

For the various parts of our preparation phase, we point out following re-
lated work. A somewhat similar use of network discovery tools for security is
discussed in [VVZK02]. Automatically derived network information is exploited
by ClearResponse from Psionic1 in enhancing the filtering of alerts. However,
none of these approaches exploit this information for improved response such as
our target class signatures.

There are several research projects about defense systems against worms, but
none has discussed business impact of protective actions. Moore, et. al. studied
requirements for containing worms [MPS+03]. They compared signature-based
filtering and black-list filtering. They compared several different ways to deploy
signature-based filtering. Nojiri, et. al. proposed a peer-to-peer based defense
system where defense systems exchange information about worm activities and
filter traffic to prevent further infection [NRL03]. Their focus is on a large scale
network such as the Internet, and their idea is based on simplified topology.
Finally, previous work on cost functions covers [LFM+ar, WFFR01] and in
particular [TK02]. The latter comes closest to our proposal. However, this is
done only in the context of response and not taking into account the infection.

1http://www.psionic.com/

4

http://www.psionic.com/

There have been several ideas on response in the literature. One of the
earliest systems was Emerald [PN97]. However, their focus was on the as-
pect of global detection rather than response. There also has been work on
taxonomies on response such as [CACP00]. Among the deployed solutions,
CITRA [LCNS+02, SDB+02, SDW+01, SHS+01, SDS00] provides an infras-
tructure supporting global policies and coordination. However, their scope has
been limited to DDoS. Furthermore, they do not deploy any planning phase to
develop the strategies and have limited focus on survivability. SARA [LHO+01]
is an extensible framework for coordinated response with focus on survivability.
However, it also does not do any preparation and planning.

While there is a lot of work on a whole spectrum of response actions ranging
from drastic actions such as blocking traffic to moderate response such as virus
throttling [Wil02] or the system call delays of [SF00, Som02], there is hardly
any work on measured responses minimizing disruptions in a global context.

2 Model

The goal of the Elix0r system is to protect a target network such as an enter-
prise network or a datacenter. Such a networked environment typically consists
of a heterogeneity of host elements (such as personal computers, workstations
and servers) connected by equally diverse network elements (such as switches,
routers and gateways) that are typically connected to the Internet via firewalls.
The design of Elix0r is intended to deal with both the case where the envi-
ronment is fully managed, in that each host and network element is under the
administrative control of a single entity as well as the more important case
where the network has grown organically and it is likely that the host and net-
work elements are in different administrative domains. Figure 1 shows a typical
enterprise network topology layout. We see network elements (i.e. switches,
routers, firewalls, hubs) and workstations, servers, personal computers, and the
Internet. Between the two firewalls is a DMZ, where the mail server, the web
server, and the DNS server are located.

2.1 The Resource View of the Network

We model such a networked environment as a graph of resources where a re-
source can be viewed as one of a host system, a service on the host system,
a switch, a router etc. A resource is, informally, anything that provides value
to the rest of the network and its users. In our model, a normally functioning
resource can become affected due to software errors, misconfigurations etc. An
affected machine can get infected when it is subverted by a security intrusion.
Notification of such an infection can be obtained from an IDS. In some situ-
ations, it may not be possible to definitively ascertain the infection status of
an affected machine. Such a machine is termed to be suspect. An affected ma-
chine that is neither infected nor suspect is termed to be vulnerable. Together,

5

��������
����	
���� ������� �������

�������
�������

������
	� 	� �!" �! �!#

�!
�������
$����%&&�
$����%&&�

�!
'(()

*+,-./01+234567+,8 9:;
<=> ??????@?? A

A
A A AAA

?
Figure 1: Representative topology

6

the classes of infected, suspect and vulnerable machines constitute the class of
affected machines.

A key factor in the management of security incidents is the availability of
control points in the network that enable an administrator to contain machines
to either repair vulnerabilities or contain intrusions. The Elix0r system does
not mandate specific response capabilities on any element; rather it works with
existing response capabilities on each infrastructural element. For instance,
a highly managed server may offer a fine-grained ability to control or even
reconfigure a particular service running on the machine. On the other hand,
an unmanaged host may offer no control points and thus, any response action
affecting this machine must be done at the network infrastructural level. For
instance, network switches such as the Cisco Catalyst family of switches offer
a range of response possibilities ranging from simply turning a port off to very
fine grained filtering of traffic on a particular TCP from a machine. The cost
of containing an incident will directly depend on the amount of control we have
on the elements in the topology.

2.2 Service Links

Most of the networked environments that Elix0r targets conceptually implement
a business process of one kind or another. This business process is usually im-
plicit in the network topology and infrastructure but can be made more explicit
in other cases. A centerpiece of the Elix0r approach is to take advantage of
business process considerations in preparing for and responding to notifications
of vulnerabilities and security intrusions. In particular, we use the ideas of a
service link, a service link graph and a cost model to capture salient aspects of
the business process in implementing the Elix0r functionality.

A service link is a logical link directed from a client to a server to indicate
that the client uses a service that the server provides. In Figure 1, we see a
service link from pc1 to web1 which indicates pc1 has access to web1 using the
http protocol. pc1 has another service link to pc2 using Windows file sharing
service. Note that existence of a service link depends on the configuration of
the network elements. For example, in Figure 1, if firewall2 is blocking port 80
from pc1, then pc1 does not have a service link to web1.

While business process dictates which hosts need to use which services, there
are other links possible due to configuration of routers and switches. For in-
stance, there might be a path available from a host A to B even though the
business process does not mandate this. Since a security incident such as a
worm infestation can propagate via this available path, our model will record a
service link from host A to B.

A graph that comprises of the host and network elements as nodes and
the service links as edges is termed the service link graph. If a target network
offers services accessible from the Internet, we create a node W to represent the
Internet and create service links from the W to the respective services. In our
terminology, W is always considered to be suspect.

7

2.3 A Cost Model for Containment

The notion of a service link is a first step in capturing ongoing business activities
in a network. To quantify the business value of these activities, we assign an
asset value to each service link and to each host element in the network. Asset
values quantify the importance of the asset from a business process perspective
and can be based on a number of factors such as the criticality of the services
a host provides, the sensitivity of data it stores etc.

Asset values of a service are based on the value of the service to the business
process. For instance, a web server of a mail order clothing firm that supports
e-business transactions from the Internet generates revenues at a rate that varies
seasonally. At a first approximation, one can assign a asset value to the service
link to represent the revenue that is generated on a particular day based on
historical data. However, it may be difficult to assign values to service links
such as the one between an employee’s pc and a mail server. In this case, one
can assign a qualitative value based on the degree of importance. For example, a
service link from a customer service representative’s pc to a mail server could be
assigned a higher asset value than that of a service link from any other regular
employee’s pc that does not support such a crucial function. Any service link
arising from existing paths through the network topology, which is not explicitly
mandated by the business process, is assigned a zero value. The asset value of
the service link represents the cost incurred by the business if response actions
required the link to be terminated

Similarly, asset values are assigned to hosts. In our example, the back-
end database server supporting the web server which stores details of payment
information for mail order customers, would have an asset value proportional
to the data that it stores.

In many security incidents, especially worm attacks, termination of service
links provides an effective way of both containing infected and suspect machines
and isolating vulnerable machines especially if the attack uses service linsk as
a means of propagation. 2 Clearly, termination of a service link results in the
loss of critical services in the network that affect the business process that it
implements. In our model, the impact of terminating a service link is captured
in terms of a cost, called the primary cost : it is the cost directly incurred by
the business process if the link is terminated and is effectively the asset value
of the service link described above.

Service link termination can be performed in several different ways. The
actions that one can take will depend on the control points that are available on
the network elements and the host elements on the service link. For example,
in Figure 1, dotted arrows represent a infrastructural path from pc1 to web2.
There are multiple ways to terminate this link: reconfiguring one of the switch,
router and firewall on the path, or applying a new local firewall rule on web1. On

2This is not necessarily true for contagious worms such as Nimda, though we do not discuss

such worms in this paper. A contagious worm infects another host when a vulnerable host

accesses the infected system when the victim download malicious data i.e. propagation is in

the reverse direction of a service link.

8

the other hand, one has fewer choices to terminate service link from pc1 to pc2.
If one has no other choices than disabling the port of a switch to terminate the
link because of the lack of the capability of the switch, one is forced to terminate
other service links. Some switches such as Cisco Catalyst series or Intel Media
Switch family provide fine-grained filtering capability, hence, one does not need
to affect other services to block the traffic from pc1 to pc2, while some switches
do not provide such capability. We call this forced link termination due to the
infrastructural constraints of network devices, a secondary effect, and the cost
caused by secondary effect is called secondary cost. This is the collateral cost of
terminating other service links in the process of terminating a given service link
and directly reflects the amount of control we have on elements in the topology.

There are several other subtle complexities in the assignment of value and the
computation of response cost which we omit here. For instance, we will ignore
the service dependencies in the target network: A web server might depend on
the services of an application server and a database server and might not work if
either is terminated. This is a simple example of a conjunctive dependency. In
the rest of the paper, we will just assume that the dependencies are disjunctive.
Also, when computing the cost of response actions, we will ignore transitive
costs, i.e., when a service is affected all the services which need this service
are affected and so on. The complete details of value and cost modeling which
extends prior work[TK02, VVZK02] will be deferred to a full version of the
paper.

2.4 Target Class Signatures

Security vulnerabilities and intrusions can be characterized in terms of the char-
acteristics of the affected target machines. We call this the target class signature
for the security incident. Typically, it would be expressed in terms of the oper-
ating system and name and version of a vulnerable program. For example, the
target class for the W32/Blaster worm would be Windows NT 4.0/2000/XP/
2003 Server machines running the RPC DCOM interface. Similarly, the target
class for the SQL Slammer/Sapphire worm is machines running SQL Server
2000 and Microsoft Desktop Engine 2000 on port 1434/UDP.

The key idea underlying the target class concept is that one can iterate over
different target class signatures deployed in the network topology and prepare
for the hypothetical eventuality that vulnerabilities in such a target class could
be exploited in the future. This can be done by controlling deployments con-
formant with the risk to one’s business process on such machines and ensuring
the availability of a sufficient number of control points to contain such a target
class should the threat materialize. In this way, the concept of target class is
crucial to protecting against attacks with unknown signatures.

Once a target class has been identified, Elix0r forms a graph, called target
class graph (see Figure 3). A target class graph is a directed graph, where the
vertices denote hosts that belong to the target class and edges represent service
links. Nodes are assigned their asset values while edges are assigned two non-
negative values: primary cost and secondary cost as described in the previous

9

subsection.

3 Functional Description of the Elix0r System

In this section, we describe the functionality implemented by the Elix0r system.
This functionality is implemented in two phases: the offline phase and the on-
line phase. In the offline phase, the Elix0r system gathers detailed knowledge
of the target network and the business process that it implements. This is in-
tended to better prepare the infrastructure for the online phase. In the online
phase, the Elix0r system, receives notifications about vulnerabilities/intrusions.
Based on these notifications, it identifies the target class of machines affected
and algorithmically determines the best strategy to respond to the vulnerabil-
ity/intrusion that would cause minimal disruption to the business process. This
strategy framed in terms of abstract high level actions is then implemented by
mapping to low level response actions and orchestrating the execution of the
actions across the infrastructure.

3.1 Offline phase

3.1.1 Discovery of Infrastructural Information

The Elix0r system uses existing tools to discover and gather as much information
about the target network as possible. This includes information about all the
host systems and network elements and the network topology. For each host
system, Elix0r gathers detailed configuration information about the supported
software and services such as the operating system and its version, running
services, etc. Similarly, for each network element, Elix0r gathers information
about the supported software.

Data discovered in this manner is indispensable from several perspectives.
It enables (a) the discovery of the host system information and topology of the
target network (b) the categorization of a host system as a member of a target
class (c) the discovery of where more “valuable” host systems exist relative
to other systems and (d) the discovery of control points in the infrastructure
in terms of the response actions supported at host and network element and
networking pathways that can be used to actuate them.

Elix0r relies on a number of available tools such as IBM Tivoli NetView [Net]
or HP OpenView [Ope] considerations that can be used for discovering and
maintaining such information.

3.1.2 Service links

Using the information collected during the discovery process and business pro-
cess information, the Elix0r system can create a detailed graph of the services
that each host uses and provides. This information is then used to create a
service link table (see Figure 2). Since the existence of a service link depends on
the configuration of the intermediate network elements and the service provider,

10

�����������
	
�� ������

���������

���
���������

������������������������
��������������� !"�

������������������������������������� ��������������������� !"#
���������������������������������� !"� ���$%&!'%!& !"#$%&!'%!&())*

������
���������

���
���������

������������������������
��������������� !"�

������������������������������������� ��������������������� !"#
���������������������������������� !"� ���$%&!'%!& !"#$%&!'%!&())* +,-./0,1-2./3,-

Figure 2: Service link table for HTTP

this information is used to create this table. In addition to depicting the ser-
vices used in a network, the table enables one to quickly identify infrastructural
network elements underlying each service link and how they are shared between
service links.

Once the service links in a target network are clear, the next task is to create
the service link graph introduced in Section 2 and to assign asset values to the
host systems and service links depending on the business process that is being
supported. This asset value assignment has to be done carefully and it is based
on the cooperative work of the business line personnel, system administrators
and individuals responsible for each server, workstation or personal computer in
the target environment. This assignment is the basis of computing the primary
costs.

Next, we compute the secondary costs. For each service link, we use the
service link table to determine if there is a network device on the infrastructural
path which provides filtering capability which is sufficiently fine-grained so that
other service links using the network device are not affected. If such a device
is found, the secondary cost of terminating the service link is zero. The Elix0r
system records that termination of the service link can be done by filtering of
the network device found and that the secondary cost of terminating the service
link is zero. If no such network device is found, then the secondary cost is
determined as follows: For each network device on the physical path:

1. Determine the filtering that terminates the given service link.

2. Compute the total primary cost of the other service links affected by this
choice of filtering

11

At the end of the exercise, pick the network device and filtering that yields the
smallest cost and use it as a secondary cost for this link. The Elix0r system
records that termination of the service link can be done by filtering of the
network device found and that the secondary cost of terminating the service
link is the minimal cost computed.

Note that in the second step, one needs to find all other service links affected
by choosing a filtering at a certain network element. Finding such service links
depends on the type of the filtering. For example, if the filtering is done by
disabling a port of a switch, one needs to look for all occurrences of the same
port of the same switch in all the cells of the service link table. If the filtering is
based on an IP address, all the service links of corresponding IP address are to
be affected. Therefore, service link table must store information which enables
the response system to produce the list of the links affected by a certain filtering
deployment.

3.2 Online phase

We now describe each step of how the Elix0r response process from identifying
affected hosts to containing and remediating them.

3.2.1 Detecting a vulnerability/intrusion

The first step in the response process is the receipt of a trigger that either a
vulnerability has been discovered in a host system deployed in the target network
or that an intrusion has been detected in the target network. The former can
be obtained by running periodic scans using scanners such as the Microsoft
Baseline Security Analyzer [Mic], Nessus [Nes], etc or even by out of band
notification via an organization like CERT/CC. The latter can be obtained from
network and/or host-based intrusion detection sensors such as Cisco’s IDS [Cis],
ISS’s Proventia [ISS], Snort [Sno] or Symantec’s Intruder Alert [Sym]. The
Elix0r system assumes that it is provided with such a trigger and details of the
exact method of vulnerability/intrusion detection and its accuracy (such as false
positives etc) are not part of the Elix0r project.

3.2.2 Identifying a target class

Once a trigger is received, the Elix0r system first needs to identify the target
class signature for the affected machines. A very specific signature enables the
identification of the classes of infected, suspect and vulnerable hosts accurately.
This allows Elix0r to focus its response actions on containing the infected and
suspect machines and isolating the vulnerable machines leading to a lower cost
of response.

A more granular signature can lead to a higher cost of response. For instance,
anomaly detection at network traffic level may only provide limited information
such as the TCP/UDP port in the signature. This forces us to protect the com-
plete class of affected machines, and hence, the cost of the first response can

12

be unnecessarily high. Over time, the target class of the vulnerability/intrusion
can be refined as more intelligence becomes available. This can be used to iter-
atively refine the response strategy to contain and separate the class of infected
and suspect machines from those that are only vulnerable. For instance, initial
reports of the Code Red worm indicated that it targeted Windows platform.
Over time, as the worm was analyzed, its target class was refined to Windows
NT or Windows 2000 platforms that host the Microsoft IIS server.

3.2.3 Constructing a target class graph

Once a target class is identified, Elix0r constructs a target class graph by looking
at service link tables.

If a vulnerable host is located in the same LAN segment as a infected or
suspect host and we are unable to tell whether it is already subverted, we should
assume that it is. We also need to sort out all the dependencies among secondary
effects of the target class graph. The notion of a dependency represents a list
of service links which has a secondary effect on the same edge. For example,
if edge e1 and e2 has a secondary effect on edge e3, e1 and e2 are both in the
dependency list of e3. This notion is necessary to avoid double counting the
secondary cost of e3 when a response action terminates both service links e1

and e2. A formal definition of dependency and its usage are found in Section 4.

3.2.4 Illustrative example

Elix0r uses the target class graph to search for the most cost-effective contain-
ment. The target class graph captures the set of affected nodes. In the event
of a worm infestation, the subsets of infected, suspect and vulnerable machines
may also be known and the task is to find an optimal containment that would
contain the infected and suspect machines to prevent the spread of the infection
and to protect the vulnerable machines. In the case of a vulnerability notifica-
tion, all the machines in the target class graph are considered vulnerable and the
task is to isolate them from the Internet, denoted by the node W in our model
(see Section 2) as W could be the source of exploits for the vulnerability. In
either case, the containment should be done in a near-optimal manner keeping
the cost model in mind.

To execute a containment, the Elix0r system will cut service links crossing
the perimeter of a set of nodes. For containing a set of infected and suspect
hosts, it is enough to cut the outbound service links and for a set of vulner-
able machines, it is enough to cut the inbound service links. The assumption
underlying such a containment strategy is that the intrusion uses service links
to propagate. The actual containment itself can be done by physically recon-
figuring network elements which appear on each service link. At the end of the
containment exercise, all the nodes (hosts) and edges (service links) outside the
infected and suspect containment set will be safe from the intrusion.

The cost of a containment is obtained by adding the the asset values of all
nodes in the infected and suspect set, the primary costs of all internal edges,

13

����������	�
�
	������� ������

�����������	� �� ���� ���� ��
�������� ��������

Figure 3: A sample target class graph

that is edges with both ends in a containment, the incoming edges to and the
outgoing edges from the infected and suspect set, and the secondary costs of the
outgoing edges. A formal description of cost computation is found in Section 4.

We informally illustrate cost computation with an example. In Figure 3,
we see containment {v1, v2, v3} and initially infected nodes v1 and v3. In the
containment, the edges e1,2 and e1,3 internal and edges e2,5, e3,6 and e3,7 are
outgoing edges. Since e3,6 has a secondary effect on edge e4,5, we need to add
its secondary cost which is equal to the primary cost of e4,5 in this case. Also,
e3,7 has a secondary effect on edge e1,2, but we should not count this secondary
cost since e1,2 is in the containment and its primary cost is already included.
Let ai be the asset value of vertex vi. Let pi,j and si,j be the primary cost
and secondary cost of edge ei,j, respectively. The total cost of this particular
containment is

(a1 + a2 + a3) + (p1,2 + p1,3 + p2,5 + p3,6 + p3,7) + s3,6.

3.2.5 Searching for the optimal containment

After a target class graph is formed, the Elix0r runs an algorithm to search for
the optimal containment. Because of the complexity of cost computation as
shown in the previous section, we divide target class graphs into three groups:
clean, tidy, and dirty. The system first identifies which class the graph belongs
to, then runs the corresponding search algorithm. Definitions of concepts in-
troduced informally in this section and details of the various algorithms are
presented in Section 4. The containment search algorithms return the list of
service links to be terminated.

14

3.2.6 Orchestrating response

Once Elix0r determines the set of service links that need to be terminated, it
uses a orchestration platform to enforce response. This orchestration platform
has also been designed so that it can be used as an independent tool by system
administrators and service providers to script response strategies.

3.2.7 Extending the Off-line Phase: Wargaming, Singleton Strategy

In a static and completely managed environment such as a data center and a
company’s DMZ, the Elix0r systems can be used to war-game potential vulner-
abilities and intrusion scenarios in the off-line phase. In such an exercise, the
Elix0r system will simulate security incidents by randomly selecting a target
class of machines that are under attack and will then compute the minimal cost
of response. If this cost is not acceptable, the environment can be reconfigured
to perhaps permit more control points with refined filtering capabilities till the
cost of response becomes acceptable.

In many enterprise networks, organic evolution of the networks, has prompted
network administrators to effectively adopt a tree structure for their networks
where user machines are typically at the leaves of the tree. In such situations,
it is quite often possible to contain each individual user machine by disabling
the LAN drops to the physical room where it is located. We call such a con-
tainment strategy, a singleton approach. For such networks, the Elix0r system
would discover and maintain information of the location of user machines and
their associated LAN drops in the off-line phase. This can then be used at the
time of a security incident to contain the affected machine.

4 Containment Strategies

In this section, we outline strategies to identify specific actions to contain se-
curity incidents such as vulnerabilities/ intrusions. At a high level, this is an
optimization problem of choosing a set of actions which minimize the cost of
containment where the constraints are the actual response capabilities of the
elements in the target network. In a number of cases, we are able to reduce
the problem of optimal containment to the graph-theoretic optimization prob-
lem of computing the minimum cut of a graph. We do not have a polynomial
time algorithm for the most general case, but we present a few heuristics for
this case. Section 4.1 describes mathematical preliminaries to recast the con-
tainment problem in a graph theoretic setting, define containments, the cost of
containments and a formal statement of the optimization problem. In Sections
4.2.1 through 4.2.3 we consider a set of approximations to the general prob-
lem. For some of the cases, we present optimal solutions by reducing this to
the minimum cut problem. In the most general case, we present a heuristic to
approximate the optimal solution.

15

4.1 Mathematical Preliminaries

We begin with definition of the resource model graph: a weighted directed graph
with node set as the set of all host resources and service links as edges.

Definition 4.1 The resource model graph is a directed graph Ĝ = (V̂ , Ê),
where V̂ = {v̂1, v̂2, . . . , v̂N} and Ê = {ê1, ê2, . . . , ˆeM} the set of all hosts and
service links respectively. Each vertex v̂i is assigned a weight ai. Each edge êi

has two weights: primary cost pi and secondary cost si.

As discussed before, the primary cost of the edge is the direct cost of terminat-
ing that particular service link whereas the secondary cost is the indirect cost
incurred when an action is taken to terminate this service link. The first step
in containment is to identify a target class graph defined as follows:

Definition 4.2 A target class graph G = (V, E) is a subgraph of Ĝ where nodes
V = {v1, v2, . . . , vn} are the hosts that belong to a certain target class, and the
edges E = {e1, e2, . . . , em} are the service links found among {v1, v2, . . . , vn}.

A containment is defined as a collection of hosts which are to be isolated from
affecting the rest of the hosts in the target topology.

Definition 4.3 (containment) Let I denote the set of nodes in G which are
already found affected3. A containment C is a set of nodes of graph G, with all
the affected nodes in it, namely, I ⊂ C ⊂ V .

We need to formally capture all the costs incurred in the containment of the
incident. Given a containment C, we group edges depending whether they are
in a containment or on the boundary: θ(C) denotes the set of edges with both
endpoints in C, δ(C) denote the set of edges with the tail end in C and the
head end in V \C. Note that these sets of edges have different impact on the
total cost of the containment since we need to explicitly cut the service links in
the set δ(C) whereas we may choose not to cut the links in θ(C).

There are several other costs to be accounted for: All the hosts in the set
C will be contained and the services running on these nodes will be corrupted
or lost. Thus, the cost must include the value of service links in the resource
model graph with the tail end in the vertex set V̂ \V and the head end in the
set C. We denote this set of edges λ(C).

Using these definitions, we can define the cost of a containment. Informally,
the total cost of containment C, denoted Γ(C), is the sum of the primary costs
of the edges in the set δ(C) ∪ θ(C) ∪ λ(C), the secondary costs of the edges
in δ(C) minus the sum of all the double-counted secondary costs. This follows
directly from the definition of primary and secondary costs. As discussed before
in Section 2.3 there can be overlap in the secondary costs of terminating links
which is captured formally in the following definition.

3As mentioned, I always contains the special node W representing the Internet. In this

section, we use the term affected to denote infected or suspect machines.

16

Definition 4.4 Given a containment C, a dependency α is a maximal subset
of edges in δ(C) which have a secondary effect on a common edge of Ĝ.This
common edge is dented eα and its primary cost pα.

Let D = {α1, α2, . . . , αk} be the set of all dependencies in the target graph.
Let EC denote a set of all the edges relevant to a containment C, that is,
EC = δ(C) ∪ θ(C) ∪ λ(C). For a dependency αi, if edge eαi

is in EC , then its
cost has already been counted in the primary cost terms. Thus the secondary
cost term in the informal definition of the cost of containment C counts the cost
|δ(C) ∩ αi| times. If the edge eαi

is not in EC we have double–counted its cost
|δ(C) ∩ αi| − 1 times. Thus, the double–counting of secondary costs is given by
the formula:

ε(αi, C) =

{

|δ(C) ∩ αi| · pαi
if eαi

∈ EC

(|δ(C) ∩ αi| − 1) · pαi
if eαi

6∈ EC

Formally, the total cost of containment C using:

Γ(C) , ∑

vi∈C

ai +
∑

ei∈δ(C)∪θ(C)

pi +
∑

ei∈δ(C)

si −
∑

αi∈D

ε(αi, C)

The formal statement of the optimal containment problem follows directly:

Definition 4.5 (optimal containment problem) Given a resource model graph
Ĝ, a target class graph G, a set I of hosts known to be affected, and set of de-
pendencies D, find the minimum cost containment C̄.

4.2 Algorithmic strategies

With the formalism used to identify the totality of all costs associated with
a containment, we present algorithms which find an optimal containment for
certain special cases. While we have no polynomial time algorithm for the most
general case, we present heuristics which seem to work well.

4.2.1 Special Case: No secondary effects

We first consider the special case when there are no secondary effects in termi-
nating service links. In the formal notation, si = 0 for all edges ei ∈ G, and the
dependency set D is empty. This is representative of the case when we have a
fine grain control of the hosts and infrastructure elements so that service links
can be precisely terminated without affecting any other hosts or service links.
This could be realized for example if we can precisely filter a pair of hosts and
a particular port on switches, firewalls and routers.

In these graphs, it is straightforward to see that the smaller the containment
is, the cheaper the total cost. The monotonicity can be seen by noting that there
are no subtractions due to overlapping secondary effects. Thus the most optimal
containment is to precisely quarantine exactly the known initial set of affected
hosts. We defer a formal proof to the full version of the paper.

17

Theorem 4.6 If 〈G, D〉 has no secondary effects or dependencies then C̄ = I

4.2.2 Special Case: No dependencies

Next we consider the case when terminating service links may have secondary
effects but there are no dependencies, i.e., the secondary effect of terminating
any link does not intersect with the secondary effect of terminating any other
link. In the mathematical notation of the previous section, the dependency set
D is empty. An example of such a scenario is when two different servers, say,
a mail server and a DNS server are co-located and connected jointly to a port
on a switch through a hub. Switching off the port on the switch because of a
vulnerability in the mail server would also disable the DNS server. Thus there
is a secondary effect to containing the mail server. Assuming that the rest of
the topology can also be finely controlled close to the affected host, there are
no dependencies. For this case, we are able to find an optimal containment by
a reduction to the standard graph theoretic mincut problem defined as follows:

Definition 4.7 (mincut problem) [CLR90] Given a directed graph G = (V, E),
special vertices s and t, a cut C is a subset of vertices V such that s ∈ C and
t 6∈ C. The cost of the cut is the sum of weights of all edges with the tail end
in C and the head end in V \C. The mincut problem is to find a minimum cost
cut.

While a containment of the target class graph is also a cut of the graph, there are
key differences between the two problems: In the optimal containment problem,
nodes are weighted, the cost of the containment includes edges with both ends
in the cut and edges can have secondary costs which are counted only if they
are cut edges.

We describe an algorithmic transformation which converts the optimal con-
tainment problem to the mincut problem. This can essentially be done in linear
time so the complexity of computing the optimal containment is essentially the
same as that of the mincut problem.

The transformation can be done in purely graph-theoretic terms. Let eij

denote an edge from vertex vi to vertex vj . Figure 4 shows the transformation
pictorially. The following are the algorithmic steps for the transformation:

1. Define 2 new vertices s and t in the graph.

2. For each vertex v ∈ I, draw an edge from s to v with weight ∞.

3. For each edge eij ∈ E, create two new vertices xij and yij in the graph.
Assign weights to the edges as described in Figure 4.

Let G′ denote a conversion of original graph G. Given a containment in G,
note that there is exactly one possible corresponding cut C′ on G′ with a finite
weight: From Figure 4, if vi is in C, xij must be in C′ because of the infinite
weight on edge between vi and xi,j . Also, if vj is in C, yi,j must be in C′.

18

���� ���������	� 	�
�
����� ���� ����� ��
���������� �� �� ������

Figure 4: The transformation from the original graph to the converted graph.
ai and aj are the node costs and pi and pj are the primary and secondary costs.

Similarly, one can argue that given a finite weight cut of the converted graph,
there is only one finite weight containment of the original graph. The following
can be proved easily and proofs are deferred to a full version.

Lemma 4.8 If C is a containment on G, corresponding cut C′ has the same
cost on G′ as the containment C in G.

Theorem 4.9 If 〈G, D〉 is a target class graph with no dependencies and cut C′

is minimum on the converted graph G′, corresponding containment C is optimal
on G.

There are a number of extensions of this case with no dependencies that can
similarly be reduced to the problem of finding a minimum cut in a graph, the
details of which are deferred to a full version.

4.2.3 General Case

In the most general setting, terminating service links has secondary effects and
there are dependencies between the secondary effects of terminating links. We
do not have a polynomial time algorithm to find the optimal containment and in
fact, we conjecture that this might be NP-complete. Here, we present a simple
heuristic which produces a local optimum but is guaranteed to terminate in
polynomial time.

One-hop search This is a simple heuristic which does not guarantee a global
optima, but it runs in polynomial time. Starting with the smallest containment
C0, which is equal to the set I of nodes known to be affected, the containment
is gradually extended in the direction of the edge with nonzero secondary cost.
Extension is done by putting a node to which the current containment has an
edge with a secondary cost. If an extended containment has a smaller cost,
this extended containment is kept and used to search for a better containment.
Therefore, containment extension continues until there is no secondary effect
on outgoing edges. Let C0 → C1 → · · · → Cx denote this progression. Note

19

Figure 5: Architecture overview

that the Cx is not necessarily the optimal containment since there are cases
when the greedy heuristic can choose a bad-move while extending the current
containment. The detailed description of this simple heuristic and the associated
analysis is deferred to a full version of the paper.

Using the algorithms in this sections, we can identify precisely which service
links should be terminated to minimize cost of containment. These can be
automatically executed using the response platform described in the following
section.

5 A Platform for Orchestrating Response

5.1 Overview

As shown in Figure 5, the system consists of a central controller and multiple
distributed agents. The agents provide the basic response action primitives
whereas the controller coordinates these agents to provide for global response.

Each agent controls a set of resources providing control-points. It interacts
with them in a resource-specific way, e.g., through an API or command-line

20

Figure 6: Architecture layering

Figure 7: Relation among important classes in resource model

tools if agent and resource co-reside or through resource specific protocols such
as SNMP [CMPS02] otherwise. The agents provide a unified and abstracted
actuator interface to the corresponding basic response actions based on a robust
and secure RPC service. This is depicted on the right-hand side of Figure 6.

As previously noted, in many if not most situations it is unrealistic to assume
that the administrator owns and directly controls all resources, i.e., as shown in
Figure 5 a number of resources will have no associated agent which can control
them or query them about their state. However, for effective response these
resources and their state has to be considered as well. Therefore, the controller
will try to discover the existence and state of all network resources and actuators,
manually as well as with tools such as IDD [GD02], describe them in a simple
abstract resource model (see Figure 7 for a glimpse on this model) and maintain
a corresponding repository.

When response is necessary, this resource database can be used to identify
affected resources, e.g., based on target class signatures. It also assists in figur-
ing out whether (and how) these resources can be directly controlled through
actuators or whether response has to be indirect, e.g., because there is no di-
rectly controlling actuator or the actuator cannot be trusted as it is co-located

21

with an infected resource.
The resource model also defines in an actuator interface hierarchy the set of

abstract basic actions previously mentioned. Examples for these abstract basic
actions are the StartStop actuator which allows to enable or disable a resource
such as a port (LinkInterface resource) on a switch or program (Service
resource) on server, or the NetFilter actuator allowing to filter network traffic.
Furthermore, the controller provides means to combine these basic actions into
sets of high-level actions. In particular, we exploit the knowledge base of the
resource model to allow for intelligent aggregation of resources and the combined
execution of a set of actions on them. The aggregation can be done based
on the characteristics of their underlying software and hardware, i.e., target
class signatures; based on their business functionality, e.g., dependencies among
service links; or topological information, most notably the identification of the
set of choke points which provide actuators to isolate a set of resources.4

The goal of our infrastructure is two-fold: It certainly should enable the pro-
gramming of (advanced yet involved) strategies such as the ones presented in
the previous sections and their integration into an overall autonomic defense
system covering also intrusion sensors, vulnerability scanners and/or patch-
management systems. However, it should also enable the system administrator
to manually effect response actions in an ad-hoc, timely and fail-safe fashion.
While implementing the previously described components in a high-level pro-
gramming framework, JavaTM in our case, provides an excellent basis to achieves
the first goal, it does not yet handle the second goal. To address the second
goal, we extend the framework with a simple scripting language and shell which
we describe in the following.

5.2 Scripting Language

The major operation for the system administrator to manually effect response
is to enter, in the interactive shell, actions of the form “α on γ” where γ is
a group of hosts and α is the commands to be executed on each of the host.
In the following two sections we will focus on how, on the one hand, such host
groupings can be defined, and, on the other hand, what kind of commands we
allow. For the exact grammar of the language we refer the reader to Appendix A.

5.2.1 Commands and command grouping

Commands can be either basic or compound. The basic actions are abstract ba-
sic actions as mentioned in the previous sections. More concretely, we currently
support:

filter parameters This action is used to block network connections based on
various criteria like initiator and responder of the connection, the network
protocol and the initiator or responder ports.

4An important factor in determining choke points is to assess the trustworthiness of the

affected resources, e.g., for non-infected resources a collocated actuator is a fine and desirable

choice whereas for infected resources such an actuator is an inappropriate choice.

22

stop parameters This action halts the host or the program or service identified
by the optional argument.

raise alert level This action is used to increase the logging and alert level
of the host.

We allow basic commands to be grouped by the operators and and or to
form compound commands. The semantics are similar to the corresponding
operators && and || in the C programming language.

5.2.2 Host groupings

The main power of the language is the ability to perform response actions on
a (large) group of nodes which are aggregated using various criteria, e.g., to
quickly identify all vulnerable nodes.

The language allows to define groups based on hostnames, IP addresses,
subnetworks (e.g., 192.168.76.0/24 would identify all machines on the Class
C network 192.168.76.0 and Extranet refers to machines external to the admin-
istrative domain) and also to invoke external programs such as network worm
scanners to us feed with hosts. It also allows to compose groups based on the
standard set operators on group. The most powerful two operators to group
resources, however, are the following:

select from hosts where cond This selects the set of hosts from hosts which
match the target class signature cond . Condition can be general predi-
cate logic terms with predicates based on operating system, programs and
services running on a host, their versions as well as actuator capabilities
provided by that host.

chokepoints of hosts Applying the chokepoints of operator on a group
hosts returns the closest group of actuators which allow to control traffic
from and to the input group.

5.2.3 Execution and undo of actions

Given a command command, instantiating it on the group results in executing
command on each of nodes in the group. This action execution returns a handle
that can be used to identify the action should it be required to be undone. This
handle can be queried to check if the action was successfully executed. An action
is successful if and only if the underlying command is successful on all its nodes.
While we do not attempt to provide atomicity of the actions, we make sure to
first determine that the command is possible on all nodes based on information
in the resource repository and do a best effort to make commands succeed.

We need not overemphasize the importance of having an undo operation in
responding to a worm attack. The response time available to an administrator
is very short and he is probably under huge stress, should he make a mistake.
Providing an efficient undo capability gives the administrator the freedom to

23

CERT advisory CA-2002-17.

Vuln1 := select from intranet where

program = apache version=1.2.2;

Vuln2 := select from intranet where

program = apache 1.3 <= version

<= 1.3.24;

Vuln := Vuln1 union Vuln2;

Infected := ‘network_worm_scanner‘;

% Set of vulnerable and infected nodes resp.

% Choke connections from infected nodes.

filter Infected as initiator on

(chokepoints of Infected);

% Now, protect vulnerable nodes.

Remaining := Vuln;

% Stop apache servers where we can

StopSet := select from Remaining

where capability stop program = apache;

stop program = apache on StopSet ;

% update firewall rules on vulnerable nodes,

% if possible

Remaining := Remaining diff StopSet;

FilterSet := select from Remaining where

capability filter responderPort = 80 ;

filter responderPort = 80

FilterSet as responder on FilterSet;

% Filter connections on chokepoints

% for the remaining nodes

Remaining := Remaining diff FilterSet;

ChokeNodes := chokepoints of Remaining;

filter port = 80

Vuln as responder on ChokeNodes;

% Raise alert level on vulnerable nodes.

raise_alert_level on Vuln;

Figure 8: Responding to Apache vulnerability. CERT advisory CA-2002-17

err on the side of caution in case of an attack, like shutting down suspicious
services, safe in the knowledge that undoing his actions is easy.

5.2.4 Examples

In June 2002, CERT had issued an advisory regarding a serious vulnerability
in the popular web server Apache [Vula]. The vulnerability was in the handling
of certain chunk-encoded HTTP 1.1 [FGM+99] requests that may allow remote
attackers to execute arbitrary code. To illustrate how a system administrator
could have responded to this incident with our tool, we give a sample script
for this scenario in Figure 8. The script identifies first vulnerable and infected
nodes and then tries various containment steps with the least intrusive first until
all options are exhausted. For a second usage example of the language, see
Appendix B.

5.3 Discussion and Outlook

We’ve built a first prototype of the previously described architecture. The core
of the controller is written in JavaTM. The scripting language is based on this
Java core and the JavaCC compiler compiler. The agents are all written in Perl
and the secure RPC layer is currently simulated using ssh. As both tools are
available on a wide variety of platforms, e.g., through cygwin on Windows, this
does not limit the platform independence much and allows for faster prototyping
than writing everything in Java.

Security of such a platform is obviously paramount. With ssh we get decent

24

confidentiality and integrity protection. As it is also crucial to timely deliver
response actions even under attack, availability is also an important security
requirement. While we do not yet address it, we are exploiting network recon-
figurations as one way to address that issue. To limit the power of corruption
of agents, the agent runs as an a priori unprivileged user with separate ssh cre-
dentials and basic concrete actions are selectively enabled with appropriately
restricted additional privileges using sudo. Corruption of the controller is some-
what mitigated by the fact that no commands can loosen the security policy in
terms of confidentiality.

The language may appear to be somewhat simple and verbose. However, this
is intentional as the simplicity and the additional redundancy contribute greatly
to its fail-safety. Given the potentially disastrous consequences of improper
usage and the increased likelihood of mistakes given the pressure of dealing
with security incidents, this is an essential design goal. The interactive shell
is currently very limited. However, we expect that its utility can be enhanced
by adding features such as cmdline-editing, history and command-completion
for keywords, program, services, and versions based on querying the underlying
resource repository.

In above discussion, we have presented only three abstract actions. While
they are certainly crucial to an effective response, we are also exploring other
useful abstract actions such as traffic throttling, restarting service nodes at lower
levels of service which, for example, do not require change in persistant state,
etc.

6 Conclusions

We proposed an automated intrusion response system which produces appro-
priate actions timely and correctly with minimum impact on business. We used
target class signatures and service links to form a logical representation of the
target network. This abstraction of the target network helps us search for the
optimal containment efficiently by using graph theoretic algorithms. A contain-
ment search algorithm for dirty graphs will be developed in future work.

References

[ACM02] ACM. 18th Annual Computer Security Applications Conference,
Las Vegas, Nevada, USA, December 2002.

[CACP00] Jr. Curtis A. Carver and Udo W. Pooch. An intrusion response tax-
onomy and its role in automatic intrusion response. In Proceedings
of the first IEEE Information Assurance and Security Workshop,
West Point, NY, USA, June 2000.

[Cis] Cisco. IDS. http://www.cisco.com/warp/public/cc/pd/sqsw/

sqidsz/index.shtml.

25

http://www.cisco.com/warp/public/cc/pd/sqsw/sqidsz/index.shtml
http://www.cisco.com/warp/public/cc/pd/sqsw/sqidsz/index.shtml

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge, MA, USA,
1990.

[CMPS02] J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction and
applicability statements for internet standard management frame-
work. Internet Request for Comment RFC 3410, Internet Engineer-
ing Task Force, December 2002.

[DIS01] Proceedings of the DARPA Information Survivability Conference
and Exposition (DISCEX 2001). IEEE Computer Society Press,
June 2001.

[FGM+99] Roy T. Fielding, Jim Gettys, Jeff Mogul, Henrik Frystyk Nielsen,
Larry Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext
Transfer Protocol — HTTP/1.1. Internet Request for Comment
RFC 2616, Internet Engineering Task Force, June 1999.

[GD02] Dieter Gantenbein and Luca Deri. Categorizing computing assets
according to communication patterns. In E. Gregori et. al., editor,
Advanced Lectures on Networking : NETWORKING 2002 Tuto-
rials, volume 2497 of Lecture Notes in Computer Science, pages
83–100. Springer-Verlag, Berlin Germany, May 2002.

[HM03] Vu A. Ha and David J. Musliner. Balancing safety against perfor-
mance: Tradeoffs in internet security. In Proceedings of the 36th
Hawaii International Conference on System Sciences (HICSS-36),
Big Island, Hawaii, January 2003.

[ISO96] Information technology — Syntactic metalanguage — Extended
BNF. Technical Report 14977, ISO/IEC JTC1/SC22, 1996.

[ISS] ISS. Proventia. http://www.iss.net/products_services/.

[LCNS+02] W. La Cholter, P. Narasimhan, D. Sterne, R. Balupari, K. Djahan-
dari, A. Mani, and S. Murphy. IBAN: intrusion blocker based on
active networks. In Proceedings DARPA Active Networks Confer-
ence and Exposition (DANCE 2002), pages 182– 192, San Francisco,
CA, USA, May 2002.

[LFM+ar] Wenke Lee, Wei Fan, Matthew Miller, Sal Stolfo, and Erez Zadok.
Toward cost-sensitive modeling for intrusion detection and re-
sponse. Journal of Computer Security, to appear.

[LHO+01] Scott M. Lewandowski, Daniel J. Van Hook, Gerald C. O’Leary,
Joshua W. Haines, and Lee M. Rossey. SARA: Survivable auto-
nomic response architecture. In Proceedings of the DARPA Infor-
mation Survivability Conference and Exposition (DISCEX 2001)
[DIS01].

26

http://www.iss.net/products_services/

[Mic] Microsoft. Baseline Security Analyzer. http://www.microsoft.

com/technet/security/tools/mbsahome.mspx.

[MM01] D.J. Musliner and J.M. Maloney. Reasoning about timeliness for
computer security reactions: CIRCA and AIA experiment 001. In
Proceedings of the DARPA Information Survivability Conference
and Exposition (DISCEX 2001) [DIS01], pages 299–307.

[MPS+03] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stu-
art Staniford, and Nicholas Weaver. The spread of the sap-
phire/slammer worm. Technical report, February 2003.

[Nes] Nessus. http://www.nessus.org/.

[Net] IBM Tivoli NetView. http://www.tivoli.com/.

[NRL03] D. Nojiri, J. Rowe, and K. Levitt. Cooperative response strate-
gies for large scale attack mitigation. In Proceedings of the Third
DARPA Information Survivability Conference and Exposition (DIS-
CEX 2003). IEEE Computer Society Press, April 2003.

[Ope] HP OpenView. http://www.openview.hp.com.

[PN97] Phillip A. Porras and Peter G. Neumann. EMERALD: Event mon-
itoring enabling responses to anomalous live disturbances. In 20th
National Information Systems Security Conference, pages 353–365,
October 1997.

[SDB+02] D. Sterne, K. Djahandari, R. Balupari, W. La Cholter, B. Bab-
son, B. Wilson, P. Narasimhan, A. Purtell, D. Schnackenberg,
and S. Linden. Active network based DDoS defense. In Proceed-
ings DARPA Active Networks Conference and Exposition (DANCE
2002), San Francisco, CA, USA, May 2002.

[SDS00] Dan Schnackenberg, Kelly Djahandari, and Dan Sterne. Infras-
tructure for intrusion detection and response. In Proceedings of
the DARPA Information Survivability Conference and Exposition
(DISCEX 2000). IEEE Computer Society Press, January 2000.

[SDW+01] Dan Sterne, Kelly Djahandari, Brett Wilson, Bill Babson, Dan
Schnackenberg, Harley Holliday, and Travis Reid. Autonomic re-
sponse to distributed denial of service attacks. In W. Lee, L. Mé,
and A. Wespi, editors, Recent Advances in Intrusion Detection —
Proceedings of the 4th International Symposium (RAID 2001), vol-
ume 2212 of Lecture Notes in Computer Science, pages 134–149,
Davis, CA, USA, October 2001. Springer-Verlag, Berlin Germany.

[SF00] Anil Somayaji and Stephanie Forrest. Automated response using
system-call delays. In Proceedings of the 9th USENIX Security Sym-
posium, Denver, Colorado, August 2000. USENIX.

27

http://www.microsoft.com/technet/security/tools/mbsahome.mspx
http://www.microsoft.com/technet/security/tools/mbsahome.mspx
http://www.nessus.org/
http://www.tivoli.com/
http://www.openview.hp.com

[SHS+01] Dan Schnackenberg, Harley Holliday, Randall Smith, Kelly Djahan-
dari, and Dan Sterne. Cooperative intrusion traceback and response
architecture (CITRA). In Proceedings of the DARPA Information
Survivability Conference and Exposition (DISCEX 2001) [DIS01].

[Sno] Snort. http://www.snort.org.

[Som02] Anil Somayaji. Operating System Stability and Security through
Process Homeostasis. PhD thesis, University of New Mexico, July
2002.

[Sym] Symantec. Intruder Alert. http://enterprisesecurity.

symantec.com/products/products.cfm?ProductID=171&EID=0.

[TK02] Thomas Toth and Christopher Kruegel. Evaluating the impact of
automated intrusion response mechanisms. In 18th Annual Com-
puter Security Applications Conference [ACM02].

[Vula] CERT Advisory CA-2002-17 Apache Web Server Chunk Handling
Vulnerability. http://www.cert.org/advisories/CA-2002-17.

html.

[Vulb] CERT Advisory CA-2003-20 Apache Web Server Chunk Handling
Vulnerability. http://www.cert.org/advisories/CA-2003-20.

html.

[VVZK02] Giovanni Vigna, Fredrik Valeur, Jingyu Zhou, and Richard A. Kem-
merer. Composable tools for network discovery and security anal-
ysis. In 18th Annual Computer Security Applications Conference
[ACM02].

[WFFR01] Huaqing Wei, Deb Frinke, Olivia Frinke, and Chris Ritter. Cost-
benefit analysis for network intrusion detection systems. In CSI
28th Annual Computer Security Conference, October 2001.

[Wil02] Matthew M Williamson. Throttling viruses: Restricting propaga-
tion to defeat malicious mobile code. In 18th Annual Computer
Security Applications Conference [ACM02].

28

http://www.snort.org
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=171&EID=0
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=171&EID=0
http://www.cert.org/advisories/CA-2002-17.html
http://www.cert.org/advisories/CA-2002-17.html
http://www.cert.org/advisories/CA-2003-20.html
http://www.cert.org/advisories/CA-2003-20.html

A Grammar of scripting language

Find following the grammar described of the scripting language defined in
EBNF [ISO96]:

Program := Stmt , { “;” Stmt } ;
Stmt := Action | Assign | Undo ;
Action := Cmd “on” HostGrp ;
Assign := VarID “:=” (Cmd | HostGrp | Action) ;
Undo := “undo” VarID ;

Cmd := BasicCmd | CompoundCmd ;
CompoundCmd := [“(”] Cmd { (“or” | “and”) Cmd } [“)”] ;
BasicCmd := VarID | StopCmd | FilterCmd | AlertCmd ;
StopCmd := “stop” [(“service” | “program”) “=” Name] ;
FilterCmd := “filter” { HostGrp [“as initiator” | “as responder”] }

[“responderPort =” PortParam] [“initPort =” PortParam

] ;
AlertCmd := “raise alert level” ;

HostGrp := BasicHostGrp | CompoundHostGrp ;
BasicHostGrp := VarID | Host | Net | TCS | Chokepoint | SourceCmd| “(”

HostGrp “)”;
CompoundHostGrp := [“(”] HostGrp { (“union” | “intersect” | “diff”) HostGrp

}− [“)”];
Host := Hostname | IP;
Net := “Intranet” | “Extranet” | IP“/”Num | IP“/”IPMask ;
TCS := “select from” HostGrp “where” TCSCond ;
Chokepoint := “chokepoints of” [“trusted” | “untrusted”] HostGrp ;

SourceCmd := “`” Name “`”
TCSCond := BasicTCSCond | CompoundTCSCond ;
BasicTCSCond := ((“service” | “program” | “os”) “=” Name [VersionInfo] |

“capability” BasicCmd ;
CompoundTCSCond := “not” TCSCond | [“(”] TCSCond { (“and” | “or”) TCSCond }−

[“)”] ;

VersionInfo := [“VersionID” compOp] “version” compOp “VersionID” ;
compOp := “=” | “<” | “>” | “>=” | “<=” ;
IP := { Num }−“.”{ Num }−“.”{ Num }−“.”{ Num }− ;
IPMask := IP;
Num := { “Digit” }− ;
VarID := Name ;
Hostname := Name ;
PortParam := Num “/”(“TCP” | “UDP” | “RPC”) ;
Protocol := Name ;

29

CERT advisory CA-2003-20.

xp := select from intranet where

os = windows version = xp;

winserver := select from intranet where

os = windows version = server2003;

nt := select from intranet where

os = windows version = nt4.0;

win2k := select from intranet where

os = windows version = 2000;

Vuln := xp union Vuln2 union nt

union win2k;

Infected := ‘network_worm_scanner‘;

% Set of vulnerable and infected nodes resp.

% Choke connections from infected nodes.

filter Infected as initiator on

(chokepoints of Infected);

% Now, protect vulnerable nodes.

Remaining := Vuln;

% Stop the service where we can

StopSet := select from Remaining

where capability stop

service = dcom-rpc;

stop service = dcom-rpc on StopSet ;

Remaining := Remaining diff StopSet;

% Stop the machine where we can

% The service host refers to the machine.

HaltSet := select from Remaining

where capability stop service = host;

stop service = host on HaltSet ;

% update firewall rules on vulnerable nodes,

% if possible

Remaining := Remaining diff HaltSet;

FilterSet := select from Remaining where

capability filter responderPort = 135/TCP ;

filter responderPort = 135/TCP

FilterSet as responder on FilterSet;

% Filter connections on chokepoints

% for the remaining nodes

Remaining := Remaining diff FilterSet;

ChokeNodes := chokepoints of Remaining;

filter port = 135/TCP

Vuln as responder on ChokeNodes;

% Raise alert level on vulnerable nodes.

raise_alert_level on Vuln;

% Actually, Blaster may use other ports too.

% Thus, we need to do the above action for ports

% 135/UDP, 139/TCP, 139/UDP etc. also.

Figure 9: Responding to Blaster worm. CERT advisory CA-2003-20

B Example: W32/Blaster worm

Microsoft Blaster worm appeared in August 2003 and it uses a vulnerability
in RPC DCOM module in Windows XP, Windows NT 4.0, Windows Server
2003 and Windows 2000 [Vulb]. About three hundred thousand machines were
affected. It uses UDP/TCP 135 and 139 ports. The exploit allows the attacker
to execute arbitrary code with full privileges. The response script shown in
Figure 9 would have been one way to tackle with a blaster incident using our
platform and scripting language.

30

