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Abstract

Renewed interest in caching algorithms stems from their application to content distribution on the
Web. When documents are of equal size and their requests are independent and equally distributed, it
is well known that static algorithm that keeps the most frequently requested documents in the cache is
optimal. However, there are no explicit caching algorithms that are provably optimal when the requests
are statistically correlated. In this paper, we show, maybe somewhat surprisingly, that keeping the most
frequently requested documents in the cache is still optimal for large cache sizes even if the requests
are strongly correlated. We model the statistical dependency of requests using semi-Markov modulated
processes that can capture strong statistical correlation, including the empirically observed long-range
dependence in the Web access sequences.

Although frequency algorithm and its practical version least-frequently-used policy is not commonly
used in practice due to their complexity and static nature, our result provides a benchmark for evaluating
the popular heuristic schemes. In particular, an important corollary of our main theorem and recent
result from [9] is that the widely used least-recently-used heuristic is asymptotically near-optimal under
the semi-Markov modulated requests and generalized Zipf’s law document frequencies.

Keywords: Web caching, cache fault probability, average-case analysis, lest-frequently-used caching,
least-recently-used caching, semi-Markov processes, long-range dependence
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1 Introduction

One of important problems facing current and future network designs is the ability to store and efficiently
deliver a huge amount of multimedia information in a timely manner. Web caching is widely recognized as
an effective solution that improves the efficiency and scalability of multimedia content delivery, benefits of
which have been repeatedly verified in practice.

Caching is essentially a process of storing information closer to users so that Internet service providers,
delivering a given content, do not have to go back to the origin servers every time someone requests that
content. It is clear that keeping more popular documents closer to the users can significantly reduce the traf-
fic between the cache and the main servers and, therefore, improve the network performance, i.e., reduce the
download latency and network congestion. One of the key components of engineering efficient Web caching
systems is designing document placement/replacement algorithms (policies) that are managing cache con-
tent, i.e., selecting and possibly dynamically updating a collection of cached documents.

The main tendency in creating and implementing these algorithms is minimizing the long-term fault
probability, i.e., the average number of misses during a long time period. In the context of equal size doc-
uments and independent reference model, i.e., independent and identically distributed requests, it is well
known (see Chapter 6 of [13], [5]) that keeping the most popular documents in the cache optimizes the long
term cache performance; throughout this paper we refer to this algorithm as static frequency caching. A
practical implementation of this algorithm is known as Least-Frequently-Used rule (LFU) (see [9]). How-
ever, the previous model does not incorporate any of the recently observed properties of the Web environ-
ment, such as: variability of document sizes, presence of temporal locality in the request patterns (e.g.,
see [8, 12, 2, 6, 7] and references therein), variability in document popularities (e.g., see [3]) and retrieval
latency (e.g., see [1]).

Many heuristic algorithms that exploit the previously mentioned properties of the Web environment
have been proposed (e.g., see [7, 5, 11] and references therein). However, there are no explicit algorithms
that are provably optimal when the requests are statistically correlated even if documents are of equal size.
Our main result of this paper, stated in Theorem 1 of Section 3, shows that, under the general assumptions
of semi-Markov modulated requests, the static frequency caching algorithm is still optimal for large cache
sizes. The semi-Markov modulated processes, described in Section 2, are capable of modeling a wide range
of statistical correlation, including the long-range dependence (LRD) that was repeatedly experimentally
observed in Web access patterns; this type of models was recently used in [9]. In Section 4, under mild addi-
tional assumptions, we show how our result extends to variable page sizes. Our optimality result provides a
benchmark for evaluating other heuristic schemes, suggesting that any heuristic caching policy that approxi-
mates well the static frequency caching should achieve the nearly-optimal performance for large cache sizes.
In particular, in conjunction with our result from [9], we show that a widely implemented Least-Recently-
Used (LRU) caching heuristic is, for semi-Markov modulated requests and generalized Zip’s law document
frequencies, asymptotically only a factor of 1.78 away from the optimal.

2 Modeling statistical dependency in the request process

In this section we describe a semi-Markov modulated request process. As stated earlier, this model is capable
of capturing a wide range of statistical correlation, including the commonly empirically observed LRD. This
approach was recently used in [9], where one can find more details and examples.

Let a sequence of requests arrive at Poisson points {τn,−∞ < n < ∞} of unit rate. At each point
τn, we use Rn, Rn ∈ {1, 2, . . . , }, to denote a document that has been requested, i.e., the event {Rn = i}
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represents a request for document i at time τn; we assume that the sequence {Rn} is independent of the
arrival Poisson points {τn} and that P[Rn = i] > 0 for all i and P[Rn < ∞] = 1.

Next, we describe the dependency structure of the request sequence {Rn}. We consider the class of
finite-state, stationary and ergodic semi-Markov processes J , with jumps at almost surely strictly increasing
points {Tn,−∞ < n < ∞}, T0 ≤ 0 < T1. The process {JTn ,−∞ < n < ∞} is an irreducible Markov
chain with finitely many states {1, . . . , M} and transition matrix {pij}. The explicit construction of process
Jt, t ∈ R is presented in Subsection 4.3 of [9]. In addition, Jt is constructed piecewise constant and right-
continuous modulating process, where

Jt = JTn , if Tn ≤ t < Tn+1.

Let πr = P[Jt = r], 1 ≤ r ≤ M , be the stationary distribution of J and independent of Poisson points
{τn}. To avoid trivialities, we assume that minr πr > 0. For each 1 ≤ r ≤ M , let q

(r)
i , 1 ≤ i ≤ N ≤ ∞, be

a probability mass function; q
(r)
i is used to denote the probability of requesting item i when the underlying

process J is in state r. Next, the dynamics of Rn are uniquely determined by the modulating process J
according to the following equation

P[Rl = il, 1 ≤ l ≤ n|Jt, t ≤ τn] =
n∏

l=1

q
(Jτl

)

il
, n ≥ 1, (1)

i.e., the sequence of requests Rn is conditionally independent given the modulating process J . Given the
properties introduced above, it is easy to conclude that the constructed request process {Rn} is stationary
and ergodic as well. We will use

qi = P[Rn = i] =
M∑

r=1

πrq
(r)
i

to express the marginal request distribution, with the assumption that qi > 0 for all i ≥ 1. In addition,
assume that requests are enumerated according to the non-increasing order of marginal request popularities,
i.e., q1 ≥ q2 ≥ . . . . The preceding processes are constructed on a probability space (Ω,F ,P).

In this paper we are using the following standard notation. For any two real functions a(t) and b(t) and
fixed t0 ∈ R ∪ {∞} we will use a(t) ∼ b(t) as t → t0 to denote limt→t0 [a(t)/b(t)] = 1. Similarly, we say
that a(t) & b(t) as t → t0 if lim inft→t0 a(t)/b(t) ≥ 1; a(t) . b(t) has a complementary definition.

Now we prove the following technical lemma that will be used in the proof of our main theorem in the
following section. Throughout the paper we will exploit the the renewal (regenerative) structure of the semi-
Markov process. In this regard, let {Ti}, T0 ≤ 0 < T1, be a subset of points {Tn} for which JTn = 1. Then,
it is well known that {Ti} is a renewal process and that sets of variables {Jt, Tj ≤ t < Tj+1 are independent
for different j and identically distributed, i.e., {Ti} are regenerative points for {Jt}. Furthermore, the
conditional independence of {Rn} given {Jt}, implies that {Ti} are regenerative points for Jn as well.

Next we define R(u, t), 1 ≤ r ≤ M , to be a set of distinct requests that arrived in interval [u, t), u ≤ t,
and denote by Nr(u, t), 1 ≤ r ≤ M , the number of requests in interval [u, t) when process Jt is in state r.
Furthermore, let N(u, t) , N1(u, t) + · · · + NM (u, t) representing the total number of requests in [u, t);
note that N(u, t) is Poisson with mean t− u.

Lemma 1 For the request process introduced above, the following asymptotic relation holds:

P[i ∈ R(T1, T2)] ∼ qiE[T2 − T1] as i →∞, (2)

where R(u, t) , R1(u, t) ∪ · · · ∪ RM (u, t).
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Proof: Given in Section 5. 3

3 Caching policies and the optimality

Consider infinitively many documents of unit size out of which x can be stored in a local memory called
cache. When an item is requested, the cache is searched first and we say that there is a cache hit if the
item is found in the cache. In this case the cache content is left unchanged. Otherwise, we say that there
is cache fault/miss and the missing item is brought in from the outside world. At the time of a fault, a
decision whether to replace some item from the cache with a missing item has to be made. We assume
that replacements are optional, i.e., he cache content can be left unchanged even at the time of fault. A
caching algorithm represents a set of replacement rules. We consider a class of caching algorithms whose
information decisions are made using only the information of past and present requests and past decisions.

More formally, let Cπ
t be a cache content at time t of the policy π. When the request for a document Rn is

made, the cache with content Cπ
τn

is searched first. If document Rn is already in the cache (Rn ∈ Cπ
τn

), then
we use the convention that no document is replaced. On the other hand, if document Rn is not an element of
Cπ

τn
, then a document to be replaced is chosen from a set Cπ

τn
∪{Rn} using a particular eviction policy. At any

moment of request n the decision what to replace in the cache is based on R1, R2, . . . , Rn, Cπ
0 , Cπ

τ1 , . . . , C
π
τn

.
Note that this information already contains all the replacement decisions made up to time τn. This is the
same information as the one used in Markov decision framework [5].

The set of the previously described cache replacement policies, say Pc, is quite large and contains
mandatory caching rules (more typical for a computer memory environment). Furthermore, the set Pc also
contains the static algorithm, that places a fixed collection of documents Cπ

t ≡ C in the cache, and, after this
selection is made, the content of the cache is never changed.

Now, define the long-run cache fault probability corresponding to the policy π ∈ Pc and a cache of size
x as

P (π, x) , lim sup
T→∞

E
[∑

τn∈[0,T ] 1[Rn 6∈ Cπ
τn

]
]

T
, (3)

recall that EN(0, T ) = T . Note that we use lim sup in this definition since limit may not exist in general.
Next, we show that

P (π, x) = lim sup
k→∞

E
[∑

τn∈(0,Tk) 1[Rn 6∈ Cπ
τn

]
]

EN(0, Tk)
, (4)

where Tk are the regenerative points, as defined in the previous section. For the lower bound, for any
0 < ε < 1, let k ≡ k(T, ε) , bT (1 − ε)/E[T2 − T1]c, where buc is the largest integer that is less or equal
to u. Then, note that

1
T
E


 ∑

τn∈(0,Tk)

1[Rn 6∈ Cπ
τn

]


 ≥ E

[
1[Tk < T ]

∑
τn∈(0,Tk) 1[Rn 6∈ Cπ

τn
]

T

]

≥ E
[∑

τn∈(0,Tk) 1[Rn 6∈ Cπ
τn

]

T

]
− E

[
1[Tk > T ]

N(0, T )
T

]
. (5)

Next, using the Weak Law of Large Numbers for P[Tk > T ] (as T → ∞) and the fact that N(0, T ) is
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Poisson with mean T in the preceding inequality, we obtain

P (π, x) ≥ (1−ε) lim sup
T→∞

k=b T (1−ε)
E[T2−T1]

c

E
[∑

τn∈(0,Tk) 1[Rn 6∈ Cπ
τn

]
]

EN(0, Tk)
= (1−ε) lim sup

k→∞

E
[∑

τn∈(0,Tk) 1[Rn 6∈ Cπ
τn

]
]

EN(0, Tk)
,

since the set {k : k = bT (1− ε)/E[T2 − T1]c, T > 0}, covers all integers. We complete the proof of the
lower bound by passing ε → 0. Upper bound uses similar arguments and we omit the details.

Next, observe the static policy s, where Cπ
τn
≡ {1, 2, . . . , x} for every n. Then, due to ergodicity of the

request process
Ps(x) , P (s, x) =

∑

i>x

qi.

Since the static policy belongs to the set of caching algorithms Pc, we conclude that

Ps(x) ≥ inf
π∈Pc

P (π, x). (6)

Our goal in this paper is to show that for large cache sizes x there is no caching policy that performs
better, i.e., achieves long-term fault probability smaller than Ps(x). This is stated in the following main
result of this paper.

Theorem 1 For the request process defined in Section 2, the static policy that stores documents with the
largest marginal popularities minimizes the long-term cache fault probability for large cache sizes, i.e.,

inf
π∈Pc

P (π, x) ∼ Ps(x) as x →∞. (7)

Remark: From the examination of the following proof it is clear that the result holds for any regenerative
request process that satisfies Lemma 1.
Proof: In view of (6), we only need to show that infπ∈Pc P (π, x) is asymptotically lower bounded by Ps(x)
as x →∞.

For any set A, let |A| denote the number of elements in A and A \ B represent the set difference. Then,
it is easy to see that the number of cache faults in [t, u), t < u, is lower bounded by |R(t, u) \ Cπ

t | since
every item that was not in the cache at time t results in at least one fault when requested for the first time; in
particular, if t = Tj , u = Tj+1,

∑

τn∈[Tj ,Tj+1)

1[Rn 6∈ Cπ
τn

] ≥ |R(Tj , Tj+1) \ Cπ
Tj
|. (8)

This inequality and (4) results in

P (π, x) ≥ lim sup
k→∞

1
EN(0, Tk)

k−1∑

j=1

E[|R(Tj , Tj+1) \ Cπ
Tj
|]. (9)

Now, since we consider caching policies where replacement decisions depend only on the previous cache
contents and requests, due to renewal structure of the request process we conclude that for every j ≥ 1 and
all i ≥ 1, events {i ∈ R(Tj , Tj+1)} and {i ∈ Cπ

Tj
} are independent. Therefore, for every j ≥ 1,

E
[
|R(Tj , Tj+1) \ Cπ

Tj
||Cπ
Tj

= C
]

=
∑

i≥1

P[i ∈ R(Tj , Tj+1), i 6∈ Cπ
Tj
|Cπ
Tj

= C]

=
∑

i≥1

P[i ∈ R(Tj , Tj+1)]1[i 6∈ C] =
∑

i6∈C
P[i ∈ R(Tj , Tj+1)].
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Thus, for any j ≥ 1,

E[|R(Tj , Tj+1) \ Cπ
Tj
|] ≥ inf

C:|C|=x

∑

i6∈C
P[i ∈ R(Tj , Tj+1)]. (10)

Next, we show that the cache content [1, x] , {1, . . . , x} achieves the infimum in the previous expres-
sion for large cache sizes. This is equivalent to proving that

inf
C:|C|=x

∑

i6∈C
P[i ∈ R(Tj , Tj+1)] & P[R(Tj , Tj+1) \ [1, x]] as x →∞. (11)

We will justify the previous statement by showing that for any set C obtained from [1, x] by placing doc-
uments from the set {x + 1, . . . } instead of those in [1, x] can not result in

∑
i 6∈C P[i ∈ R(Tj , Tj+1)] <∑

i6∈[1,x] P[i ∈ R(Tj , Tj+1)] for large cache sizes x.
Lemma 1 implies that for an arbitrarily chosen ε > 0 there exists finite integer i0 such that for all i ≥ i0

(1− ε)qiE[Tj+1 − Tj ] < P[i ∈ R(Tj , Tj+1)] < (1 + ε)qiE[Tj+1 − Tj ]. (12)

Thus, using the previous expression and qi ↓ 0 as i → ∞, we conclude that for all k ≤ i0 there exists
x0 ≥ i0 large, such that for all i ≥ x0

min
1≤k≤i0

P[k ∈ R(Tj , Tj+1)] > P[i ∈ R(Tj , Tj+1)]. (13)

Now, assume that the cache is of size x ≥ x0 and observe different cache contents C obtained from [1, x] by
replacing its documents with items from {x + 1, x + 2, . . . }. Next, using (13), we conclude that replacing
documents enumerated with {1, . . . , i0} can only increase the sum on the left hand side of (11). On the
other hand, observe cache contents C that are obtained from [1, x] by replacing documents enumerated as
{i0+1, . . . , x}with items from {x+1, . . . }. Then, it is easy to see that proving inequality (11) is equivalent
to showing that

∑
i∈[i0+1,x] P[i ∈ R(Tj , Tj+1)] ≥

∑
i∈C\[1,i0] P[i ∈ R(Tj , Tj+1)]. Next, since for any i ≥ i0

inequalities (12) hold, we conclude
∑

i∈[i0+1,x] P[i ∈ R(Tj , Tj+1)]∑
i∈C\[1,i0] P[i ∈ R(Tj , Tj+1)]

≥
(1− ε)

∑
i∈[i0+1,x] qi

(1 + ε)
∑

i∈C\[1,i0] qi
≥ 1− ε

1 + ε
,

where the second inequality in the previous expression follows from the monotonicity of qis. Then, by
passing ε → 0 we prove inequality (11).

Note that after applying the lower bound (11) in (10), in conjunction with (9), the renewal nature of the
regenerative points and Lemma 1, we obtain that as x →∞

inf
π∈Pc

P (π, x) &
∑

i≥x

qi, (14)

which completes the proof of the theorem. 3

4 Further extensions and concluding remarks

In this paper we prove that the static frequency rule minimizes the long term fault probability, for large cache
sizes, in the presence of correlated requests. Although the frequency algorithm and its practical version the
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LFU policy is not commonly used in practice due to their complexity and static nature, our result provides
a benchmark for evaluating the popular heuristic schemes. In order to capture dependency in the request
patterns, we use semi-Markov modulation technique, which is capable of modeling a wide range of statistical
correlation, including the LRD that was repeatedly experimentally observed in Web access patterns.

There are several generalizations of our results that are worth mentioning. First, the definition of the fault
probability in (4) can be generalized by replacing terms 1[Rn 6∈ Cπ

τn
] with f(Rn)1[Rn 6∈ Cπ

τn
], where f(i)

could represent the cost of retrieving document i, e.g., the delay of fetching item i. Then, using basically
the same arguments as in the proof of Theorem 1, one can easily show that a static policy which maximizes∑x

i=1 f(i)qi is asymptotically optimal.
Second, in the context of documents with different sizes, in view of Section 4.1 of [10] and the arguments

from the proof of Theorem 1, one can prove the following result:

Theorem 2 Assume that there are D < ∞ different document sizes. Then, if marginal request distribution
is long tailed, i.e., qi ∼ qi+k as i → ∞ for any finite integer k, the static rule that places documents with
the largest ratio qi/si, subject to the constraint

∑
i si ≤ x, is asymptotically optimal.

Finally, in light of our recent result on the asymptotic performance of the ordinary LRU caching rule
in the presence of semi-Markov modulated requests and Zipf’s law marginal distributions (qi ∼ c/iα as
i → ∞, c > 0) obtained in Theorem 3 of [9], asymptotic optimality of the static frequency rule implies
that the LRU is factor eγ ≈ 1.78 away from the optimal (γ is the Euler constant, i.e. γ ≈ 0.57721 . . . ).
Therefore, in view of other desirable properties, such as self-organizing nature and low complexity, the LRU
rule has excellent performance even in the presence of statistically correlated requests.

5 Proof of Lemma 1

In this section, we prove the asymptotic relation (2) stated at the end of Section 2.
Note that

P[i ∈ R(T1, T2)] = 1− P[i 6∈ R1(T1, T2), . . . , i 6∈ RM (T1, T2)]

= E[1− (1− q
(1)
i )N1 . . . (1− q

(M)
i )NM ], (15)

where Nr , Nr(T1, T2), 1 ≤ r ≤ M . Then, since qi → 0 as i → ∞, it follows that q
(r)
i → 0 as i → ∞,

1 ≤ r ≤ M . In addition, 1− e−x ≤ x for all x ≥ 0 and for any 1 > ε > 0, there exists x0(ε) > 0, such that
for all 0 ≤ x ≤ x0(ε) inequality 1− x ≥ e−x(1+ε) holds, and, therefore, for i large enough

E
[
1− e−(q

(1)
i N1+···+q

(M)
i NM )

]
≤ E

[
1− (1− q

(1)
i )N1 . . . (1− q

(M)
i )NM

]
≤ E

[
1− e−(1+ε)(q

(1)
i N1+···+q

(M)
i NM )

]
.

(16)
Then, since 1− e−x ≤ x for x ≥ 0, we obtain, for i large enough,

E
[
1− e−(1+ε)(N1q

(1)
i +···+NMq

(M)
i )

]
≤ (1 + ε)E

[
q
(1)
i N1 + · · ·+ q

(M)
i NM

]
. (17)

Next, let N , N1+· · ·+NM . Then, we show that q
(1)
i EN1+· · ·+q

(M)
i ENM = qiEN .From ergodicity

of the process Jt, it follows

πr =
ET1r

E[T2 − T1]
,
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where T1r, 1 ≤ r ≤ M , is the length of time that Jt spends in state r during the renewal interval (T1, T2)
(see Section 1.6 of [4]). Finally, using EN = E[T2−T1] and ENr = ET1r, 1 ≤ r ≤ M (Poisson process of
rate 1), in conjunction with (17), we conclude, for i large

E
[
1− e−(1+ε)(N1q

(1)
i +···+NMq

(M)
i )

]
≤ (1 + ε)qiE[T2 − T1]. (18)

Next, we estimate the lower bound in (16). After conditioning we obtain

E
[
1− e−(N1q

(1)
i +···+NMq

(M)
i )

]
≥ E

[(
1− e−(N1q

(1)
i +···+NMq

(M)
i )

)
1

[
N ≤ q̄

− 1
2

i

]]
, (19)

where q
(r)
i ≤ q̄i , qi

minr πr
≤ Hqi, 1 ≤ r ≤ M . Then, note that for every ω ∈ {N ≤ q̄

− 1
2

i }, q
(1)
i N1 +

· · · + q
(M)
i NM ≤ q̄i√

q̄i
=
√

q̄i. In addition, for any 1 > ε > 0, there exists x0(ε) > 0, such that for all
0 ≤ x ≤ x0(ε) inequality 1−e−x ≥ (1−ε)x holds, and, therefore, for i large enough such that

√
q̄i ≤ x0(ε)

E
[(

1− e−(N1q
(1)
i +···+NMq

(M)
i )

)
1

[
N ≤ q̄

− 1
2

i

]]
≥ (1− ε)E

[
(N1q

(1)
i + · · ·+ NMq

(M)
i )1

[
N ≤ q̄

− 1
2

i

]]

≥ (1− ε)qiE[T2 − T1]− (1− ε)q̄iE[N1[N > q̄
− 1

2
i ]].

Then, E[N1[N > q̄
− 1

2
i ]] → 0 as i → ∞ since 1/

√
q̄i → ∞ as i → ∞ and EN < ∞ and, therefore, in

conjunction with (19), we obtain, as i →∞,

E
[
1− e−(N1q

(1)
i +···+NMq

(M)
i )

]
& (1− ε)qiE[T2 − T1].

Finally, after letting ε → 0 in the previous expression and using (18), we complete the proof of this lemma.
3
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