
RC23775 (W0511-031) November 4, 2005
Mathematics

IBM Research Report

Near Optimality of the Discrete Persistent Access
Caching Algorithm

Predrag Jelenkovic, Xiaozhu Kang
Columbia University

New York, NY

Ana Radovanovic
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Near Optimality of the Discrete Persistent Access Caching Algorithm 1

Renewed interest in caching techniques stems from their application to improving the performance of the World Wide Web, where
storing popular documents in proxy caches closer to end-users can significantly reduce the document download latency and overall
network congestion. Rules used to update the collection of frequently accessed documents inside a cache are referred to as cache
replacement algorithms. Due to many different factors that influence the Web performance, one of the key attributes of a cache
replacement rule are low complexity and high adaptability to variability in Web access patterns. These properties are primarily the
reason why most of the practical Web caching algorithms are based on the easily implemented Least-Recently-Used (LRU) cache
replacement heuristic.

In our recent paper (8), we introduce a new algorithm, termed Persistent Access Caching (PAC), that, in addition to desirable low
complexity and adaptability, somewhat surprisingly achieves nearly optimal performance for the independent reference model and
generalized Zipf’s law request probabilities. Two drawbacks of the PAC algorithm are its dependence on the request arrival times
and variable storage requirements. In this paper, we resolve these problems by introducing a discrete version of the PAC policy
(DPAC) that, after a cache miss, places the requested document in the cache only if it is requested at least k times among the
last m, m � k, requests. However, from a mathematical perspective, due to the inherent coupling of the replacement decisions for
different documents, the DPAC algorithm is considerably harder to analyze than the original PAC policy. In this regard, we develop
a new analytical technique for estimating the performance of the DPAC rule. Using our analysis, we show that this algorithm is
close to optimal even for small values of k and m, and, therefore, adds negligible additional storage and processing complexity in
comparison to the ordinary LRU policy.

Keywords: persistent-access-caching, least-recently-used caching, least-frequently-used caching, move-to-front searching, gener-
alized Zipf’s law distributions, heavy-tailed distributions, Web caching, cache fault probability, average-case analysis

Contents

1 Introduction 1

2 Model description and preliminary results 2

3 Preliminary results on Poisson processes 4

4 Near optimality of the DPAC algorithm 10

5 Numerical experiments 13
5.1 Convergence to stationarity . 13
5.2 Experiments . 14

6 Concluding remarks 15

7 Proof of Lemma 5 16

1 Introduction
Since the recent invention of the World Wide Web (WWW), there have been an explosive growth in distributed mul-
timedia content and services that are now integral part of modern communication networks (e.g., the Internet). This
massively distributed network information is repeatedly used by groups of users implying that bringing some of the
more popular items closer to end-users can improve the network performance, e.g., reduce the download latency and
network congestion. This type of information replication and redistribution system is often termed Web caching.

One of the key components of engineering efficient Web caching systems is designing document placement/replacement
algorithms that are selecting and possibly dynamically updating a collection of frequently accessed documents. The
design of these algorithms has to be done with special care since the latency and network congestion may actually
increase if documents with low access frequency are cached. Thus, the main objective is to achieve high cache
hit ratios, while maintaining ease of implementation and scalability. Furthermore, these algorithms need to be self-
organizing and robust since the document access patterns exhibit a high degree of spatial as well as time fluctuations.
The well-known heuristic named the Least-Recently-Used (LRU) cache replacement rule satisfies all of the previously

2 Predrag R. Jelenković, Xiaozhu Kang and Ana Radovanovi ć

mentioned attributes and, therefore, represents a basis for designing many practical replacement algorithms. However,
as shown in (5) in the context of the stationary independent reference model with generalized Zipf’s law requests, this
rule is by a constant factor away from the optimal frequency algorithm that keeps in the cache most frequently used
documents, i.e., replaces Least-Frequently-Used (LFU) items. On the other hand, the drawback of the LFU algorithm
is that it needs to know (measure) the document access frequencies and employ aging schemes based on reference
counters in order to cope with evolving access patterns, which results in high complexity. In the context of database
disk buffering, (10) proposes a modification of the LRU policy, called LRU-K, that uses the information of the last K
reference times for each document in order to make replacement decisions. It is shown in (10) that the fault probability
of the LRU-K policy approaches, as K increases, the performance of the optimal LFU scheme. However, practical
implementation of the LRU-K policy would still be of the same order of complexity as the LFU rule. Furthermore, for
larger values of K, that might be required for nearly optimal performance, the adaptability of this algorithm to changes
in traffic patterns will be significantly reduced.

In our recent paper (8), we designed a new cache replacement policy, termed the Persistent Access Caching (PAC)
rule, that essentially preserves all the desirable features of LRU caching, while achieving arbitrarily close performance
to the optimal LFU algorithm. Furthermore, the PAC algorithm has only negligible additional complexity in compari-
son to the widely used LRU policy. However, the drawback of the PAC policy is that its implementation and analysis
depend on the Poisson assumption for the request arrival process. In this paper, we propose a discrete version of the
PAC rule (DPAC), that, upon a miss for a document, stores the requested document in the cache only if there are at
least k requests for it among m, m� k, previously requested documents; therefore, DPAC does not depend on request
arrival times. Furthermore, the DPAC policy requires only a fixed amount of additional storage for m pointers and
a small processing overhead that make it easier to implement than the original PAC rule. On the other hand, due to
coupling of the request decisions, as pointed in the abstract, DPAC is significantly more difficult to analyze. To this
end, we develop a new analytic technique that, in conjunction with the large deviation analysis and asymptotic results
developed in (8; 6; 5), show that the DPAC policy performs near optimal. It is surprising that even for small values
of k�m, the performance ratio between the DPAC and optimal LFU algorithm significantly improves when compared
to the ordinary LRU; for example, this ratio drops from approximately 1�78 for LRU (k � 1) to 1�18�1�08 for k � 2�3,
respectively. In other words, with only negligible computational complexity relative to the LRU rule, the DPAC algo-
rithm approaches the performance of the optimal LFU scheme without ever having to compute the document access
frequencies. Furthermore, we show that the derived asymptotic result and simulation experiments match each other
very well, even for relatively small cache sizes.

This paper is organized as follows. First, in Section 2, we formally describe the DPAC policy. Then, we develop
a representation theorem for the stationary search cost of the related, Discrete Persistent Move-To-Front algorithm.
This representation formula and lemmas of Section 3 provide necessary tools for proving our main theorem in Section
4. Informally, our main result shows that for large cache sizes and independent reference model with generalized
Zipf’s law request distributions, the fault probability of the DPAC algorithm approaches the optimal LFU policy while
maintaining low implementation complexity. Furthermore, in Section 5, the numerical experiments show an excellent
agreement between our analytical result and simulations. A brief discussion of our results and their possible extensions
is presented in Section 6. In order to alleviate the reading process, we state the proof of a technical lemma in Section 7.

2 Model description and preliminary results
Consider a set L � �1�2� � � � �N� of N (possibly infinite) documents, out of which x can be stored in an easily accessible
location, called cache. The remaining N � x documents (items) are placed outside of the cache in a slower access
medium. Documents are requested at moments �τn�n�1� with increments �τn�1�τn�n�0�τ0 � 0� being stationary and
ergodic having �τ1 � 1�λ for some λ � 0, and τn�1� τn � 0 a.s. for n � 0. Furthermore, define a sequence of i.i.d.
random variables �Rn�n�1, independent from �τn�n�1, where �Rn � i� represents a request for item i at time τn. We
denote request probabilities as ��Rn � i� � qi and, without loss of generality, we assume q1 � q2 � � � � .

Now, we describe the cache replacement algorithm. First, we select fixed design parameters m � k � 1. Then, let
Mi�τn� be the number of requests for item i among the m consecutive requests τ n�τn�1� � � � �τn�m�1. Documents stored
in the cache are ordered in a list, which is sequentially searched upon a request for a document and is updated as
follows. If a requested document at time τn, say i, is found in the cache, we have a cache hit. In this case, if the number
of requests for document i among the last m requests (including the current request) is at least k, i.e. M i�τn�m�1�� k,

Near Optimality of the Discrete Persistent Access Caching Algorithm 3

item i is moved to the front of the list while documents that were in front of item i are shifted one position down;
otherwise, the list stays unchanged. Furthermore, if document i is not found in the cache, we call it a cache miss or
fault. Then, similarly as before, if Mi�τn�m�1�� k, document i is brought to the first position of the cache list and the
least recently moved item, i.e., the one at the last position of the list, is evicted from the cache. We name the previously
described cache replacement policy the Discrete Persistent Access Caching (DPAC (m�k)) algorithm. Note that in the
special case of m � k � 1, DPAC reduces to the ordinary LRU heuristic. The performance measure of interest is
the cache fault probability, i.e., the probability that a requested document is not found in the cache. We would like
to mention that the probabilistic evaluation of an algorithm is typically referred to as the average-case analysis; the
pointers to combinatorial (competitive, worse case) approaches can be found in (8).

Analyzing the DPAC(m�k) algorithm is equivalent to investigating the corresponding Move-To-Front (MTF) scheme
that is defined as follows. Consider the same arrival model �Rn�, �τn� as in the first paragraph and assume that all
documents are ordered in a list L � �1�2� � � � �N��N � ∞. When a request for a document arrives, say R n � i, the list
is searched and the requested item is moved to the front of the list only when M i�τn�m�1�� k; otherwise the list stays
unchanged. We term the previously described searching algorithm the Discrete Persistent-MTF (DPMTF(m�k)). The

performance measure of interest for this algorithm is the search cost C �N�
n that represents the position of the requested

document at time τn.
Now, we claim that computing the cache fault probability of the DPAC(m�k) algorithm is equivalent to evaluating the

tail of the searching cost C�N�
n of the DPMTF(m�k) searching scheme. Note that the fault probability of the DPAC(m�k)

algorithm stays the same regardless of the ordering of documents in the slower access medium. In particular, these
documents can be also ordered in an increasing order of the last times they are moved to the front of the cache list.
Therefore, it is clear that the fault probability of the DPAC(m�k) policy for the cache of size x after the nth request

is the same as the probability that the search cost of the DPMTF(m�k) algorithm is greater than x, i.e. ��C �N�
n � x�.

Hence, even though DPAC(m�k) and DPMTF(m�k) belong to different application areas, their performance analysis is
essentially equivalent. Thus, in the rest of the paper we investigate the tail of the stationary search cost distribution.

First, we prove the convergence of the search cost C �N�
n to stationarity. Suppose that the system starts at τ0

with initial conditions given by an arbitrary initial permutation Π 0 of the list and a sequence of requests R0 �
�r�m�1�r�m�2� � � � �r�1�.

In order to prove the convergence of C �N�
n to stationarity, we construct a sequence of DPMTF searching schemes that

start at negative time points and are observed at time τ0 � 0. To that end, let �R�n�n�0 be a sequence of i.i.d. requests
that are equal in distribution to R1 that arrive at points on the negative axis �τ�n�n�1; these arrival points are equal
in distribution to �τn�n�1 and are independent from �R�n�n�0. Then, for each n � 0 we construct a DPMTF(m�k)
algorithm starting at τ�n, with a sequence of requests �Rl : l ��n�1� � � � ��1�0� and having the same initial condition

as in the previous paragraph, given by Π0 and R0; let C�N�
�n be the search cost at time τ0 � 0. Note that in this

construction we assume that for the DPMTF(m�k) algorithm starting at τ�n, n � 0, there is no request at time τ�n.
Now, if we consider the shift mapping Rn�k � R�k�τn�k � τ�k for k � 0�1� � � �n� 1, we conclude that, since the

corresponding sequences are equal in distribution, the search costs C �N�
�n and C�N�

n are also equal in distribution, i.e.

C�N�
n

d
�C�N�

�n . Thus, instead of computing the tail of the search cost C �N�
n , we continue with evaluating the tail of C �N�

�n .

In this regard, we define a sequence of random times �T ��n�
i �n�1, where �T ��n�

i represents the last time before t � 0
that item i was moved to the front of the list in the case of the DPMTF(m�k) algorithm that started at τ�n; if item i is

not moved in �τ�n�0�, we set T ��n�
i ��τ�n. Next, we define random times Ti, i� 1, as

Ti ��sup�τ�n � 0 : R�n � i�Mi�τ�n�m�1�� k�� (1)

From the definitions of Ti and T ��n�
i , we conclude that the equality Ti � T ��n�

i a.s. holds on event �T ��n�
i ��τ�n�m�1�.

Therefore, the complementary sets of events are the same, i.e. �Ti � τn�m�1�� �T ��n�
i ��τ�n�m�1�.

Then, given the previous observations, we bound the tail of the search cost C �N�
�n as

��C�N�
�n � x�R0 � i�T ��n�

i ��τ�n�m�1�� ��C�N�
�n � x�R0 � i�� (2)

��C�N�
�n � x�R0 � i�T ��n�

i ��τ�n�m�1����C�N�
�n � x�R0 � i�T ��n�

i ��τ�n�m�1��

4 Predrag R. Jelenković, Xiaozhu Kang and Ana Radovanovi ć

Next, observe that on event �R0 � i�T ��n�
i � �τ�n�m�1� the search cost C�N�

�n is equal to the number of different
documents (including i) that are moved to the front of the list from the last time that item i was brought to the first
position. Thus, we derive

��C�N�
�n � x�R0 � i�T ��n�

i ��τ�n�m�1� � �

�
R0 � i�∑

j ��i

1�T ��n�
j � T ��n�

i ��τ�n�m�1�� x

�

� qi�

�
∑
j ��i

1�Tj � Ti � τn�m�1�� x

�
� (3)

where the last equality follows from the independence assumption on �τ�n�n�0, �R�n�n�0 and the equality Ti � T ��n�
i ,

i � 1, on �Ti � τn�m�1�.
Hence, by monotone convergence theorem,

lim
n�∞

N

∑
i�1
��C�N�

�n � x�R0 � i�Ti � τn�m�1� �
N

∑
i�1

qi�

�
∑
j ��i

1�Tj � Ti�� x

�
� (4)

Furthermore, due to stationarity and ergodicity of the arrival process �τ n� and finiteness of Ti � ∞ a.s. we obtain

lim
n�∞

��Ti � τn� � 0� (5)

Finally, equality of events �T ��n�
i � �τ�n�m�1� � �Ti � τn�m�1�, independence of requests, limit in (5) and domi-

nated convergence theorem imply

lim
n�∞

N

∑
i�1

��R0 � i�T ��n�
i ��τ�n�m�1� � lim

n�∞

N

∑
i�1

qi��Ti � τn�m�1� � 0�

The previous expression, in conjunction with (4) and (2), implies the following representation result:

Lemma 1 For any 1� N � ∞, arbitrary initial conditions �Π0�R0� and any x � 0, the search cost C�N�
n converges in

distribution to C�N� as n� ∞, where

��C�N� � x��
N

∑
i�1

qi� �Si�Ti�� x� ; (6)

we define Si�t��∑ j ��i 1�Tj � t�, i � 1.

Remarks: (i) Note that the expression in (6) is independent from the selection of the arrival process �τ n�n�1. To see
this, assume two arrival processes �τn�n�1 and �τ�n�n�1 that are independent from requests �Rn�n�1 and satisfy the
stationarity, ergodicity and monotonicity conditions from the beginning of this section. Using definition (1), we define
random times Ti�T �

i , i � 1, that correspond to processes �τn�n�1, �τ�n�n�1, respectively. Then, it is easy to observe
that 1�Tj � Ti� � 1�T �

j � T �
i � a.s. for any j �� i, i� j � 1, i.e., the sequences of random times Ti�T �

i , i � 1 are ordered in
exactly the same way. Thus, since Si�Ti� is completely determined by the ordering of these random times, it is clear
that the distributions of the corresponding search costs are exactly the same. (ii) Using the preceding observation we
can assume in the rest of the paper without loss of generality that �τ n�n�1 is a Poisson sequence of points with rate 1.
This assumption will be helpful in Section 3 in decoupling the dependency among random times T i, i� 1. The Poisson
embedding technique for LRU policy with i.i.d. requests was first introduced in (3).

3 Preliminary results on Poisson processes
This section provides bounds on random times Ti and the sum Si�t�, as defined in Lemma 1, that represent necessary
building blocks for the asymptotic analysis of the stationary search cost from Lemma 1. Furthermore, it is worth
noting that Lemma 4 and 5 develop a new technique that allows the decoupling of the dependency among random
times Ti and, thus, enable us to estimate the sum in Si�t�.

Near Optimality of the Discrete Persistent Access Caching Algorithm 5

Recall the definition of Ti from (1). In order to avoid dealing with negative indices and signs we define here a
sequence of random times on the positive sequence �τn�n�1 that are equal in distribution to Ti� i � 1. Thus, with a
small abuse of notation, we use the same name Ti for the following random times

Ti � inf�τn � 0 : Rn � i�Mi�τn�� k�� (7)

Next, as proposed in the remark after Lemma 1, we assume that �τ n�n�1 is a Poisson process of rate 1. Then, let

�τ�i�n �n�1 be a sequence of requests for document i. Given the i.i.d. assumption on �R n�n�1 and its independence from

the arrival points �τn�n�1, the Poisson decomposition theorem implies that processes �τ �i�n �n�1 are also Poisson and
mutually independent for different i with rate q i. This observation will be used in the proofs of the subsequent lemmas.

In order to ease the notation, throughout the paper we use H to denote a sufficiently large positive constant and h
to denote a sufficiently small positive constant. The values of H and h are generally different in different places. For
example, H�2 � H, H2 � H, H �1 � H, etc. Next, we compute a bound on the tail of distribution of Ti for large i.

Lemma 2 For any ε � 0, there exists i0, such that for all i� i0,

��Ti � t�� e��
m�1
k�1��1�ε�2qk

i t �me�hεqk�1
i t � (8)

Proof: For k � 1 the bound trivially holds since Ti � τ�i�1 and, thus, we assume that k � 2.

First, we define a sequence of random times �Θ j�. We set Θ1 � τ�i�1 , and define n� j�, j � 1 to be the indices of

points �τ�i�j � j�1 in the original sequence �τn�n�1, i.e. τ�i�j � τn� j�, j � 1. Then, if the first point from the sequence

�τ�i�j � after time τn�1��m�1 is τ�i�j1
, we define Θ2 � τ�i�j1

. Similarly, Θ3 is defined to be the first point from �τ�i�j � after
time τn� j1��m�1, etc. Observe that �Θ j� is a renewal process with its increments for j � 1 equal to

Θ j�1�Θ j
d
� τ�i�1 �

m�1

∑
l�1

ξl � (9)

where
d
� denotes equality in distribution and �ξ j� j�1 are independent, exponentially distributed random variables with

mean 1 that are independent of �τ�i�n �n�1.
Next, we define

Ui � inf�Θ j : j � 1�Mi�Θ j�� k��
Note that this definition of Ui has identical form to the one for Ti in (7) since �Θ j� � �τ�i�j � and thus R�Θ j� � i.
Therefore, given �Θ j� � �τn�, it is clear that

Ti �Ui� (10)

Similarly, we define
X � inf� j � 1 : Mi�Θ j�� k��

Since �Rn� is i.i.d and independent of �τn�, X is independent of �Θ j� j�1 with a geometric distribution ��X � j� �
�1� p� j�1p, j � 1, where p is equal to

p � ��Mi�τ
�i�
1 �� k��

Then, from the definition of Ui and (9) we obtain

Ui � ΘX
d
� τ�i�X �

�m�1��X�1�

∑
j�1

ξ j
d� τ�i�X �

�m�1�X

∑
j�1

ξ j� (11)

where
d� represents inequality in distribution and X is independent of �τ �i�n � and �ξ j�.

Next, since τ�i�X is a geometric sum of exponential random variables with X and �τ �i�n �n�1 independent, it is easy to

show (see Theorem 5�3, p. 89 of (2)) that τ �i�X is also exponential with parameter pqi. Similarly, ∑X
j�1 ξ j is exponential

6 Predrag R. Jelenković, Xiaozhu Kang and Ana Radovanovi ć

with parameter p. Now, from monotonicity of q i and qi � 0 as i � ∞, it is also straightforward to derive that for any
ε � 0, there exists i0, such that for all i � i0

p � ��Mi�τ
�i�
1 �� k� �

m�1

∑
l�k�1

�
m�1

l

�
ql

i�1�qi�
m�1�l � �1� ε�

�
m�1
k�1

�
qk�1

i � (12)

At this point, using the observations from the previous paragraph, (10) and (11), we obtain, for all i large enough
(i� i0),

��Ti � t�� ��Ui � t�

� �

�
τ�i�X � �1� ε�t

�
��

�
X�m�1�

∑
j�1

ξ j � εt

�

� e�pq�1�ε�t ��m�1��

�
X

∑
j�1

ξ j �
εt

m�1

�

� e��
m�1
k�1�qk

i �1�ε�2t ��m�1�e�
pεt

m�1 (13)

� e��
m�1
k�1�qk

i �1�ε�2t �me�hεqk�1
i t ;

this completes the proof. �

Next, we will prove the lower bound for the random time Ti defined in (7).

Lemma 3 For any ε � 0, there exists i0 such that for all i � i0

��Ti � t�� e��1�ε��m�1
k�1�qk

i t � (14)

Proof: Since the bound is immediate for k � 1, we assume k � 2.
First, we group the points �τ�i�n �n�1 into cycles using the following procedure. Let Θ 1 � τ�i�1 and define a random

time
Z1 � inf� j � 2 : Mi�τn�1��m� j�1�� � 0��

where n�1� is the index of the point Θ1 � τ�i�1 in the original sequence �τn�n�1, i.e. τ�i�1 � τn�1�. Then, the first cycle is

the interval of time C1 � �τn�1��τn�1��mZ1�1�. Next, the first point of process �τ�i�n � after time τn�1��mZ1�1, say τ�i�l , we

label as Θ2 � τ�i�l and, similarly as before, we define a random time

Z2 � inf� j � 2 : Mi�τn�2��m� j�1�� � 0��

where n�2� is the index of the point Θ2 in the original sequence �τn�n�1, i.e. Θ2 � τn�2�. We continue this procedure
indefinitely. Note that the sequences �Θ j� j�1��n� j�� j�1 as well as the other auxiliary variables (e.g., p, X) are
different from the ones in the proof of Lemma 2. The same will apply for the proofs of the remaining lemmas in this
section.

Now, due to the i.i.d structure of �Rn� and its independence from �τn�, the sequence of random times �Z j� is i.i.d.
with geometric distribution

��Zi � j� � ���Mi�τ1�� 0�� j�2
��Mi�τ1� � 0�� j � 2� (15)

Furthermore, �Θ j� is a renewal process with renewal intervals equal to, for j � 1,

Θ j�1�Θ j
d
� τ�i�1 �

mZ1

∑
i�1

ξi� (16)

where �ξi� is an i.i.d. sequence of exponential random variables with mean 1 that is independent of τ �i�
1 �Z1.

Near Optimality of the Discrete Persistent Access Caching Algorithm 7

Next, we define for j � 1 sets

A j � �ω : 	τn
 C j�R�τn� � i�Mi�τn�� k�;
note that events A j are independent since Mi�τn� j��m�Zj�1�� � 0. Then, since the union of the arrival points in all cycles

� jC j contains all requests �τ�i�n �,
Ti � inf�τn : R�τn� � i�Mi�τn�� k�τn
 C j� j � 1�
� Li � inf�Θ j�ω� : ω
 A j� j � 1�� (17)

where the inequality is implied by τn �Θ j for any τn
 C j� j � 1.
Furthermore, we claim that

Li � ΘX
d� τ�i�X � (18)

where X is independent of �τ�i�n �, �Θ j� and has geometric distribution ��X � j� � �1� p� j�1 p� j � 1, with success
probability

p � ��An�� ���Mi�τ
�i�
1 �� k���Mi�τ

�i�
1 �mZ1�� k�1���

where Mi�τn�k� is defined as the number of references for document i among the requests occurring at τ n�τn�1� � � � �τn�k�1.
The equality in (18) follows from the renewal property of the Poisson process, the definition of Z i, the independence
of �Rn� and �τn�; and the inequality follows by neglecting the sum in (16). Furthermore, similarly as in the proof of

Lemma 2, τ�i�X is an exponential random variable with distribution

��τ�i�X � t� � e�pqit � (19)

Thus, in order to complete the proof, we need an upper bound on p. In this respect, using the union bound, we upper
bound the success probability p as

p� ���Mi�τ
�i�
1 �� k���Mi�τ

�i�
1 �mZ1�� k�1��

� ��Mi�τ1�m�1�� k�1����Z1 � k�1����Mi�τ1�m�k�1��� k�

� ��Mi�τ1�m�1�� k�1����Mi�τ1�� 1�k ���Mi�τ1�m�k�1��� k�� (20)

where in the last equality we used the geometric distribution of Z 1 from (15). Finally, (17),(18), (19), (20) and the fact
that uniformly for all 1� l2 � l1 � m�k�1� and any fixed ε � 0,

��Mi�τ1� l1�� l2� �
l1

∑
s�l2

�
l1
s

�
qs

i �1�qi�
l1�s � �1� ε�

�
l1
l2

�
ql2

i

for all i large enough (i� i0), yield the stated bound in the lemma. �

In this paper we are using the following standard notation. For any two real functions a�t� and b�t� and fixed
t0
 ���∞� we will use a�t� � b�t� as t � t0 to denote limt�t0 �a�t��b�t�� � 1. Similarly, we say that a�t� � b�t� as
t � t0 if liminft�t0 a�t��b�t�� 1; a�t�� b�t� has a complementary definition.

In the following lemmas, we develop an analytic technique that allows us to decouple the dependency of random
times Ti for i large, which in conjunction with the large deviation bound proved in Lemma 4 of (6), provides necessary
estimates used in the proof of our main result in Section 4.

Lemma 4 Let Ti, i � 1, be random variables defined in (7). Then, for q i � c�iα as i� ∞, α � 1 and

t0�x� �
�1� ε�αkxαk

�1� ε�k�2ck
�m�1

k�1

�
�Γ�1� 1

αk ��
αk
�

we obtain

�

�
∞

∑
i�1

1�Ti � t0�x��� x

�
� o

�
1

xα�1

�
as x� ∞�

8 Predrag R. Jelenković, Xiaozhu Kang and Ana Radovanovi ć

Proof: Note that for any i0 � 1

�

�
∞

∑
i�1

1�Ti � t0�x��� x

�
� �

�
∞

∑
i�i0

1�Ti � t0�x��� x

�
� (21)

Let �τ�i0�j � j�1 be an ordered sequence of request times for documents i � i 0, i.e. �τ�i0�j � j�1 � �i�i0�τ�i�n �n�1. We

use n� j�� j � 1, to denote the index of point τ �i0�j in the original sequence �τn�n�1, i.e. τ�i0�j � τn� j�. Then, since
process �τn� is Poisson and �Rn� is i.i.d. sequence independent of �τn�, by Poisson decomposition theorem, process

�τ�i0�j � τn� j�� j�1 is also Poisson with rate ∑i�i0 qi. Next, in order to estimate an upper bound for random times Ti,
i � i0, we proceed as follows.

First, we define a sequence of random times �Θ j�. We set Θ1 � τn�1� � τ�i0�1 ; then, if the first point from the sequence
�τn� j�� after time τn�1��m�1 is τn� j1�, we define Θ2 � τn� j1�. Similarly, Θ3 is defined to be the first point from �τn� j��
after time τn� j1��m�1, etc. Note that, due to the renewal structure of �τn�, �Θ j� is a renewal process whose increments
for j � 1 satisfy

Θ j�1�Θ j
d
� τ�i0�1 �

m�1

∑
l�1

ξl � (22)

where τ�i0�1 ��ξl�l�1 are independent exponential random variables with τ �i0�1 having parameter ∑i�i0 qi and ξ1 having
parameter 1.

Next, for all i � i0 define
Ui � inf�Θ j : j � 1�R�Θ j� � i�Mi�Θ j�� k��

Similarly as in the proof of Lemma 2, the definition of Ui, i � i0, has identical form to the one for Ti in (7). The only
difference is that points �Θ j� � �τn� and, therefore,

Ti �Ui� (23)

Then, using (22), for j � 1 we have that

Θ j
d
� τ�i0�j �ν�1�j�1� �ν�m�1�

j�1 � (24)

where ν�l�0 � 0�1 � l � m� 1 and �ν�l�j � j�1�1 � l � m� 1 are independent Poisson processes of rate 1 that are also

independent of the Poisson process �τ�i0�j � j�1 having rate ∑i�i0 qi. Using this observation and the fact that �Rn� and
�τn� are independent, we arrive at the following representation

Ui
d
� τ�i0�Xi

�
m�1

∑
l�1

ν�l�Xi�1 � τ�i0�Xi
�

m�1

∑
l�1

ν�l�Xi
� (25)

where Xi is a geometric random variable independent from �ν �l�
j � j�1�1 � l � m� 1 and �τ�i0�j � j�1 with ��Xi � j� �

�1� pi�
j�1 pi, where

pi � ∑
l�k�1

qi

∑ j�i0 q j

�
m�1

l

�
ql

i�1�qi�
m�1�l�

Then, again, due to the Poisson decomposition theorem, variables �τ �i0�Xi
�i�i0 are independent and exponentially

distributed with τ�i0�Xi
having parameter pi ∑i�i0 qi. Similarly, for each fixed 1� l � m�1, variables �ν�l�Xi

�i�i0 are also

independent and exponential with ν�l�
Xi

having parameter pi. (Note that for different l the sequences �ν�l�Xi
�i�i0 can be

mutually dependent and also potentially dependent on �τ �i0�Xi
�i�i0 .) Furthermore, observe that for any ε � 0 and i 0 large

enough

�1� ε�
qi

∑ j�i0 q j
qk�1

i

�
m�1
k�1

�
� pi � �1� ε�

qi

∑ j�i0 q j
qk�1

i

�
m�1
k�1

�
� (26)

Near Optimality of the Discrete Persistent Access Caching Algorithm 9

Next, inequalities (23) and (25) imply, for any i� i 0 and ε � 0

1�Ti � t0�x��� 1

�
τ�i0�Xi

�
m�1

∑
l�1

ν�l�Xi
� t0�x�

�

� 1�τ�i0�Xi
� �1� ε�t0�x���m1

�
ν�1�Xi

�
εt0�x�

m

	
�

and, therefore,

�

�
∞

∑
i�i0

1�Ti � t0�x��� x

�
� �

��x logx�
∑
i�i0

1�τ�i0�Xi
� �1� ε�t0�x���m

�x logx�
∑
i�i0

1

�
ν�1�Xi

�
εt0�x�

m

	
� x

�

� �

��x logx�
∑
i�i0

1�τ�i0�Xi
� �1� ε�t0�x��� �1� ε�2�x

�

��

��x logx�
∑
i�i0

1

�
ν�1�Xi

�
εt0�x�

m

	
�

xε
2m

�
� (27)

Now, using using Lemma 2 of (5), setting i0 � ��x�, we derive

�

�
∞

∑
i���x�

1�τ�i0�Xi
� �1� ε�t0�x��

�
� x�1� ε�� (28)

Using qi � c�iα and 1� e�x � x, we arrive at

�

�
∞

∑
i��x logx��1

1�τ�i0�Xi
� �1� ε�t0�x��

�
�

∞

∑
i��x logx��1

�

�
τ�i0�Xi

� �1� ε�t0�x��
�

�
∞

∑
i��x logx��1

1� e�Hqk
i t0�x� � H

∞

∑
i��x logx��1

xαk

iαk

�H
xαk

�x logx��αk�1�
�

Hx
�logx�αk�1 � o�x� as x� ∞�

Thus, using the preceding estimate and (28), we obtain

�

��x logx�
∑

i���x�
1�τ�i0�Xi

� �1� ε�t0�x��

�
� �

�
∞

∑
i���x�

1�τ�i0�Xi
� �1� ε�t0�x��

�
� x�1� ε� as x � ∞.

Then, the previous expression, in conjunction with Lemma 4 of (6) implies that the first term of (27) satisfies, as
x � ∞,

�

��x logx�
∑
i�i0

1�τ�i0�Xi
� �1� ε�t0�x��� �1� ε�2�x

�
� o

�
1

xα�1

�
� (29)

Next, it is left to estimate the second term of (27). To this end, by using the monotonicity of q i-s, assumption
qi � c�iα as i � ∞, inequality (26), i0 � ��x� and replacing t0�x�, we obtain

�x logx�
∑

i���x�
�

�
ν�1�Xi

�
εt0�x�

m

	
� x logxe

��1�ε� ε
m qk

�x logx��
m�1
k�1�

1
∑i���x� qi

t0�x�

� x logxe
� hxαkx

α�1
2

�x logx�αk � x logxe
� hx

α�1
2

�logx�αk � o�x� as x� ∞.

10 Predrag R. Jelenković, Xiaozhu Kang and Ana Radovanovi ć

Finally, applying Lemma 4 of (6), we derive

�

��x logx�
∑
i�i0

1

�
ν�1�Xi

�
εt0�x�

m

	
�

xε
2m

�
� o

�
1

xα�1

�
as x� ∞,

which, in conjunction with (21), (27) and (29), completes the proof of this lemma. �

Lemma 5 Let Ti, i � 1, be random variables defined in (7). Then, for q i � c�iα as i� ∞, α � 1 and

t0�x� �
xαk�1�2ε�αk

�1� ε�k�1ck
�m�1

k�1

�
�Γ�1� 1

αk ��
αk
�

we obtain

�

�
∞

∑
i�1

1�Ti � t0�x��� x

�
� o

�
1

xα�1

�
as x� ∞�

Proof: The proof of this lemma uses the idea of cycles from the proof of Lemma 3 in order to lower bound the ran-
dom times �Ti� with a sequence of independent random variables, similarly as in Lemma 4. Thus, since many of the
arguments are repetitive, we postpone this proof to Section 7. �

4 Near optimality of the DPAC algorithm
Consider the class of so-called online caching algorithms that make their replacement decisions using only the knowl-
edge of the past requests and cache contents. Assume also that, at times of cache faults, the replacement decisions are
only optional, i.e., the algorithm may keep the cache content constant (static). Within this context and the independent
reference model, it is well known that the static LFU policy that stores the most popular documents in the cache is the
optimal. For direct arguments that justify this intuitively apparent statement see the first paragraph of Subsection 4�1
in (7); this is also recently shown in (1) using the formalism of Markov Decision Theory. Therefore, ��R � x� is the
fault probability of the optimal static policy and ��C � x����R � x� is an average-case competitive ratio between the
stationary fault probabilities of the DPAC and optimal static algorithm. In the following theorems we show that, for
the case of generalized Zipf’s law distributions and large caches, this competitive ratio approaches 1 very rapidly as k
grows.

First, we estimate the asymptotics of the tail of the stationary search cost C �N� for Zipf’s distributions with α � 1.
In addition to the analytic techniques developed in Section 3, our method of proof uses probabilistic and sample path
arguments introduced in (6) and (8) for the case of ordinary LRU and continuous time PAC algorithms, respectively.
The starting point of our analysis is given by representation formula in (6) from Section 2. We assume that N � ∞ and
denote C �C�∞�.

Theorem 1 Assume that qi � c�iα as i � ∞ and α � 1. Then, as x � ∞

��C � x�� Kk�α���R � x�� (30)

where

Kk�α��
�

Γ
�

1� 1
αk

�	α�1

Γ
�

1�
1
k
� 1

αk

�
� (31)

Furthermore, function Kk�α� is monotonically increasing in α, for fixed k, with

lim
α�1

Kk�α� � 1� lim
α	∞

Kk�α� � Kk�∞��
1
k

Γ
�

1
k

�
eγ�k� (32)

where γ is the Euler constant, i.e. γ� 0�57721 � � � , and monotonically decreasing in k, for fixed α, with

lim
k�∞

Kk�α� � 1� (33)

Near Optimality of the Discrete Persistent Access Caching Algorithm 11

Remarks: (i) The same asymptotic result holds for the case of the continuous time PAC policy that was recently
derived in Theorem 1 of (8). (ii) After computing the second limit in (32) for k � 1�2�3, we notice a significant
improvement in performance of the DPAC (m�k) algorithm when compared to the LRU policy (k � 1). Observe that
already for k � 3, the DPAC policy performs approximately within 8% of the optimal static algorithm (K k�∞�� 1�08),
which implies near optimality of the DPAC rule even for small values of k.
Proof: The proofs of monotonicity of Kk�α� and limits (32) and (33) can be found in Theorem 1 of (8).

Next, we prove the upper bound for the asymptotic relationship in (30). Define the sum of indicator functions
S�t��∑∞

j�1 1�Tj � t�; note that S�t� is a.s. non-decreasing in t, i.e. S�t�� S�t0�x�� a.s. for all t � t0�x�, where t0�x� is
as defined in Lemma 5. Then, after conditioning on Ti being larger or smaller than t0�x�, the expression in (6) can be
upper bounded as

��C � x�� ��S�t0�x��� x��
∞

∑
i�1

qi��Ti � t0�x��

� ��∑
i�i0

1�Ti � t0�x��� x� i0��
∞

∑
i�1

qi��Ti � t0�x��� (34)

where in the previous expression we applied ∑∞
i�1 qi � 1 and i0 can be an arbitrary, finite integer. Then, applying

Lemma 5 we obtain that the tail of the search cost C is upper bounded by

��C � x�� o

�
1

xα�1

�
�

∞

∑
i�1

qi��Ti � t0�x��� (35)

Note that bound derived in Lemma 2 holds for i 0 sufficiently large. Then, due to the Poisson decomposition theorem,
processes of requests for different documents i are Poisson as well and, therefore, since q i � qi0 for i � i0, Poisson
process of rate qi can be constructed by superposition of Poisson processes with rates q i0 and qi�qi0 . Thus, it is not
hard to conclude that Ti � Ti0 (a.s.), implying

��Ti � t�� ��Ti0 � t�� (36)

Therefore, we obtain

∞

∑
i�1

qi��Ti � t0�x���
i0

∑
i�1

qi��Ti0 � t0�x���
∞

∑
i�i0

qie
�qk

i �1�ε�2�m�1
k�1�t0�x��

∞

∑
i�i0

mqie
�hεqk�1

i t0�x�

� I1�x�� I2�x�� I3�x�� (37)

where in the last two sums we used the result of Lemma 2.
After using the bound (8) and replacing t0�x�, it immediately follows that

I1�x��
i0

∑
i�1

qi

�
e
�qk

i0
�1�ε�2t0�x��m�1

k�1� �me
�hεqk�1

i0
t0�x�

	
� o

�
1

xα�1

�
as x � ∞� (38)

Now, by assumption of the theorem, for all i large enough (i � i 0, where i0 is possibly larger than in (37))

�1� ε�c�iα � qi � �1� ε�c�iα� (39)

Furthermore, for i large enough (i� i0) inequality c�iα � �1� ε�c�uα holds for any u
 �i� i�1� and, therefore, using
this bound, (39), the monotonicity of the exponential function and replacing t 0�x� from Lemma 5, yields

I2�x�� �1� ε�
∞

∑
i�i0

c
iα

e
�ι�ε� xαk

�Γ�1� 1
αk ��αk iαk

� �1� ε�2
� ∞

1

c
uα e

�ι�ε� xαk

�Γ�1� 1
αk ��αkuαk

du� (40)

12 Predrag R. Jelenković, Xiaozhu Kang and Ana Radovanovi ć

where ι�ε� � �1� ε���k�1��1� ε�2�k�1��1� 2ε�αk. Next, applying the change of variable method for evaluating the
integral with z � xαkι�ε��Γ�1� 1

αk ��
�αku�αk, we obtain that the integral in (40) is equal to

c
xα�1�α�1�

�
Γ
�

1� 1
αk

�	α�1

�ι�ε��
1

αk� 1
k

α�1
αk

� xαkι�ε�
�Γ�1� 1

αk ��αk

0
e�zz

1
k� 1

αk�1dz�

which, in conjunction with (40), implies

limsup
x�∞

I2�x�
��R � x�

� Kk�α��ι�ε��
1

αk� 1
k � Kk�α� as ε� 0� (41)

where Kk�α� is defined in (31).
In order to estimate the asymptotics of I3�x�, we use analogous steps to those we applied in evaluating I2�x�. Thus,

using inequalities from (39), c�iα � �1� ε�c�uα hold for all u
 �i� i�1� and replacing t0�x�, we obtain

I3�x�� m�1� ε�
∞

∑
i�i0

c
iα

e
�hε xαk

iα�k�1�

� m�1� ε�2
� ∞

1

c
uα e

�hε xαk

uα�k�1� du� (42)

Now, if k � 1, it is straightforward to compute the integral in the preceding expression and obtain I 3�x� � m�1�
ε�2�c��α� 1��e�hεxα

� o�1�xα�1� as x � ∞. Otherwise, for k � 2, after using the change of variable method for
solving the integral in (42) with z � hεxαku�α�k�1�, we obtain, as x � ∞

I3�x�� m�1� ε�3 c

�hε�
1

k�1 �1� 1
α �

1
α�k�1�

1

x
k

k�1 �α�1�
Γ
�

1
k�1

� 1
α�k�1�

�
� o

�
1

xα�1

�
� (43)

Therefore (43), (41),(38), (37) and (35), yields, as x � ∞

��C � x�� Kk�α���R � x�� (44)

For the lower bound on ��C � x�, starting from (6), we derive

��C � x� �
∞

∑
i�1

qi��Si�Ti�� x��
∞

∑
i�1

qi��S�t0�x�� � x�1�Ti � t0�x��

�
∞

∑
i�i0

qi��Ti � t0�x�����S�t0�x��� x�1��

where we choose t0�x� as in Lemma 4. Next, we apply Lemma 4 to estimate the second term in the preceding ex-
pression. Then, after applying Lemma 3 to lower bound the tail of random times T i, i � i0, in conjunction with the
analogous reasoning as estimating I2�x� (see also expressions (39)-(40) of (8)), we complete the proof of this theorem.
�

In addition to the previous result, one can estimate the asymptotic performance of the DPAC algorithm when 0�α�
1. In this case our proofs would involve analogous arguments to those applied in the proof of preceding Theorem!1, in
conjunction with techniques developed in Theorems 2 and 3 of (8). Since the results are the same as those in Theorems
2 and 3 of (8), we omit their proofs and just state them here.

Theorem 2 Assume that qi � hN�i, 1 � i � N, where hN is the normalization constant. Then, for any 0 � δ � 1, as
N � ∞

�logN���C�N� � δN�� Fk�δ��
1
k

Γ�0�ηδ�� (45)

where ηδ uniquely solves the equation

1� 1
k

η
1
k Γ

�
�1

k
�η
�
� δ;

Near Optimality of the Discrete Persistent Access Caching Algorithm 13

note that, Γ�x�y�, y� 0, is the incomplete Gamma function, i.e. Γ�x�y��
� ∞

y e�t tx�1dt. Furthermore, for any 0� δ� 1,

lim
k�∞

Fk�δ� � log

�
1
δ

�
� (46)

�

Theorem 3 Assume that qi � hN�iα, 1� i� N, where hN is the normalization constant and 0 � α � 1. Then, for any
0 � δ � 1, as N � ∞

��C�N� � δN�� Fk�δ��
1�α

αk
�ηδ�

1
αk� 1

k Γ
�

1
k
� 1

αk
�ηδ

�
� (47)

where ηδ is the unique solution of the equation

1� 1
αk

Γ
�
� 1

αk
�η
�

η
1

αk � δ;

note that Γ�x�y�, y � 0, is the incomplete Gamma function, i.e. Γ�x�y� �
� ∞

y e�ttx�1dt. Furthermore, Fk�δ�, δ
 �0�1�,
is a proper distribution, with limδ�0 Fk�δ� � 1, limδ�1 Fk�δ� � 1 and

lim
k�∞

Fk�δ� � 1�δ1�α� (48)

�

5 Numerical experiments
In this section we illustrate our main results stated in Theorems 1, 2 and 3. Even though the results are valid for large
cache sizes, our simulations show that the fault probability approximations, suggested by formula (30), (45) and (47),
work very well for small caches as well.

5.1 Convergence to stationarity
In the presented experiments, we use a discrete time model without The Poisson embedding, i.e., τ n � n. In order to
ensure that the simulated values of the fault probabilities do not deviate significantly from the stationary ones, we first

estimate the difference between the distributions of C �N� and C�N�
n , where C�N�

n is the search cost after n requests with
arbitrary initial conditions.

Thus, using(2 – 3), we can upper bound the difference between the tails of these distributions as

sup
x

��C�N�
n � x����C�N� � x�

� en �
N

∑
i�1

qi� �Ti � n�m�1��

Now, using similar argument as in Lemma 2, we obtain

��Ti � t�� ��τ�i�Xi
��m�1�Xi � t�

� ��τ�i�Xi
�

t
2
�����m�1�Xi �

t
2
�� (49)

where now �τ�i�n � denotes success times in a Bernoulli process with parameter qi and Xi is independent of �τ�i�n � with
geometric distribution having parameter

pi � ��Mi�τ
�i�
1 � k� �

m�1

∑
l�k�1

�
m�1

l

�
ql

i�1�qi�
m�1�l�

Next, it is well known that τ�i�Xi
is geometric with parameter qi pi and, therefore, from (49)

��Ti � t�� �1� piqi�
t
2 ��1� pi�

t
2�m�1� �

14 Predrag R. Jelenković, Xiaozhu Kang and Ana Radovanovi ć

Thus, using the preceding bound, we obtain

en �
N

∑
i�1

qi

�
�1� piqi�

n�m
2 ��1� pi�

n�m
2�m�1�

�
� (50)

Note that, since pi is increasing in m, the larger values of m speed up the convergence of the search cost process

�C�N�
n � to stationarity. In other words, increase of m makes the algorithm more adaptable. On the other hand, the

larger m implies the larger size of the additional storage needed to keep track of the past requests. Thus, although
the stationary performance of the DPAC algorithm is invariant to m, this parameter provides an important design
component whose choice has to balance between the algorithm complexity and adaptability.

5.2 Experiments

In the presented experiments we take the number of documents to be N � 1300 with popularities satisfying q i � hN�iα,
1 � i � 1300, where hN � �∑N

i�1 1�iα��1. Also, we select m � 20 and α: 1) α � 1�4, 2) α � 1 and 3) α � 0�8. The
initial permutation of the list is chosen uniformly at random and the set of initial m requests is taken to be empty. The
fault probabilities are measured for cache sizes x � 50 j, 1� j� 15. Simulation results are presented with “*” symbols
on Figures 1,2, and 3, while the optimal static performance is presented with a thick solid line on the same figures.

In our first experiment, we illustrate Theorem 1. Since our asymptotic formula is obtained for infinite number of
documents N, it can be expected that asymptotic expression gives reasonable approximation of the fault probability
��C�N� � x� only if both N and x are large (with N much larger than x). However, our experiment shows that the
obtained approximation works well for relatively small values of N and almost all cache sizes x � N.

Experiment 1: Here we select α � 1�4. Before we conduct measurements, we allow the time of the first n � 10 10

requests to be a warm-up time for the system to reach its stationarity. Then, the actual measurement time is also set
to be 1010 requests long. We measure the cache fault probabilities of the DPAC(20�k) policy for values k � 1�2. The
experimental results for the cases when k � 3 are almost indistinguishable from the optimal performance, ��R � x�,
and, thus, we do not present them on Figure 1. After estimating e n in (50) for a given warm-up time of 1010 requests,
we obtain that en � 10�12, which is negligible compared to the smallest measured probabilities (� 10�2). Therefore,
the measured fault probabilities are essentially the stationary ones. The accuracy of approximation P �e��x� and the
improvement in performance is apparent from Figure 1.

0 100 200 300 400 500 600 700 800
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

cache size x

k=1

k=2

log
10

P[R>x]

log
10

P(e)(x)

simulated log
10

P[C>x]

Fig. 1: Illustration for Experiment 1

Experiment 2: Here, we set α � 1 and measure the cache fault probabilities for k � 1�2�3. Before we conduct

Near Optimality of the Discrete Persistent Access Caching Algorithm 15

measurements, we allow the time of the first n requests to be a warm-up time for the system to reach its stationarity;
Then, the actual measurement time is also set to be n requests long. We set n � 2� 10 8 for k � 1�2 and n � 1011

for k � 3. Since the normalization constant 1
hN

� logN � γ� o�1� as N � ∞, where γ is the Euler’s constant, the

ratio hN logN converges slowly to one and, therefore, instead of using the approximation ��C �N� � x� � Fk�x�N�
�logN� , as

suggested by Theorem 2 of (8), we define � �e��x� � hNFk�x�N�. We obtain that for k � 1�2, en � 3� 10�11, while
for k � 3, en � 2� 10�6, which is insignificant compared to the smallest measured probabilities. Thus, the process
is basically stationary. The accuracy of approximation P �e��x� and the improvement in performance is apparent from
Figure 2.

0 100 200 300 400 500 600 700 800
−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

cache size x

k=1

k=2

k=3

log
10

P[R>x]

simulated log
10

P[C>x]

log
10

P(e)(x)

Fig. 2: Illustration for Experiment 2

Experiment 3: Finally, the third example assumes α � 0�8 and considers cases k � 1�2�3. Before we conduct
measurements, we allow the time of the first n� 1010 requests to be a warm-up time for the system to reach its station-
arity. Then, the actual measurement time is also set to be 1010 requests long. Similarly as in the case of α � 1, due to
the slow convergence of hNN1�α��1�α� to one as N � ∞, we use an estimate ��e��x� � hN�N1�α��1�α��Fk�x�N�
instead of Fk�x�N� that can be inferred from Theorems 3 of (8). We compute e n � 3� 10�5, which is insignificant
compared to the smallest measured probabilities. Thus, the process is basically stationary. Once again, the validity of
approximation P�e��x� and the benefit of the DPAC algorithm is evident from Figure 3.

6 Concluding remarks
In this paper we introduce a discrete version of the recently proposed continuous time PAC replacement rule (8) that
possesses all desirable properties of the LRU policy, such as low complexity, ease of implementation and adaptability
to variable Web access patterns. In addition to these attributes, the new DPAC policy eliminates drawbacks of the
PAC rule, such as its dependence on the request arrival times and variable storage requirements. However, even in
the case of the independent reference model, the DPAC policy is significantly harder to analyze than the continuous
PAC rule. In this respect, we develop a new analytic technique that allows us to decouple replacement decisions of the
requested documents and show that the performance (fault probability) of the DPAC algorithm, for large cache sizes,
is very close to the optimal frequency algorithm even for small values of k � 2�3, which implies negligible additional
complexity relative to the classical LRI policy. In addition, theoretical result is further validated using simulation that
shows a significant improvement of the DPAC algorithm in comparison to the LRU scheme, even for small cache
sizes x and the number of documents N. The excellent agreement between the analytical and experimental results and
simplicity of the DPAC policy itself implies a very high potential of the proposed policy for practical purposes.

16 Predrag R. Jelenković, Xiaozhu Kang and Ana Radovanovi ć

0 100 200 300 400 500 600 700 800
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

cache size x

k=1

k=2

k=3

log
10

P[R>x]

simulated log
10

P[C>x]

log
10

P(e)(x)

Fig. 3: Illustration for Experiment 3

Finally, we would like to note that earlier proposed “k-in-a-row” rule ((9; 4)) that was studied in the context of the
expected list search cost, is a special case of the DPAC(m�k) algorithm when m � k.

7 Proof of Lemma 5
The case k � 1 that corresponds to the ordinary LRU algorithm is easy since the variables Ti are independent and
exponentially distributed with parameters qi. Thus, the result follows from Lemmas 3 and 4 of (6). Hence, in the rest
of the proof we assume m � k � 2.

Note that for any i0 � 1

�

�
∞

∑
i�1

1�Ti � t0�x��� x

�
� �

�
∞

∑
i�i0

1�Ti � t0�x��� x� i0

�
; (51)

a specific i0 will be selected later in the proof. Let �τ�i0�j � j�1 be an ordered sequence of request times for documents

i � i0, i.e. �τ�i0�j � j�1 � �i�i0�τ�i�n �n�1. We use n� j�� j � 1 to denote the index of point τ�i0�j in the original sequence

�τn�n�1, i.e. τ�i0�j � τn� j�. Then, since process �τn� is Poisson and �Rn� is i.i.d. sequence independent of �τn�, by

Poisson decomposition theorem, process �τn� j� � τ�i0�j � j�1 is also Poisson with rate ∑i�i0 qi.
Next, similarly as in Lemma 3, we group the points �τn� into cycles. The first cycle C1, will be closed interval of

time that starts with τn�1� and its length is determined by the following procedure. Let random variable Z 1 be defined
as

Z1 � inf� j � 0 : Mi0
�τn�1��� j�1�m�1� � 0��

where Mi0
�τn� � ∑i�i0 Mi�τn�. In other words, we observe groups of m consecutive requests until we come to a

group of m requests where there are no requests for documents i � i 0. Then, the first cycle, C1 will be an interval
�τn�1��τn�1��mZ1

�. Next, starting from the first point of process �τn� j�� j�1 after request τn�1��mZ1
, say τn�l�, we define

Z2 � inf� j � 0 : Mi0
�τn�l��� j�1�m�1� � 0��

and, therefore, the second cycle is interval C2 � �τn�l��τn�l��mZ2
�. We continue this procedure indefinitely.

Then, denote the points of time that represent the beginnings of the previously defined cycles C j, j � 1, by �Θ j� j�1.
Clearly, from the independence assumptions on �τn� and �Rn�, �Θ j� is a renewal process with renewal intervals, for
j � 1, satisfying

Θ j�1�Θ j
d
� τ�i0�1 �

mZ1

∑
i�1

ξi�

Near Optimality of the Discrete Persistent Access Caching Algorithm 17

where �ξi� is an i.i.d. sequence of exponential random variables with mean 1 that is independent from τ �i0�
1 and Z1.

Thus, by neglecting the sum in the preceding expression (i.e. the length of the cycles), the beginning of each cycle can
be lower bounded with

Θ j
d� τ�i0�j � (52)

Next, on each cycle C j, j � 1, define an event that at least two distinct items are moved to the first position of the
list during that cycle

A�0�
j � �ω : 	i1� i2 � i0� i1 �� i2�	τn1 �τn2
 C j�R�τnl � � il �Mil �τnl �� k for l � 1�2��

Similarly, for each i� i0 we define an event that exactly one document i (but no other documents) is moved to the first
position of the list

A�i�
j � �ω : 	τn
 C j�R�τn� � i�Mi�τn�� k��

�
A�0�

j

�c
�

where A c denotes a complement of event A . Then, for each fixed j these events are disjoint, and, due to the indepen-
dence properties of our reference model, they are independent on different cycles and for fixed i equally distributed;

let pi � ��A�i�
1 �� i � i0 or i � 0.

Now, using the bound in (52) and the Poisson decomposition theorem, it is easy to see that, for each fixed i, the

beginning of the first cycle where event A �i�
j happens is lower bounded by Li, where Li are independent exponential

random variables with parameters equal to pi ∑i�i0 qi. Then, for i � i0, the random times defined in (7) are lower

bounded by the beginning of the first cycle where event A �0�
j �A�i�

j occurs, which is further lower bounded by

Ti � Li�L0� (53)

where x� y � min�x�y�.
Next, we provide upper bounds on each of the probabilities p i. Using the same arguments as in (20) of Lemma 3,

we obtain that for any ε � 0, we can chose i0 large enough, such that for all i� i0

pi � �1� ε�
qi

∑∞
j�i0 q j

�
m�1
k�1

�
qk�1

i � (54)

The probability p0 can be bounded as

p0 � ��Zj � l����A�0�
j �Zj � l�

� H

∞

∑
j�i0

q j

�l

���A�0�
j �Zj � l�

� H

∞

∑
j�i0

q j

�l

� ∑
j1� j2�i0� j1 �� j2

��A�0�
j � j1� j2��Zj � l�� (55)

where l is a fixed constant that will be selected later. A �0�
j � j1� j2� is the event that during cycle C j documents j1 and j2

are moved to the first position of the list.

�

�
A�0�

1 � j1� j2��Z1 � l
�
� �

�
R�Θ1� � j1�A

�0�
1 � j1� j2��Z1 � l

�
��

�
R�Θ1� � j2�A

�0�
1 � j1� j2��Z1 � l

�
��

�
R�Θ1� �� j1� j2�A

�0�
1 � j1� j2��Z1 � l

�
� p01� j1� j2�� p02� j1� j2�� p03� j1� j2�� (56)

18 Predrag R. Jelenković, Xiaozhu Kang and Ana Radovanovi ć

Now, we upper bound the first term of (56),

p01� j1� j2�� q j1

∑∞
j�i0 q j

�
�
Mj1�τn�1��1�ml�� k�1�M j2�τn�1��1�ml�� k

�
� q j1

∑∞
j�i0 q j

��Mj1�τ1�ml�� k�1�M j2�τ1�ml� � k�

� q j1

∑∞
j�i0 q j

�
ml�k

∑
l1�k�1

ml�l1

∑
l2�k

�ml�!
l1!l2!�ml� l1� l2�!

ql1
j1

ql2
j2
�1�q j1 �q j2�

ml�l1�l2

�

� q j1

∑∞
j�i0 q j

�Hqk�1
j1

qk
j2�;

the last inequality holds because ml is fixed and finite, j1� j2 � i0, and i0 is large enough. Thus, we obtain

p01� j1� j2��
Hqk

j1
qk

j2

∑∞
j�i0 q j

� (57)

Similarly, we derive

p02� j1� j2��
Hqk

j1
qk

j2

∑∞
j�i0 q j

(58)

and, by applying the same type of arguments, we bound

p03� j1� j2�� Hqk
j1qk

j2 �
Hqk

j1
qk

j2

∑∞
j�i0 q j

� (59)

Therefore, (57),(58),(59) and (56) give that for any j 1� j2 � i0� j1 �� j2,

��A�0�
j � j1� j2��Zj � l�� H

qk
j1

qk
j2

∑∞
j�i0 q j

� (60)

where constant H is independent of j1 and j2. Now, by replacing the preceding bound in (55), we derive that for all i 0

large enough,

p0 � H

∞

∑
j�i0

q j

�l

�
H

�i0�1�2αk�2 ∑∞
j�i0 q j

� (61)

After setting the necessary ground for our analysis, we upper bound the left hand side of (51) as

�

�
∞

∑
i�i0

1�Ti � t0�x��� x� i0

�
� �

�
∞

∑
i�i0

1�Li�L0 � t0�x��� x� i0

�

� �

�
∞

∑
i�i0

1�Li�L0 � t0�x��L0 � t0�x��� x� i0

�
���L0 � t0�x��

� �

�
∞

∑
i�i0

1�Li � t0�x��� x� i0

�
���L0 � t0�x��� (62)

Now, from (54), ��Li � t0�x�� � 1� e��1�ε��m�1
k�1�qk

i t0�x� for i � i0 and i0 large enough. Furthermore, assigning
i0 � �εx� and applying Lemma 3 of (6), we derive as x� ∞

�

�
∑

i�εx

1�Li � t0�x��

�
� Γ

�
1� 1

αk

�
c

1
α

��
m�1
k�1

�� 1
αk

�1� ε�
k�1
αk t0�x�

1
αk � (63)

Near Optimality of the Discrete Persistent Access Caching Algorithm 19

Then, if we replace t0�x� and use (63), it follows that �
�
∑i�εx 1�Li � t0�x��

�
� �1�2ε�x � �1� ε

1�ε ��x� εx� for all x
large enough. Then, since Li, i � i0, are mutually independent, using large deviation result from Lemma 4 of (6), we
show that the first term in (62) is bounded, for some θ � 0, by

�

�
∑

i�εx

1�Li � t0�x��� x� εx

�
� 2e�θx � o

�
1

xα�1

�
as x� ∞� (64)

Next, we estimate the second term of (62). Using (61) with i 0 � �εx� and choosing l � � 2αk�2
α�1 �� 1, such that

�α�1��l�1�� 2αk�2, we derive

��L0 � t0�x��� 1� e�t0�x�p0 ∑i�εx qi

� Hxαk
�

1

x�α�1��l�1�
�

1
x2αk�2

	

� Hxαk

x2αk�2 �
H

xαk�2 � o

�
1

xα�1

�
as x� ∞� (65)

since k � 2 and α � 1. Finally, replacing (65) and (64) in (62) imply the statement of the lemma. �

References
[1] O. Bahat and A. M. Makowski. Optimal replacement policies for non-uniform cache objects with optional

eviction. In Proceedings of Infocom 2003, San Francisco, California, USA, April 2003.

[2] E. Cinlar. Introduction to Stochastic Processes. Prentice–Hall, 1975.

[3] J. A. Fill and L. Holst. On the distribution of search cost for the move-to-front rule. Random Structures and
Algorithms, 8(3):179, 1996.

[4] G. H. Gonnet, J. I. Munro, and H. Suwanda. Exegesis of self-organizing linear search. SIAM J. Comput.,
10(3):613–637, 1981.

[5] P. R. Jelenković. Asymptotic approximation of the move-to-front search cost distribution and least-recently-used
caching fault probabilities. Annals of Applied Probability, 9(2):430–464, 1999.

[6] P. R. Jelenković and A. Radovanović. Least-recently-used caching with dependent requests. Theoretical Com-
puter Science, 326:293–327, 2004.

[7] P. R. Jelenković and A. Radovanović. Optimizing LRU for variable document sizes. Combinatorics, Probability
& Computing, 13:1–17, 2004.

[8] P. R. Jelenković and A. Radovanović. The Persistent-Access-Caching Algorithm. Technical Report EE2004-03-
05, Department of Electrical Engineering, Columbia University, New York, April 2004.

[9] Y. C. Kan and S. M. Ross. Optimal list order under partial memory constraints. Journal of Applied Probability,
17:1004–1015, 1980.

[10] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. An optimality proof of the LRU-K page replace-
ment algorithm. Journal of the ACM, 46:92–112, 1999.

