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Bridging Mandatory Access Control Across Machines

Jonathan M. McCurte Stefan Bergér Rambn Caceres Trent Jaegér Reiner Sailer

Abstract

We define and demonstrate an approach to securing distributed computsexhdn alistributed ref-
erence monitor that enforces mandatory access control (MAC) policy across mact8eesiring distributed
computation is difficult because of the asymmetry of trust in different comgetiironments and the com-
plexity of managing MAC policies across machines, when they are alreadpler for one machine (e.qg.,
Fedora Core 4 SELinux policy). We leverage recent work in threes@®a basis for our solution: (1) remote
attestation as a basis to establish mutual acceptance of reference monitagtngr, (2) IPsec with MAC
labels to ensure the protection and authorization of commands across nsaehit€3) virtual machines for
isolation and to simplify the MAC policies. We define a distributed computing ar¢biebased on these
mechanisms and show how local reference monitor guarantees can bedaftaim distributed reference
monitor. We implement a prototype system on the Xen hypervisor with a trusted WM built on Linux
2.6. This prototype enforces MAC between machines using IPsec exterisi®ELinux that label secure
communication channels. We show that through our architecture distrib&€de81OME computations
can be protected and controlled coherently across all the machines ithvioliree computation.

1 Introduction

Distributed applications have many security and privacy requirementsthadtbeing met by today’s com-
puting and networking infrastructure. Consider volunteer distributed atingpefforts such as SETI@Home.
SETI@Home [2] uses large numbers of Internet-connected computeraliza radio telescope data as part
of the Search for Extraterrestrial Intelligence (SETI). The public ggla@onates idle compute cycles on their
personal computers. These client machines obtain software and datthB@GETI@Home server, perform
their assigned portion of the analysis, and return their results to the server

Presently, systems like SETI@Home are constrained by security con88in#\fiministrators cannot
ensure that clients run the analysis software as intended. They thusheesaime analysis task to multi-
ple clients and compare the results for consistency, which reduces timatughile still not guaranteeing
correctness. On the other hand, volunteers are uncertain of the onigimtgrity of the software they
download. They must blindly trust that this software will not harm their geascomputing environments.

Similar concerns arise in many other distributed computing scenarios. Fapéxaveb hosting services
would like to run workloads from more than one enterprise customer on the sarver machine, both to
increase hardware utilization and to decrease operational costs. Elpwemote users of these servers
need assurances that one enterprise’s software does not inteitfetke operation of another’s. As another
example, many companies outsource the management of their computing urchastto a service provider.
They need to allow the provider access to management functions while gorgtether aspects of their
online operations.

To address these concerns, we need to isolate workloads that hareriecurity requirements from
each other. Previous distributed access control schemes such agjtb@lLAuthentication [28] and trust
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management [8] are discretionary, meaning they let users grant righitgetttothey own. They therefore
cannot protect against misbehavior in programs that run on a usdwdfbén addition, validating their
information-flow properties is complex because it requires consideratiahgrograms on a system.

In contrast, Mandatory Access Control (MAC) ensures that systemrise policies are enforced re-
gardless of the behavior of users and their programs. Furthermorgusited computing base in a MAC
system is much smaller, because it does not depend on the behavior®buskeir programs, or even
most system programs. Therefore, MAC works in the presence of maliciode, and its properties can
be validated after inspecting a small portion of the system. MAC systems thatems a single machine
have a long history [3] and have recently been developed for commoditatipg systems like Linux, e.qg.,
SELinux [42, 45], and hypervisor systems like Xen [4], e.g., sSHypé [36

We seek to enable MAC across multiple machines. We refer to such contralidgisng the systems
that they include. A system that enables bridging of MAC policies is calldidtebuted MAC system, and
bridged MAC policies are enforced bydsstributed reference monitor.

We have designed and implemented such a distributed reference monitorsé/dehypervisor with
MAC as a foundation. A key advantage of this platform is that we can coengistributed systems from
collaborating groups of virtual machines, which we callitions, each with independent MAC policies.
Our solution addresses the following requirements:

1. Distributed tamper-proofness. All systems forming the distributed reference monitor must be tamper-
proof. A new coalition member is aggregated into a coalition’s distributedeneéermonitor by using
integrity attestation to determine that each system’s reference monitor is pdodgetiest tampering
before extending the distributed reference monitor. In addition, data fiplétween two systems
must be protected from access that would violate the policy. We use intggoityeted communica-
tion tunnels between systems.

2. Distributed mediation: All access by subjects to security-relevant objects must be mediated igfthe
erence monitor. We again use integrity attestation to determine that each coalitidventereference
monitor completely mediates the MAC policy operations before extending the distlilbeference
monitor. In addition, the semantics of security labels must be preservedmtsrequests and object
responses when they move between systems. We leverage recent Wadr&ling secure communi-
cation tunnels to determine the security labels of information flows betweemss/ste

3. Compatible security policies. All systems must enforce compatible policies. In this case, the coali-
tion’s MAC policy is conveyed to the new system in the coalition after we usetaitit®s to verify
compatibility of MAC policies between remote systems. For example, MAC policieshmdiycom-
patible due to Chinese Wall [9] restrictions between coalitions on a systerdditioa, it is important
to keep the policies simple to facilitate verification that they express the desicedty properties.
We satisfy this goal by having policies operate at a coarse grain, fonggaat the granularity of
whole virtual machines.

The rest of this paper is organized as follows. Section 2 establishes sm®gsary background for the
ensuing material. Section 3 presents the architecture of our distributedneéemonitor, and Section 4
describes our prototype implementation. Section 5 examines an experimaaltaten of the security
features of the prototype implementation. Section 6 discusses some outstagsdemyand areas for future
work, while Section 7 surveys related work. Finally, Section 8 offersconclusions.

2 Background

In this section, we examine the requirements for bridging systems and rewetedhnologies that we
hypothesize will be fundamental to enabling bridging.



2.1 Example

We return to our volunteer distributed computing example from Section 1 to mativateed for distributed
MAC. SETI@Home [40] is built on the Berkeley Open Infrastructure fetwbrk Computing (BOINC) [1].
The BOINC architecture includes client software which automatically runsenwasers’ CPU would other-
wise be idle —a compute application provided by SETI@Home (e.g., proceksdimfrom radio telescopes).

Security is a significant problem in volunteer distributed computing proje@s [Barge numbers of
users are downloading and executing unknown software on their corapwteere the software environment
is likely to be insecure. Presently, there is no simple mechanism by which cl@mgsrotect themselves
from downloaded executables. Likewise, the server has no meanstoeitiat the client has executed its
software correctly, or in an acceptable environment.

Risks to which the server is exposed include: (a) accepting invalid ref)ls;cepting duplicate results;
(c) giving a user undeserved credit; and (d) accepting resultsutigrefafted by a malicious entity in an
attempt to exploit vulnerabilities in the server software (e.g., buffer owesjlo A security system that
protects servers should enable strong authentication of users andesditidantegrity of their systems to
correctly distribute credit (c) and identify messages from legitimate systerbs @ If a user’s system is
verified to be legitimate, but it provides invalid or malicious messages, thereourity system will not be
able to detect this. This is an application-level problem.

Even if we assume today’s web security technologies (e.g., SSL/TLSgeawess spoofing attacks con-
tinue to be a significant threat to clients. Thus, a user cannot be sutbét@ient software she downloads
is legitimate. To reduce the level of risk to which the user is exposed, it isathdsito execute the client
software in an isolated environment. However, this is at odds with the printaiyod the BOINC project
— to allow ordinary users with commodity PCs to perform computations. A seayd#tiem that protects
clients should enable strong authentication of servers and verificatienairsntegrity as well as providing
an isolated environment for executing remote code.

2.2 Technologies

We identify three technologies as fundamental in bridging MAC across mexh{ii) remote attestation;
(2) secure, MAC-labeled network communication; and (3) virtual machindtorsn

Remote Attestation A remote attestation mechanism enables a party (e.g., process) on one machine to
prove security properties about itself to another party on another maghlihe Since software can be
modified to forge such information, a trusted hardware platform, such abrtisted Computing Group’s
Trusted Platform Module (TPM) [46], is used to implement attestation mechanisms

Fundamentally, attestation using TPMs aims at proving that a deterministic kmmmtssris performed
on a system [31]. Remote attestation has also been proposed as a mgansifay system integrity [35]
and computation integrity [41]. In the former case, the remote party camdagewhether the system is
using acceptable programs, libraries, and configurations in addition toctessaful booting. In the latter
case, the computation integrity can be verified based on attestation of ingutseacpde used in each step.

BOINC use of Remote Attestation: To build a distributed reference monitor for a BOINC system, we
want to: (1) verify the identity of reference monitor components that comihie distributed reference
monitor and (2) verify that these components provide the necessary madihtiibies (e.g., access checks
and base MAC policies). First, the BOINC server and clients can verityeheh run acceptable reference
monitoring software and MAC policies (e.g., tamper-proof TCB componeStsgond, the BOINC server
and clients can each verify that the mediation abilities of this software and MA€ymare acceptable for
the computation. We use the open-source IMA attestation system for Lidlixgachieve these goals.

Secure, MAC-Labeled Network Communication We leverage secure, MAC-labeled communication for



both tamper-responsive data transfer (i.e., enable dropping of tampesshges) and MAC mediation of
network requests. Recent work that integrates IPsec and Linux MA@das both functions [18]. IPsec
provides mutually-authenticated, tamper-responsive network communicatiaghe extended Linux sys-
tem, the IPsec security associations are given labels based on the MAE poth that Linux MAC (e.g.,
the Linux Security Modules framework [50] using the SELinux module [48]) control network commu-
nications between remote applications. Such a mechanism is an improvemeptemeus mechanisms,
such as the IP Security Options (IPSO) extensions [23] that carry lmbiile IP packet headers. The latter
involves significant packet processing overhead even for unlapelgdts [50].

Mediation of network communications has been a challenge due to the difficudgniverting secure
channels to authorizations that should be permitted. A variety of netwoukigearchitectures have been
devised over the years, such as Lampson’s Logic of Authenticatiom[#Bits descendants (e.g., WebOS [6]
and Distributed Proving [5]) and trust management systems [8, 12, 29, S2@h approaches enable the
construction of DAC policies from fine-grained statements, so MAC gtieearare difficult to achieve.

BOINC use of Secure MAC-Labeled Network Communication: The BOINC server’s reference monitor
shares the BOINC system’s MAC policy with the BOINC client’s referenceitoanThe BOINC client’'s
reference monitor must determine whether the MAC policy covering the BQliN@t in the distributed
system is compatible with its overall policy. For example, the BOINC client’s syst&xy be running
another computation whose secrecy requirements do not permit the BOIIE foom running (e.g., to
protect against covert channel leaks). Note that the BOINC selngsady uses the MAC policy and has
verified the ability of the BOINC client’s reference monitor to enforce it earMge use the MAC-labeled
IPsec implementation in Linux [18] to support secure communication and MA@ aoon those remote
communications once the BOINC MAC policy is accepted.

Virtual Machines A virtual machine monitor (VMM) enables the execution of multiple virtual machines
on one platform. While virtual machine systems have been around for mamy jil, 32] and high as-
surance VMMs have been built [22], the recent emergence of Xen sperce hypervisor, available on
common platforms and supporting MAC enforcement [36], has energilsadecommunity.

Virtual machine monitors provide isolation of individual VMs running diffiereperating systems. Also,
the MAC enforcement in Xen enables mediation of inter-VM communications osah® platform. By
using VMs, coarse-grained, but simpler, MAC policies can be enforeedexample, a BOINC client can
run isolated from other local VMs, so that if all code in the BOINC VM cansbwilarly trusted, it can
all run using the same subject label. This contrasts with a SELinux policy lforux system where many
programs run in different labels, resulting in tens of thousands of pdiidgrments to manage.

BOINC use of Virtual Machines: The BOINC client is run in a dedicated virtual machine running on the
open-source, Xen hypervisor [4] with the sHype MAC controls [3@le BOINC server ships the code to
the BOINC client machine where its Xen trusted VM manaden? initiates the BOINC client VM with
the appropriate label based on the BOINC MAC policy. Xen controls lot¢at-vM communication, and
the BOINC server can get an attestation that this VM is running the clienttbatié sent prior to accepting
the results. We also use IMA for this attestation [35].

3 System Architecture

In this section, we outline the system architecture for a distributed referapoitor and examine its ability
to achieve the guarantees of a host reference monitor across a distebuteonment.

3.1 Architecture Overview

The distributed reference monitor architecture is shown in Figure 1(Btigure 1(b), each machine has
two types of software running on it: (1) user virtual machines (user MM®sre the application processing
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Figure 1: (a) Example of a distributed VM coalition. (b) Example of a distribuééelence monitor.

is performed and (2) supervisor software, such as a hypervisdrasidd MAC virtual machine (MAC VM)
on a hypervised system, that service and control the inter-VM operationser VMs. For example, the
BOINC server and clients run as user VMs. The supervisor implementsdakslygstem reference monitor.
On a hypervised system, the hypervisor determines the MAC policies forNteeavid mediates operations
that it performs (on VMs and inter-VM communication on the local machine)twhik communication
is implemented in the MAC VM, so the MAC VM is responsible for mediating networkmmmnications
using the MAC policy of the hypervisor.

Sailer et al. define aoalition as a set of one or more user VMs that share a common policy [36] as
shown in Figure 1(a). For example, a set of user VMs that may communiceirgaone another, but are
isolated from all other user VMs would form a coalition. Each user VM would under the same label,
and all would have read-write access to user VMs of that label. We ndtettier access control policies
are possible within a coalition. In another case, the coalition user VMs ctabbked with secrecy access
classes and interaction is controlled by the Bell-LaPadula policy [7].

The problem addressed in this paper is the extension of these coalitiass atultiple machines. As
shown in Figure 1(b), the resultant inter-machine coalition has its MAC poliégreed by adistributed
reference monitor. The distributed reference monitor constructs a secure communicatiori tarpretect
the secrecy and integrity of communications over the untrusted network dretivem. Further, the tunnel
is labeled, such that both endpoint reference monitors in the distribuer@net monitor can control which
user VMs can use which tunnels.

We definebridging to be the act of constructing or extending distributed reference monitdosidged
coalition has been verified to enforce its MAC policy across all referemzeitors that are bridged. This
verification depends on two additional policies that must be common to the coalitipa secure commu-
nication policy to protect the secrecy and integrity of communication and (2jtastation policy to cover
how tamper-proofing, mediation, and compatibility guarantees are verifiest, fecause interactions be-
tween reference monitors must be tamperproof and may require searagyre communication channel
is required between each pair of reference monitors in the distributedrsyStond, local reference mon-
itors must be able to verify the tamper-proof and mediation properties of@n@lerence monitor prior to
constructing the bridge and incrementally during the collaboration.



3.2 Setting up a Bridge

When the first user VM of a system joins a coalition, its reference monitogésidvith the coalition’s
distributed reference monitor. The following steps are necessary to c@ntpke bridging process: (1)
the new reference monitor needs to obtain the coalition’s configuration: it§,MAcure communication,
and attestation policies; (2) using the attestation policies, the reference nemittre distributed reference
monitor mutually verify that the tamper-responding and mediating abilities areisufffor the bridging; (3)
the new user VM is installed, if it had not already; and (4) the secure, N&b€led network communication
of the bridge is enabled. When we say distributed reference monitor bewean a reference monitor
that is a representative for the coalition.

First, the reference monitor joining the coalition must have the coalition’s canfign. There are
different ways that the reference monitor can obtain this configurationeXample, the reference monitor
may have its own configuration and a means for translating coalition coriigusao its labels. In a
coalition that uses a single label, the label name may be translated to one thacef@onitor understands.
In this case, coalitions may more easily interact, but effort is required tefire a universal label semantics
and syntax into which coalition labels of the local system can be translate@ltémative is to have the
distributed reference monitor push a configuration to the reference manitidnave the reference monitor
enforce coalition-specific policies. In this case, coalitions would be isotatee the knowledge of how to
combine them is not included. Our prototype uses the former approatime 86AC policy is fixed at the
hypervisor level and coalition policies are mapped to it.

Second, the attestation policy is used to verify reference monitor tampemdisg and mediation
abilities. For example, we require attestations of the hypervisor and MAC ddé cas well as the MAC
policy each system has used. This identifies the initial state of the system, itsoisateechanism, its
reference monitoring mechanism, its filtering mechanism, and which low integnitg fise the MAC VM.
Our prototype attests to the Xen hypervisor code, MAC VM code, and therkiisor MAC policy.

Third, the distributed reference monitor may provide code for the new\dgern this case, the ref-
erence monitor constructs the new user VM, and assigns it a MAC label lfeged on attestation of the
code). If the user VM is already present, then this step is skipped andogeqd to the fourth step. In
our case, the user VM is already present and labeled ¢gegn), but it receives the BOINC code from the
server and attests its integrity to prove to the BOINC server that this codeseds

Fourth, we construct a secure, MAC-labeled tunnel for the bridge itMtA€ VM. The secure com-
munication policy is selected when the user VM attempts to communicate with a coalitionenamnb
determines the secrecy and integrity requirements of the communication (e .eWdEyption with mes-
sage authentication code integrity protection) as well as the MAC label fotutireel. The MAC label
determines which endpoint VMs have access to the tunnel. For examplea grégn user VM may have
access tgreen tunnels and only tgreen tunnels, so an isolated coalition can be constructed. A MLS MAC
policy may be used to enable information flows among labels. Our prototygahs&IAC-labeled Linux
IPsec implementation in the MAC VM to construct and control access to tunmaiséo VMs.

3.3 Distributed Reference Monitor Guarantees

In this section, we examine how the bridging approach described in theel&irsresults in a distributed
reference monitor that achieves classical reference monitor guasantee

A reference monitor is a tamperproof component in the MAC system that mediates access to aiysecu
relevant operations [3]. Further, the reference monitor componergafiydsimple enough to enable formal
verification. There are a variety of classical systems that can be cldssH#iMIAC systems, such as Mul-
tics [38], PSOS [13], and GEMSOS [37], and recently, there has besivation to convert commercial
operating systems, such as Linux with SELinux [42, 45] and TrustedB3P fo MAC systems, including



executing such systems within a virtual machine of a hypervised system [4].

A distributed reference monitor consists of a reference monitor that spans multiple machines. The
challenges are to: (1) provide guarantees of tamperproofing and demméeliation across the distributed
reference monitor components and (2) manage the complexity of the redarenitor components.

Making Tamperproof

A tamperproof system is one that is initialized in a correct manner and sudsidy)isolated from
outside tampering. A classic example is that of securely booting an opergsitegrswhere the secure boot
process ensures correct initialization and the hardware protection ringamem provides isolation. In
addition, the system must be capable of filtering low integrity requests withoupr@mising its integrity,
such as in the manner of Clark-Wilson integrity [10] (i.e., be guaranteed teraltbcard or upgrade their
integrity).

If we look at this formally, we find that for a single MAC system it must satisfiiatization (i.e.,
init(s)), isolation (i.e.isolate(s)), and filtering (i.e. filter(s)) requirements to be deemed tamperproof.

init(s) A isolate(s) A filter(s) — tamperproof (s)

In a distributed system, there are three additional challenges: (1) amgnsysnust be able to prove
to any other system it$ that its initialization, isolation, and low integrity input filtering are sufficient;
(2) the other systems must be able to detect tampering on systand (3) the communication between
reference monitor components over an untrusted network must be pdtddtst, the attestation policy
defines the requires that must be methg be untampered. Second, attestation does not prevent tampering;
it only enables detection of tampering via a so-caiethenticated boot. Thus, we do not prove that
is tamperproof, but that we can respond to tampering wifie., responding(s) by dropping messages).
Third, we must add a statement to protect the integrity of inter-reference monitumunications over an
untrusted network (i.ecomm(s)). The result is thelistributed tamper proof rule below.

Vsi,s5 € S 1 comm(s;, sj) A responding (s, sj) — responding(S)

Note that both the secure communication and the tamper-responsiveagsaodf systems are bidirec-
tional properties. The distributed reference monitor architecture satiséestributed tamperproof rule by:
(1) checking attestation policies to detect tampering in initialization, isolation, kedrfg and (2) setting
up secure communication channels between pairs of systems. An obvigugaton is to for all systems
in the coalition to reuse the same attestations and secure communication chiaathetsthan generating
them for each pair. For example, MAC-Labeled IPsec can use the saeepBlicy for all hosts in the same
coalition, regardless of location.

Ensuring Mediation
Complete mediation for systesimplies that the reference monitor can authorize all execution paths to
process a requestq that is able to access any security-relevant operétion

Vreq € REQ(s) : authorize(s, op,label(req)) <= access(s,op)

Upon processing a requesly, a security-relevant operatiop may be encountered. In order to perform
the authorization, the MAC label of the subject responsible for the réqueast be determined. In a host
MAC system, such as SELinux, the operating system knows the identity ofrtlcegses and can easily
retrieve their labels. In addition, any subject label transitions are locakteefierence monitor.

“Here an operationp refers to both the object and the operation to be performed.



In a distributed environment, a source system generates a requestlestihation system (perhaps the
same) performs the request. Interestingly, the ability of the source torpedgoequest on the destination
is mapped to the destination’s ability to receive the request. For example, @ntéghty subject cannot
process a low integrity request. If the source subject is authorized ttheseommunication channel on
the source machine, it can perform requests on the destination that isizedho receive it. The function
label(channel(req)) returns the label of the communication channel.

We briefly note that the object labeling semantics are the same between Idadistaibuted reference
monitors. The object label is determined by the destination and when rea@ Bylbfect, the subject can
create a new object with a label of its choosing. For example, opening atblenemory and writing to a
new file with a new label is permissible whether the file is local or remote.

The source and destination both require the destination to mediate all seelgitsnt operations. Me-
diation properties of code will require a justification, such as a complete medaaysis [52]. However,
this is no different than the single system case, except that a remote attestateessary to verify remote
mediation properties (i.emediate(sy)).

Thedistributed mediation rule reflects the additional requirements on labeling of requests.

Vreq € REQ(ss, 8q) : mediate(sq) A authorize(ss, channel : write, subjs)A\
authorize(sq, op, label(channel(req)) <= access(sq, op)

In the distributed reference monitor architecture, the initial attestation vetifeesnediation abilities
of the hypervisor and MAC VM. The source authorizes the local suBjegt; to write the request to the
channel, and the channel’s label determines whether the request fidfilleel on the destination.

Simplifying the Design

An original requirement for a reference monitor is that its design be gritig simple to enable formal
verification [3]. While experience has shown that formal verification iy d@éficult and costly to complete,
simplifying the system will make it easier to define practical semantics for thaifuns in the distributed
tamperproof and mediation rules above.

Stating such a requirement formally is tantamount to stating a formal verificamirement, so we
only address this goal informally at present. Simplifying the design involves lignitie sizes of the code
in the TCB and the policies the TCB relies upon. The use of hypervisedsysted specialized VMs may
enable a near minimal TCB size, but much engineering work is necessasfgigva this. The current Xen
MAC VM, called donD, is a complete Linux system. The use of a MAC VM should radically simplify the
policy required relative to a normal Linux MAC policy (e.g., SELinux [43}testation policies are not yet
well understood, so this work will help to define the requirements.

3.4 Limitations

The distributed reference monitor architecture is not without some limitationgsdied below.

Hardware Attacks This architecture does not protect the system against cracking ofvieysardware
attacks. As such, attestation needs to obtain guarantees regardingipndi@en such (e.g., TPM within
location that assures such protections).

Initialization While discovering that an initial value is wrong is easy (e.qg., Tripwire [28)ying that an
initial configuration is correct is difficult, particularly for the mutable inputado a system. The proposal
for Integrity Verification Procedures (IVPs) for the Clark-Wilson infggmodel has been met with very
few examples [10]. Attestation enables verification of the initial state of cadestatic data, but not for
mutable data.
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Figure 2: MAC Bridging in our distributed computing prototype. Shaded regiadicate software that
is not modified by MAC Bridging.f ans andboi nc are the local DNS names for the machines in our
experimental setup, which we use to simplify discussion.

Runtime Tamper-ResponsivenessThe Integrity Measurement Architecture (IMA) [35] measures inputs
before loading. Thus, runtime tampering may go undetected. Other technapah as Copilot [19] and
BIND [41], aim to provide some runtime guarantees, as well, but they féuss obstacles, such as prevent-
ing circumvention and annotation effort.

Misbehaving Coalition Member This architecture does not protect a user VM from a coalition member
that is misbehaving in ways that are not detected by the tamper-respondihgmsns. Since load-time
guarantees do not cover all runtime tampering, such issues are possible.

Enforcement Limits The individual reference monitors will not have complete formal assé&;s0 some
information flows, such as covert channels, may not be enforced.piidtections afforded by reference
monitors should be stated in attestation policies, so that the creation of incompatdigons on the
same system is not allowed. The Xen MAC policy enables some expressmmgthChinese Wall con-
flict sets [36].

4 Implementation

We implemented a distributed MAC system for volunteer distributed computationconfggured a dedi-
cated BOINC [1] server on top of SELinux [43] and a hypervisor systenning Xen [4] and sHype [36]
to support BOINC clients. We have an SELinux-based MAC VM runninghenhypervisor system which
performs the necessary policy translation from labels on an IPsec $24urnel. Our implementation is
based on Simple Type Enforcement (STE) policy. Figure 2 shows théeutthie of our prototype. We
provide a high-level description of its operation, followed by a detailedrifgson of the implementation
including unexpected obstacles we encountered during its construction.

4.1 Machine Configuration

We used two machines in our experimettsj nc andf ans. boi nc is a 2.4 GHz Pentium IV with 1 GB
of RAM and a 512KB cachef ans is a 3.4GHz Pentium IV with 3GB of RAM and a 512KB cache. We
will provide more details as appropriate, referencing the machines by raroerfvenience.

boi nc runs a minimal Fedora Core 3 installation with SELinux configurestriict mode.f ans runs
the latest Xen-unstable with sHype and a Simple Type Enforcement polieysdgervisor VM orf ans is
a minimal Fedora Core 3 installation with SELinux configuredtiinct mode.
Device Driver and MAC VMs on Xen We built and maintain our distributed computing client prototype
(f ans in Figure 2) on the current unstable development version of Xenx&f0: unst abl e. While one
of the design goals for Xen 3.0 is the ability to assign various physical ressto device driver VMs, such



functionality is not currently implemented yen- unst abl e. Whenxen- unst abl e boots, it starts a
special privileged VM with ID O called domain 0, donD. donD has access to all devices on the system,
thus, in our prototype, we have only a single device driver ViibrD.

Our version ofxen- unst abl e has sHype enabled and enforces a Simple Type Enforcement (STE)
policy. don0 runs SELinux and serves as the MAC VM that does policy translation batteelabeled
IPsec tunnel and local sHype types. The SELinux policy needatbom is significantly smaller than an
SELinux policy for a typical Linux distribution.

Distributed Coalition Membership without Xen  Our distributed computing server prototype is an
Apache / MySQL / PHP server running on top of SELint»{ nc in Figure 2). It runs the BOINC server
software and issues compute jobs to clients, collects and tabulates resdltsakes status information
available via the website it hosts.

4.2 Labeled IPsec Tunnels

We use labeled IPsec connections operating in tunnel-mode [25] as tite secnmunication mechanism
betweenboi nc andf ans (the machines in our distributed coalition). We first describe the role of the
labeled tunnels in the distributed MAC system, and then describe their implementation

Packets arrive imlonD on f ans having come in over the labeled IPsec tunnel from another machine
in the distributed coalition. The first check is that these packets are destinedmedoniJ on the lo-
cal hypervisor system (packets with any other destination are triviallypgrd using pt abl es rules in
donD).

The packets in a flow destined fodamJ on the local hypervisor system must pass through a reference
monitor before being delivered. It is the responsibility of the MAC VM codalamn®D to perform the
translation between SELinux subject labels on the IPsec tunnel and thpe $&hyels on eacdonl). As
illustrated abstractly in Figure 1, reference monitor functionality exists in batetidpoint of the IPsec
tunnel OStype check —donD) and in the hypervisothfypervisor type check — sHype).

The OS type check occurs automatically as part of the normal operatiagibebf our IPsec configu-
ration. The IPsec tunnels that we employ use tunnel-mode extensions te pgidb by Jaeger et al. [18].
These researchers added support for SELinux subject labels tolbddd in the negotiation process when
IPsec connections are established. This functionality is achieved thealditions to three code bases: (1)
ther acoon Internet Key Exchange (IKE) [15] daemon which does all negotiationPsec connection
establishment; (2) theet key application which adds and removes entries from the IPsec Security Policy
Database (SPD); and (3) the netfilter and Linux Security Modules (LSMké& in the Linux kernel where
IPsec packets are processed.

The functionality provided by the enhancedcoon of Jaeger et al. provides the necessary guarantee
that all IPsec packets will have subject labels that are known to bottoanidpThat is, an IPsec connection
cannot be established without both endpoints having an entry for thel iabeéin their respective IPsec
and SELinux policies. Thus, packets with unknown labels will neverawia an established IPsec tunnel.

In our current implementation, the IPsec policy for edamD (acting as a MAC VM) in a distributed
coalition must be preconfigured with all possible SELinux subject typesrihgtbe needed hyacoon in
a negotiation to establish an IPsec tunnel. However, recent work by ¥im&mg shows that it is possible
to add new IPsec policy on the fly [51].

4.3 Bridging Reference Monitor

The IPsec tunnel(s) between machines in a distributed coalition providensiodied, encrypted commu-
nication while conveying MAC type information. This information is applied in thiloemement of sHype
policy. That is, the IPsec tunnel and MAC VM are tools which help to enaemachines in a distributed
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coalition enforce semantically equivalent sHype policies. To achieve tlils we must translate between
SELinux types and sHype types.

We modified the authorization hook in the IPsec extensions of Jaeger etcall ttur own authoriza-
tion function for IPsec packets destined for sodwerJ. SELinux subject labels for making authorization
decisions are inferred from the sHype label of tharlJ to which flows are destined, or from which they
originate. Orxen- unst abl e, the OS running in eadthormJ has a virtual network interface driver known
as afrontend. The backend drivers for all these virtual network interfaces residedmn®D, manifested in
the form of additional network interfaces. sHype mediates communicatiorebativontends and their
corresponding backends inside the hypervisor.

Our authorization function (see pseudocode in Figurg®),_si d_f romf | owi (), returns an SELinux
SID (thesi d) when given & | owi and direction. Af | owi is a small kernel struct which maintains state
for a generic Internet flow. The state which interests us includes theimeuftace { i f ), output interface
(oi ), and source and destination IP addresses.

By default inxen- unst abl e, the backend drivers do not consistently maintainithé andoi f all
the way through to our authorization function. IP routing further alters ihfe andoi f. The variables
exist in thef | ow , but their values are not maintained (presumably to save CPU cycles lpimgt the
extra copy). We augmented the backend logic and parts of the IP routiegdqoroperly maintain thei f
so that it can be used in the authorization logic for outgoing flows (flowsggfsom doniJ to the IPsec
tunnel). Note that we did not modify the frontend driver, as this resideslondJ and is not part of the TCB
for the distributed reference monitor.

In our prototype, the mapping from sHype types to SELinux subject typesrifigured statically.
SELinux subject types have the foruser:role:type, while sHype types can be arbitrary strings. Since
currently we have no type transitions for the typeslofrlJs, we use the uselonu_u and the roledonu_r .
We adopted the convention that we interpret the sHype type label as anu&Bkpe. For example, an
sHype typeagr een_t will map to SELinux typedormu_u: donu_r: green_t.

We added two data structures (linked lists of sraali uct s) to thedonD kernel to maintain additional
information necessary for policy translation between SELinux and sHypesty The first list maintains
metadata for eactiormJ: its domain ID, Internet-visible IP address, and backend interface néheesec-
ond maintains a mapping between sHype textual labels and their binary legtsvan compiled sHype
policy. Both of these lists are manipulated by reading and writing to entriepiiroc/ dynsa (for dy-
namic security association). Maintenance of the first tistnlJ metadata) is performed automatically by
extensions we made to the Xen scripts which start and dtopJs. The second list (sHype mapping) is
populated whenever the sHype policy is loaded or changed (typicallyperdeoot, although it is possible
to change the policy while a system is running).

4.4 Integrity Measurement

We establish trust into the VMM environment by using an existing softwareatitas approach (IMA [35])

based on the platform’s hardware TPM or equivalent functionality onittealization platform. We attest
to donD by attesting to the system’s boot sequence, the hypervisor image, therppéled security policy,

and thedon® image and ni t r d.

To attest to the software loaded into individdanJs, we use virtualized TPMs (VTPM). EadenUis
associated with an instance of a vTPM that is created whemdh®Jis defined and automatically connected
to when thedonlJis started.

Attestation based on a vTPM requires us to first establish trust into the emeérd where the vTPM
is running, which isdon® in our case. We establish this trust by using the platform’s hardware TRM an
attesting to the software loadeddon0. After that we attest to thédonlJ based on its vTPM instance. The
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structures, types, & enumerations

100: list_entry_t = (domid, ipaddr, iface_name) /x domJ metadata list entry/
101: sid_t = (Integer) I+ SELinux Security ID«/
102: ssid_t = (Integer) I+ sHype Security 1D/
103: flowi_t = (src_ip, dst_ip, src_port, dst_port, iif , oif , ...) [ kernel-defined | owi . x/
104: dir_t € {IN, OUT} /% kernel-defined enumeration/
getsid_from _flowi(flowi _t fl, dir _t dir) : /* return SELinux SID given flow infox/

200: list_entry_t e
201: if (dir == OUT) then

202: e =find_list_entry by _iface(fi.iif ) /+ domUJto tunnel, search by interfacel
203: else if (dir == IN) then

204: e = find_list_entry by _ipaddr (f1.dst) /* tunnel todonlJ, search by IP addw/
205: end if

206: if e == NULL

207: then return L /* Fail if no entry found.x«/
208: ssid_t ssid = hcall_ssid_from _domid(e.domid) /x get sHype SSID for domain domid via hCail.
209: string_t label = getlabel_from _ssid(ssid) /x map sHype SSID to string labei/
210: label = “domu_u : domu_r ;" + label /% convert sHype label to SELinux labei/
211: sid_t sid = security_contextto_sid(label) /+ obtain SELinux SID for textual labek/

212: return sid

Figure 3: Pseudocode for the authorization function in our bridgingeete monitor. The stringabel

is the human-readable type label, which gets converted from an sHyfdedadre SELinux subject label
by prependingdonmu_u: dormur:. Thesecurity context to.sid() function is part of a normal
SELinux installation; the remaining functions are all part of our implementation.

initialization of a vTPM instance includes the insertion of boot measuremenis.isTbsually done by a
trusted boot loader, but has to be emulated in the Xen environment.

To securely connect théonmlJ software-root-of-trust (vTPM) back to the platform hardware-rofot-
trust (hardware TPM), we connect the measurement lists of the coesvigpr VMM environment (BIOS,
boot-loader, hypervisor, security policy, and management domain) hvibimeasured into the hardware
TPM, with the vTPM instance measurements that concern a partidolai). This enables the attesting
party to first establish trust into the properties of the vTPM and the environitnis running in, and then,
based thereupon, establish trust intodloerlJ measured into this vTPM. We have achieved this by dividing
the number of TPM Platform Configuration Registers (PCR) into two regiohs.|ldwer 8 PCR registers
are designated for the vTPM-hosting environment - currethtlgO- and reflect the accumulation of boot
measurements taken therein. Queries for their values bydah® return the current values of the hardware
TPM. Requests for extending their values, however, are rejected sircregisters do not belong to the
domJ. The upper set of PCR registers, on the other hand, are free fatayusedonmJ and their values can
be extended as needed, for example for accumulating measurementscoildapplications.

The remote party first validates the vTPM-hosting environment using tlisvae TPM measurements.
If this environment shows the expected properties, theddmd) measurements protected by the vTPM are
evaluated. Finally, the attestddniJ can be assigned properties based on its software run-time environment
and configuration.

5 Experiments

We ran a number of experiments to verify the workload isolation and softintggrity properties of our
MAC bridging prototype. In all these experiments we used the prototypgerayshown in Figure 2 and
described earlier in this section.
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We constructed IPsec, SELinux, and sHype policiesffans and IPsec and SELinux policies for
boi nc to enable our distributed computing prototype to function. We added types 8Hhiaux policies
onboi nc andf ans named for colors, e.gr,ed_t, green_t, andbl ue_t . We added similarly named
types to the sHype policy dnans, and gavelonD access to all colors. We created labeled IPsec policies
on boi nc andf ans based on the static IP addressedof nc andf ans, and the IP addresses of the
doniJs (i.e., BOINC clients that wish to donate spare CPU cycles) to be createarmm

To be able to verify the software integrity of the client systelorfD on f ans), we built a database
of measurements where we collected known hashes, their associatedrfde aa well as individual trust-
worthiness ratings. We built a similar database for the system hosting the@@ight (adomJonf ans)
and added an entry for a test application that we ratadh@sisted. We use this application as a trigger to
mark its hostinglomJ asuntrusted once the application is executed. A quote daemon running on each one
of the systems returns a signed quote of the current values of PCR registeell as the list of measure-
ments taken by the Integrity Measurement Architecture. A verification ofitatgainst the corresponding
database as well as accumulating all measurements and comparing the resll@sgagainst the reported
values allows us to establish a rating for the overall attested system. Weipaltiodln the attestation test
to monitor the trustworthiness of the BOINC cliefdmJand take appropriate action once it loses$rigsted
state. We can trigger this by simply launching the aforemention&dsted application.

In our experiment we first enabled our MAC bridging extensiordanD and confirmed that the BOINC
clientdomJ and the BOINC servebi nc) could not communicate unless the proper IPsec, SELinux and
sHype policies were in place at both endpoints. We make surétiiaic anddon® onf ans will not
establish the IPsec tunnel until the necessary entries have been addedReec Security Policy Database
and the SELinux policy at each endpoint. We also verify that the clientsyst#l not forward packets
between the IPsec tunneldonD and thedomJ running the BOINC client until the necessary entries have
been added to the SELinux policy in the MAC virtual machiderf0) and the sHype policy in the Xen
hypervisor.

In a second step we enabled our integrity measurement extensions dinchedrthat the BOINC client
domJ and serveiboi nc could not communicate unless the client system had satisfactorily attested its
integrity to the server system. For this we ensured that the server systald mat establish an IPsec
tunnel until it had verified the integrity of the Xen hypervisor and the SEktisoftware running in the
MAC virtual machine. Further, we verified that the server system woutdahow the BOINC client to
communicate with the BOINC server until it had verified the integrity of the Linpgrating system and
BOINC client software running on the user virtual machine. Througloger attestations to the user VM
hosting the BOINC client, we constantly monitored the trustworthiness of tisgrsyand would tear down
any previously established IPsec tunnel if it changed its state frosted to untrusted. In that case we
would flush the Security Association and Policy Databases using the IBey gool, thus preventing
further communication between the BOINC cliefimlJ and serveboi nc. This effectively cut off the
BOINC clientdoniJ from either downloading new jobs or trying to submit possibly corruptedlt®s

6 Discussion and Future Work

In this section we discuss the limitations of our current prototype and briefhtiomelessons we learned
during its construction. We also point out areas for future exploration.

Retrospective In Section 1, we presented three requirements for distributed refenemiéors. We now
revisit these requirements in light of our architecture, prototype andiexpets.

1. Distributed tamper-proofness: Our prototype requires a VM to successfully attest its ability to uphold
the security policies relevant for membership in a particular distributed coalit@ perform both
bind-time checks and periodic checks — resulting in tamper-respondirayibehThe labeled IPsec
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tunnel protects the flow of information between members of a distributed coalition

2. Distributed mediation The labeled IPsec tunnel, SELinux policy in the MAC VM, and sHype policy
in Xen ensure that all communication involving members of a distributed coalitiaubied to the
constraints of the distributed reference monitor.

3. Compatible security policies Our prototype uses statically configured policy semantics on all mem-
bers of a distributed coalition. Attestation ensures that the security poligieséth member of the
distributed coalition are consistent with expected values. A significant anodwwmork remains in
policy development and verification of security goals. First, we must expltiestation policies that
dictate reference monitor tamper-responding requirements and mediation @b8igeond, we must
examine how distribution of these policies interacts with reference monitorimggifun. For example,
is the risk of information leakage between distributed coalitions greater tleaptable for the refer-
ence monitor? Third, we need to examine composition of distributed coalitionsargder of VMs
from one distributed coalition to another.

Minimizing MAC VMs and the Distributed Reference Monitor In our prototype, the size of the MAC
VM is on the order of a regular Linux distribution. The quantity of code in thig Wolates the code size
constraints for reference monitors—a problem which has plagued evemnercial reference monitor we
know of. The majority of the code even in a minimal Linux installation is extran@oasMAC VM. The
critical components for the MAC VM in a bridging system are (1) the operatyrsgem which boots in the
VM; (2) the interface with the hypervisor MAC system; (3) the interface withlttbeled secure tunnel to
other machines in the distributed coalition; (4) the policy for the labeled ségonel; (5) the attestation
mechanisms in the MAC VM; (6) the attestation policy; and (7) the mechanismeterrmdining policy
compatibility (e.g., when joining a distributed coalition). Instead of running alallix kernel in the MAC
VM, specialized code can be run which drives the network interfacewkieh the secure labeled tunnel
connects, and supports the critical components just described. Hggsrthat can assign the responsibility
for a particular device to a particular VM @vice driver VM) can help to reduce the code size of a MAC
VM. We note that such device driver VMs exist in enterprise-gradehygors (e.g., IBM’s PHYP) and are
a planned feature for the next major release of Xen.

Layering Security Policy Our distributed MAC architecture enables layering of security policies. A
distributed MAC system is arranged such that the most important securipgnies are achieved by the
lowest-complexity (most assurable) mechanisms. In other words, the lgidgstem enforces coarse-
grained policies. We do not considetra-VM security controls—these remain in the scope of application
developers. Thus, a full commercial system cannot be built on distritigggi alone. We expect that finer-
grained, application-specific mechanisms will be in place in the user VMdngron top of distributed
MAC. This structure is advantageous since the most security-critical coemp® are also the most robust.
Recall our example where the distributed MAC system enables a servidgderto host competing enter-
prises on the same physical platform—a practice which is rare today leechtise difficulty of enforcing
service-level agreements.

7 Related Work

Virtual Private Networks (VPNSs) allow roaming individuals to connect toeaggaphically constrained
network as though they were located within those constraints. Today, [BSkis commonly used in the
implementation of VPNs. While VPNs enhance the security of communicationsttsntrusted Internet,
they are founded on the assumption that all users of the network arenbeksghe size of organizations
increases, this assumption becomes increasingly troublesome.

Kang et al. explore distributed MLS computing in high-assurance environf2@]. The authors com-
bine single-level systems to multi-level distributed environments by using theriepump [21] to safely
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connect systems of different security levels. Reeds [34] describasetfivorking of similar machines that
are mutually trusted by administration. He outlooks into connecting heterogeneachines and states the
requirements of such interconnected systems to mutually discover eacls 31@Br, policy, and software
implementation properties. These are among the problems we are addressing h

Lampson’s Logic of Authentication [28] defines a general approackadministering authorizations
in a distributed system based on discretionary management of acceseglagdtion statements. Trust
management approaches add programs that compute authorizations tcatestio enable more general
delegations [8, 12, 29, 30]. These approaches are also discrgfiandithe flexibility of delegation presents
challenges for MAC information flow control.

Bauer et al. present a scheme for distributed proving in access cewstelns [5]. Distributed proving
schemes such as this are effectively an extension of discretionargsacoetrols across machines. They
do not scale as well as mandatory access controls, since policy sizasesrith the number of subjects.
With bridging, the policy size can remain the same even as the number of systirmslistributed coalition
grows.

Seshadri et al. propose Pioneer [39], a system for achieving runatitestation of code executing on
a particular hardware platform. This work is currently preliminary, but {hg@ach shows promise as an
alternative for TPM-based attestation. This work is complementary to ouibdigtd MAC system, which
could leverage run-time attestation as well as TPM-based attestation.

XenoServers is a distributed computation effort that served as the dngotevation for the develop-
ment of Xen [27]. The XenoServers effort is still under developmeudt does not yet enjoy widespread
use.

Globus is an open architecture for grid computing [14]. Globus has begigried with attention to
security, concentrating on using a certification authority for a particutgeptrthat can issue certificates for
all participants [48]. The security design for Globus assumes that Gishbus on dedicated, administered
machines. Globus is not designed to be securely run alongside commoditatipps (e.g., untrustworthy
downloads from the Internet).

8 Conclusions

We developed a distributed systems architecture in which MAC policies canfbrced across physically
separate systems, therdirydging the reference monitor between those systems. The major insights are that
attestation can serve as a basis for extending trust to remote referenitersnamd that it is actually possible
to obtain effective reference monitor guarantees from a distributecerefe monitor. This work provides
a basic mechanism and guarantees for building a distributed referené®mmnfona BOINC system. In
addition, the architecture also enables exploration of MAC, secure comatiamicand attestation policies
and the construction of reference monitors from a set of open soanspanents. As the community gains
experience with MAC bridging and new architectural features becomitalbla (e.g., TPMs [46], Intel
LT [16], and Intel VT [17]), the quantity of code in the bridged TCB canfbrther reduced. Our bridging
architecture enables security policy to be layered based on its compleaitycfrarse-grained hypervisor-
level policy up to sophisticated application-level policy.
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