
RC23768 (W0511-013) November 2, 2005
Computer Science

IBM Research Report

Augmentation-Based Learning:
Combining Observations and User Edits for

Programming-by-Demonstration

Daniel Oblinger, Vittorio Castelli, Lawrence Bergman
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Augmentation-Based Learning

Combining Observations and User Edits for Programming-by-Demonstration

Daniel Oblinger
∗

University Of Maryland
A.V. Williams Building

College Park, MD 20742

oblio@pobox.com

Vittorio Castelli IBM T.J.
Watson Res. Ctr

P.O. Box 218
Yorktown Heights, NY 10598

vittorio@us.ibm.com

Lawrence Bergman IBM
T.J. Watson Res. Ctr

19 Skyline Drive
Hawthorne, NY 10532

bergmanl@us.ibm.com

ABSTRACT
In this paper we introduce a new approach to Programming-
by-Demonstration in which the user is allowed to explicitly
edit the procedure model produced by the learning algo-
rithm while demonstrating the task. We describe a new al-
gorithm, Augmentation-Based Learning, that supports this
approach by considering both demonstrations and edits as
constraints on the hypothesis space, and resolving conflicts
in favor of edits.

1. INTRODUCTION
Programming-by-demonstration (PBD) is a technique for

rapidly specifying program operations and logic through the
use of demonstration examples. It is generally considered to
be a more intuitive and simpler form of specification than
traditional programming. The downside of PBD is that the
programmer has reduced control over the program content.
In traditional programming, the programmer explicitly spec-
ifies the objects and operations on them. When using a
PBD system, on the other hand, an author typically spec-
ifies classes of objects implicitly by providing one or more
instances of the class, and infers operations or program con-
trol flow from a small set of examples. Typically, learning
algorithms are employed to infer user intent. It is impossi-
ble for such algorithms to make correct guesses in all cases,
particularly with the small set of examples used in PBD.

PBD systems deal with this serious shortcoming in sev-
eral ways. First, they may allow the user to explicitly specify
semantics either during or after the demonstration, for ex-
ample, by presenting the user with a set of hypotheses from
which to select the one most appropriate to each particular
situation, as, for example, in Metamouse [4, Chapter 7] or
SmartEdit [8].

∗This work was done while the author was working at IBM
TJ Watson.

Another possibility is manual editing of the program rep-
resentation, or procedure model, produced by the PBD sys-
tem. PBD systems typically produce a textual or graphi-
cal representation of the program. Some PBD systems, like
Chimera [4, Chapter12] allow the author to edit the program
representation as a post-processing step. The main appeals
of editing over other forms of interaction with a PBD learn-
ing algorithm described in Section 4 are that the burden
imposed on the user is smaller and that the control of the
user over the learning algorithm is more direct, comprehen-
sive, and precise than for all other forms of feedback.

Editing can be used to exert control over program content
for a variety of reasons. First, it is common to have spurious
actions in the demonstration that need to removed from the
model. Second, the demonstration may contain a step that
is not sufficiently general and that needs to be replaced. For
example, the initial demonstration might have used a short-
cut button that is not available to all application users. In
this case, replacing the shortcut with a more generic navi-
gation sequence makes the procedure more generally usable.
Third, a portion of a procedure may have been demonstrated
out-of-sequence, for example, the author may prematurely
demonstrate some part of a procedure, and rather than start
over, simply demonstrate the missing steps, and then reorder
those steps later. Fourth, in some cases, the learning algo-
rithm will produce an overly complex model that the user
can readily simplify. Fifth, the author may edit the proce-
dure model to alter its structure, for example, to move an
action out of a conditional. Finally, portions of a procedure
may become out-of-date due to changes in the application
interface. In this case, those portions may need to be re-
placed by updated sequences. Desirable editing operations
include deleting, duplicating, and moving sets of steps; re-
placing steps with additional demonstrations; and altering
the semantics of individual steps (e.g., changing the argu-
ments of a conditional).

The ability to interleave editing operations with procedure
demonstrations is a powerful combination, since these two
mechanisms provide complementary capabilities. However,
interleaving editing with by-demonstration programming is
problematic. A serious difficulty arises because an edited
procedure representation and the demonstrations recorded
before that edit need not be compatible. When additional
demonstrations are received after editing, it is not clear how
to ensure that the edits are retained, while incorporating
new inputs. We note that this problem is very similar to
the round-trip problem in model-based program develop-

ment [11]. Without solving the round-trip problem, edits
to the output of an automated process will be lost the next
time that process is re-run.

Our solution is a novel incremental learning algorithm,
Augmentation-Based Learning (ABL), whose hypothesis sp-
ace is the transitive closure of a set of functions (called aug-
mentations) given the existing procedure structure. Thus,
when users edit the procedure, they also impose a constraint
on the hypothesis space of the learner. Consequently, our so-
lution allows interleaving of both types of input and ensures
that manual user edits are always respected by subsequent
updates of the procedure caused by new observations..

The rest of the paper is organized as follows: Section 2
contains a formal characterization of ABL. Section 3 ex-
plores two typical use cases for interleaved demonstration
and editing, and is followed by a discussion and conclusions.

2. AUGMENTATION-BASED LEARNING

2.1 Overview
This section is divided in two main parts. In the first, we

formally describe the data obtained from procedure demon-
stration as particular types of sequences, and then define the
notion of aligning these sequences with a procedure’s struc-
ture. In the second part we describe the Augmentation-
Based Learning (ABL) algorithm itself.

ABL is unique among incremental learning algorithms in
two ways: (1) When presented with a sequence of new train-
ing samples, the learning algorithm produces a new proce-
dure structure that is the transitive closure of a set of struc-
ture manipulation functions, called augmentations, given the
previous procedure structure. As a consequence, a user that
manually edits a procedure is actually editing the hypoth-
esis space considered by the learning algorithm (this is our
solution to the round trip problem). (2) ABL updates proce-
dure structures by selecting from a flexible class of procedure
transformation operators called augmentations. These allow
for many complex transformation like rolling up a repeating
sequence into a loop, or reorganizing linear steps into a flow
with embedded conditionals. At the same time augmenta-
tions are restricted so that an execution sequence consistent
with a procedure will remain consistent with all augmen-
tations of that procedure. This ensures that the learning
algorithm’s restructurings do not undo paths introduce ei-
ther by editing or by earlier demonstrations.

2.2 Preliminaries

Procedure model and procedure demonstrations
ABL represents a procedure as a decorated graph (S ,E ,P).
A procedure step s ∈ S is a pair (n, α), where n is a node
in the graph and α, the action skeleton, is a generalized,
parameterized, and variabilized action that, evaluated in a
particular context, yields a completely specified, executable
action. Depending on the context, a step produces actions
that differ at most by the actual values of parameters. Dif-
ferent procedure steps are in general allowed to yield iden-
tical actions. A directed edge e ∈ E represent sequential
ordering of two steps. Each edge in E has an associated
predicate p ∈ P that is evaluated during playback and de-
notes whether the edge can be followed. Whenever a node
has a single outgoing edge, the associated predicate is always
true. If there is more than one outgoing edge, one and only

one of the associated predicates must evaluate to true for
any context.

We call procedure structure or uninstantiated procedure a
directed graph (N , E) where each node n ∈ N are associ-
ated with a steps, and the edges E do not have associated
predicates. We say that a procedure model is an instantiated
version of its procedure structure.

Inducing a procedure model involves identifying a proce-
dure structure, constructing a step for each node, and infer-
ring the predicates associated with the edges. Models are
induced from collections (called training sets and denoted
by T) of procedure demonstrations. A procedure demonstra-
tion, or trace t, is a sequence of state-action pairs (SAPs)
(x1,y1), . . . , (xn,yn) observed while a user performed the
task. A trace could be the recording of a complete or of a
partial demonstration of the task. A subtrace is any con-
tiguous subsequence of a trace. A state x is a representation
of the content of the GUI just prior to the execution of the
action. The content of the GUI is summarized by extract-
ing from each widgets the values of the attributes that can
change as a result of interactions between the user and the
application. A state and can also contain information oth-
erwise known to the user, such as the user name. An action
y is a representation of a user’s interaction with one or more
applications, and must be specified to a detail sufficient to
support automated execution.

The the state is used during induction to provide the con-
text for the induction and evaluation of edge predicates,
and during playback to provide the bulk of the context used
to instantiate an executable action y from an action skele-
ton α. For example, the action skeleton Select the first

item in the ‘Package Explorer’ list is instantiated to
Select project1 when the state information shows that the
first item in the list is called ‘project1’. Additional informa-
tion in this context is obtained during run time from previ-
ous states and actions. Consider, for example, a procedure
to configure in Eclipse a project selected by the user: action
skeleta would contain the name of the project as a variable,
and during execution actions are instantiated by substitut-
ing the variable with the actual name of the project.

Before talking about induction, we need two definitions:

Definition 1. The alignment of a subtrace (x1,y1), . . . ,

(xn,yn) with a sequence of nodes n1, . . . ,nn in (N , E) is a
one-to-one correspondence that maps (xi,yi) to ni. We say
that the subtrace is aligned with the path, or, more simply,
with the procedure structure.

Therefore an alignment is just a labeling of the SAPs in a
trace that uses steps as labels. Some alignments are mean-
ingful, namely, they make the sequence of SAPs correspond
to a sequence of steps that could have generated the ob-
served actions. This idea is captured by the definition of
consistency.

Definition 2. A subtrace (x1,y1), . . . , (xn,yn) is con-

sistent with a model if
• the subtrace is aligned to a sequence of nodes n1, . . . , nn,

where ni corresponds to step si;

• Sequentially instantiating the action skeleta α1, . . . , αn

(where αi is the action skeleton of si) using the states
x1, . . . , xn yields the sequence of actions y1, . . . ,yn;

• there is a directed edge from ni−1 to ni and the associated
predicate pi is true when evaluated using xi;

• if the (x1,y1) is the first SAP in a full procedure demon-
stration, s1 must be an initial step, namely, a step with-
out incoming edges.

We say that a model is consistent with a collection of sub-
traces if each subtrace is consistent with the model.

We introduce the generalization problem as the problem of
inducing a procedure model given a procedure structure and
an alignment of the training data to that structure. We need
a bit of notation to discuss solutions to the generalization
problem. For each node n ∈ N , let E(n) ⊆ E be the set of
outgoing edges, let N (n) be the corresponding destination
nodes, and let P(n) ⊆ P be the corresponding predicates.
For example:

��
��

n

��
��

��
��

��
��

�
�

�
�

�	

@
@

@
@
@R?

p1 p2p3

n1 n2 n3

In the picture, N (n) = {n1,n2,n3} and P(n) = {p1, p2, p3}.
We now propose a sufficient characterization to solutions

to the generalization problem.

Proposition 1. Solution to the generalization prob-

lem. A procedure model (S ,E ,P) is a solution to the gen-
eralization problem if it satisfies the following conditions:

a. each step in S is induced using only SAPs aligned with
the corresponding node;

b. consider the collection {(SAP 1
i , SAP 2

i)} = T(n) of
length-2 subtraces where SAP 1

i aligned with node n and
SAP 2

i with a node in N (n). The predicates in P(n) are
induced using only the states from SAP 2

i ∈ T(n).

c. the model (S ,E ,P) is consistent with all the traces in T.

In simple terms, first induce each step using the aligned
SAPs. Then induce the predicates using the SAPs aligned
with the destination nodes. If the resulting procedure is
consistent with the traces, it is a solution to the problem.
Therefore, if a procedure structure and a good alignment is
provided, the problem of constructing a procedure model is
reduced to that of instantiating steps and inferring predi-
cates. Many existing PBD systems solve only the general-
ization problem, and the user must provide, either directly
(e.g., by labeling action) or indirectly (via feedback mecha-
nisms), the structure and the alignment.

An important contribution of this work is the ability to
learn from multiple demonstrations where the alignment be-
tween the steps of the demonstrations is not given. When
the alignment is not given, the learning algorithm must build
a procedure structure using a collection of traces and align
these traces to the procedure structure before solving the
generalization problem. We call this the alignment problem.
Clearly, solving the alignment problem alone does not yield
a procedure model, and the learner must solve the combined
alignment and generalization problem. We now define suf-
ficient properties of a solution to the combined alignment
and the generalization problem.

Proposition 2. Solution to the combined alignment

and generalization problem. Given a training set T, a
solution to the alignment and generalization problem consists
of a procedure model (S ,E ,P) with structure (N , E), and of
an alignment of the training set to the structure, such that
a. each SAP in T is aligned with one and only one node in

N ; therefore, the alignment is deterministic;

b. for each node in N there is at least one aligned SAP in
T; hence, data is available to instantiate each step;

c. for each edge ei,j (from ni to nj) there must be at least
two SAPs, sapt and sapt+1 immediately following SAPt,
in a trace of T such that sapt is aligned with ni and
sapt+1 is aligned with nj ; thus, data is available to infer
predicate pi,j ;

d. the model (S ,E ,P) is consistent with all the traces in T.

As described in Section 4, many existing PBD systems
solve constrained versions of the combined alignment-and-
generalization problem, by restricting the class of produced
procedure structures, for example, by restricting attention
to sequence of steps with embedded fixed-length loops, or
to procedures consisting of an outer loop with a known or
unknown number of steps. The Sheepdog system [6] uses
the SimIOHMM learning algorithm [12], which solves the
general combined alignment-and-generalization problem.

In the next section we describe an incremental learning al-
gorithms that solves the combined alignment-generalization
problem and additionally accommodates the interleaved user-
editing operations described in the introduction.

2.3 The ABL Algorithm

Editing Operations
A distinguishing characteristic of ABL is the ability to ac-
cept user edits intermixed with actual demonstrations. We
formally define an editing operation as follows.

Definition 3. An editing operation is a manual trans-
formation of a procedure structure (N , E) into a different

procedure structure (N
′

, E
′

) consisting of adding, copying,
or deleting nodes and edges.

User edits are not constrained to be consistent with pre-
existing demonstrations (think of reversing the order of two
steps: the resulting model is inconsistent with the data used
to create the original model). Therefore, a learning algo-
rithm that derives procedure structure from demonstrated
sequences might inadvertently “undo” user edits (in this ex-
ample, the learning algorithm would try to restore the initial
ordering of the steps). In other words, user edits and demon-
strations impose constraints on the structure of a procedure
model that are potentially in conflict with each other. We
resolve conflicts by requiring that user edits take precedence
over pre-existing demonstrations.

Before talking about the solution to the alignment and
generalization problem with the edits, we need to provide a
few definitions. First, by convention we define that SAPs
aligned with a node before an editing operation are also
aligned with the same node after the editing operation. When
a copy operation on a node occurs, SAPs aligned with the
original node are also aligned with its copy. Let ǫi be the
ith user edit, let Ti be the collection of (complete and par-
tial) traces observed before ǫi, and let Tǫ

i be the collection

of maximal portions of demonstrations in Ti that are con-
sistent with the procedure model produced by ǫi (namely, if
t̃ ∈ Tǫ

i , and t̃ ⊆ t, any subset of t strictly containing t̃ is
not consistent with the model).

We now define sufficient properties of a solution to the
alignment and generalization problem with edits.

Proposition 3. Solution to the alignment and gen-

eralization problem with edits. A procedure model
(S ,E ,P) induced using sequences of SAPs intermixed with
edits ǫ1, . . . , ǫh is a solution to the alignment and general-
ization problem with edits if
a. is consistent with Tǫ

h;

b. is consistent with the training data observed after ǫh.

By requiring consistency with Tǫ
h and not with the entire

part of the dataset observed before ǫh, we ensure that the
learning algorithm does not use the prior demonstration
data to “undo” the user edits.

Augmentations
We do not know of any previous algorithm that solves the
alignment and generalization problem with edits. We have
therefore developed ABL, a real-time incremental learning
algorithm that solves this problem by updating a procedure
model every time a new SAP is observed using an augmen-
tation. An augmentation is a transformation that modifies
the structure of a procedure only through adding nodes an
edges, but not in any other way. It is this restriction, for-
malized in the definition below, that ensures that structures
produced by the learning algorithm will always retain step
transitions previously specified by the user through editing
or demonstration. We say that a SAP is associated with
the augmentation used by the learning when the SAP is
observed.

Definition 4. An augmentation associated to a SAP
σ is a transformation from a procedure structure (N , E) to a

procedure structure (N
′

, E
′

) satisfying N ⊆ N
′

and E ⊆ E
′

.

Hence, the new procedure structure contains all the nodes
and edges of the old structure.

We ask that the SAP σ associated with the augmentation
be aligned with the new structure; we also require that, if
the augmentation yields a new node n, σ be aligned with n.

Since augmentations retain the original procedure struc-
ture embedded in the new procedure structure, we ensure
that editing operations are not lost.

Proposition 4. ABL solves the alignment and gener-
alization problem with edits by incrementally updating the
procedure structure using only augmentations, aligning new
SAPs to existing nodes or to newly created nodes, and solv-
ing the generalization problem.

Consider the model (Sh, Eh,Ph) obtained by applying ǫh.
This model is consistent with Tǫ

h by definition. For each
state-action pair σi observed after ǫh, ABL produces, if pos-
sible, a model that contains all the steps in Sh, all the edges
in Eh, and those predicates that ensure that the demonstra-
tions in Tǫ

h can be aligned with the new model. Additionally,
the new model must contain steps, edges, and predicates
that ensure the alignment of σi.

Procedure Representation
In order to support user edits, the procedure model pro-
duced by ABL must yield a representation that is easily un-
derstood by a human being. We assume that an advanced
user who is willing to manually edit a procedure model is
at least somewhat familiar with a programming or scripting
language, and therefore we require ABL to produce mod-
els that are easily represented as simple programs. For the
purpose of this paper, the language for human-readable pro-
cedure representations is defined by the following grammar:

model := block

block := string blockBody

blockBody := (step | branch | loop | block)+

loop := while predicate block

loop := foreach <item> in collection block

branch := if predicate block

(elseif predicate block)*

[else block]

branch := select-one-path block block*

The actual forms of the predicates and of the steps are de-
scribed in the respective induction sections. <item> is an
identifier, collection is a specification of a collection of ob-
jects in the GUI, and select-one-path is a non-deterministic
operator stating that one of the blocks, but the decision of
which one to execute is left to the user.

This choice of representation affects the set of allowed
augmentations and editing operations. Specifically, we re-
strict editing to the following set of operations: remov-
ing steps, branches, loops, or blocks; cutting-and-pasting
steps, branches, loops, or blocks; copying-and-pasting steps,
branches, loops, or blocks. We also only allow augmenta-
tions belonging to one of the following broad categories:
adding a step at the end of a non-completed block; cre-
ating a branch step; terminating a branch; adding a path to
a branch; creating a loop. It is easy to see that these ma-
nipulations transform a string from the described language
into another string from the same language.

ABL induction of procedure structure
Consider first the case in which no edits are allowed, and
ABL must incrementally solve the combined alignment and
generalization problem. It is often possible to find several
different augmentations of the current model that produce
a new model consistent with both the past observations and
the new observation. It is also possible that no such augmen-
tation exists, and therefore the model becomes inconsistent
with the data.

ABL maintains a collection M of procedure models con-
sistent with the observed demonstrations (hence, the train-
ing traces are aligned with each model) . When a new SAP σ

is observed, ABL updates M, by finding all augmentations
that produce new models consistent with the past observa-
tions and with σ. More specifically, let m be a model in M,
let n0 be its (unique) node aligned with SAP observed before
σ. Given σ, ABL determines the set N (σ) of steps in m that
are consistent with σ, and adds to N (σ) a new node. Then,
for each n ∈ N (σ) ABL identifies the collection Am(n) of
augmentations that would create in m an edge from n0 to
n. Different augmentations have different costs: for exam-
ple, if an edge from n0 to n already exists in m, no change to
the structure of m are needed, and the corresponding “null”
augmentation has small cost. On the other hand, creating a
branching edge from s to a new step has a high cost. Each

augmentation in Am(n) yields both a new model and a new
alignment of the training set. In this alignment, all previous
observations retain their previous alignment with nodes in
m, while the new observation is aligned with n. Given the
alignment produced by an augmentation A, ABL tries to
produce a new model, by inducing steps and inferring pred-
icates. This operation can fail, in which case A is discarded,
or succeed, in which case an instantiation cost is computed
by adding the costs of instantiating individual steps and
predicates (described below). The surviving augmentations
applied to the corresponding models yield a new collection of

models M
′

(σ). Each model in M
′

(σ) has a cumulative cost,
computed as the sum of the instantiation cost and of the
costs of the augmentations used to produce it. The model
with lowest cost is presented to the user. Hence, ABL solves
the alignment and generalization problem by incrementally
producing a variety of procedure structures and of possible
alignments of the data with these structures, and visualiz-
ing the structure and alignment with the smallest cost. In
practice this means that ABL will display a linear sequence
of action steps during a demonstration until the cost of that
sequence is greater than the cost of the alternate structure
with new branching or looping control flow. Thus during
demonstration the system would “rollup” the repetitions of
a loop and present them as different iterations of single loop
once sufficient evidence was presented.

The induction process can be optimized using a Viterbi-
algorithm-like approach. At each point in time, only the
model corresponding to the best augmentation to a destina-
tion step s is is added to M. The other models are retained
but not propagated. If the cost of the current best model
becomes higher than that of one of the models retained in
the past, backtracking is applied to analyze and propagate
this model.

Whenever the user performs an edit ǫ to produce a new
model m̂, ABL discards M and continues the induction with
a new collection M̂ containing only m̂.

ABL induction of steps
Inducing a step means constructing the associated param-
eterized, generalized action α, which can be represented as
a quadruple (y, S,D, t). Here, y is an action type (e.g.,
“uncheck a check box”), S is a set of source widgets, D is a
set of destination widgets, and t is a text entry. Depending
on the type of action, obviously only a subset of the compo-
nents is meaningful. The induction of a step s in a model
m ∈ M is the process of constructing (generalizing) the
relevant elements of the quadruple using the SAPs aligned
with s. Generalization in ABL can be performed with any
generalization grammar described in earlier PBD work. In
this paper we use an approach consistent with a predefined
version space, as described, for example, in [7].

Steps can be variabilized, namely, the collection of source
widgets, the collection of destination widgets, or the string
can be replaced by the learning algorithm with variables
that are resolved at playback. A simple example is the in-
duction of a “foreach” loop, which iterates over a collection
of items; the “foreach” operator iteratively selects an item
from a collection, and the learning algorithm is responsi-
ble for identifying the steps that operate on the currently
selected item, and replace it with a variable.

Steps can also be manually parameterized, namely, the
author can manually indicate that the widgets or the text

entry must be provided by the user (think of selecting a new
password).

The induction algorithm also assigns a cost to the instan-
tiation of a step, which depends on the complexity of the
generalization.

ABL induction of predicates
The predicates of the edges leaving a step s are induced using
data X̃(s) selected as described in Proposition 1. Each state

in X̃(s) is labeled with the corresponding aligned step. This
data is used as input to a decision tree classifier [2], which
is then translated into a disjunction of rules, where a rule is
a conjunction of terms having the form attribute.value ∈
valueSet, where attribute is a specification of a property
of a widget on the screen, and valueSet is a list of strings.
Different terms in a rule use different attributes. The rea-
son for the translation is that the disjunction of rules can
be presented in a easily readable format to the user, while
inspecting a decision tree classifier is typically difficult.

The cost of instantiating a predicate is an increasing func-
tion of the complexity of the resulting disjunction of con-
junctions: a predicate that always evaluates to true has
a smaller cost than a predicate associated with a complex
expression.

3. EXAMPLES
ABL is the learning algorithm of a system called DocWiz-

ards [13], which is used to construct automation and doc-
umentation wizards for applications build on top of the
Eclipse platform. Figure 1 shows an example of the pro-
cedure models that can be induced using ABL, displayed
within the DocWizards user interface. Since we do not know
of any other algorithm that allows explicit edits of proce-
dures, we are could not perform a comparative study.

Instead, in this section, we present typical examples of
the behavior of ABL in specific situations where the user
decides to perform manual edits. The two situations se-
lected are characterized by different motivations for the ed-
its. In the first case, we deal with the very common case
in which a user makes a mistake during recording, while in
the second case the user decides to modify the structure of
the procedure model to help the learning algorithm induce a
more compact model with fewer demonstrations than with
a by-demonstration-only approach.

Recording after deleting steps
In this example, the author records a procedure that adds
the “add-javadoc” tabs to all the projects in the workspace.
In Eclipse, the projects are represented as tree items in the
“Package Explorer” tree. The user makes a mistake by
recording the task without ensuring that the initial state of
the application is the desired one. Mistakes during recording
are very common: in a past user studies [6] all the subjects
(and in 30% of the cases, the expert used for control) failed
to produce the desired demonstration), and editing yields a
pwerful and straightforward mechanism for correcting mis-
takes without discarding the recorded trace.

In the first demonstration, the author starts recording the
procedure, but sees that the “add-javadoc” tag is already
associated with the first project properties. The author then
removes the tag from the properties, and shows how to add
it. The resulting script is:

(1) Select toolbar item "Java"

Figure 1: A procedure induced by ABL displayed

in the DocWizards’ GUI. The procedure contains a

loop and two branches.

(2) Select tree item "project1"
(3) Select menu item "Project->Properties"
(4) Select tree item "Java Task Tags"
(5) Select table cell "add-javadoc" // spurious
(6) Click "Remove" // spurious
(7) Click "New..."
(8) Enter text "add-javadoc" into "Tag:"
(9) Click "OK"

where step numbering, in parentheses, and comments, in-
troduced by “//”, have been manually added to improve
readability. The procedure now contains two spurious steps
(5 and 6) that the author does not want as part of the pro-
cedure. The user edits out the steps by selecting them in
the DocWizards interface and pressing the Delete key, to
produce

(1) Select toolbar item "Java"
(2) Select tree item "project1"
(3) Select menu item "Project->Properties"
(4) Select tree item "Java Task Tags"
(5) Click "New..."
(6) Enter text "add-javadoc" into "Tag:"
(7) Click "OK"

The user then continues to demonstrate the task. ABL
correctly identifies a loop over the projects, but does not use
the demonstrations to reintroduce the removed steps. The
resulting script is the following:

(1) Select toolbar item "Java"
(2) Foreach TreeItem in ‘Package Explorer’ Tree
(3) Select tree item "TreeItem"
(4) Select menu item "Project->Properties"
(5) Select tree item "Java Task Tags"
(6) Click "New..."
(7) Enter text "add-javadoc" into "Tag:"
(8) Click "OK"

This demonstrates the ability of ABL to correctly perform
inference after steps have been removed from the model.

Recording after moving steps
The following example discusses a case in which, although
ABL produces a procedure structure consistent with the
demonstrations, the author decides to manually edit the
script both to reduce the number of demonstrations needed
to build a complete procedure model, and to help the learn-
ing algorithm produce an efficient (i.e., small) model. The
part of task used in this example is to ensure that three
projects (test1, test2, and test3) are in the workspace be-
fore proceeding with further operations.

The first demonstration is performed when all three projects
are in the workspace, and the second when only test3 is in
the workspace. The resulting script is the following,

(1) if TreeItem "test1" does not exist
(2) then
(3) Right-click on PWTree // import test1
(4) Select popup menu item "Import..."
(5) Select "Existing Project into Workspace"
(6) Open "C:\eclipse\workspaces\workspace\test1"
(7) Click "Finish"
(8) Right-click on PWTree // import test2
(9) Select popup menu item "Import..."
(10) Select "Existing Project into Workspace"
(11) Open "C:\eclipse\workspaces\workspace\test2"
(12) Click "Finish"
(13) Select tree item "test1"

where some steps are not shown for sake of brevity. Here,
step (13), Select tree item "test1", is the first step of
the rest of the task, and is actually followed by other steps
aimed at configuring the projects. For sake of brevity, we
only show this portion of the task. Note that there are no
steps to import test3, because it is already in the workspace
in both demonstrations.

The next demonstration is performed when both test2 and
test3 are in the workspace, but not test1. The resulting
script is the following:

(1) if TreeItem "test1" does not exist
(2) then
(3) Right-click on PWTree
(4) Select popup menu item "Import..."
(5) Select "Existing Project into Workspace"
(6) Open "C:\eclipse\workspaces\workspace\test1"
(7) Click "Finish"
(8) if TreeItem "test2" does not exist
(9) then
(10) Right-click on PWTree
(11) Select popup menu item "Import..."
(12) Select "Existing Project into Workspace"
(13) Open "C:\eclipse\workspaces\workspace\test2"
(14) Click "Finish"
(15) Select tree item "test1"

This partial model is not incorrect, and with a sufficient
number of additional demonstration ABL would correctly
infer a model that covers all possible initial states. However,
the author decides to manually edit the script to move the
second conditional outside the “then” part of the first, and
produces the following model

(1) if TreeItem "test1" does not exist
(2) then
(3) Right-click on PWTree
(4) Select popup menu item "Import..."
(5) Select "Existing Project into Workspace"
(6) Open "C:\eclipse\workspaces\workspace\test1"
(7) Click "Finish"
(8) if TreeItem "test2" does not exist
(9) then
(10) Right-click on PWTree

(11) Select popup menu item "Import..."
(12) Select "Existing Project into Workspace"
(13) Open "C:\eclipse\workspaces\workspace\test2"
(14) Click "Finish"
(15) Select tree item "test1"

The final demonstration is performed when no project is
in the workspace. The resulting model is

(1) if TreeItem "test1" does not exist
(2) then
(3) Right-click on PWTree
(4) Select popup menu item "Import..."
(5) Select "Existing Project into Workspace"
(6) Open "C:\eclipse\workspaces\workspace\test1"
(7) Click "Finish"
(8) if TreeItem "test2" does not exist
(9) then

(10) Right-click on PWTree
(11) Select popup menu item "Import..."
(12) Select "Existing Project into Workspace"
(13) Open "C:\eclipse\workspaces\workspace\test2"
(14) Click "Finish"
(15) if TreeItem "test3" does not exist
(16) then
(17) Right-click on PWTree
(18) Select popup menu item "Import..."
(19) Select "Existing Project into Workspace"
(20) Open "C:\eclipse\workspaces\workspace\test3"
(21) Click "Finish"
(22) Select tree item "test1"

which is further edited by the user to produce a model
with three consecutive if statements.

(1) if TreeItem "test1" does not exist
(2) then
(3) Right-click on PWTree
(4) Select popup menu item "Import..."
(5) Select "Existing Project into Workspace"
(6) Open "C:\eclipse\workspaces\workspace\test1"
(7) Click "Finish"
(8) if TreeItem "test2" does not exist
(9) then

(10) Right-click on PWTree
(11) Select popup menu item "Import..."
(12) Select "Existing Project into Workspace"
(13) Open "C:\eclipse\workspaces\workspace\test2"
(14) Click "Finish"
(15) if TreeItem "test3" does not exist
(16) then
(17) Right-click on PWTree
(18) Select popup menu item "Import..."
(19) Select "Existing Project into Workspace"
(20) Open "C:\eclipse\workspaces\workspace\test3"
(21) Click "Finish"
(22) Select tree item "test1"

The example shows the power of PBD combined with edit-
ing. The final model was produced with four demonstrations
and two drag-and-drop operations, namely, a small number
of traces and minimal intervention on the part of the user.

4. RELATED WORK
We direct the interested reader for a broad overview of the

Programming-By-Demonstration field to the classical refer-
ences [4, 9]. We are not aware of any learning algorithm
that solves the combined alignment and generalization with
edits problem. To-date, we are only aware of systems where
editing has been done as a post-processing step procedures
produced from a single demonstration [4, Chapter12].

In the literature, there are numerous techniques for mod-
eling sequences of dependent input-output pairs that could

be used in PBD. In particular, we cite Input-Output Hid-
den Markov Models (IOHMMs) [1] and Conditional Ran-
dom Fields [5]. An extension of the IOHMM, called the
SimIOHMM [12] solves the alignment problem, and has been
successfully used to learn procedure on Microsoft Windows-
based machines [6]. These are very powerful statistical meth-
ods produce opaque procedure representations that do not
lend themselves to human inspection, and, a fortiori, to edit-
ing. Even if editing were possible, their learning algorithms
are not designed to take into account user edits and would
in fact override the edits.

The learning algorithms used in PBD commonly produce
deterministic models of the task, and are hence generally less
powerful than the cited probabilistic models. Additionally,
they often require direct user intervention in the induction
process. However, like our approach they often produce a
human-readable description of the procedure model.

Typically, the user is allowed to interact with the learn-
ing algorithm using other mechanisms. Gamut [10] is an
example of PBD system providing a variety of mechanisms
for the user to guide the learning algorithm. These mech-
anisms include “nudges”, “temporal ghosts” (to explicitly
refer to past values of properties), “hint highlighting” (to
explicitly indicate objects whose properties are relevant to
inference), “stop that” (to indicate that the induced behav-
ior is incorrect), “negative examples” to explicitly demon-
strate incorrect behavior, “asking questions” (to allow the
system to ask elucidating questions to the user when in-
ference fails), “guide objects”, etc. Gamut is able to infer
conditionals (based on the properties of objects specified by
the user, in contrast with SimIOHMMs and ABL, where the
identification of relevant objects and features is performed
automatically by the learning algorithm) but it is unclear
whether it actually infers loops. The representation of the
task constructed by Gamut is opaque and does not allow for
explicit user edits.

A variety of systems have been produced that rely on
version-space algebra as the main inference algorithm. The
paper by Lau, Domingos, and Weld [8] contains recent ad-
vances in this area as well discussion of previous work. In
this papers, the authors propose an approach to learn a
grammar very similar to the one presented in this paper.
They show how to learn from demonstrations programs gen-
erated by this language under the assumption that the user
solves the alignment problem, namely, when each action is
manually labeled by the user with a step identifier, which
denotes the corresponding step. They also show how to
use version-space algebra without manual labeling of the
observed actions, but here the structure of the induced pro-
gram is limited to a loop that contains a variable number
of steps. Fixed-length loop induction, where loops are not
constrained to contain all the actions in the procedure, was
a feature of Eager [3], but this system could not detect com-
plex structure within a loop or nested loops.

5. DISCUSSION AND CONCLUSIONS
In this paper, we have presented an approach to PBD in

which the user can interact with the learning algorithm by
explicitly editing the procedure model while demonstrating
the task. We argue that explicit editing is a powerful mean
for controlling the behavior of the learning algorithm.

We have introduced a new algorithm, Augmentation-Based
Learning, that supports interspersing demonstrations with

manual edits. At the core of ABL is the approach used to
modify the hypothesis space of the learning algorithm when
new training samples are provided. ABL relies on a col-
lection of functions, called augmentations, that modify the
structure of an existing procedure model when a new train-
ing sample is observed, where a training sample is a user
action paired with a description of the content of the screen
just before the user performed the action. The new hypoth-
esis space of ABL is the transitive closure of the augmenta-
tion functions applied to the existing procedure structure.
Therefore, when the user manually edits a procedure, ABL
can continue the induction process by using the edited pro-
cedure as the starting point to expand the hypothesis space,
and therefore does not use previously observed data to undo
the user edits.

The key advantages of using ABL for PBD are:
• ABL solves the full combined alignment and generaliza-

tion problem, and therefore:
◦ it does not require the user to align observed actions

with each other or with existing procedure steps;
◦ it does not require intrusive feedback mechanisms,

such as specifying the boundaries of loops, marking ac-
tions suggested by the learning algorithm as incorrect,
or explicitly selecting GUI objects whose properties
are important for inference;

◦ it is not limited to restricted classes of procedure struc-
tures, such as sequences of steps embedded in a top-
level loop, or fixed-length loops without conditionals.

• The author may think in terms of concrete action se-
quences when programming by demonstration, rather
than the generalized actions and flows required for tra-
ditional programming.

• The author does not need to invent a demonstration se-
quence in order to force an explicit change in the gener-
ated procedure. To enforce a specific change a user need
only edit directly the procedure model. This feature can
be used to reduce the number of demonstrations that
a purely “by-demonstration” approach would require to
produce a complete model of the task, as well as to force
the learning algorithm to produce a simpler model.

• Obsolete sub-parts of a procedure model can be manu-
ally removed and re-demonstrated: this reduces the cost
of maintaining procedure models.

• The user need not be concerned with performing exactly
all the steps required to demonstrate a task while at the
same time ensuring that no spurious action become part
of the model. Spurious steps and mistakes can be easily
removed using editing operations. In our experience,
this has proved to be an extremely useful characteristic.

ABL is the learning algorithm of DocWizards, a PBD
system implemented as an Eclipse plugin. ABL operates in
real-time, and provides immediate feedback to the user. To
date, we have only conducted user studies that focus on the
overall user experience, rather than on the specifics of the
learning algorithm.

Within DocWizards, we have also provided the ability to
inspect the alternative hypotheses that DocWizards main-
tains, as explained in Section 2.3, and to select one of the
alternatives to the model with the smallest score. In prac-
tice, however, we have found that this feature is not nearly
invoked as frequently as manual editing. However, we found
this feature to be very useful for demonstrating how DocWiz-
ards manipulates its search space.

In future work we expect to empirically explore this com-

bination of programming techniques to see what second-
order benefits or drawbacks exist for this combination of
programming techniques. Another direction of investiga-
tion is the trade-off between the space of allowable augmen-
tations and the user experience. If only a limited number of
augmentations are allowed, ABL is constrained in the kinds
of procedure models it can produce, and it is likely not to
yield compact representations of the task. This, in turn, re-
flects on the need to perform more edits, should the user be
interested in a simple and efficient representation of the pro-
cedure. On the other hand, if the number of augmentations
is too large, the search space considered by ABL grows and
so does the computational cost.

6. REFERENCES
[1] Y. Bengio and P. Frasconi. Input-Output HMM’s for

sequence processing. IEEE Trans. Neural Networks,
7(5):1231–1249, Sept. 1996.

[2] P. Chou. Optimal partitioning for classification and
regression trees. IEEE Trans. Pattern Analysis and
Machine Intelligence, 13(4):340–354, Apr. 1991.

[3] A. Cypher. Eager: Programming repetitive tasks by
demonstration. In A. Cypher, editor, Watch What I
Do: Programming by Demonstration, pages 205–217.
MIT Press, Cambridge, MA, 1993.

[4] A. Cypher, editor. Watch what I do: Programming by
demonstration. MIT Press, Cambridge, MA, 1993.

[5] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random field: Probabilistic models for segmenting and
labeling sequence data. In Proc. Int. Conf. on
Machine Learning, pages 282–289, 2001.

[6] T. Lau, L. Bergman, V. Castelli, and D. Oblinger.
Sheepdog: Learning procedures for technical support.
In Proc. 2004 Int. Conf. on Intelligent User
Interfaces, pages 106–116, 2004.

[7] T. Lau, P. Domingos, and D. Weld. Version space
algebra and its application to programming by
demonstration. In Proc. Seventeenth Int. Conf. on
Machine Learning, pages 527–534, June 2000.

[8] T. Lau, P. Domingos, and D. Weld. Learning
programs from traces using version space algebra. In
Proc. 2nd Int. Conf. on Knowledge Capture, 2003.

[9] H. Lieberman, editor. Your Wish is My Command:
Giving Users the Power to Instruct their Software.
Morgan Kaufmann, 2001.

[10] R. G. McDaniel and B. A. Myers. Building
applications using only demonstration. In Proc. 1998
Int. Conf. on Intelligent User Interfaces, pages
282–289, 1998.

[11] N. Medvivovic, A. Egyed, and D. Rosenblum.
Round-trip software engineering using uml: From
architecture to design and back,. In Proc. 2nd
Workshop Object-Oriented Reengineering (WOOR
99), pages 1–8, Monterey, CA, USA, 1999.

[12] D. Oblinger, V. Castelli, T. Lau, and L. Bergman.
Similarity-based alignment and generalization. In
Proc. Sixteenth Europ. Conf. on Machine Learning,
page To appear, October 2005.

[13] M. Prabaker, L. Bergman, and V. Castelli. An
evaluation of using programming by demonstration
and guided walkthrough techniques for authoring and
following documentation. In submitted to CHI, 2006.

