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1 Introduction

In this paper we consider the application of an interior point method (IPM) to the convex quadratic
programming (QP) problem with upper bounds on the variables:

min
1
2
x

T
Qx + c

T
x

(P ) s.t. Ax = b,

0 ≤ x ≤ u,

where the symmetric positive semidefinite matrix Q ∈ Rn×n, the rank m matrix A ∈ Rm×n, c ∈ Rn,
u ∈ Rn and b ∈ Rm are the data for the problem, and x ∈ Rn is the vector of variables. Three aspects
of this topic are explored.

The first concerns a property of the Cholesky factorization of the normal equation matrix that
arises at each iteration of an IPM applied to problem (P ). In [11] it was shown that when linear
programming (LP) problems are solved by an IPM, the unit lower triangular matrix L in the Cholesky
factorization LΛL

T
of the normal equations matrix remains uniformly bounded (in norm) as the

iterates converge to the solution. This result holds even if the condition number of the normal equations
matrix becomes unbounded. In [12] this result was extended to the case of second-order cone (SOCP)
programming under the assumption that the IPM iterates stay in a neighborhood of the central path.
Here we extend the LP result (without any assumptions) to the case of convex QPs.

∗Research supported in part by NSF Grant DMS 01-04282, ONR Grant N00014-03-0514 and DOE Grant GE-FG01-

92ER-25126
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The second part of the paper presents efficient methods for implementing the linear algebra at
each IPM iteration to exploit structure in the Hessian matrix Q. IPMs have an advantage over active
set methods in that they usually obtain an (approximate) solution to a problem after a small number
of iterations (often less than 50). However the cost of each iteration is significantly higher than that
of an active set method. The major part of this cost comes from the need to solve at each iteration
two symmetric positive definite systems of equations (D2 + Q)u1 = w1 and A(D2 + Q)−1A

T
u2 = w2,

one n-by-n and the other m by m (D2 is a diagonal matrix). If n is large, then at least one of these
systems is large-scaled. When the matrices Q and A are sparse, solving each system is relatively
inexpensive and IPM iterations are efficient. The problem arises when one of the systems is dense.
This can happen either because Q or Q−1 is dense or because A contains dense columns. The latter
case is similar to the case of the LP problems with dense columns. In [11] this was extensively studied
and an efficient method for handling dense columns was proposed.

There are a number of applications of convex quadratic programming problems where the density
of the systems that are solved comes from Q, and not from A. Often, however, the matrix Q can be
represented as the sum of a diagonal matrix and a low rank dense matrix. We will show how one can
use this special structure of Q to compute the factorization of the matrices D2+Q and A(D2+Q)−1A

T

efficiently, effectively extending the results in [11] to such QPs..
There are also cases where the matrix Q is not a low rank matrix, but can be approximated by

such a matrix. In this case one might choose to solve the approximate problem, since it can be solved
much faster. We give a bound on the error in the objective function when such an approximation
is used. We also discuss the possibility of using an active set method to “correct” the approximate
solution.

Finally, the last part of the paper addresses two applications where Q has the special structure
described above. One such application is in an area of machine learning called support vector machines
[?], .... Support vector machines (SVM) is an approach for solving classification problems, whose
essence lies in solving a convex quadratic programming problem. The problem (in its dual form) has
bound constraints and only one equality constraint. The dimension is the same as the size of the
data that has already been classified. Clearly being able to solve large instances results in better
classification results. However, the matrix Q is a totally dense matrix, and it becomes prohibitively
expensive to solve problems with n > 1000 by IPMs without using special linear algebraic techniques.
As we will explain in Section 6, even though Q is fully dense, it often has low rank. Therefore, the
methods described in Section 4 apply naturally in the SVM setting.

Another application of convex QP where the Hessian is specially structured is portfolio optimiza-
tion. Portfolio optimization involves selecting a portfolio of assets so as to maximize the return of the
portfolio while minimizing the risk. For standard ways of measuring return and risk, several models
for treating these conflicting objectives give rise to convex QPs. Structured Hessians of the form con-
sidered in Section 4 result from the assumption that the individual asset returns are primarily driven
by underlying market factors.
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The paper is organized as follows. In Section 2 we discuss interior point methods for the QP
problem (P) and two approaches for computing the step direction at each iteration: one based on
solving the so-called ”augmented system” of linear equations and one based on the ”normal equations”.
In Section 3 we extend the stability results of [11] to the Cholesky factors of the normal equations
matrices for the QP case. In Section 4 we introduce methods for solving these systems via low-rank
updates. Section 5 contains a discussion of approximating the Hessian matrix Q in problem (P) by
a low rank matrix and derives a bound on the error in the optimal value that results from such an
approximation. Sections 6 and 7 contain descriptions of two applications of the results in the previous
sections, support vectors machines and portfolio optimization, respectively.

2 Interior Point Methods for Convex QPs.

The Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions for Problem (P) are:

A
T
y −Qx + s− ξ = c,

Ax = b,

Xs = 0,

(U −X)ξ = 0,

0 ≤ x ≤ u, ξ ≥ 0, s ≥ 0.

Here, y ∈ Rm and ξ ∈ Rn are the vectors of dual variables corresponding to the equality constraints
and upper bound constraints in (P ), respectively, and s ∈ Rn is the vector of dual slack variables. By
X, S, U and Ξ we denote the diagonal matrices whose diagonal entries are the elements of the vectors
x, s, u and ξ, respectively. We shall use I to denote the identity matrix and e to denote a vector of
all ones.

The solutions of the perturbed KKT optimality conditions below define the so-called central path
{x(µ), y(µ), s(µ)}:

A
T
y −Qx + s− ξ = c,

(CPµ) Ax = b,

Xs = µe,

(U −X)ξ = µe,

0 ≤ x ≤ u, ξ ≥ 0, s ≥ 0.

These equations have a unique solution for any positive value of the parameter µ.
An iteration of a typical primal-dual interior point method consists of a Newton step towards

the solution of the system of nonlinear equations (CPµ) for a particular value of µ. Thus, one has to
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compute (∆x,∆y, ∆s), satisfying



−Q A
T

I −I

A 0 0 0
S 0 X 0
−Ξ 0 0 U −X







∆x

∆y

∆s

∆ξ







−rc

−rb

−rxs

−rξ




, (1)

where rb = Ax− b, rc = A
T
y−Qx+ s− c, rxs = Xs−µe and rξ = (U −X)ξ−µe. In “feasible” IPMs

rb and rc are zero.
By eliminating ∆s and ∆ξ from the above system we obtain a linear system, usually referred to

as the augmented system, whose coefficient matrix is

T ≡
[
−(Q + D2) A

T

A 0

]
, (2)

where D2 = X−1S + (U − X)−1Ξ. In the normal equations approach to solving this system, one
reduces it further by eliminating the ∆x variables (forming the Schur complement of Q + D2 in the
matrix (2)) to yield a system of equations with a symmetric positive definite coefficient matrix

M ≡ A(Q + D2)−1A
T
, (3)

that can be solved by forming its Cholesky factorization.
In purely primal and purely dual interior point methods, one has to solve similar systems; in these

cases the diagonal matrix D2 equals µ(X−2 + (U −X)−2) and 1
µ(S2 + Ξ2), respectively.

3 Uniform Boundedness of the Cholesky Factor L

We study in this section a new uniform boundedness property of the Cholesky factorization LΛL
T

of M ≡ AF−1A
T
, where F ≡ Q + D2. This property is crucial for proving that the product-form

Cholesky factorization of M introduced in Section 4 below is numerically stable.
In [11] the following theorem is proved.

Theorem 3.1 Let A be a fixed m×n matrix, D be a positive diagonal matrix whose diagonal elements
depend on µ and LΛL

T
be the Cholesky factorization of M = AD2A

T
. Then the elements of L are

uniformly bounded as µ → 0.

One can restate this theorem in the following more compact way.

sup{‖L‖ : LΛL
T

= AD2A
T
,∀D} < ∞.

First we note that the result trivially extends to the Cholesky factorization of F = Q+D2, where
Q is a fixed positive semidefinite matrix,

sup{‖L‖ : LΛL
T

= Q + D2,∀D} < ∞. (4)
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This follows from the fact that

F ≡ Q + D2 = V V
T

+ D2 = [I, V ]

[
D2 0
0 I

] [
I

V
T

]
. (5)

We now extend this result to the Cholesky factorization of M ≡ AF−1A
T
; i.e., we show below that

sup{‖L‖ : LΛL
T

= A(Q + D2)−1A
T
, ∀D} < ∞.

To do this, we will show how L can be represented in terms of another lower triangular matrix with
a unit diagonal, L̂, which, in turn, is a Cholesky factor of a matrix of the form ÂD̂Â

T
, where Â is a

fixed matrix and D̂ is a diagonal matrix depending on µ. Then we will apply Theorem 3.1 to show
that the elements of L̂ are uniformly bounded as µ → 0 and conclude that so are the elements of L.

Let E ∈ Rn−m×n be any matrix such that the matrix K
T ≡ [A

T
, E

T
] is nonsingular and let

M̄ ≡ KF−1K
T
. For example, if A = [B,N ] where B is a nonsingular m × m matrix, we can let

E = [0, I], which gives

K ≡
[

B N

0 I

]
. (6)

Also, let

P ≡




1
·

·
·

1




(7)

be the “reverse order” permutation matrix and let L̂Λ̂L̂
T

be the Cholesky factorization of PM̄−1P .
Then

M̄ = PL̂−T Λ̂−1L̂−1P = PL̂−T PP Λ̂−1PPL̂−1P = L̄Λ̄L̄
T

(8)

is the Cholesky factorization of M̄ , where L̄ ≡ PL̂−T P and Λ̄ ≡ P Λ̂−1P . Since M = [I, 0]M̄ [I, 0]
T
,

the Cholesky factorization of M is

M = LΛL
T
, where L̄ =

[
L 0
L′ L′′

]
and Λ̄ =

[
Λ 0
0 Λ′′

]
. (9)

Furthermore, if we let H ≡ PK−T , then it follows from (5) that

PM̄−1P = H(V V
T

+ D2)H
T

= [H, HV ]

[
D2 0
0 I

] [
H

T

V
T
H

T

]
.

Now, after defining Â ≡ [H, HV ] and D̂ ≡
[

D2 0
0 I

]
, we can apply Theorem 3.1 to the Cholesky

factorization L̂Λ̂L̂
T

of PM̄−1P ≡ ÂD̂Â
T

and conclude that the elements of L̂ are uniformly bounded
for all D. In [11]) the following lemma is proved.
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Lemma 3.2 If L is a lower triangular matrix with ones on the diagonal and subdiagonal elements
that depend on a parameter µ and are uniformly bounded as µ → 0, then the elements of L−1 are also
uniformly bounded as µ → 0.

By this lemma the elements of L̄ = PL̂
−T

P are uniformly bounded for all D, and from (9) so are
those of L. Hence, we have the following theorem for QP.

Theorem 3.3 Let A be a fixed m × n matrix, Q be a fixed n × n symmetric positive semidefinite
matrix, D be a positive diagonal matrix whose diagonal elements depend on µ and LΛL

T
be the

Cholesky factorization of M = A(Q + D2)−1A
T
. Then the elements of L are uniformly bounded as

µ → 0.

4 Low rank updates

Solving the normal equation is the most computationally intensive part of each interior point iteration.
There are two potentially expensive steps: one is the factorization of the matrix Q+D2 and the other
is the factorization of M = A(D2 + Q)−1A

T
. If m, the number of linear constraints, is small then it

is inexpensive to factorize M . If m is large, then often A is sparse. If Q is also sparse, solving the
normal equations involves the factorization of two sparse matrices. However, if Q is dense, then both
matrices Q + D2 and M are dense. The factorization of these matrices then takes O(n3) and O(m3)
operations, respectively. It also takes O(mn2) operations to form M . As we will show later in the
paper, there are number of applications where Q is large scale and completely dense. However, often
in these applications Q has low rank; that is, it can be represented as V V

T
, where V ∈ Rn×k, and

k ¿ n. In this case M = A(V V
T

+D2)−1A
T

also has a special structure; for instance, if A is sparse it
can be represented as a sum of a sparse matrix and a low rank dense matrix (see the next subsection
for details). Note that if Q can be represented as a sum of a low rank matrix and a diagonal matrix,
then the special structure of the normal equation is essentially the same as when Q is a low rank
matrix. It is important to take advantage of this special structure of Q to decrease the computational
workload of each interior point iteration. In this section we consider several alternative methods for
exploiting this structure.

We first consider two approaches that efficiently solve the systems (D2 + V V
T
)u1 = w1 and

A(D2 + V V
T
)−1A

T
u2 = w2 by taking into consideration the special form of the matrix (D2 + V V

T

and sparsity in A. Both of these methods when applied to the system (D2 + V V
T
)u1 = w1 require

O(nk) storage and O(nk2) arithmetic operations, where k is the number of columns in V . Thus,
if k << n the two methods provide significant savings in terms of workload and storage. The first
method is somewhat less expensive than the second. Its workload is about half of that for the second
method and its storage requirement is about one third of that for the second method. On the other
hand, the first method may experience numerical instability.
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A comparison of the the workloads for the two methods in their application to the system A(D2 +
V V

T
)−1A

T
u2 = w2 is more complicated and is discussed at the end of Subsection 4.3. In Subsection

??, we consider two approaches for solving the augmented system.

4.1 Sherman-Morrison-Woodbury update

We first consider the Sherman-Morrison-Woodbury (SMW) formula for updating the inverse of a
matrix. Using this update in an interior point algorithm for solving linear SVM problems was recently
proposed in [7]. Here we first apply it to the matrix D2 + V V

T
; specifically

(D2 + V V
T
)−1 = D−2 −D−2V (I + V

T
D−2V )−1V

T
D−2. (10)

Since we would like to avoid storing the dense matrix D2 + V V
T

computing its inverse, we can apply
the above formula to solve the system (D2 + V V

T
)u1 = w1 as follows: compute

z := D−2w1

t : (I + V
T
D−2V )t = V

T
z (11)

u1 := z −D−2V t.

The linear system of equations in the second step involves the k × k symmetric positive definite
matrix (I + V

T
D−2V ); hence it can be solved by computing the Cholesky factorization LvΛvL

T

v of
that matrix. The work required to compute such a factorization is O(k3), which is small if k is small
with respect to n. Computing the matrix (I + V

T
D−2V ) nk2/2 + O(nk) takes operations. Thus, the

overall work required to solve (D2 + V V
T
)u = w is nk2/2 plus smaller order terms.

Next, to solve the system A(D2 + V V
T
)−1A

T
u2 = w2 we need to apply the SMW formula twice.

First, using (10) above, we have that

A(D2 + V V
T
)−1A

T
= AD−2A

T −AD−2V (I + V
T
D−2V )−1V

T
D−2A

T
.

Now AD−2V (I + V
T
D−2V )−1V

T
D−2A

T
can be represented as V̂ Λ−1

v V̂
T
, where V̂ = AD−2V L

−T

v ,
and LvΛvL

T

v is the Cholesky factorization of (I +V
T
D−2V ). Therefore, after computing the Cholesky

factorization LΛL
T

= AD−2A
T
, we can solve the system A(D2 +V V

T
)−1A

T
u2 = w2 by the following

algorithm:

V̂ : LvV̂
T

= V
T
D−2A

T

V̄ : LV̄ = V̂

z : Lz = w2 (12)

t : (Λv − V̄
T
Λ−1V̄ )t = V̄

T
Λ−1z

u2 : L
T
u2 := Λ−1(z + V̄ t).

Assuming that AD−2A
T

and its Cholesky factor L are sparse and that obtaining L and solving
systems involving it requires O(m2) and O(m) operations, respectively, the total operations count for
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(12) is O(m2) + k2m + O(km) + O(k3) plus lower order terms. The Sherman-Morrison-Woodbury
update has been used widely in the context of interior point methods for linear programming, [5], [17].
In that context, however, the method often runs into numerical difficulties. While modifications to
the method have been proposed to deal with its numerical instability [1], [20], these modifications do
not always help, and they increase the computational cost.

Intuition suggests that numerical problems occur when the matrix D2 + V V
T
, or just D2, is not

well conditioned. Consider the following small example:

Example 4.1 Let

D2 =




ε2

1
1


 and V =




1 1
−1 1

1 1


 ,

where ε2 << 1. Applying the SMW procedure (11) to solve D2 + V V
T
)u = w, we obtain

z = D−2w =




w1
ε2

w2

w3




(V
T
D−2V + I)t =

[
3 + 1

ε2
1
ε2

1
ε2

3 + 1
ε2

]
t and V

T
z =

[
w1
ε2
− w2 + w3

w1
ε2

+ w2 + w3

]
.

V
T
D−2V +I is badly conditioned and solving the system for t will produce a significant computational

error due to round-off. In particular the size of the error depends on the size of ε2: if ε2 is less than
machine precision, say 10−16, then the computed t is totally inaccurate; if ε2 ∼ 10−10, then t can be
computed correctly up to 5 digits. Clearly, the complete system (D2 +V V

T
)u = w is well conditioned

and, hence, can be solved with an accuracy up to the machine precision, if solved directly.

In Section 6 we show how such a situation may arise in the support vector machine setting. In
the next subsection we present an alternative method that avoids many of the numerical difficulties
of the SMW update.

4.2 Product-Form Cholesky Factorization

An alternative efficient method for solving the system (D2 + V V
T
)u1 = w1 is based on updating the

Cholesky factorization of the matrix D2 to accommodate the low rank term V V
T
, rather than using

low rank updates to the inverse of D2 via the SMW formula. (See [2], [9] and [10] for various versions
of this approach). Product-form versions of these methods were proposed in [11] for handling dense
columns in the context of IPMs for LP and for efficiently solving SOCPs by IPMs in [12], and both of
these applications of PFCF have been implemented in stat-of-the-art software such as SeDuMi [23].
The PFCF approach was also applied to the solutions of SVM problems by IPMs in [8]. Below, for
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completeness, we present the main formulas for one of the methods. For further details, see e.g., [11]
and [8].

A product-form Cholesky factorization of F has the general form LL̃1L̃2 · · · L̃kΛ̃k(L̃k)
T · · · (L̃2)

T
(L̃1)

T
L

T
,

where L and each L̃i are unit lower triangular matrices and Λ̃k is a nonnegative diagonal matrix. More-
over, each L̃i has a special structure. To solve a system of linear equations Fu = w, one has to solve
the following sequence of linear systems: Lu0 = w, L̃1u1 = u0, L̃2u2 = u1, . . . , L̃kuk = uk−1,
(L̃k)

T
uk+1 = (Λk)−1uk, . . . , (L̃1)

T
u = u2k−1. In general, solving an n × n triangular system takes

O(n2) operations. However, as we will see below, each L̃i has a special structure that enables systems
involving L̃i to be solved in only O(n) operations.

Let us assume that we have the Cholesky factorization of a matrix F : F = LΛL
T
. For simplicity,

we shall ignore any symmetric permutations that may have been applied to F so as to increase the
sparsity of L. We can obtain a product form factorization of F +vv

T
, where v ∈ Rn is a vector (hence,

vv
T

is a rank-one n× n matrix) as follows:

LΛL
T

+ vv
T

= L(Λ + pp
T
)L

T
= LL̃Λ̃L̃

T
L

T
,

where p is the solution of Lp = v and L̃Λ̃L̃
T

is the Cholesky factorization of Λ + pp
T
. As shown in

[9], [10], [11] and [12], L̃ has the special form

L̃ =




1
p2β1 1
p3β1 p3β2 1

...
...

...
. . .

pn−1β1 pn−1β2 pn−1β3 · · · 1
pnβ1 pnβ2 pnβ3 · · · pnβn−1 1




, (13)

where β ∈ Rn and Λ̃ = diag{λ̃1, . . . , λ̃n}, and the elements of these matrices can be computed from
the following recurrence relations:

t0 := 1,

for j = 1, 2, . . . , n

tj := tj−1 + p2
j/λj , (14)

λ̃j := λjtj/tj−1,

βj := pj/(λjtj).

Now assume that we have a factorization LΛL
T

and we want to obtain a product-form factoriza-
tion of LΛL

T
+ v1(v1)

T
+ v2(v2)

T
+ . . . + vk(vk)

T
. By repeating the above procedure k times, once

for each rank-one term vi(vi)
T
, we can obtain the product form Cholesky factorization

LL̃1L̃2 · · · L̃kΛ̃k(L̃k)
T · · · (L̃2)

T
(L̃1)

T
L

T
. (15)

9



It is important to note that there is no need to form and store the k matrices L̃1, . . . , L̃k; rather only
the pairs of vectors (p1, β1), . . . , (pk, βk) that are needed to define these matrices are stored.

For our first system (D2 + V V
T
)u1 = w1 the PFCF method is directly applicable. Since D2 is

diagonal, L = I and the computational workload is k2n+8kn+o(kn), where o(kn) denotes terms that
are of smaller order than km. Thus for k much smaller than n, this computation is very inexpensive
(i.e., O(n)) even though it is roughly twice as expensive as the SMW computation (11). Alternative
product-form methods for updating the Cholesky factorization of a matrix when a rank-k matrix of
the form V SV

T
is added to it, where V ∈ Rn×k and is of full column rank and S is a k×k nonsingular

diagonal matrix are presented in [12]. In the present context, S = I, and any of these methods could
be used in place of the one given above.

4.3 Product-Form Cholesky Factorization of A(D2 + V V
T
)−1A

T
.

To apply the PFCF method to the matrix M = A(D2 + V V
T
)−1A

T
we can write this matrix as the

sum of a sparse matrix and a low rank matrix via the SMW updating formula, as we have shown
in the previous section; but this would defeat the purpose of using PFCF, because of the numerical
instability of the SMW update.

We now show how PFCF can be used to compute a factorization of A(D2 + V V
T
)−1A

T
in a

numerically stable manner in roughly O(n2)+k2n time. Notice that even though the matrix is m×m,
the computational cost depends on n rather than m. This due to the fact that our method embeds
this m×m matrix in a larger n× n matrix and applies the PFCF procedure to it.

Given the Cholesky factorization AF−1A
T

= L11Λ11L
T

11, we first show how we can compute the
factorization L11L̃11Λ̃11L̃

T

11L
T

11 = A(F + vv
T
)−1A

T
, for some v ∈ Rn, where L̃11, an m×m submatrix

of an n × n matrix L̃, has a special form that requires only O(m) operations to do forward and
back-solves.

We will use the same technique that was used in the discussion that preceded Lemma 3.2. Suppose
A = [B, N ], where B is nonsingular, and define

K =

[
B N

0 I

]
=

[
A

E

]
, and M̄ = KF−1K

T
. (16)

We further assume that we have the Cholesky factorization of M̄ ; i.e., we have

M̄ =

[
AF−1A

T
AF−1E

T

EF−1A
T

EF−1E
T

]
= LΛL

T

where

L =

[
L11 0
L12 L22

]
and Λ̄ =

[
Λ1 0
0 Λ2

]
.

Clearly
AF−1A

T
= L11Λ1L

T

11

10



Let us define another Cholesky factorization

L̂Λ̂L̂
T

= PM̄−1P = PK
−T

FK−1P,

where P is the reverse order permutation matrix (7). We have

L̂
−T

Λ̂−1L̂−1 = PM̄P,

and, hence,
M̄ = PL̂

−T
Λ̂−1L̂−1P = PL̂

−T
P︸ ︷︷ ︸

L

P Λ̂−1P︸ ︷︷ ︸
Λ

PL̂−1P︸ ︷︷ ︸
L

T

= LΛL
T
.

Let z = PK
−T

v and L̂p = z (note that p = PL
T
K
−T

v). Then we have that

PK
−T

(F + vv
T
)K−1P = PK

−T
FK−1P + zz

T

= L̂Λ̂L̂
T

+ zz
T

= L̂(Λ̂ + pp
T
)L̂

T
= L̂

˜̂
L

˜̂Λ˜̂
L

T

L̂
T
,

where ˜̂
L

˜̂Λ˜̂
L

T

is the Cholesky factorization of (Λ̂ + pp
T
) and ˜̂

L is of the special form (13).
We can then write

K(F + vv
T
)−1K

T
= PL̂

−T
P︸ ︷︷ ︸

L

P
˜̂
L
−T

P︸ ︷︷ ︸
L̃

P
˜̂Λ
−1

P︸ ︷︷ ︸
Λ̃

P
˜̂
L
−1

P︸ ︷︷ ︸
L̃

T

PL̂−1P︸ ︷︷ ︸
L

T

;

i.e., [
A(F + vv

T
)−1A

T
A(F + vv

T
)−1E

T

E(F + vv
T
)−1A

T
E(F + vv

T
)−1E

T

]
= LL̃Λ̃L̃

T
L

T
.

Hence
A(F + vv

T
)−1A

T
= L11L̃11Λ̃1L̃

T

11L
T

11,

where

L̃ = P
˜̂
L
−T

P =

[
L̃11 0
L̃12 L̃22

]
, and Λ̃ = P

˜̂Λ
−1

P =

[
Λ̃1 0
0 Λ̃2

]

Let
˜̂
L =




˜̂
L11 0
˜̂
L12

˜̂
L22




Then

L̃ =


 P

˜̂
L
−T

22 P 0

−P
˜̂
L
−T

11
˜̂
L

T

12
˜̂
L
−T

22 P P
˜̂
L
−T

11 P


 .

Finally, we have the expression

L̃11 = P
˜̂
L
−T

22 P.

11



Notice that the product-form factor L̃11 does not have the special structure (13), but ˜̂
L22 does,

hence performing back and forward solves with L̃11 is the same as multiplying by ˜̂
L22 or its transpose.

To obtain ˜̂
L22 we need to apply the PFCF procedure to the n× n matrix PM̄−1P and compute the

entire lower triangular factor ˜̂
L. Moreover, ˜̂

L is needed if further rank-one updates are performed. Here
we have shown how to apply a rank-one update to AF−1A

T
. To use it efficiently, for F = V V

T
+ D2,

where V ∈ Rn×k, we first factorize KD−2K
T

and then apply k rank-one updates iteratively to obtain
the PFCF .

LL̃1L̃2 · · · L̃kΛ̃k(L̃k)
T · · · (L̃2)

T
(L̃1)

T
L

T
. (17)

As in Section 4.2, there is no need to form and store the k matrices L̃1, . . . , L̃k; rather only the pair
of vectors pj and βj that is needed to define each L̃j is stored.

To compute the factorization (17) we need to first compute the LU factorization of the matrix B

and compute V̂ = K−T V . Assuming that A is suitably sparse, this can be done in O(m2) + O(kn)
operations, and needs to be done only once on the first interior point iteration. On every iteration,
one needs to compute (i) the Cholesky factorization LΛL

T
of KD−2K

T
, (O(n2) operations), (ii) L

T
V̂

(O(kn) operations), (iii) k(k − 1)/2 products of the form (L̃j)
T
qi ≡ P

˜̂
L
−1

Pqi (k(k − 1)n operations),
and (iv) the elements of the k L̃j and Λ̃j by recurrence formulas (14) (5kn operations). Thus the
total number of operations needed at each iteration to compute the factorization (17) is O(n2) + k2n

plus smaller order terms. To solve a linear system of the form AF−1A
T
u = w requires an additional

O(m) + 4km operations.
Choices for the matrix K other than the one defined by (16) are possible. For example, one can

compute the QR factorization of A
T
; i.e.,

A
T

= QR = [Q1 Q2]

[
R1

0

]

and set K =

[
A

E

]
, where E = Q

T

2 . However, such a choice is generally much more expensive to

implement than (16).
One is most likely to use the above updates when n and m are similar in size, so the loss in

computational efficiency, caused by factorizing M̄ instead of M = A(Q + D2)−1A
T

is not significant.
When m ¿ n or AD−2A

T
is a dense matrix, it is preferable to factorize M directly.

The product-form Cholesky factorization method is numerically more stable than the SMW
method both in theory and in practice. To illustrate this, it is easy to check that PFCF produces a
correct result when applied to the small example in the previous subsection. In Section 6.2 we present
some examples for which the implementation of an interior point method using the SMW update
fails numerically. The implementation of the same interior point algorithm using the product-form
Cholesky factorization works well for all these examples. PFCF has been implemented for linear pro-
gramming and second-order cone programming problems, where it has worked well in practice. In [11]
an analysis of the stability of PFCF is given for the LP case. The core of that analysis is the proof of
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the uniform boundedness of the factors L and L̃. We have shown that L is uniformly bounded for the
QP case in Theorem 3.3. The uniform boundedness of L̃ is shown by the following theorem.

Theorem 4.2 Let v be a fixed vector, and let M = A(Q + D2)−1A
T

and A(Q + D2 + vv
T
)−1A

T
have

factorizations LΛL
T

and L̄Λ̄L̄
T

= LL̃Λ̃L̃
T
L

T
, respectively. Then the elements of L̃ are uniformly

bounded as µ → 0.

Proof. By Theorem 3.1 the elements of L̄ and L are uniformly bounded as µ → 0. But we can
represent L̄ as a product of factors LL̃. By Lemma 4.2 in [11] the elements of L−1 are also uniformly
bounded. Since the factorization L̄Λ̄L̄

T
is unique, L̃ = L−1L̄ and hence, the elements of L̃ are

uniformly bounded as µ → 0. 2

4.4 Augmented System Factorizations

In some implementations of interior point methods, the symmetric indefinite augmented systems
matrix T defined by (2) is factorized rather than the positive definite normal equations matrix (3).
One way to do this was proposed by Fourer and Mehrotra [7] (see also [6]). Their approach applies a
version of Bunch-Parlett [4] symmetric indefinite factorization to T ; i.e., it computes

PTP
T ≡ LΛL

T
, (18)

where P is a permutation matrix, L is a unit lower triangular matrix and D is a block diagonal
matrix with 1 × 1 and 2 × 2 diagonal blocks. Unlike in the positive definite case, the permutation
P cannot be determined prior to the numerical phase of the factorization. The Fourer-Mehrotra
implementation of the Bunch-Parlett factorization determines P and the block structure of Λ during
the numerical factorization by choosing a pivot sequence so that the elements of L remain bounded to
ensure numerical stability, while at the same time controlling the growth of fill-in as much as possible.
The permutation determined on the first interior point iteration is reused on subsequent iterations
until numerical difficulties are encountered, since this speeds up the algorithm considerably. If such
difficulties are detected, the full sparse Bunch-Parlett procedure is reapplied, usually resulting in a
denser factorization. Computational experience has shown that LPs can usually be solved using only
one or two pivot orders. However, step computation time for this approach (again in the LP case) is
usually 50% - 100% more than that required by applying Cholesky factorization to (3) [29].

The Fourer-Mehrotra procedure can be applied to QP, resulting in sparse and numerically stable
factorizations if both Q and A are suitably sparse, but it is not able to directly take advantage of
the special structure of Q considered in this paper. However, it is possible to develop a product-form
symmetric indefinite factorization analogously to the PFCF. Specifically, given the factorization (18),
where T is the matrix in (2), we can write
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P

[
−(Q + vv

T
+ D2) A

T

A 0

]
P

T
= L(Λ− pp

T
)L

T
,

= LP̃
T
L̃Λ̃L̃

T
P̃L

T
,

(19)

where p is the solution of

Lp =

(
(v
0

)
(20)

and L̃Λ̃L̃
T

is the symmetric indefinite factorization of P̃ (Λ − pp
T
)P̃

T
. Let p̂ ≡ P̃ p and Λ̂ ≡ P̃ΛP̃

T
,

and let p̂ be partitioned into 1 and 2 element subvectors p̂j according to the block structure of Λ̂; i.e.,
assuming that Λ̂ ≡ diag{Λ̂1, Λ̂2, . . . , Λ̂k}, p̂ can be written as p̂

T ≡ (p̂
T

1 , p̂
T

2 , . . . , p̂
T

k ). We note that ,
as in the Fourer-Mehrotra and Bunch-Parlett cases, the permutation P̃ and the block structure of Λ̂
can only be determined during the numerical factorization phase - i.e., during the computation of the
recurrence formulas (22) below. It is easy to verify that L̃ has a special form, namely

L̃ =




I

p̂2β
T

1 I

p̂3β
T

1 p̂3β
T

2 I
...

...
...

. . .

p̂n−1β
T

1 p̂n−1β
T

2 p̂n−1β
T

3 · · · I

p̂nβ
T

1 p̂nβ
T

2 p̂nβ
T

3 · · · p̂nβ
T

n−1 I




, (21)

where β
T ≡ (β

T

1 , β
T

2 , . . . , β
T

k ) and Λ̃ ≡ diag{Λ̃1, Λ̃2, . . . , Λ̃k} are partitioned to conform with the
partitions of p̂ and Λ̂ and can be computed from the following recurrence relations:

σ0 := 1,

for j = 1, 2, . . . , k

Λ̃j := Λ̂j + σj−1p̂j p̂j/t, (22)

βj := σj−1Λ̃−1
j p̂j ,

σj := σj−1 − β
T

j Λ̃jβj .

The above recursion is a specialization of a method first proposed by Bennett [2]. We have used it
rather than an analogous version of the recurrence formulas (14) first proposed by Fletcher and Powell
[9] and Gill, Murray and Saunders [10], since we no longer need to guarantee positive semi-definiteness
of Λ̃ in the presence of round-off errors, as required by the PFCF approach. Since testing for growth in
the elements in the factorization and determining the permutation P̃ must be done while computing
the factorization, and this is expensive, one can reuse the same permutation P̃ on subsequent interior
point iterations as in the Fourer-Mehrotra procedure until numerical difficulties are encountered.

A second approach for computing a factorization of T of the form (18) has been proposed by
Vanderbei and Carpenter [25]. As above, P is a permutation matrix, but now Λ is a nonsingular
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diagonal matrix (i.e., it has strictly positive and negative diagonal elements but no 2 × 2 diagonal
blocks). Such a factorization is guaranteed to exist as long as the first set of pivots is chosen from the
diagonals of −(Q + D2) and enough of them are chosen so that the corresponding columns of A span
the column space of A. The remaining pivots (i.e., the symmetric permutation P ) can then be chosen
in any order from the remaining diagonals since the matrix that results after the first set of pivots
is quasidefinite [24]. Like the Fourer-Mehrotra procedure, this approach is able to take advantage of
sparsity in Q and A, but cannot directly take advantage of the special structure of Q considered in
this paper.

Again it is possible to develop a product-form version of this ”indefinite” Cholesky factorization,
but we do not advocate this since the factorization is numerically unstable like the SMW approach. In
fact, it can be shown that the indefinite Cholescky factorization of a quasidefinite matrix is equivalent
to a nested sequence of SMW updates.

5 Approximating Q by a low rank matrix

In some applications, Q is not a low rank matrix, but it can be approximated well by one. If Q is large-
scaled, then it is desirable to compute and to use such a representation without computing and storing
the whole matrix Q. One method for doing this is to compute an incomplete or a truncated Cholesky
factorization V V

T
of Q as proposed in [8]. This method is basically a Cholesky factorization with

symmetric pivoting, where the k-th column of Q is computed only on the k-th step of the algorithm,
when the k-th column of the Cholesky factor V is computed. Initially, only the diagonal elements of
Q are needed. After forming Vk, the first k columns of the Cholesky factor, the trace tr(∆Q) of the
residual matrix ∆Q ≡ Q−VkV

T

k is computed. If the trace tr(∆Q) is below some predefined threshold,
then the approximation VkV

T

k of Q is considered sufficiently good and the algorithm terminates. One
can also decide to terminate the algorithm when a given threshold on the number of columns has been
reached, and obtain a bound on the quality of the approximation achieved.

The proposed algorithm has complexity O(nk2) and takes the full advantage of a greedy approach
for the best reduction in the approximation bound tr(∆Q).

Let us consider the perturbed optimization problem (P̃ ), which is constructed by replacing the
Hessian matrix Q by a low-rank approximation Q̃, i.e.

minx
1
2
x

T
Q̃x− e

T
x

(P̃ ) s.t. Ax = b,

0 ≤ x ≤ u.

A natural question to ask is: how close is the solution of the perturbed problem to the solution of the
original problem. Given a bound on the approximation error matrix, ∆Q = Q−Q̃, we provide a bound
on the difference between the optimal objective values of the original and the perturbed problems.
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Let x∗ denote an optimal solution of the original problem (P ) and let x̃∗ denote an optimal
solution of the perturbed problem (P̃ ). Also let f denote the objective function of (P ), and f̃ be the
objective function of P̃ . We would like to estimate |f(x∗)− f̃(x̃∗)|. The feasible sets of P and P̃ are
the same; hence a feasible solution of one problem is feasible for the other.

Consider the following parametric QP problem

minx
1
2
x

T
(Q̃ + θ∆Q)x− e

T
x

(Pθ) s.t. Ax = b,

0 ≤ x ≤ u,

where θ is a scalar parameter and 0 ≤ θ ≤ 1. Clearly, for θ = 1 we have the original problem (P )
and for θ = 0 we have the perturbed problem (P̃ ). Let x(θ) denote an optimal solution of (Pθ),
X(θ) denote the set of all optimal solutions of (Pθ), fθ(x) denote the objective function of (Pθ), and
φ(θ) = fθ(x(θ)) be the optimal objective value as a function of θ.

The following lemma is a special case of a more general result on convex parametric optimization
described in [19].

Lemma 5.1 φ(θ) is a concave, piecewise differentiable function. The right derivative of φ(θ) is

dφ/dθ+ = min {1
2
x

T
∆Qx|x ∈ X(θ)}

and the left derivative is

dφ/dθ− = max {1
2
x

T
∆Qx|x ∈ X(θ)}.

From the concavity of φ(θ) and the expression for the derivatives it is easy to demonstrate that
|φ(1)−φ(0)| ≤ 1

2umaxlmaxε, where lmax is the maximum of the number of positive components of x(1)
and x(0) and umax is the maximum upper bound.

In [8] a similar bound was presented for ∆Q positive semidefinite. The bound that we have shown
here applied to any symmetric ∆Q, as long as Q̃ + θ∆Q is positive semidefinite for θ ∈ [0, 1].

The above approximation bound generates another question: how does the active set at the
solution changes when the original problem is replaced by a perturbed one. For example, if the
perturbation of the problem does not preserve the value of x∗ but preserves the optimal partition of
components of x∗ into those at their upper bound, lower bound and in between, then it is simple to
identify the true solution to the original problem by solving a system of linear equations, whose size
is the number of variables not at their bounds (in many applications this is much smaller than n).

Unfortunately deriving a theoretical bound on the error matrix ∆Q for which the active set is
preserved is, in general, at least as hard as doing sensitivity analysis of a linear program with respect
to the constraint matrix. While one might try to use the particular form of the perturbation ∆Q it
still seems unclear if any practical bound can be obtained.

However, one might use this idea in practice to try to update a solution to approximate problem
to obtain a solution to the original problem by using an active set method. The hope is that if the
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optimal partition does not change significantly from the original problem to the perturbed one then
the optimal solution can be “corrected” just by a few iterations of an active set method.

In Section 6.2 we present a few experiments which show that such a “correction” of an approximate
solution can work very nicely in practice.

6 Support Vector Machines

Support Vector Machines (SVM) is a field of Machine Learning that has received a lot of attention
in the last decade, since the seminal work of Vapnik (see [27] and references therein). The core of
Support Vector Machines is the following problem: we are given a set of data points in a k dimensional
space V = {vi ∈ Rk| i = 1, . . . , n}, and a set of labels {ai| i = 1, . . . , n} that partition the set V into a
“positive” and “negative” subsets, V+ and V−: if ai = 1 then vi ∈ V+ and if ai = −1 then vi ∈ V−. We
would like to find a surface that separates these two sets of points. After such a surface, or classifier,
is found it is used to classify new unlabeled data points by assigning each new point to V+ or V−.
The quality of the classifier is usually measured by the generalization error - the number of “wrong
guesses” during labeling of the new data. For linear SVM a classifier is a hyperplane defined by a
normal vector w and a bias scalar y, that separates the two sets; in other words w and y have to satisfy
ai(w

T
vi +y) > 0, for all i = 1, . . . , n. A hyperplane that satisfies these constraints may not be unique.

The “best” hyperplane is selected in such a way that the margin mini{ai(w
T
vi + y)} is maximized.

Intuitively, such a classifier is positioned as far away from both sets as possible, while still separating
them. Since the margin can be made as large as desired by scaling up w and y, some constraint on
||w|| is necessary. For reasons that will be explained later in this section a bound on the Euclidean
norm of w is usually used (versus, for example, a bound on the 1-norm of w). This bound introduces
a nonlinear constraint in an otherwise linear problem. Instead of introducing such a constraint an
equivalent reformulation of this problem was proposed in [26, 27]. In this formulation the objective is
to minimize ||w||2, while the margin is fixed to equal 1: ai(w

T
vi + y) ≥ 1, for all i = 1, . . . , n. This

formulation is further extended to allow outliers; i.e., points violating the margin constraints. The
constraints then become ai(w

T
vi + y) ≥ 1− ξi, ξi ≥ 0, for all i = 1, . . . , n. To minimize the number of

outliers a penalty term is added to the objective function. Here we consider the penalty term c
∑

i ξi,
with some positive penalty parameter c, which leads to a formulation called the 1-norm soft margin

classification problem. This formulation is more efficient in SVM practice and more common than the
2-norm formulation [13], which corresponds to adding the penalty term c

∑
i ξ

2
i (not to be confused

with the Euclidean norm of w which is used independently of the type of penalty term). The results
of this paper easily extend to the 2-norm formulation.

Thus, we consider the following so-called linear SVM problem

minξ,w,y
1
2
w

T
w + c

n∑

i=1

ξi

(SV M) s.t. ai(w
T
vi + y) ≥ 1− ξi, i = 1, . . . , n
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ξ ≥ 0, i = 1, . . . , n.

This is a convex quadratic programming problem. From QP duality, the optimal solution w∗ of
(SV M) can be expressed as w∗ =

∑n
i=1 xiaivi, where xi, i = 1, . . . , n, 0 ≤ xi ≤ c is an optimal solution

to the dual problem; hence problem (SV M) can be written as

minx,y,ξ
1
2
x

T
DaV V

T
Dax + c

n∑

i=1

ξi

(DSV M ) s.t. DaV V
T
Dax + ay ≥ 1− ξ,

s.t. ξ ≥ 0, 0 ≤ x ≤ ce.

Here V ∈ Rn×k is a matrix whose rows are the data vectors vi, i = 1, . . . , n and Da is a diagonal
matrix with elements of the vector a on the diagonal.

The strength of this formulation, and, hence, of the SVM methodology in general, is that it can
be easily extended to the nonlinear case. If the data is not linearly separable in the original space
it may be desirable to lift it into a higher dimensional feature space, using some nonlinear mapping
φ(·), where the data becomes linearly separable (in a broad sense, this means that some presence of
outliers is tolerated). Hence, we need to solve the linear SVM with the data vectors φ(vi), i = 1, . . . , n.
Unfortunately the dimension of the feature space can be very large, and even infinite. Even storing
the data in the feature space may be too costly or impossible. However, if we can somehow compute
φ(vi)

T
φ(vj) for any pair i, j, without computing φ(vi) and φ(vj) then we can obtain all the input

data for the second formulation (DSV M ). This can be done by means of kernel operation, K(·, ·),
which is a scalar function of two vectors, satisfying a certain set of properties (that ensure that
K(vi, vj) = φ(vi)

T
φ(vj) for some φ(·)). In SVM practice the choice of a good kernel operation is an

important issue. A kernel corresponds to a class nonlinear separating surfaces in the original space; for
example, the kernel defined by K(u, v) = (u

T
v)2 generates second order surfaces. It also corresponds

to the mapping φ(u) = (u2
1,
√

2u1u2,
√

2u1u3, . . . ,
√

2un−1un, u2
n) ∈ Rn(n−1)/2.

Once the kernel operation is chosen, there is no need to determine φ(·). The values K(vi, vj) are
plugged directly into (DSV M ). The problem is then solved for x, y and ξ. w is not computed but is
expressed implicitly as

∑n
i xiaiφ(vi). When a new unlabeled data point vnew is classified, w

T
φ(vnew) is

computed as
∑n

i xiaiφ(vi)
T
φ(vnew) =

∑n
i xiaiK(vi, vnew). For SVM problems the number of positive

components xi at the optimal solution (which is the same as the number of data points which are on
the margin or are outliers) is typically much smaller than the size of the whole data set, hence most of
the elements of the last sum are zero and computing this sum in relatively inexpensive. Notice that if
we did not use the Euclidean norm of w in the objective function in the original formulation, then we
would not be able to express all the data in terms of inner products of the vectors in feature space,
and hence we would not be able to use kernel operations efficiently.

The dual to problem (DSV M ) corresponding to the kernel K is the following convex quadratic

18



programming problem.

minx
1
2
x

T
Qx− e

T
x

(PSV M ) s.t. a
T
x = 0,

0 ≤ x ≤ ce,

where x ∈ Rn is a vector of variables, a ∈ Rn is the vector of labels 1 and −1, Q = DaKDa and c is
the penalty parameter associated with the training error.

For large scale problems (which are common in real world applications such as speech, document
classification, optical character recognition, etc.) the training set is typically large and the Hessian of
the objective function is a large dense matrix. However, if the Hessian of the objective function has
a low rank (which happens when the dimension of the feature space is small) one can significantly
improve the performance of an interior point method by using the techniques described in Section
4. In the case of SVM there is only one equality constraint, hence the only work lies in factorizing
Q + D2.

When a nonlinear kernel is used the rank of the Hessian matrix, in general, can be as large as
the dimension of the feature space, which can be as large as infinity. However, it has been observed
[22, ?, 28] that for many classes of nonlinear SVM problems the eigenvalues of the Hessian matrix
rapidly decay to zero. Hence, one can approximate the Hessian by a low-rank positive semidefinite
matrix and take advantage of this low-rank representation to speed up an IPM as described in Section
5. The bound on the error in the objective function when such approximation is used is 1

2clmaxε, where
lmax is the maximum of the number of support vectors in the original and the perturbed problems.

Low rank approximation of the kernel matrix can be useful in other areas of SVM and was
considered by Smola and Schölkopf in [22] in application to training set sampling (also see [?] for
another low rank approximation). The quality of the approximation and the overall complexity of our
method compares favorably with those of the approximation schemes proposed in [22] and [?] (also
see [8] for details).

6.1 Example of bad numerical behavior of SMW update for SVM problems

In section 4 we gave an example of large numerical error produced by the SMW update. In the context
of SVM problems, similar situations may arise. Let us try to provide some intuition. The diagonal
elements of D2 are si/xi + ξi/(c−xi). By complementarity, as µ approaches zero, if xi → x∗i > 0 then
si → 0 and if si → s∗i > 0 then xi → 0 (analogously, if xi → x∗i < c then ξi → 0 and if ξi → ξ∗i > 0
then xi → c). Moreover, for strictly complementary solutions, whenever a variable converges to zero
(or c), it converges with the same rate as the parameter µ. Thus, whenever si and ξi both converge
to zero (which happens when the i-th data point is on the margin), then D2

i converges to zero with
the same rate as µ. Otherwise, D2

i converges to infinity with the same rate as 1/µ. If µ = 10−8, then
some elements of D2 are of the order 10−8 and the others are of the order 108. Depending on the
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structure of the data V , the matrix (V
T
D−2V + I) in (10) may become ill-conditioned and solving

the “small” system of equations with this matrix produces significant error.
In our experiments the severe numerical problems of the SMW update could usually be avoided

by applying some scaling to the data or using a different kernel matrix. In some other cases the loss
of accuracy could not be avoided but was not very significant. However, overall, the SMW update
seems to be sensitive to the scaling of the problem and is not robust. As an illustration, in the next
subsection we present two small examples of SVM problems for which an SMW update based IPM
fails to achieve various levels of accuracy depending on the setting and scaling of the problems.

6.2 Example of failure of the Sherman-Morrison-Woodbury update
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Figure 1: Examples of failure of the SMW update

We constructed a small example in the spirit of the one described in Section 4 to demonstrate
possible numerical instability of the Sherman-Morrison-Woodbury update. The first plot in Figure
1 illustrates the first data set. Notice that the set of active support vectors is redundant (so the
problem is degenerate). We then scaled this data by some number N. For N = 1 the SMW based
solver convergds to 10 digits of accuracy but required 5 extra iterations compared to the PFCF based
solver (PFCF solver took 13 iterations to converge). For N = 10 the SMW based solver stalled after
achieving 6 digits of accuracy. For N = 100 there was no progress after 3 digits of accuracy and for
N = 1000 the algorithm failed completely. The same IPM with the product-form Cholesky update
converged to 10 digits of accuracy within 20 iterations for all instances.

The second plot in Figure 1 shows the data set of the second example. This data is not linearly
separable. It is apparent from the layout that a 6-th degree polynomial is a good separator for this
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data set. Thus we used a polynomial kernel up to degree 6 K(i, j) = ((vi)
T
vj)/N + 1)6, where N is a

scaling parameter. For N = 1 the SMW based solver achieved only 5 digit of accuracy and terminated
after 88 iterations. For N = 5 the accuracy was 9 digits after 39 iterations and for N = 10 the method
converged after 22 iterations. For all these instances the PFCF method found more than 10 significant
digits in under about 14 iterations. We also shifted the data set by adding 3 to the x2 component and
the SMW based solver failed to achieve any accuracy for that instance with N = 1. Other values of
N were tried and a similar trend as described above was observed.

To demonstrate that such failures can happen in practice we applied the Sherman-Morrison-
Woodbury version of the code to an approximate problem arising from Abalone data set using a
polynomial kernel. The algorithm stalled after achieving only 5 digits of accuracy, whereas the product-
form Cholesky version converged to 12 digits of accuracy.

For interior point methods the problem not of not being able to obtain sufficient accuracy lies
not only in the loss of accuracy itself, but also in the inability of the algorithm to terminate. It
sometimes may take 50− 100% extra iterations for an interior point method to detect lack of progress
and terminate.

7 Portfolio optimization

Portfolio optimization refers to a class of problems involving the allocation of capital over a number
of available assets in order to maximize the “return” on the investment while minimizing the “risk”.
Different versions of the portfolio optimization problem arise from the way that these two conflicting
objectives are handled. Markowitz is credited with being the first person to formulate mathematical
models for this class of problems [15, 16]. In these models, the “return” and “risk” of a portfolio
is measured by the expected value and the variance, respectively, of the random portfolio return.
Markowitz showed that, given a lower bound on the acceptable return, the optimal (minimum risk)
portfolio can be obtained by solving a convex quadratic programming problem. This mean-variance
model has had a profound impact on the economic modeling of financial markets and the pricing of
assets. The Capital Asset Pricing Model (CAPM) [21], [14] and [18] is based upon Markowitz’s model,
and Sharpe and Markowitz were awarded the Nobel Memorial Prize in Economic Sciences in 1990 for
their work.

We consider the following “factor” model of the market that has n traded assets. The vector of
asset returns over a single market period is denoted by r ∈ Rn, with the interpretation that asset i

returns (1 + ri) dollars for every dollar invested in it. The returns on the assets in different market
periods are assumed to be independent. The single period return r is assumed to be a random variable
given by

r = µ + V
T
f + ε, (23)

where µ ∈ Rn is the vector of mean returns, f ∼ N (0, F ) ∈ Rm is the vector of returns of the factors
that drive the market, V ∈ Rm×n is the matrix of factor loadings of the n assets and ε ∼ N (0, D)
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is the vector of residual returns. Here x ∼ N (µ,Σ) denotes that x is a multivariate Normal random
variable with mean vector µ and covariance matrix Σ.

In addition, we assume that the vector of residual returns ε is independent of the vector of factor
returns f , the covariance matrix F Â 0 and the covariance matrix D = diag(d) º 0, i.e. di ≥ 0,
i = 1, . . . , n. Thus, the vector of asset returns r ∼ N (µ, V

T
FV +D). Typically, the eigenvalues of the

residual covariance matrix D are much smaller than those of the covariance matrix V
T
FV implied by

the factors, i.e. the V
T
FV is a good low rank approximation to the covariance of the asset returns.

The assumption that factor and residual returns are Normally distributed can be relaxed. In fact,
the distributions need not be Normal or even known. All that is needed are their first and second
moments.

There are many different kinds of factors used in the financial industry. These include major
market indices such as the S&P 500, Nasdaq 100, Russell 2000 and 30-year treasury bond indices.
Often, a principal component analysis of the covariance matrix of asset returns (using recent historical
data) and the eigenvectors corresponding to the leading eigenvalues are used as factors. In other
cases, factors along with their covariance matrix F and the factor loadings V are provided by financial
consulting firms. In some cases upper bounds on the weighting of each factor in the portfolio are
imposed.

7.1 Basic portfolio models

A portfolio is a vector φ ∈ Rn, where the i-th component φi represents the fraction of total wealth
invested in asset i. If no short selling is allowed, φi ≥ 0 for all i. The return rφ of the portfolio φ is
given by

rφ = r
T
φ = µ

T
φ + f

T
V φ + ε

T
φ ∼ N (φ

T
µ, φ

T
(V

T
FV + D)φ).

The Markowitz portfolio selection model assumes that the expected value E[r] of the asset returns
and the covariance Var [r] are known with certainty. In this model investment “return” is the ex-
pected value E[rφ] ≡ µ

T
φ of the portfolio return and the associated “risk” is the variance Var [rφ] ≡

φ
T
(V

T
FV + D)φ. The objective is to choose a portfolio φ∗ that has the minimum variance amongst

those that have expected return at least α, i.e. φ∗ is the optimal solution of the convex quadratic
programming problem

minimize Var [rφ]
subject to E[rφ] ≥ α,

e
T
φ = 1,

φ ≥ 0.

(24)

An alternative version of the portfolio optimization problem is the maximum return problem,
in which the expected return is maximized subject to an upper bound on the variance. While this
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problem is not a convex QP, the following Lagrangian variant of it:

maximize E[rφ]− λVar [rφ]
subject to e

T
φ = 1,

φ ≥ 0,

(25)

yields the same solution for an appropriate choice of the Lagrange multiplier λ > 0 and is a convex
QP.

Another variant of problem (??) is the maximum Sharpe ratio problem. Here the objective is to
choose a portfolio that maximizes the ratio of the expected return of the portfolio, in excess of the
risk-free rate rf , to the standard deviation of the return; i.e.,

maximize{φ:e
T

φ=1,φ≥0}

{
E[rφ]−rf√

Var[rφ]

}
(26)

Let us assume that the optimal value of this problem is strictly positive, i.e. there exists a portfolio
with finite variance whose return is strictly greater than the risk-free rate rf . Since, in practice, the
variance of every asset is bounded, this assumption is equivalent to requiring that the return of at
least one asset is greater than rf .

Since e
T
φ = 1, the objective of problem (26),

µ
T
φ− rf√

Var [rφ]
=

(µ− rfe)
T
φ√

Var [rφ]
,

is a homogeneous function of φ. Therefore the normalization condition e
T
φ = 1 in (26) can be replaced

by the constraint (µ− rfe)
T
φ = 1. Hence, (26) is equivalent to

minimize φ
T
(V

T
FV + D)φ

subject to (µ− rfe)
T
φ = 1,

φ ≥ 0.

(27)

It is easy to see that the constraint (µ − rfe)
T
φ = 1 can be relaxed to (µ − rfe)

T
φ ≥ 1, since the

latter will always be tight at an optimal solution. Consequently, the maximum Sharpe ratio problem
is equivalent to a minimum variance problem with α = 1, µ replaced by µ − rfe, and φ no longer
normalized.

The maximum Sharpe ratio problem can be transformed into a convex QP even when there are
additional equality and inequality constraints on φ. Specifically, suppose the portfolio φ is constrained
to satisfy Aφ ≥ b (equality constraints Āφ = b̄ are handled in a similar manner). Then, the maximum
Sharpe ratio problem,

max
{φ:Aφ≥b,e

T
φ=1,φ≥0}

{
µ

T
φ− rf√
Var [φ]

}
, (28)
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is equivalent to the minimum variance problem

minimize φ
T
(V

T
FV + D)φ

subject to (µ− rfe)
T
φ ≥ 1,

Aφ ≥ ζb,

e
T
φ = ζ,

φ ≥ 0,

ζ ≥ 0,

(29)

where ζ is an auxiliary variable that has been introduced to homogenize the constraints Aφ ≥ b and
e

T
φ = 1.

7.2 Portfolio models in practice

In practice the basic models presented in the last subsection, all of which are convex QPs, are aug-
mented with additional constraints depending on the specific application. Typically, upper bounds
are imposed on the fraction of wealth φi invested in each asset i. Upper bounds on the total fractions
of the portfolio invested in subsets of assets are also commonly specified. For example, restrictions
are placed on how much may be invested in telecommunications stocks. One may also have variable
upper bound constraints of the form φi ≤ φj for various asset pairs (i, j) to capture the preference of
a portfolio manager for one asset j over another asset i from the same asset class. Most importantly,
in most applications the portfolio optimization problem is solved given an existing portfolio; i.e., the
optimal portfolio is obtained by modifying an existing portfolio rather than forming one from scratch
and there are transaction costs that are often different for buying and selling a particular asset. In
such situations, if φ̄i is the current fraction of asset i in the portfolio, then “trading” constraints of
the form

φi − zi + yi = φ̄i,

0 ≤ zi ≤ θi − φ̄i,

0 ≤ yi ≤ φ̄i,

(30)

are added to the basic model, where zi and yi are, respectively, the amounts of asset i added to and
removed from the portfolio (in terms of fractions of the total wealth), and θi is an upper bound on φi.

In a typical application, the universe of assets might include the 500 stocks in the S&P500 index
and the number of factors used might be approximately 20. There tend to be only a moderate number
of asset subset upper bound constraints but these are usually fairly dense as the cardinalities of the
subsets tend to be large. The number of trading constraints (30) can be quite large as these are
imposed for each asset in the current portfolio. If these are the only constraints in the problem in
addition to e

T
φ = 1, then the matrix B in (16) is the identity matrix with a row of ones appended to

it and both K and K−1 are very sparse.
In some applications, disjunctive constraints of the form, either φi ≥ αi or φi = 0, and cardinality

constraints which limit the number of assets in the portfolio with nonzero φi’s to a specified number
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are imposed. This leads to a mixed integer quadratic program which can be solved by repeatedly
solving convex QPs, to which polyhedral cuts have been added, within a branch-and-cut framework
(e.g., see [3]).
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