
RC23767 (W0511-012) November 2, 2005
Computer Science

IBM Research Report

Dynamic Collaboration in Autonomic Computing

David M. Chess, Jeffrey O. Kephart, James E. Hanson,
Ian N. Whalley, Steve R. White

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

BOOK OR CHAPTER
This manuscript has been submitted to a publisher for publication as a book or book chapter. Recipients are advised that copies have been distributed at the author's request for the purpose of editorial review and
internal information only. Distribution beyond recipient or duplication in whole or in part is not authorized except by express permission of the author. This report will be distributed outside of IBM up to one year after
the IBM publication date.

Dynamic collaboration in autonomic
computing

Chess, Hanson, Kephart, Whalley, White
IBM Research

CONTENTS
1.1 Introduction . 1
1.2 Requirements . 3
1.3 Standards . 6
1.4 The Unity system . 9
1.5 Improving the Unity system . 13
1.6 Node group manager and provisioning manager . 14
1.7 Improving the node group and provisioning managers . 17
1.8 Conclusions . 19
1.9 References . 20

1.1 Introduction

The ultimate goal of autonomic computing is to build computing systems that man-
age themselves in accordance with high-level objectives specified by humans [15].
The many daunting challenges that must be addressed before this vision is realized
fully can be placed into three broad categories[14] pertaining to:

• Self-managing resources, the fundamental building block of autonomic sys-
tems, which are responsible for managing their own behavior according to
their individual policies;

• Autonomic computing systems, which are composed of interacting self-managing
resources; and

• Interactions between humans and autonomic computing systems, through
which administrators can express their objectives, monitor the behavior of the
system and its elements, and communicate with the system about potential
actions that might be taken to improve the system’s behavior.

This paper concerns an important aspect of the second of these broad challenge
areas: how dynamic collaboration among self-managing resources can give rise to

 1

2 CRC Book

system-level self-management. Research on individual self-managing databases,
servers, and storage devices, which significantly predates the coinage of the term
autonomic computing, has resulted in a steady flow of innovation into products from
IBM and other vendors over the years. One can be confident that useful innovations
in self-managing resources will continue indefinitely. However, isolated, siloed work
on individually self-managing resources, while important, will not by itself lead to
self-managing computing systems. A system’s ability to manage itself relies on more
than the sum of the individual self-management capabilities of the elements that com-
pose it. We believe that dynamic collaboration among self-managing resources is a
crucial extra ingredient required to support system-level self management.

Why is dynamic collaboration among self-managing resources essential? The pri-
mary driver is the ever-growing demand for truly dynamic e-business. For exam-
ple, IBM’s On Demand initiative is a call for more nimble, flexible businesses that
can “respond with speed to any customer demand, market opportunity or external
threat.” [19] Customers want to be able to change their business processes quickly.
They want to be able to add or remove server resources without interrupting the op-
eration of the system. They want to handle workload fluctuations efficiently, shifting
resource to and from other parts of the system as needs vary. They want to be able
to upgrade middleware or applications seamlessly, without stopping and restarting
the system. In short, dynamic, responsive, flexible e-business requires for its support
a dynamic, responsive, flexible IT infrastructure that can be easily reconfigured and
adapted as requirements and environments change.

Unfortunately, today’s IT infrastructures are far from this ideal. Present-day IT
systems are so brittle that administrators do not dare to add or remove resources,
change system configurations, or tune operating parameters unless it is absolutely
necessary. When systems are deployed, relatively static connections among re-
sources are established by configuring each of the resources in turn. For example,
once it is decided to associate a specific database with a particular storage system,
that connection may exist for the lifetime of the application. When changes such
as software patches or upgrades are made, it may take days or weeks to plan and
rehearse those changes, thinking through all of the possible ramifications to ensure
that nothing breaks, and practicing them on a test system devoted to the purpose. The
natural result of such justifiable conservatism is a ponderous IT infrastructure, not a
nimble one.

How do we make IT infrastructures more nimble? We believe that, beyond making
self-managing resources more individually adaptable, we must endow self-managing
resources with the ability to dynamically form and dissolve service relationships with
one another. The basic idea is to establish a set of behaviors, interfaces, and patterns
of interaction that will support such dynamic collaborations, which are an essential
ingredient for system-level self-management.

In this paper, we propose a set of requirements, identify a set of standards designed
to help support those requirements, and show that systems that partially respect these
requirements can indeed exhibit several important aspects of self-management. Sec-
tion 1.2 sets forth our proposed requirements, which focus on supporting dynamic
collaboration among autonomic elements. Next, in section 1.3, we discuss standards

Dynamic collaboration in autonomic computing 3

and the extent to which they do and do not support those requirements. The next four
sections discuss the present status and possible future of two systems that exhibit
dynamic collaboration to achieve system-level self-management. The first system,
described in section 1.4, is a datacenter prototype called Unity that heals, config-
ures, and optimizes itself in the face of failures, disruptions, and highly varying
workload. Unity achieves these self-managing capabilities through a combination of
algorithms that support the behavioral requirements, design patterns that introduce
new resources such as registries and sentinels that assist other resources, and well-
orchestrated interactions. We discuss the benefits that Unity derives from its use of a
subset of the requirements and standards. Then, in section 1.5, we speculate on the
extra degree of self-management that could be attained were Unity to more fully im-
plement the proposed requirements and standards. The second system, described in
section 1.6, focuses more specifically on a particular interaction between two com-
mercially available system components: a workload manager that allocates resources
on fine-grained scale (e.g. CPU and memory share) and a resource arbiter that allo-
cates more coarse-grained resources such as entire physical servers. We discuss how
the requirements and standards support dynamic collaboration between the work-
load manager and the resource arbiter, and in section 1.7 we speculate about how
their fuller implementation could yield further benefits. We close in section 1.8 with
a summary of our recommendations on requirements and standards, and speculations
about the future.

1.2 Requirements

The dynamic nature of autonomic systems has profound implications. We do not
believe that such dynamism can be achieved with traditional systems management
approaches, in which access to resources tends to be idiosyncratic and management
tends to be centralized. On the contrary, our approach is to use a service-oriented
architecture [13], so that there is a uniform means of representing and accessing
services, and to make the resources themselves more self-managing [24]. Rather
than having a centralized database as the primary source of all information about the
resources—what kinds of resources they are, what version they are, etc.—we make
the resources themselves self-describing. Every resource can be asked what kind of
resource it is, what version it is, and so on, and it will respond in a standard way that
can be understood by other resources. Similarly, resources respond to queries about
their capabilities by describing what kinds of services they are capable of offering.
We believe that the advantages that come with making resources self-describing will
be at least as great as those that have come from self-description mechanisms such
as reflection in programming languages [17].

There is, of course, a role for centralized information. Having a database con-
taining descriptions of all available resources is useful, but having it be the primary

4 CRC Book

source of this information is brittle. As soon as a change is made to a resource, the
database is no longer correct. We avoid this problem by making resources respon-
sible for reporting information about themselves in these centralized databases.
When a new resource comes on line, or as it changes in relevant ways, it informs the
centralized database of the change. This keeps the database as up to date as possible,
without requiring manual updates or periodic polling of all of the resources.

As an essential part of self-management, resources must govern their actions
according to policies. These policies will typically specify what the resource should
do rather than how it should do it. They will specify a performance goal, for instance,
rather than a detailed set of configuration paramaters that permit the resource to
achieve that goal. It is then left to the self-managing resource to determine how best
to attain that goal.

Resources will typically use the services of other resources to do their jobs and, as
the system changes over time, which resources are being used will change as well.
A database may need a new storage service to handle a new table. A new router may
need to be found to take over from a router that failed. Resources must be capable
of finding and using other resources that can provide the services that they need.
They must be capable of forming persistent usage agreements with the resources
that provide them service. Existing work on service composition, such as [20], will
be directly relevant to the challenges here.

There will also be cases where some resource must determine the needs of other
resources, rather than their capabilities. This is clearly necessary at design time,
where both manual design tools and automatic deployment planners must be able to
ensure, with a high probability of success, that once the system is in operation all of
the necessary resources will be able to obtain the services that they need to function.
Similarly, at runtime, a resource’s ability to report its needs can provide essential
help for system configuration and problem determination.

Owing to the fact that the nature of the services, and the quality of service required,
may not be obvious at design time, resources must be capable of dynamically
entering into relationships in which the quality of service is specified subject to
terms that detail constraints on usage, penalties for non-compliance, and so forth.
That is, we extend the service-oriented architectural concept of dynamic binding
to resources with service level agreements between the resources themselves. The
resource providing the service is required to do so consistent with the terms of the
service level agreement that it has accepted. The consumer of the service may be
similarly required to limit the size, frequency, or other characteristics of requests so
that the provider can offer the required service level.

In effect, agreements between resources become the structural glue that holds the
system together. They replace the static configuration information of today’s system
with a mechanism to create similar structures dynamically. Setting up such a struc-
ture between two resources involves two steps. In the first step, the resource that
wishes to consume a service must find and contact a potential provider. The con-
sumer asks the provider for the details of the agreements that it offers. It then selects
one that fits its needs and asks for that specific agreement. If the provider agrees, the
agreement is put into place. The second step is for the consumer to use the service

Dynamic collaboration in autonomic computing 5

of the provider as usual.
It will sometimes be useful for a provider to offer a default agreement to any

consumer that is allowed to access it. This would be typical, for instance, in a yellow
pages service, which provides a “best effort” response to any queries that it gets. If
there is a default agreement, it is not necessary to create an agreement as a separate
step. Rather, consumers and providers behave as if they had already put an agreement
into place. Default agreements do not give the provider the opportunity to say “no,”
so it is possible for the provider to get more requests than it can satisfy. Explicit,
non-default agreements permit the provider to determine which agreements it can
satisfy, and put limits on its clients accordingly.

While some agreements will be standalone bilateral arrangements between two
resources, others will involve larger collections of resources. In this latter case, when
multiple resources need to be involved in an agreement, there is a need for resource
reservations. These allow the entity setting up the larger whole to reserve all of the
necessary resources before actually forming the agreement.

Just as resources can know their own identity and properties, they can know into
what agreements they have entered. Just as resources can report their existence and
lifecycle state to a centralized resource database, they can report their agreements to
a centralized relationship database, and keep this database up to date as new agree-
ments are made and old ones ended.

The dynamic restructuring of the system made possible by agreements gives rise
to several interesting problems. As in traditional systems, security is important—
autonomic systems should limit access to those entities that are authorized to access
them. The automated nature of autonomic systems makes this even more important.
Consider a lifecycle manager that is responsible for moving a small set of resources
through their lifecycle states in preparation for maintenance but, because of a bug,
sends a “shut down” command to every resource in the system. Authorization con-
trol is an important means of limiting such problems. In addition, because of the dy-
namic nature of autonomic systems, these authorizations need to be dynamic as well,
so that the set of authorized resources can change at run time. To some extent this
dynamism of authorization is already present in today’s systems, where authoriza-
tion is typically given to named groups at deployment time, and group membership
may change dynamically. However, we expect that the requirements for dynamic
authorization in fully autonomic systems will go beyond what can be provided by
group membership alone.

In an autonomic systems, system management resources can be asked to manage
different resources over time. There are likely to be a variety of discipline-specific
managers: performance managers, availability managers, security managers, and so
on. These disciplines are not orthogonal; increasing availability by mirroring re-
quires extra resources that could have been used to increase performance. In tradi-
tional systems, conflicts between the objectives of the various managers are resolved
at design time. A single performance manager is assigned to a group of resources. A
decision is made ahead of time to trade off performance for availability. In an auto-
nomic system, however, conflict avoidance, detection and resolution must be done
at run time, hopefully without requring the intervention of human administrators.

6 CRC Book

As the system plans for changes, it must be possible to project the impact of those
changes. One approach would be to have a centralized model of the entire system
and use it to anticipate the results of change. Such a model would have to possess a
rich understanding of the resources themselves and their current operating state. Re-
source models used in this system model would have to be kept synchronized as the
resources themselves are updated, or change their lifecycle state or operating charac-
teristics. The approach that we take instead is to require the resources themselves to
respond to queries about the impact of hypothetical changes that we might make
to them. This eliminates the need for a seprate, external model and allows resource
designers to handle the queries, and the associated internal processing, in whatever
way they want.

1.3 Standards

It is easy to both overestimate and underestimate the important of standards for com-
puting systems. Having a standard for interchanging a particular class of information
is important for interoperability, but it provides little or no help with the problem of
actually producing or exploiting that information. On the other hand, given any
pairwise interaction between computing resources, it is generally easy to design a
method for transferring the information required by the interaction between those re-
sources; no standards are required. But ad hoc pairwise interaction design does not
scale well, and if autonomic computing is to have a real impact, the heterogeneous
resources that form autonomic systems must conform to open, public standards. In
this section we review the standards most relevant to the requirements discussed in
Section 1.2, both to evaluate their suitability and to find what is missing. ∗

1.3.1 Emerging web service standards

In keeping with our overall service-oriented architecture of autonomic computing
systems, all the standards we consider are applicable to systems constructed accord-
ing to the Web Services Architecture [23]. The fundamental specification for the de-
scription of Web Services is the Web Service Description Language (WSDL) [11].
WSDL enables a Web Service to characterize the set of messages it is capable of
processing—i.e., to describe its own interfaces. WSDL is a highly flexible XML
dialect supporting an extremely wide range of interaction styles, from generic mes-
saging to strongly typed RPC-like invocation. It also has the advantage of being

∗Many of the specifications discussed in this section are still under development, and many are faced with
competing specifications that provide more or less similar features. While it is impossible to predict the
ultimate form the set of standards will take, it is reasonable to assume that it will not fundamentally differ
from what is described here.

Dynamic collaboration in autonomic computing 7

independent of the particular transport protocol used, thereby permitting designers
to select the protocol most appropriate for their needs.

By itself, WSDL does not make a clear distinction between Web Service types
and instances. Thus, for example, one common implementation pattern is for a given
URL to be associated with a particular service interface as defined by a given WSDL
file, but for each message sent to that URL to be handled by a newly instantiated
runtime instance of the service. This is insufficient for the needs of long-lived state-
ful resources. Web Services Addressing (WS-Addressing) [6] fixes this problem by
defining a standard form for messaging addresses of stateful resources—i.e., the log-
ical “endpoint” address to which messages intended for a given resource instance
should be sent.

The long-lived, stateful, active nature of autonomic resources also implies a num-
ber of other needs, such as publishing and accessing a resource’s state information,
publishing and subscribing to events, etc. The Web Services Resource Framework
(WSRF) [34, 36, 35, 37, 33] is a constellation of specifications designed specifi-
cally to meet these needs in a standardized way. Standardized access to a stateful
resource’s published state information is given by Web Services Resource Proper-
ties (WS-ResourceProperties), which supports both get and set operations for a re-
source’s properties as well as complex XPath-based queries. Web Services Resource
Lifetime (WS-ResourceLifetime) provides support for long-lived, but not immortal,
resources. The need for registries of resources is met by the Web Services Service
Group specification (WS-ServiceGroup).

Sometimes resources need to expose additional information about their interfaces
that may not be expressed using the specifications mentioned so far. For example,
it may be the case that a certain property of a resource never changes once set, or
may be changed by the resource but not by outside entities, or may be settable by
others, and so on. Web Services Resource Metadata [25] provides a standard means
by which such additional information may be attached to interface operations and
properties.

The essential infrastructure for enabling resources to publish and subscribe to
asynchronous events is provided by the Web Services Notification (WS-Notification)
specificiations. [30, 31, 32] This is particularly important for autonomic computing,
in which resources must be able to react quickly to externally-applied changes in
their environment, and to report changes in their own state information.

Web Services Security (WS-Security) [26] refers to a collection of related security
protocols. For the needs of autonomic systems, we recognize a particular subset of
these as being especially useful: resources need to be able to identify the sender of
a message and to authenticate that identity; they need to determine the authorization
level of the sender, i.e., whether they should pay attention; and they need to be able
to communicate without the risk that messages will be intercepted by unauthorized
parties. The basic WS-Security standards, defining how data is signed and encrypted
and how particular security algorithms are named, are now well established. The
higher-level standards, which are required for truly interoperable dynamic security
configuration, are still in process.

Built on WSRF, Web Services Distributed Management (WSDM) [28, 29, 27]

8 CRC Book

is another constellation of specifications that meets certain essential needs of auto-
nomic systems. WSDM at present consists of two major parts: MUWS (Manage-
ment using Web Services) and MOWS (Management of Web Services). At the core
of the WSDM specifications is the notion of a capability, which is a URI (Uniform
Resource Identifier [5]) that identifies a particular, explicitly documented set of op-
erations, resource properties, and functional behavior. Much of WSDM’s attention
is given to the manageability capabilities of resources—i.e., the ways in which re-
sources may be managed by traditional systems management architectures. These
capabilities are clearly useful to managers in an autonomic system. More impor-
tantly, the general notion of capabilities, and the WSDM representation of them, is
clearly important as a means of identifying what resources are capable of doing.

Arguably the simplest WSDM capability is identity, which is something both es-
sential in autonomic systems and conspicuously absent from the the base Web Ser-
vices and WSRF standards. The notion of resource identity turns out to have sub-
tleties we do not have space to discuss here, but at minimum it should be a unique
identifier for a given stateful resource that persists across possible changes in service
interface and resource address. Also, since some resources may in fact possess mul-
tiple resource addresses, a resource’s identity may be used to determine whether or
not two different endpoint addresses point to the same resource.

The Web Services Policy Framework (WS-Policy) [3, 7, 4] is a constellation of
specifications that partially support autonomic resources’ needs for communicating
policies. It is primarily an envelope specification, leaving the detailed expression of
a policy’s content for definition elsewhere.

Web Services Agreement (WS-Agreement) [2] provides the necessary generic
support for agreements between autonomic resources, including expression of terms
regarding levels of service to be supplied and the conditions under which the agree-
ment applies. It focuses on the outer or envelope format of an agreement document,
and on the simplest possible mechanisms for agreement creation and management.
It leaves open the detailed content of the agreement’s terms, recognizing that it will
frequently be resource-specific.

WS-Agreement specifies a format for agreement templates, which allow entities
to announce a particular set or class of agreements which they are willing to consider
entering into. Resources may use this feature to express their default agreements and,
more generally, to describe their own collaborative capabilities. It also supports the
expression of the ways in which an agreement may be monitored, and the actions that
are to be taken when the terms of the agreement are violated. These, taken together
with the basic notion of dynamically establishing service commitments at the heart
of WS-Agreement, supply important interfaces to help resources avoid, detect, and
manage conflicts.

1.3.2 Opportunities

There remain several basic requirements of collaborating autonomic resources that
are not obviously met by the Web Service standards reviewed above: describing
their specific capabilities, expressing policy content, describing the services they

Dynamic collaboration in autonomic computing 9

need, supporting resource reservations, and responding to queries about the impact
of hypothetical changes. These represent opportunities for further development of
standardized interfaces.

The notion of capabilities is both extremely important and highly underdeveloped.
The basic approach taken by WSDM, in which a capability is a URI representing a
human-readable description of behavior, seems correct as far as it goes. But clearly,
if resources are to be able to describe their own capabilities in ways that permit
automated matching of service providers with service consumers, something richer
than opaque identifiers would be of great value. There are a number of ongoing
efforts to design interoperable ways of expressing the semantics of Web Services,
including ways of describing hierarchical ontologies of service capabilities [1].

As noted above, WS-Policy leaves the detailed expression of a policy’s content
largely unrestricted. Autonomic computing requires a semantically rich policy lan-
guage that will at least support general “if-then” rules and expression of goals and,
equally importantly, detailed ontologies for naming the entities to which the polices
apply and describing their salient properties.

In order to describe the services that a resource requires (rather than what it pro-
vides), a fairly simple specification should be sufficient. In essence, such a descrip-
tion consists of a list of the interfaces and capabilities that a particular resource ex-
pects to find in its environment. The former would be references to WSDL docu-
ments, and the latter would be capability URIs. It is important to note that this sort
of metadata is required both at design time and at run time; if a system is designed
without accurate knowledge of what its basic run-time requirements will be, it is
small comfort to know that the problem will eventually be detected during operation.

For reservations, WS-Agreement could be used, since a reservation is in fact an
agreement to provide something at a future time. But WS-Agreement by itself does
not descend to the necessary level of detail; additional, reservation-specific content
is required, and must therefore also be standardized.

The final item in our list of unmet requirements, estimating the impact of hypothet-
ical changes, is also the least well-developed of them. The usage scenarios specifi-
cally require that the resources involved do not treat a query as an actual request—
i.e., that the recipient does not actually carry out the request but only describes what
would happen if it were to carry it out—which precludes the use of WS-Agreement.
The description of the hypothetical changes may refer to the interface elements that
would be used in making the change—e.g., the query can take the form, “What
would happen if I were to invoke operation X on you?”, where the operation in ques-
tion is defined in the resource’s WSDL—but no such standard exists at present. A
standardized representation for the consequences of the change, such as the impact
estimates used in the example systems we present in this paper, will also ultimately
be required.

10 CRC Book

1.4 The Unity system

In the next four sections, we will consider two systems that have important auto-
nomic features and at least partially meet the requirements of dynamic collaboration;
for each system we will consider both the current state of the system, and ways in
which it could be enhanced to meet more of the requirements.

The system described in [9, 21] is a prototype autonomic system called Unity that
illustrates some of the features of dynamic collaboration. The resources in the Unity
system dynamically describe, discover and configure themselves, form agreements,
and exchange impact estimates in order to allocate resources in ways likely to enable
the system to meet its goals. Conflicts are avoided either by a centralized utility
calculation, or (in a variant not described in the original paper but covered briefly
below) by simple cooperative utility estimates.

The IT scenario that the Unity system addresses involves resource allocation be-
tween multiple applications. A finite pool of resources must be allocated between
two or more applications, where each application provides some service for which
there is a time-varying level of external demand. The performance of each applica-
tion depends on the demand being placed on it, and the amount of resource allocated
to it.

Each application is governed by agreements, along the lines described in [16],
which specifies the rewards or penalties associated with various possible behaviors
of the system. In the Unity system, agreements are expressed in terms ranging from
application behavior (for instance, transactions per unit time) to real numbers rep-
resenting the utility (the “goodness”) of a particular level of behavior. The overall
success of the system depends on the performance of each application relative to the
governing service level agreement.

The management resources of the system must cooperate in order to optimize the
overall system performance relative to the set of service level agreements in effect.
They do this by discovering resources and forming and maintaining relationships
using defined interfaces. To acheive these goals, they make use of other system re-
sources that, while not directly involved in management themselves, provide services
and capabilities that the management resources require.

Here we will describe the main components of the system as illustrated in fig-
ure 1.1, and briefly describe how it illustrates the principles of dynamic collabora-
tion.

The heart of the Unity system’s runtime discovery is the service registry. Based
in this case on the Virtual Organization Registry defined in [18], its function is anal-
ogous to “Yellow Pages” registries in multi-agent systems (see for instance [12]),
and very similar to registries based on Ws-ServiceGroup as described above (that
specification was not available at the time the system was originally planned).

When each resource in the system comes up, it is provided with little initial con-
figuration information beyond the specific task it is to perform and the address of the
service registry. Each resource both registers its own capabilities with the registry,

Dynamic collaboration in autonomic computing 11

Demand Demand

. . .

Servers

Arbiter

Application
Manager

Service
Registry

Application
Manager

Solution
Manager

Policy
Repository

Cluster

Sentinel

FIGURE 1.1
An abstract schematic of the Unity system. The arbiter component resolves con-
flicting resource requirements among the application managers, as described in
the text. The solution manager uses the sentinel to monitor and heal failures in
the cluster of policy repositories. All components access the service registry and
policy repository (interaction arrows not shown to avoid clutter), as described
in the text.

12 CRC Book

and queries the registry to find the addresses of the other resourcess from which it
will fetch further information (such as policies) and with which it will form agree-
ments to accomplish its goals.

The syntax and semantics of registry information and queries are very simple:
each resource creates an entry in the registry containing its address (in the form of
a web services endpoint reference), and one or more capability names. Capability
names in this system are simple atomic strings, similar to the capability URIs used
in the MUWS specifications.

This scheme differs from that used in UDDI tModels [22], in that no hierarchy
is represented directly. If one capability is logically a specialization of another, any
resource offering the more specialized capability must explicitly register as providing
both the more specialized capability and the more general one. This is also the
approach taken in [28, 29].

To query the registry, a resource supplies a capability name, and the registry re-
turns a list of addresses of all the resources that have registered as providing that
capability. There is an implicit correspondance between capability names and ser-
vice interfaces: any resource registering itself as having a particular capability is re-
sponsible for implementing the corresponding interface. The registry also provides
a notification mechanism, by which resources can sign up to be informed when new
resources register themselves as providing particular capabilities.

Each application in Unity is represented by an application manager resource,
which is responsible for the management of the application, for obtaining the re-
sources that the application needs to meet its goals, and for communicating with
other resources on matters relevant to the management of the application. In order
to obtain the services that it needs, each application manager consults the registry to
find resources that have registered as being able to supply those services.

In the system as implemented, the services in question are provided by individ-
ual server resources. Each server registers itself as a server with the registry. The
management resource that allocates servers to applications is the arbiter. It regis-
ters itself as able to supply servers, so the application managers can find it. It then
consults the registry to determine which servers are available to be allocated. The
underlying design scales easily to multiple heterogenous server pools managed by
multiple arbiters and distinguished by the capability names that each type of server
exposes and each arbiter queries the registry for.

Another important component of the system is the policy repository, which holds
the service level agreements governing the desired behavior of the system, and other
system configuration information. All resources in the system, including the man-
agement resources, obtain the address of the policy repository from the registry, and
contact it to obtain the policies that apply to them and to subscribe to changes to
those policies.

Policies are scoped according to a flat scheme similar to that used to name capa-
bilities in the registry: each resource belongs to a scope that corresponds to the task
it is performing, and each policy in the repository belongs to one or more scopes.
The policy repository is the primary channel through which human administrators
control the system.

Dynamic collaboration in autonomic computing 13

The ubiquitous use of the registry and the policy repository enables the system to
self-assemble at runtime, without requiring manual configuration but still according
to human constraints as expressed in the system policies.

In operation, the arbiter is responsible for managing the resource pool, by con-
trolling which resources are assigned to which application. It does this by obtaining
from each application manager an estimate, in terms of utilities as determined by the
service level agreements, of the impact of various possible allocations, and calculat-
ing an optimum (or expected optimum) allocation of the available resources. It is a
key responsibility of each application manager to be able to predict how an increase
or decrease in the resources allocated to the application would impact its ability to
meet its goals.

The arbiter is not concerned with how the individual application managers make
their predictions. It simply uses the results of the predictions to allocate resources.
Conversely, the individual application managers do not need to know anything about
the activities of the other applications. They need only use their local knowledge of
conditions within the application, and their local models of probable future behavior,
to make the most accurate predictions they can.

As well as allowing for dynamic reaction to changes at operation time, the compar-
atively loose and dynamic collaborative management enabled by the service registry,
the policy repository, and the direct expression of utilities also has advantages in
terms of adding new features and functions. These advantages are illustrated by two
additions that were made to the system. In the first (described in more detail in [9]),
a sentinel resource was added to the system. The sentinel can be asked to monitor
other resources for liveness and report when a monitored resource stops responding.
A solution manager resource was also added, responsible for increasing the reliable
operation of the infrastructure as a whole (rather than the utility of the applications);
it locates a sentinel via the registry, and enlists it to monitor for failures in any mem-
ber of a cluster of policy repositries. When notified of a failure by the sentinel, the
solution manager starts a new replacement instance of the policy repository to re-
place the failed one. Adding these features to the system required no changes to the
existing resources, which continued to bind and operate as they had before.

The second modification involved giving the application managers the ability to
communicate with each other directly about the hypothetical utilities of various
server allocations, and to allocate resources properly in the absence of a functioning
arbiter. Again the organization of the system as dynamically-bound services allowed
us to make this change without fundamentally rearchitecting the existing system.

1.5 Improving the Unity system

The Unity system was designed to explore many of the requirements of dynamic
collaboration for autonomic computing, but as implemented it does not include all

14 CRC Book

of the requirements listed in section 1.2. It does not implement significant inter-
component security, for instance, or default agreements, both of which would have
obvious advantages for the system.

Perhaps the most significant feature that it does not explore is rich service level
agreements between resources in the system. The most expressive service level
agreements in Unity are logically outward-facing, concerned with the rewards and
penalties that accrue to the system as a whole with the behavior of the applica-
tions. The agreements between the Unity resources are represented as simple, named
atomic relationships, without the internal structure of a service level agreement. In-
creasing the richness of the inter-resource agreements by adding structured and pa-
rameterized agreement terms and utilities (rewards and penalties), based on explicit
quality of service measures, would allow the resources of the system to make better-
informed decisions about both their internal operations and their dynamically chang-
ing relationships.

Similarly, the polices and agreements governing the behavior of the solution man-
ager are extremely simple; the human administrator must specify relatively low-level
details such as the number of replicated copies of the policy repository that should be
present in the system. As described in [10], we have designed modifications to the
system that would allow the administrator to specify policies in higher-level terms
(such as effective availability), and automatically derive the more detailed policies
from those. The general problem of deriving detailed IT polices from higher-level
business policies is one of the major challenges of autonomic computing.

1.6 Node group manager and provisioning manager

The second example we will consider, illustrated in Fig. 1.2, is described more
fully in [8]. It consists mainly of two management resources, each with some au-
tonomic characteristics, which collaborate to achieve a level of overall system self-
management. While this system as implemented contains fewer dynamic collabo-
ration features than the Unity system, it has the advantage of being based on com-
mercially available management software used in real data centers rather than on re-
search prototypes. After describing the system as it exists, we will consider how the
emerging manageability standards could be used to increase the level of dynamism
it exhibits.

The first manager in this system, a node group manager implemented in a middle-
ware application server, uses modeling and optimization algorithms to allocate server
processes and individual requests among a set of server machines (“nodes”) grouped
into node groups. It also estimates its ability to fulfill its service-level objectives as a
function of the number of nodes potentially available to each node group. †

†The node group manager in question is a version of WebSphere Extended Deployment, and the provi-

Dynamic collaboration in autonomic computing 15

Inbound
gateway

Node 1

Node N

Placement Controller

Provisioning manager

OAOA OA

B

C

D

Node group manager

A

E

FIGURE 1.2
Overall system structure (described in detail in the text). Incoming requests
(A) are queued by the gateway, and dispatched (B) to application servers when
resources are available to service them. On a longer timescale, the Placement
Controller (C) determines which application servers should run in which nodes.
In the longest timescale, the provisioning manager determines (D) which nodes
to assign to which node groups by consulting its objective analyzers, which re-
ceive estimates (E) from the node group manager (for simplicity only one node
group is shown here).

16 CRC Book

All of the nodes in a given node group share a set of properties, such as installed
operating system, network connectivity, support libraries, and so on. The node group
manager is responsible for directing and balancing the traffic within each node group,
and for allocating server processes to the nodes within the group, but it is not able
to carry out the provisioning actions necessary to move nodes from one node group
to another. Additionally, the node group manager has only a local view of the set of
node groups for which it is responsible. It cannot make higher-level decisions about
the allocation of nodes between the demands of its own node groups and those of
other processes in the larger data center.

The second manager in the system, a provisioning manager, implements another
layer of management above the node group manager. It has the knowledge necessary
to move nodes from one node group to another through potentially time-consuming
provisioning actions, and it can balance the competing demands of multiple man-
agers operating at the level of the node group manager. These may be instances of
the node group manager, or of other managers that can provide the required perfor-
mance estimates. On the other hand, the provisioning manager does not have the
node group manager’s real-time knowledge of the traffic within each node group.

The two management layers are thus complementary. The two managers perform a
very basic form of “collaboration”, in that the estimates produced by the node group
manager allow the provisioning manager to more effectively allocate the resources
that it provisions, and the actions of the provisioning manager give the node group
manager more servers to work with.

The provisioning manager utilizes plugins called “objective analyzers” (OA) to
determine the utilization of the various systems it is managing. In operation, the
provisioning manager periodically queries the node group managers and each of the
other managers at the same level, using the objective analyzers to convert the infor-
mation from those managers into a form that the provisioning manager understands
and can compare across the managers. Specifically, from each of those managers, the
provisioning manager requests data estimating, for each potential level of resources
that might be allocated to the manager’s application, the probability that that the ap-
plication’s service level agreement will be breached if the application is given that
level of resources.

This is analogous to the information provided by the application managers to the
arbiter in the Unity system described above, except that it is expressed in terms of
probabilities of service level agreement breach rather than in terms of resulting util-
ities. This is a small but interesting difference. In Unity, the application managers,
rather than the arbiter, are aware of the actual agreements in effect. Since each appli-
cation manager is aware in more detail of the behavior of its application, service level
agreements evaluated by application managers can potentially reflect knowledge of
detailed application behavior that is not normally accessible to a central arbiter. On
the other hand, if the central arbiter is aware of individual service level agreements,
it can potentially make richer tradeoffs among them. We are currently experimenting

sioning manager is a version of IBM Tivoli Intelligent Orchestrator.

Dynamic collaboration in autonomic computing 17

with variants of this system to explore the practical effects of where this information
is maintained.

The system described in this section displays dynamic self-management at opera-
tion time. In the next section, we will outline how other aspects of the system, such
as discovery and binding, could be made similarly dynamic.

1.7 Improving the node group and provisioning managers

In light of the discussion in Section 1.3, it is instructive to consider an idealized
version of the node group and provisioning manager discussed in Section 1.6. How
might a future version of that system make fuller use of the architecture of dynamic
collaboration and the emerging Web Services standards, and what advantages would
that future version offer over today’s?

1.7.1 Discovery

One of the most obvious advantages of widespread adoption of the WS-Addressing
and MUWS standards will be the enablement of dynamic binding. In the current
system, the provisioning manager must be manually configured with information
about the node group manager. It must be told where the node group manager is,
what the nodes in the system are, and what the initial node allocation is. Dynamic
binding and discovery would enable the provisioning manager to simply detect these
properties of the system, and configure itself appropriately.

Therefore, the provisioning manager would be notified of the arrival of the node
group manager by a service registry. The registry would be WS-ServiceGroup based,
and would use WS-Notification to alert interested parties about changes to the reg-
istry membership. This would enable the system to configure itself automatically in
terms of the binding between the managers, eliminating an unnecessary manual step.
It would also allow other system resources, not designed to work with these specific
products, to take part in the system, either as a replacement for one of the managers,
or as third parties taking advantage of the information in other ways. One simple
example of this is a system visualization tool that would present the content of the
registry to a human administrator.

1.7.2 Negotiation and binding

When the provisioning manager receives notification from the registry that a new
node group manager has entered the system, the provisioning manager would then
contact the node group manager to determine whether or not to enter into a manage-
ment agreement with it. The node group manager would expose agreement templates
conforming to the WS-Agreement specification that describe the kinds of agreements

18 CRC Book

into which it is willing and able to enter.
WS-Agreement also provides a simple way for the provisioning manager to pro-

pose an agreement, and for the node group manager to respond. How the two man-
agers determine internally whether or not to collaborate is of course outside the scope
of WS-Agreement. The content of the agreement indicates that the node group man-
ager will provide the provisioning manager with breach probability estimates, and
the provisioning manager will in turn control the set of servers with which the node
group manager works. WS-Agreement does not specify a content language in which
to express this. Further standardization work is required to establish the detailed
discipline-specific conventions required here.

There are several reasons why the provisioning manager and the node group man-
ager might decide not to enter into a management agreement. The node group man-
ager might already have entered such an agreement with an alternate provisioning
manager. Or, the provisioning manager might not be able to manage the type of
nodes that the node group manager needs. For the purposes of our scenario, how-
ever, we assume that they do enter into a management agreement.

1.7.3 Data gathering

At this point, the provisioning manager and the new node group manager are bound
together. They have a management agreement in place that permits the provisioning
manager to make allocation changes to the nodes used by the node group manager.
Now the two managers must proceed to actually manage the overall system.

In the current implementation, the provisioning manager polls the node group
manager periodically, requesting information concerning the current performance of
the node group manager’s overall system. In the future system, the node group man-
ager could make these performance statistics available via WS-ResourceProperties,
and the provisioning manager would subscribe via WS-Notification to receive up-
dates when these statistics change.

When the provisioning manager decides to change the allocation of the nodes un-
der the control of the node group manager, it would then tell the node group manager
to start or stop using a set of nodes. During the formation of the initial agreement,
the provisioning manager would have examined the node group manager’s manage-
ability characteristics, as specified by the MUWS standard, to ensure that it has the
interfaces corresponding to those operations. Here again, the MUWS standard tells
us how to expose and access information about manageability characteristics, but it
does not give us a specific URI corresponding to the interface that we need. Futher
standardization work is required at the discipline level to establish a convention here.

The case where the provisioning manager decides to remove nodes is illuminating.
In this case, it would be helpful for the provisioning manager and the node group
manager to collaborate on the decision as to which nodes to remove. In the current
implementation, for instance, it is often the case that certain nodes under the control
of the node group manager require less effort to remove than other nodes. A more
detailed exchange of information about the expected impacts of various possible
changes would allow the system as a whole to optimize itself even more effectively.

Dynamic collaboration in autonomic computing 19

Again, any of the interactions described here could be implemented via ad hoc and
non-standard languages and protocols. But by using open interoperability standards
such as the Web Services standards, resources from different vendors can be used
easily, programs that were not specifically designed to work together can collaborate,
and new functions not originally anticipated can be composed from existing building
blocks.

1.8 Conclusions

While neither system described in this paper is fully self-managing, both support
the central thesis: dynamic collaboration is an essential ingredient of system self-
management. In the Unity datacenter prototype, system components register them-
selves (along with a very simple description of their capabilities) to a registry, en-
abling components to find the services they need. A very simple form of negotiation
ensues, resulting in an agreement that forms the basis for a relationship that persists
until it is no longer required. Even the relatively rudimentary mechanisms for dis-
covery, resource description, negotiation and agreement make it possible for Unity
to assemble itself and exhibit a type of self-healing. Experience with the second
system shows that, by adding a thin layer of collaborative capability to two com-
mercially available components that were not originally designed to work together,
the resulting system can do an effective job of coordinating optimization of system
resources at two levels of granularity.

Thus an encouraging lesson can be drawn from experimental observations of the
two systems: a modest degree of system-level self-management can be achieved
without fully observing all of the requirements listed in section 1.2. This suggests
that, although many challenges remain, good progress towards the ultimate vision of
autonomic computing can be made long before all of those challenges are met.

Moreover, this paper’s analysis of the strengths and shortcomings of the two exper-
imental systems and the existing body of standards suggests several useful avenues
for further work in standards and technology that would bring about a greater degree
of system self-management. Many of these center around improving the richness of
the dynamic interactions among self-managing resources. Both systems employed
very simplistic methods for describing resource needs and capabilities, consisting of
a flat mapping between URIs and human-readable descriptions of capabilities and
requirements. This very simple language supported some degree of flexibility, such
as the ability to add new types of system components without changing the exist-
ing ones. Yet it seems likely that richer semantics, accompanied by correspondingly
more sophisticated reasoning algorithms, would enable better, more flexible match-
ing between needs and capabilities, and would also form a basis for much more
sophisticated forms of negotiation and agreement among resources. Indeed, the ne-
gotiation and agreement employed in both systems was quite rudimentary. As sug-

20 CRC Book

gested in section 1.5, increasing the richness of the description of agreements from a
simple named atomic relationship to a full-fledged WS-Agreement document would
be a tremendous step forward. However, even this would not provide the ultimate
solution, as the standards and technologies required to support negotiation of such
agreements do not yet exist.

As a final observation, the standards mentioned here, and related standards too
numerous to list, are helpful in improving interoperability and in supporting a degree
of dynamic collaboration. Yet, quite generally, they fall short of what is required
in the long term because many of them are essentially envelope or data-container
standards. In other words, given a description of an interface, a capability, a possible
agreement, or an event description, they tell one how to communicate that description
in a self-defining way. Much more work is needed to pin down exactly how to
represent capabilities—for example, the fact that a given node group manager is able
to produce a particular sort of breach probability estimate, or that a particular router is
able to handle a specific packet throughput—in ways that fit within these envelopes.
Unifying existing discipline and resource-specific standards with the relevant Web
Services standards, and devising new ones where they are needed, will be among the
most important drivers of further progress in autonomic computing.

1.9 References

[1] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, and
K. Verma. Web service semantics — WSDL-S. Technical report, A joint
UGA-IBM Technical Note, April 2005.

[2] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey,
Heiko Ludwig, Jim Pruyne, John Rofrano, Steve Tuecke,
and Ming Xu. Web Services Agreement Specification (WS-
Agreement). http://www.ggf.org/Meetings/GGF12/Documents/WS-
AgreementSpecification.pdf, 2004.

[3] Siddharth Bajaj, Don Box, Dave Chappell, Francisco Curbera, Glen
Daniels, Phillip Hallam-Baker, Maryann Hondo, Chris Kaler, Dave Lang-
worthy, Ashok Malhotra, Anthony Nadalin, Nataraj Nagaratnam, Mark
Nottingham, Hemma Prafullchandra, Claus von Riegen, Jeffrey Schlim-
mer, Chris Sharp, and John Shewchuk. Web services policy framework
(WS-Policy). ftp://www6.software.ibm.com/software/developer/library/ws-
policy.pdf, 2004.

[4] Siddharth Bajaj, Don Box, Dave Chappell, Francisco Curbera, Glen Daniels,
Phillip Hallam-Baker, Maryann Hondo, Chris Kaler, Ashok Malhotra, Hiroshi
Maruyama, Anthony Nadalin, Mark Nottingham, David Orchard, Hemma
Prafullchandra, Claus von Riegen, Jeffrey Schlimmer, Chris Sharp, and

Dynamic collaboration in autonomic computing 21

John Shewchuk. Web services policy attachment (WS-PolicyAttachments).
ftp://www6.software.ibm.com/software/developer/library/ws-polat.pdf, 2004.

[5] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifier
(URI): Generic syntax. http://www.ietf.org/rfc/rfc3986.txt, 2005.

[6] Don Box, Erik Christensen, Francisco Curbera, Donald Ferguson, Jeffrey
Frey, Marc Hadley, Chris Kaler, David Langworthy, Frank Leymann, Brad
Lovering, Steve Lucco, Steve Millet, Nirmal Mukhi, Mark Nottingham, David
Orchard, John Shewchuk, Eugne Sindambiwe, Tony Storey, Sanjiva Weer-
awarana, and Steve Winkler. Web Services Addressing (WS-Addressing).
http://www.w3.org/Submission/ws-addressing, 2004.

[7] Don Box, Maryann Hondo, Chris Kaler, Hiroshi Maruyama, Anthony
Nadalin, Nataraj Nagaratnam, Paul Patrick Claus von Riegen, and John
Shewchuk. Web services policy assertions language (WS-PolicyAssertions).
ftp://www6.software.ibm.com/software/developer/library/ws-polas.pdf, 2002.

[8] D. Chess, G. Pacifici, M. Spreitzer, M. Steinder, A. Tantawi, and I. Whalley.
Experience with collaborating managers: Node group manager and provision-
ing manager. In Proceedings of the Second International Conference on Auto-
nomic Computing, 2005.

[9] D. Chess, A. Segal, I. Whalley, and S. White. Unity: Experiences with a pro-
totype autonomic computing system. In Proceedings of the First International
Conference on Autonomic Computing, 2004.

[10] David M. Chess, Vibhore Kumar, Alla Segal, and Ian Whalley. Work in
progress: Availability-aware self-configuration in autonomic systems. In Akhil
Sahai and Felix Wu, editors, DSOM, volume 3278 of Lecture Notes in Com-
puter Science, pages 257–258. Springer, 2004.

[11] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 2001.

[12] E.H. Durfee, D.L. Kiskis, and W.P. Birmingham. The agent architecture of
the university of michigan digital library. In IEEE/British Computer Society
Proceedings on Software Engineering (Special Issue on Intelligent Agents),
February 1997.

[13] H. He. What is service-oriented architecture?
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html, 2003.

[14] Jeffrey O. Kephart. Research challenges of autonomic computing. In Pro-
ceedings of the 27th International Conference on Software Engineering, pages
15–22, 2005.

[15] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–52, 2003.

22 CRC Book

[16] A. Leff, J.T. Rayfield, and D. Dias. Meeting service level agreements in a
commercial grid. IEEE Internet Computing, July/August 2003.

[17] Pattie Maes. Concepts and experiments in computational reflection. In OOP-
SLA ’87: Conference proceedings on Object-oriented programming systems,
languages and applications, pages 147–155, New York, NY, USA, 1987. ACM
Press.

[18] J. Nick, I. Foster, C. Kesselman, and S. Tuecke. The physiology of the grid: An
open grid services architecture for distributed systems integration. Technical
report, Open Grid Services Infrastructure WG, Global Grid Forum, June 2002.

[19] Stephen Shankland.

[20] B. Srivastava and J. Koehler. Web service composition — current solutions
and open problems. In ICAPS 2003, 2003.

[21] Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal,
Ian Whalley, Jeffrey O. Kephart, and Steve R. White. A multi-agent systems
approach to autonomic computing. In AAMAS, pages 464–471. IEEE Com-
puter Society, 2004.

[22] Introduction to UDDI: Important features and functional concepts.
http://uddi.org/pubs/uddi-tech-wp.pdf, 2004.

[23] W3C Web Services Architecture Working Group. Web services architecture.
http://www.w3.org/TR/ws-arch/, 2004.

[24] Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jef-
frey O. Kephart. An architectural approach to autonomic computing. In First
International Conference on Autonomic Computing, 2004.

[25] Web Services Resource Metadata 1.0 (WS-ResourceMetadataDescriptor).
http://www.oasis-open.org/committees/download.php/9758/wsrf-WS-
ResourceMetadataDescriptor-1.0-draft-01.PDF, 2004.

[26] Web Services Security: SOAP Message Security 1.0 (WS-Security 2004).
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0.pdf, 2004.

[27] Web Services Distributed Management: Management of Web Services
(WSDM-MOWS) 1.0. http://docs.oasis-open.org/wsdm/2004/12/wsdm-
mows-1.0.pdf, 2005.

[28] Web Services Distributed Management: Management Using Web Services
(MUWS 1.0) Part 1. http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-
part1-1.0.pdf, 2005.

[29] Web Services Distributed Management: Management Using Web Services
(MUWS 1.0) Part 2. http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-
part2-1.0.pdf, 2005.

Dynamic collaboration in autonomic computing 23

[30] Web Services Base Notification 1.3 (WS-BaseNotification). http://www.oasis-
open.org/committees/download.php/13488/wsn-ws-base notification-1.3-
spec-pr-01.pdf, 2005.

[31] Web Services Brokered Notification 1.3 (WS-BrokeredNotification).
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-
brokered notification-1.3-spec-pr-01.pdf, 2005.

[32] Web Services Topics 1.2 (WS-Topics). http://docs.oasis-
open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-01.pdf, 2004.

[33] Web Services Base Faults 1.2 WS-BaseFaults). http://docs.oasis-
open.org/wsrf/wsrf-ws base faults-1.2-spec-pr-02.pdf, 2005.

[34] Web Services Resource 1.2 (WS-Resource). http://docs.oasis-
open.org/wsrf/wsrf-ws resource-1.2-spec-pr-02.pdf, 2005.

[35] Web Services Resource Lifetime 1.2 (WS-ResourceLifetime).
http://docs.oasis-open.org/wsrf/wsrf-ws resource lifetime-1.2-spec-pr-02.pdf,
2005.

[36] Web Services Resource Properties 1.2 (WS-ResourceProperties).
http://docs.oasis-open.org/wsrf/wsrf-ws resource properties-1.2-spec-pr-
02.pdf, 2005.

[37] Web Services Service Group 1.2 (WS-ServiceGroup). http://docs.oasis-
open.org/wsrf/wsrf-ws service group-1.2-spec-pr-02.pdf, 2005.

