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Bridging Mandatory Access Control Across Machines

Jonathan M. McCune∗ Stefan Berger† Raḿon Ćaceres† Trent Jaeger‡ Reiner Sailer†

Abstract

We define and demonstrate an approach to securing distributed computation based on adistributed ref-
erence monitor that enforces mandatory access control (MAC) policy across machines. Securing distributed
computation is difficult because of the asymmetry of trust in different computing environments and the com-
plexity of managing MAC policies across machines, when they are already complex for one machine (e.g.,
Fedora Core 4 SELinux policy). We leverage recent work in three areas as a basis for our solution: (1) remote
attestation as a basis to establish mutual acceptance of reference monitoring function; (2) IPsec with MAC
labels to ensure the protection and authorization of commands across machines; and (3) virtual machines for
isolation and to simplify the MAC policies. We define a distributed computing architecture based on these
mechanisms and show how local reference monitor guarantees can be attained for a distributed reference
monitor. We implement a prototype system on the Xen hypervisor with a trusted MAC VM built on Linux
2.6. This prototype enforces MAC between machines using IPsec extensions to SELinux that label secure
communication channels. We show that through our architecture distributed SETI@HOME computations
can be protected and controlled coherently across all the machines involved in the computation.

1 Introduction

Distributed applications have many security and privacy requirements that are not being met by today’s com-
puting and networking infrastructure. Consider volunteer distributed computing efforts such as SETI@Home.
SETI@Home [2] uses large numbers of Internet-connected computers to analyze radio telescope data as part
of the Search for Extraterrestrial Intelligence (SETI). The public at large donates idle compute cycles on their
personal computers. These client machines obtain software and data from the SETI@Home server, perform
their assigned portion of the analysis, and return their results to the server.

Presently, systems like SETI@Home are constrained by security concerns [33]. Administrators cannot
ensure that clients run the analysis software as intended. They thus sendthe same analysis task to multi-
ple clients and compare the results for consistency, which reduces throughput while still not guaranteeing
correctness. On the other hand, volunteers are uncertain of the origin and integrity of the software they
download. They must blindly trust that this software will not harm their personal computing environments.

Similar concerns arise in many other distributed computing scenarios. For example, web hosting services
would like to run workloads from more than one enterprise customer on the same server machine, both to
increase hardware utilization and to decrease operational costs. However, remote users of these servers
need assurances that one enterprise’s software does not interferewith the operation of another’s. As another
example, many companies outsource the management of their computing infrastructure to a service provider.
They need to allow the provider access to management functions while protecting other aspects of their
online operations.

To address these concerns, we need to isolate workloads that have different security requirements from
each other. Previous distributed access control schemes such as the Logic of Authentication [28] and trust
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management [8] are discretionary, meaning they let users grant rights to objects they own. They therefore
cannot protect against misbehavior in programs that run on a user’s behalf. In addition, validating their
information-flow properties is complex because it requires consideration of all programs on a system.

In contrast, Mandatory Access Control (MAC) ensures that system security policies are enforced re-
gardless of the behavior of users and their programs. Furthermore, thetrusted computing base in a MAC
system is much smaller, because it does not depend on the behavior of users or their programs, or even
most system programs. Therefore, MAC works in the presence of malicious code, and its properties can
be validated after inspecting a small portion of the system. MAC systems that operate on a single machine
have a long history [3] and have recently been developed for commodity operating systems like Linux, e.g.,
SELinux [42, 45], and hypervisor systems like Xen [4], e.g., sHype [36].

We seek to enable MAC across multiple machines. We refer to such controls asbridging the systems
that they include. A system that enables bridging of MAC policies is called adistributed MAC system, and
bridged MAC policies are enforced by adistributed reference monitor.

We have designed and implemented such a distributed reference monitor. We use a hypervisor with
MAC as a foundation. A key advantage of this platform is that we can compose distributed systems from
collaborating groups of virtual machines, which we callcoalitions, each with independent MAC policies.
Our solution addresses the following requirements:

1. Distributed tamper-proofness: All systems forming the distributed reference monitor must be tamper-
proof. A new coalition member is aggregated into a coalition’s distributed reference monitor by using
integrity attestation to determine that each system’s reference monitor is protected against tampering
before extending the distributed reference monitor. In addition, data flowing between two systems
must be protected from access that would violate the policy. We use integrity-protected communica-
tion tunnels between systems.

2. Distributed mediation: All access by subjects to security-relevant objects must be mediated by theref-
erence monitor. We again use integrity attestation to determine that each coalition member’s reference
monitor completely mediates the MAC policy operations before extending the distributed reference
monitor. In addition, the semantics of security labels must be preserved on subject requests and object
responses when they move between systems. We leverage recent work inlabeling secure communi-
cation tunnels to determine the security labels of information flows between systems.

3. Compatible security policies: All systems must enforce compatible policies. In this case, the coali-
tion’s MAC policy is conveyed to the new system in the coalition after we use attestation to verify
compatibility of MAC policies between remote systems. For example, MAC policies maybe incom-
patible due to Chinese Wall [9] restrictions between coalitions on a system. In addition, it is important
to keep the policies simple to facilitate verification that they express the desired security properties.
We satisfy this goal by having policies operate at a coarse grain, for example at the granularity of
whole virtual machines.

The rest of this paper is organized as follows. Section 2 establishes some necessary background for the
ensuing material. Section 3 presents the architecture of our distributed reference monitor, and Section 4
describes our prototype implementation. Section 5 examines an experimental evaluation of the security
features of the prototype implementation. Section 6 discusses some outstandingissues and areas for future
work, while Section 7 surveys related work. Finally, Section 8 offers ourconclusions.

2 Background

In this section, we examine the requirements for bridging systems and review the technologies that we
hypothesize will be fundamental to enabling bridging.
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2.1 Example

We return to our volunteer distributed computing example from Section 1 to motivatethe need for distributed
MAC. SETI@Home [40] is built on the Berkeley Open Infrastructure for Network Computing (BOINC) [1].
The BOINC architecture includes client software which automatically runs – when users’ CPU would other-
wise be idle – a compute application provided by SETI@Home (e.g., processingdata from radio telescopes).

Security is a significant problem in volunteer distributed computing projects [33]. Large numbers of
users are downloading and executing unknown software on their computers, where the software environment
is likely to be insecure. Presently, there is no simple mechanism by which clients can protect themselves
from downloaded executables. Likewise, the server has no means to enforce that the client has executed its
software correctly, or in an acceptable environment.

Risks to which the server is exposed include: (a) accepting invalid results;(b) accepting duplicate results;
(c) giving a user undeserved credit; and (d) accepting results carefully crafted by a malicious entity in an
attempt to exploit vulnerabilities in the server software (e.g., buffer overflows). A security system that
protects servers should enable strong authentication of users and validate the integrity of their systems to
correctly distribute credit (c) and identify messages from legitimate systems (a, b, d). If a user’s system is
verified to be legitimate, but it provides invalid or malicious messages, then our security system will not be
able to detect this. This is an application-level problem.

Even if we assume today’s web security technologies (e.g., SSL/TLS) are secure, spoofing attacks con-
tinue to be a significant threat to clients. Thus, a user cannot be sure thatthe client software she downloads
is legitimate. To reduce the level of risk to which the user is exposed, it is desirable to execute the client
software in an isolated environment. However, this is at odds with the primary goal of the BOINC project
– to allow ordinary users with commodity PCs to perform computations. A securitysystem that protects
clients should enable strong authentication of servers and verification of server integrity as well as providing
an isolated environment for executing remote code.

2.2 Technologies

We identify three technologies as fundamental in bridging MAC across machines: (1) remote attestation;
(2) secure, MAC-labeled network communication; and (3) virtual machine monitors.

Remote Attestation A remote attestation mechanism enables a party (e.g., process) on one machine to
prove security properties about itself to another party on another machine[44]. Since software can be
modified to forge such information, a trusted hardware platform, such as theTrusted Computing Group’s
Trusted Platform Module (TPM) [46], is used to implement attestation mechanisms.

Fundamentally, attestation using TPMs aims at proving that a deterministic boot process is performed
on a system [31]. Remote attestation has also been proposed as a means forproving system integrity [35]
and computation integrity [41]. In the former case, the remote party can determine whether the system is
using acceptable programs, libraries, and configurations in addition to its successful booting. In the latter
case, the computation integrity can be verified based on attestation of inputs and the code used in each step.

BOINC use of Remote Attestation: To build a distributed reference monitor for a BOINC system, we
want to: (1) verify the identity of reference monitor components that comprise the distributed reference
monitor and (2) verify that these components provide the necessary mediation abilities (e.g., access checks
and base MAC policies). First, the BOINC server and clients can verify that each run acceptable reference
monitoring software and MAC policies (e.g., tamper-proof TCB components).Second, the BOINC server
and clients can each verify that the mediation abilities of this software and MAC policy are acceptable for
the computation. We use the open-source IMA attestation system for Linux [35] to achieve these goals.

Secure, MAC-Labeled Network Communication We leverage secure, MAC-labeled communication for
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both tamper-responsive data transfer (i.e., enable dropping of tamperedmessages) and MAC mediation of
network requests. Recent work that integrates IPsec and Linux MAC provides both functions [18]. IPsec
provides mutually-authenticated, tamper-responsive network communication. In the extended Linux sys-
tem, the IPsec security associations are given labels based on the MAC policy, such that Linux MAC (e.g.,
the Linux Security Modules framework [50] using the SELinux module [49])can control network commu-
nications between remote applications. Such a mechanism is an improvement over previous mechanisms,
such as the IP Security Options (IPSO) extensions [23] that carry labelsin the IP packet headers. The latter
involves significant packet processing overhead even for unlabeledpackets [50].

Mediation of network communications has been a challenge due to the difficulty inconverting secure
channels to authorizations that should be permitted. A variety of network security architectures have been
devised over the years, such as Lampson’s Logic of Authentication [28]and its descendants (e.g., WebOS [6]
and Distributed Proving [5]) and trust management systems [8, 12, 29, 30]. Such approaches enable the
construction of DAC policies from fine-grained statements, so MAC guarantees are difficult to achieve.

BOINC use of Secure MAC-Labeled Network Communication: The BOINC server’s reference monitor
shares the BOINC system’s MAC policy with the BOINC client’s reference monitor. The BOINC client’s
reference monitor must determine whether the MAC policy covering the BOINCclient in the distributed
system is compatible with its overall policy. For example, the BOINC client’s system may be running
another computation whose secrecy requirements do not permit the BOINC client from running (e.g., to
protect against covert channel leaks). Note that the BOINC server already uses the MAC policy and has
verified the ability of the BOINC client’s reference monitor to enforce it earlier. We use the MAC-labeled
IPsec implementation in Linux [18] to support secure communication and MAC control on those remote
communications once the BOINC MAC policy is accepted.

Virtual Machines A virtual machine monitor (VMM) enables the execution of multiple virtual machines
on one platform. While virtual machine systems have been around for many years [11, 32] and high as-
surance VMMs have been built [22], the recent emergence of Xen open source hypervisor, available on
common platforms and supporting MAC enforcement [36], has energized alarge community.

Virtual machine monitors provide isolation of individual VMs running different operating systems. Also,
the MAC enforcement in Xen enables mediation of inter-VM communications on thesame platform. By
using VMs, coarse-grained, but simpler, MAC policies can be enforced. For example, a BOINC client can
run isolated from other local VMs, so that if all code in the BOINC VM can besimilarly trusted, it can
all run using the same subject label. This contrasts with a SELinux policy for aLinux system where many
programs run in different labels, resulting in tens of thousands of policy statements to manage.

BOINC use of Virtual Machines: The BOINC client is run in a dedicated virtual machine running on the
open-source, Xen hypervisor [4] with the sHype MAC controls [36]. The BOINC server ships the code to
the BOINC client machine where its Xen trusted VM managerdom0 initiates the BOINC client VM with
the appropriate label based on the BOINC MAC policy. Xen controls local inter-VM communication, and
the BOINC server can get an attestation that this VM is running the client codethat it sent prior to accepting
the results. We also use IMA for this attestation [35].

3 System Architecture

In this section, we outline the system architecture for a distributed reference monitor and examine its ability
to achieve the guarantees of a host reference monitor across a distributed environment.

3.1 Architecture Overview

The distributed reference monitor architecture is shown in Figure 1(a-b).In Figure 1(b), each machine has
two types of software running on it: (1) user virtual machines (user VMs)where the application processing
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Figure 1: (a) Example of a distributed VM coalition. (b) Example of a distributedreference monitor.

is performed and (2) supervisor software, such as a hypervisor andtrusted MAC virtual machine (MAC VM)
on a hypervised system, that service and control the inter-VM operationsof user VMs. For example, the
BOINC server and clients run as user VMs. The supervisor implements the local system reference monitor.
On a hypervised system, the hypervisor determines the MAC policies for the VMs and mediates operations
that it performs (on VMs and inter-VM communication on the local machine). Network communication
is implemented in the MAC VM, so the MAC VM is responsible for mediating network communications
using the MAC policy of the hypervisor.

Sailer et al. define acoalition as a set of one or more user VMs that share a common policy [36] as
shown in Figure 1(a). For example, a set of user VMs that may communicate among one another, but are
isolated from all other user VMs would form a coalition. Each user VM wouldrun under the same label,
and all would have read-write access to user VMs of that label. We note that other access control policies
are possible within a coalition. In another case, the coalition user VMs can belabeled with secrecy access
classes and interaction is controlled by the Bell-LaPadula policy [7].

The problem addressed in this paper is the extension of these coalitions across multiple machines. As
shown in Figure 1(b), the resultant inter-machine coalition has its MAC policy enforced by adistributed
reference monitor. The distributed reference monitor constructs a secure communication tunnel to protect
the secrecy and integrity of communications over the untrusted network between them. Further, the tunnel
is labeled, such that both endpoint reference monitors in the distributed reference monitor can control which
user VMs can use which tunnels.

We definebridging to be the act of constructing or extending distributed reference monitors. Abridged
coalition has been verified to enforce its MAC policy across all referencemonitors that are bridged. This
verification depends on two additional policies that must be common to the coalition: (1) a secure commu-
nication policy to protect the secrecy and integrity of communication and (2) anattestation policy to cover
how tamper-proofing, mediation, and compatibility guarantees are verified. First, because interactions be-
tween reference monitors must be tamperproof and may require secrecy,a secure communication channel
is required between each pair of reference monitors in the distributed system. Second, local reference mon-
itors must be able to verify the tamper-proof and mediation properties of another reference monitor prior to
constructing the bridge and incrementally during the collaboration.
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3.2 Setting up a Bridge

When the first user VM of a system joins a coalition, its reference monitor bridges with the coalition’s
distributed reference monitor. The following steps are necessary to complete the bridging process: (1)
the new reference monitor needs to obtain the coalition’s configuration: its MAC, secure communication,
and attestation policies; (2) using the attestation policies, the reference monitorand the distributed reference
monitor mutually verify that the tamper-responding and mediating abilities are sufficient for the bridging; (3)
the new user VM is installed, if it had not already; and (4) the secure, MAC-labeled network communication
of the bridge is enabled. When we say distributed reference monitor below,we mean a reference monitor
that is a representative for the coalition.

First, the reference monitor joining the coalition must have the coalition’s configuration. There are
different ways that the reference monitor can obtain this configuration. For example, the reference monitor
may have its own configuration and a means for translating coalition configurations to its labels. In a
coalition that uses a single label, the label name may be translated to one the reference monitor understands.
In this case, coalitions may more easily interact, but effort is required to predefine a universal label semantics
and syntax into which coalition labels of the local system can be translated. Analternative is to have the
distributed reference monitor push a configuration to the reference monitorand have the reference monitor
enforce coalition-specific policies. In this case, coalitions would be isolatedsince the knowledge of how to
combine them is not included. Our prototype uses the former approach, sothe MAC policy is fixed at the
hypervisor level and coalition policies are mapped to it.

Second, the attestation policy is used to verify reference monitor tamper-responding and mediation
abilities. For example, we require attestations of the hypervisor and MAC VM code, as well as the MAC
policy each system has used. This identifies the initial state of the system, its isolation mechanism, its
reference monitoring mechanism, its filtering mechanism, and which low integrity flows use the MAC VM.
Our prototype attests to the Xen hypervisor code, MAC VM code, and the hypervisor MAC policy.

Third, the distributed reference monitor may provide code for the new userVM. In this case, the ref-
erence monitor constructs the new user VM, and assigns it a MAC label (e.g., based on attestation of the
code). If the user VM is already present, then this step is skipped and we proceed to the fourth step. In
our case, the user VM is already present and labeled (e.g.,green), but it receives the BOINC code from the
server and attests its integrity to prove to the BOINC server that this code wasused.

Fourth, we construct a secure, MAC-labeled tunnel for the bridge in theMAC VM. The secure com-
munication policy is selected when the user VM attempts to communicate with a coalition member and
determines the secrecy and integrity requirements of the communication (e.g., AES encryption with mes-
sage authentication code integrity protection) as well as the MAC label for thetunnel. The MAC label
determines which endpoint VMs have access to the tunnel. For example, onlya green user VM may have
access togreen tunnels and only togreen tunnels, so an isolated coalition can be constructed. A MLS MAC
policy may be used to enable information flows among labels. Our prototype uses the MAC-labeled Linux
IPsec implementation in the MAC VM to construct and control access to tunnels for user VMs.

3.3 Distributed Reference Monitor Guarantees

In this section, we examine how the bridging approach described in the last section results in a distributed
reference monitor that achieves classical reference monitor guarantees.

A reference monitor is a tamperproof component in the MAC system that mediates access to all security-
relevant operations [3]. Further, the reference monitor component is ideally simple enough to enable formal
verification. There are a variety of classical systems that can be classified as MAC systems, such as Mul-
tics [38], PSOS [13], and GEMSOS [37], and recently, there has beenmotivation to convert commercial
operating systems, such as Linux with SELinux [42, 45] and TrustedBSD [47], to MAC systems, including
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executing such systems within a virtual machine of a hypervised system [4].
A distributed reference monitor consists of a reference monitor that spans multiple machines. The

challenges are to: (1) provide guarantees of tamperproofing and complete mediation across the distributed
reference monitor components and (2) manage the complexity of the reference monitor components.

Making Tamperproof
A tamperproof system is one that is initialized in a correct manner and subsequently isolated from

outside tampering. A classic example is that of securely booting an operating system where the secure boot
process ensures correct initialization and the hardware protection ring mechanism provides isolation. In
addition, the system must be capable of filtering low integrity requests without compromising its integrity,
such as in the manner of Clark-Wilson integrity [10] (i.e., be guaranteed to either discard or upgrade their
integrity).

If we look at this formally, we find that for a single MAC system it must satisfy initialization (i.e.,
init(s)), isolation (i.e.,isolate(s)), and filtering (i.e.,filter(s)) requirements to be deemed tamperproof.

init(s) ∧ isolate(s) ∧ filter(s) → tamperproof (s)

In a distributed system, there are three additional challenges: (1) any system s must be able to prove
to any other system inS that its initialization, isolation, and low integrity input filtering are sufficient;
(2) the other systems must be able to detect tampering on systems; and (3) the communication between
reference monitor components over an untrusted network must be protected. First, the attestation policy
defines the requires that must be met bys to be untampered. Second, attestation does not prevent tampering;
it only enables detection of tampering via a so-calledauthenticated boot. Thus, we do not prove thats
is tamperproof, but that we can respond to tampering withs (i.e., responding(s) by dropping messages).
Third, we must add a statement to protect the integrity of inter-reference monitor communications over an
untrusted network (i.e.,comm(s)). The result is thedistributed tamperproof rule below.

∀si, sj ∈ S : comm(si, sj) ∧ responding(si, sj) → responding(S)

Note that both the secure communication and the tamper-responsiveness ofa pair of systems are bidirec-
tional properties. The distributed reference monitor architecture satisfiesthe distributed tamperproof rule by:
(1) checking attestation policies to detect tampering in initialization, isolation, and filtering and (2) setting
up secure communication channels between pairs of systems. An obvious optimization is to for all systems
in the coalition to reuse the same attestations and secure communication channels,rather than generating
them for each pair. For example, MAC-Labeled IPsec can use the same IPsec policy for all hosts in the same
coalition, regardless of location.

Ensuring Mediation
Complete mediation for systems implies that the reference monitor can authorize all execution paths to

process a requestreq that is able to access any security-relevant operation∗.

∀req ∈ REQ(s) : authorize(s, op, label(req)) ⇐⇒ access(s, op)

Upon processing a requestreq, a security-relevant operationop may be encountered. In order to perform
the authorization, the MAC label of the subject responsible for the request must be determined. In a host
MAC system, such as SELinux, the operating system knows the identity of the processes and can easily
retrieve their labels. In addition, any subject label transitions are local to the reference monitor.

∗Here an operationop refers to both the object and the operation to be performed.
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In a distributed environment, a source system generates a request and adestination system (perhaps the
same) performs the request. Interestingly, the ability of the source to perform a request on the destination
is mapped to the destination’s ability to receive the request. For example, a highintegrity subject cannot
process a low integrity request. If the source subject is authorized to usethe communication channel on
the source machine, it can perform requests on the destination that is authorized to receive it. The function
label(channel(req)) returns the label of the communication channel.

We briefly note that the object labeling semantics are the same between local and distributed reference
monitors. The object label is determined by the destination and when read by the subject, the subject can
create a new object with a label of its choosing. For example, opening a file into memory and writing to a
new file with a new label is permissible whether the file is local or remote.

The source and destination both require the destination to mediate all security-relevant operations. Me-
diation properties of code will require a justification, such as a complete mediation analysis [52]. However,
this is no different than the single system case, except that a remote attestation is necessary to verify remote
mediation properties (i.e.,mediate(sd)).

Thedistributed mediation rule reflects the additional requirements on labeling of requests.

∀req ∈ REQ(ss, sd) : mediate(sd) ∧ authorize(ss, channel : write, subjs)∧

authorize(sd, op, label(channel(req)) ⇐⇒ access(sd, op)

In the distributed reference monitor architecture, the initial attestation verifiesthe mediation abilities
of the hypervisor and MAC VM. The source authorizes the local subjectsubjs to write the request to the
channel, and the channel’s label determines whether the request can befulfilled on the destination.

Simplifying the Design
An original requirement for a reference monitor is that its design be sufficiently simple to enable formal

verification [3]. While experience has shown that formal verification is very difficult and costly to complete,
simplifying the system will make it easier to define practical semantics for the functions in the distributed
tamperproof and mediation rules above.

Stating such a requirement formally is tantamount to stating a formal verification requirement, so we
only address this goal informally at present. Simplifying the design involves limiting the sizes of the code
in the TCB and the policies the TCB relies upon. The use of hypervised systems and specialized VMs may
enable a near minimal TCB size, but much engineering work is necessary to achieve this. The current Xen
MAC VM, calleddom0, is a complete Linux system. The use of a MAC VM should radically simplify the
policy required relative to a normal Linux MAC policy (e.g., SELinux [43]).Attestation policies are not yet
well understood, so this work will help to define the requirements.

3.4 Limitations

The distributed reference monitor architecture is not without some limitations discussed below.
Hardware Attacks This architecture does not protect the system against cracking of keysvia hardware
attacks. As such, attestation needs to obtain guarantees regarding protection from such (e.g., TPM within
location that assures such protections).

Initialization While discovering that an initial value is wrong is easy (e.g., Tripwire [26]),proving that an
initial configuration is correct is difficult, particularly for the mutable input data to a system. The proposal
for Integrity Verification Procedures (IVPs) for the Clark-Wilson integrity model has been met with very
few examples [10]. Attestation enables verification of the initial state of code and static data, but not for
mutable data.
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Figure 2: MAC Bridging in our distributed computing prototype. Shaded regions indicate software that
is not modified by MAC Bridging.fans andboinc are the local DNS names for the machines in our
experimental setup, which we use to simplify discussion.

Runtime Tamper-ResponsivenessThe Integrity Measurement Architecture (IMA) [35] measures inputs
before loading. Thus, runtime tampering may go undetected. Other techniques, such as Copilot [19] and
BIND [41], aim to provide some runtime guarantees, as well, but they face other obstacles, such as prevent-
ing circumvention and annotation effort.

Misbehaving Coalition Member This architecture does not protect a user VM from a coalition member
that is misbehaving in ways that are not detected by the tamper-responding mechanisms. Since load-time
guarantees do not cover all runtime tampering, such issues are possible.

Enforcement Limits The individual reference monitors will not have complete formal assurance, so some
information flows, such as covert channels, may not be enforced. Theprotections afforded by reference
monitors should be stated in attestation policies, so that the creation of incompatiblecoalitions on the
same system is not allowed. The Xen MAC policy enables some expression through Chinese Wall con-
flict sets [36].

4 Implementation

We implemented a distributed MAC system for volunteer distributed computation. Weconfigured a dedi-
cated BOINC [1] server on top of SELinux [43] and a hypervisor system running Xen [4] and sHype [36]
to support BOINC clients. We have an SELinux-based MAC VM running onthe hypervisor system which
performs the necessary policy translation from labels on an IPsec [24, 25] tunnel. Our implementation is
based on Simple Type Enforcement (STE) policy. Figure 2 shows the architecture of our prototype. We
provide a high-level description of its operation, followed by a detailed description of the implementation
including unexpected obstacles we encountered during its construction.

4.1 Machine Configuration

We used two machines in our experiments,boinc andfans. boinc is a 2.4 GHz Pentium IV with 1 GB
of RAM and a 512KB cache.fans is a 3.4GHz Pentium IV with 3GB of RAM and a 512KB cache. We
will provide more details as appropriate, referencing the machines by name for convenience.

boinc runs a minimal Fedora Core 3 installation with SELinux configured instrict mode.fans runs
the latest Xen-unstable with sHype and a Simple Type Enforcement policy. The supervisor VM onfans is
a minimal Fedora Core 3 installation with SELinux configured instrict mode.
Device Driver and MAC VMs on Xen We built and maintain our distributed computing client prototype
(fans in Figure 2) on the current unstable development version of Xen 3.0:xen-unstable. While one
of the design goals for Xen 3.0 is the ability to assign various physical resources to device driver VMs, such
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functionality is not currently implemented byxen-unstable. Whenxen-unstable boots, it starts a
special privileged VM with ID 0 called domain 0, ordom0. dom0 has access to all devices on the system,
thus, in our prototype, we have only a single device driver VM –dom0.

Our version ofxen-unstable has sHype enabled and enforces a Simple Type Enforcement (STE)
policy. dom0 runs SELinux and serves as the MAC VM that does policy translation between the labeled
IPsec tunnel and local sHype types. The SELinux policy needed ondom0 is significantly smaller than an
SELinux policy for a typical Linux distribution.
Distributed Coalition Membership without Xen Our distributed computing server prototype is an
Apache / MySQL / PHP server running on top of SELinux (boinc in Figure 2). It runs the BOINC server
software and issues compute jobs to clients, collects and tabulates results, and makes status information
available via the website it hosts.

4.2 Labeled IPsec Tunnels

We use labeled IPsec connections operating in tunnel-mode [25] as the secure communication mechanism
betweenboinc andfans (the machines in our distributed coalition). We first describe the role of the
labeled tunnels in the distributed MAC system, and then describe their implementation.

Packets arrive indom0 on fans having come in over the labeled IPsec tunnel from another machine
in the distributed coalition. The first check is that these packets are destinedfor somedomU on the lo-
cal hypervisor system (packets with any other destination are trivially dropped usingiptables rules in
dom0).

The packets in a flow destined for adomU on the local hypervisor system must pass through a reference
monitor before being delivered. It is the responsibility of the MAC VM code indom0 to perform the
translation between SELinux subject labels on the IPsec tunnel and the sHype labels on eachdomU. As
illustrated abstractly in Figure 1, reference monitor functionality exists in both the endpoint of the IPsec
tunnel (OS type check – dom0) and in the hypervisor (hypervisor type check – sHype).

The OS type check occurs automatically as part of the normal operating behavior of our IPsec configu-
ration. The IPsec tunnels that we employ use tunnel-mode extensions to a prior patch by Jaeger et al. [18].
These researchers added support for SELinux subject labels to be included in the negotiation process when
IPsec connections are established. This functionality is achieved throughadditions to three code bases: (1)
theracoon Internet Key Exchange (IKE) [15] daemon which does all negotiation for IPsec connection
establishment; (2) thesetkey application which adds and removes entries from the IPsec Security Policy
Database (SPD); and (3) the netfilter and Linux Security Modules (LSM) hooks in the Linux kernel where
IPsec packets are processed.

The functionality provided by the enhancedracoon of Jaeger et al. provides the necessary guarantee
that all IPsec packets will have subject labels that are known to both endpoints. That is, an IPsec connection
cannot be established without both endpoints having an entry for the tunnel label in their respective IPsec
and SELinux policies. Thus, packets with unknown labels will never arrive via an established IPsec tunnel.

In our current implementation, the IPsec policy for eachdom0 (acting as a MAC VM) in a distributed
coalition must be preconfigured with all possible SELinux subject types thatmay be needed byracoon in
a negotiation to establish an IPsec tunnel. However, recent work by Yin and Wang shows that it is possible
to add new IPsec policy on the fly [51].

4.3 Bridging Reference Monitor

The IPsec tunnel(s) between machines in a distributed coalition provide authenticated, encrypted commu-
nication while conveying MAC type information. This information is applied in the enforcement of sHype
policy. That is, the IPsec tunnel and MAC VM are tools which help to ensurethat machines in a distributed
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coalition enforce semantically equivalent sHype policies. To achieve this goal, we must translate between
SELinux types and sHype types.

We modified the authorization hook in the IPsec extensions of Jaeger et al. tocall our own authoriza-
tion function for IPsec packets destined for somedomU. SELinux subject labels for making authorization
decisions are inferred from the sHype label of thedomU to which flows are destined, or from which they
originate. Onxen-unstable, the OS running in eachdomU has a virtual network interface driver known
as afrontend. Thebackend drivers for all these virtual network interfaces reside indom0, manifested in
the form of additional network interfaces. sHype mediates communication between frontends and their
corresponding backends inside the hypervisor.

Our authorization function (see pseudocode in Figure 3),get sid from flowi(), returns an SELinux
SID (thesid) when given aflowi and direction. Aflowi is a small kernel struct which maintains state
for a generic Internet flow. The state which interests us includes the inputinterface (iif), output interface
(oif), and source and destination IP addresses.

By default inxen-unstable, the backend drivers do not consistently maintain theiif andoif all
the way through to our authorization function. IP routing further alters theiif andoif. The variables
exist in theflowi, but their values are not maintained (presumably to save CPU cycles by notdoing the
extra copy). We augmented the backend logic and parts of the IP routing logic to properly maintain theiif
so that it can be used in the authorization logic for outgoing flows (flows going from domU to the IPsec
tunnel). Note that we did not modify the frontend driver, as this resides in adomU and is not part of the TCB
for the distributed reference monitor.

In our prototype, the mapping from sHype types to SELinux subject types isconfigured statically.
SELinux subject types have the formuser:role:type, while sHype types can be arbitrary strings. Since
currently we have no type transitions for the types ofdomUs, we use the userdomu u and the roledomu r.
We adopted the convention that we interpret the sHype type label as an SELinux type. For example, an
sHype typegreen t will map to SELinux typedomu u:domu r:green t.

We added two data structures (linked lists of smallstructs) to thedom0 kernel to maintain additional
information necessary for policy translation between SELinux and sHype types. The first list maintains
metadata for eachdomU: its domain ID, Internet-visible IP address, and backend interface name.The sec-
ond maintains a mapping between sHype textual labels and their binary equivalents in compiled sHype
policy. Both of these lists are manipulated by reading and writing to entries in/proc/dynsa (for dy-
namic security association). Maintenance of the first list (domU metadata) is performed automatically by
extensions we made to the Xen scripts which start and stopdomUs. The second list (sHype mapping) is
populated whenever the sHype policy is loaded or changed (typically onceper boot, although it is possible
to change the policy while a system is running).

4.4 Integrity Measurement

We establish trust into the VMM environment by using an existing software attestation approach (IMA [35])
based on the platform’s hardware TPM or equivalent functionality on the virtualization platform. We attest
to dom0 by attesting to the system’s boot sequence, the hypervisor image, the pre-compiled security policy,
and thedom0 image andinitrd.

To attest to the software loaded into individualdomUs, we use virtualized TPMs (vTPM). EachdomU is
associated with an instance of a vTPM that is created when thedomU is defined and automatically connected
to when thedomU is started.

Attestation based on a vTPM requires us to first establish trust into the environment where the vTPM
is running, which isdom0 in our case. We establish this trust by using the platform’s hardware TPM and
attesting to the software loaded indom0. After that we attest to thedomU based on its vTPM instance. The
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structures, types, & enumerations:
100: list entry t ≡ 〈domid , ipaddr , iface name〉 /∗ domU metadata list entry.∗/
101: sid t ≡ 〈Integer〉 /∗ SELinux Security ID.∗/
102: ssid t ≡ 〈Integer〉 /∗ sHype Security ID.∗/
103: flowi t ≡ 〈src ip, dst ip, src port , dst port , iif , oif , ...〉 /∗ kernel-definedflowi. ∗/
104: dir t ∈ {IN ,OUT} /∗ kernel-defined enumeration.∗/
get sid from flowi(flowi t fl, dir t dir) : /∗ return SELinux SID given flow info.∗/
200: list entry t e

201: if (dir == OUT ) then
202: e = find list entry by iface(fl .iif ) /∗ domU to tunnel, search by interface.∗/
203: else if(dir == IN ) then
204: e = find list entry by ipaddr(fl .dst) /∗ tunnel todomU, search by IP addr.∗/
205: end if
206: if e == NULL

207: then return ⊥ /∗ Fail if no entry found.∗/
208: ssid t ssid = hcall ssid from domid(e.domid) /∗ get sHype SSID for domain domid via hCall.∗/
209: string t label = get label from ssid(ssid) /∗ map sHype SSID to string label.∗/
210: label = “domu u : domu r :′′ + label /∗ convert sHype label to SELinux label.∗/
211: sid t sid = security context to sid(label) /∗ obtain SELinux SID for textual label.∗/
212: return sid

Figure 3: Pseudocode for the authorization function in our bridging reference monitor. The stringlabel
is the human-readable type label, which gets converted from an sHype label to an SELinux subject label
by prependingdomu u:domu r:. Thesecurity context to sid() function is part of a normal
SELinux installation; the remaining functions are all part of our implementation.

initialization of a vTPM instance includes the insertion of boot measurements. This is usually done by a
trusted boot loader, but has to be emulated in the Xen environment.

To securely connect thedomU software-root-of-trust (vTPM) back to the platform hardware-root-of-
trust (hardware TPM), we connect the measurement lists of the core hypervisor VMM environment (BIOS,
boot-loader, hypervisor, security policy, and management domain), which is measured into the hardware
TPM, with the vTPM instance measurements that concern a particulardomU. This enables the attesting
party to first establish trust into the properties of the vTPM and the environment it is running in, and then,
based thereupon, establish trust into thedomU measured into this vTPM. We have achieved this by dividing
the number of TPM Platform Configuration Registers (PCR) into two regions. The lower 8 PCR registers
are designated for the vTPM-hosting environment - currentlydom0- and reflect the accumulation of boot
measurements taken therein. Queries for their values by thedomU return the current values of the hardware
TPM. Requests for extending their values, however, are rejected, since the registers do not belong to the
domU. The upper set of PCR registers, on the other hand, are free for useby thedomU and their values can
be extended as needed, for example for accumulating measurements of launched applications.

The remote party first validates the vTPM-hosting environment using the hardware TPM measurements.
If this environment shows the expected properties, then thedomU measurements protected by the vTPM are
evaluated. Finally, the attesteddomU can be assigned properties based on its software run-time environment
and configuration.

5 Experiments

We ran a number of experiments to verify the workload isolation and softwareintegrity properties of our
MAC bridging prototype. In all these experiments we used the prototype system shown in Figure 2 and
described earlier in this section.
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We constructed IPsec, SELinux, and sHype policies forfans and IPsec and SELinux policies for
boinc to enable our distributed computing prototype to function. We added types to theSELinux policies
on boinc andfans named for colors, e.g.,red t, green t, andblue t. We added similarly named
types to the sHype policy onfans, and gavedom0 access to all colors. We created labeled IPsec policies
on boinc andfans based on the static IP addresses ofboinc andfans, and the IP addresses of the
domUs (i.e., BOINC clients that wish to donate spare CPU cycles) to be created onfans.

To be able to verify the software integrity of the client system (dom0 on fans), we built a database
of measurements where we collected known hashes, their associated file names as well as individual trust-
worthiness ratings. We built a similar database for the system hosting the BOINC client (adomU onfans)
and added an entry for a test application that we rated asuntrusted. We use this application as a trigger to
mark its hostingdomU asuntrusted once the application is executed. A quote daemon running on each one
of the systems returns a signed quote of the current values of PCR registers as well as the list of measure-
ments taken by the Integrity Measurement Architecture. A verification of thatlist against the corresponding
database as well as accumulating all measurements and comparing the resultingvalues against the reported
values allows us to establish a rating for the overall attested system. We periodically run the attestation test
to monitor the trustworthiness of the BOINC clientdomU and take appropriate action once it loses itstrusted
state. We can trigger this by simply launching the aforementioneduntrusted application.

In our experiment we first enabled our MAC bridging extensions indom0 and confirmed that the BOINC
clientdomU and the BOINC server (boinc) could not communicate unless the proper IPsec, SELinux and
sHype policies were in place at both endpoints. We make sure thatboinc anddom0 on fans will not
establish the IPsec tunnel until the necessary entries have been added tothe IPsec Security Policy Database
and the SELinux policy at each endpoint. We also verify that the client system will not forward packets
between the IPsec tunnel indom0 and thedomU running the BOINC client until the necessary entries have
been added to the SELinux policy in the MAC virtual machine (dom0) and the sHype policy in the Xen
hypervisor.

In a second step we enabled our integrity measurement extensions and confirmed that the BOINC client
domU and serverboinc could not communicate unless the client system had satisfactorily attested its
integrity to the server system. For this we ensured that the server system would not establish an IPsec
tunnel until it had verified the integrity of the Xen hypervisor and the SELinux software running in the
MAC virtual machine. Further, we verified that the server system would not allow the BOINC client to
communicate with the BOINC server until it had verified the integrity of the Linux operating system and
BOINC client software running on the user virtual machine. Through periodic attestations to the user VM
hosting the BOINC client, we constantly monitored the trustworthiness of that system and would tear down
any previously established IPsec tunnel if it changed its state fromtrusted to untrusted. In that case we
would flush the Security Association and Policy Databases using the IPsec setkey tool, thus preventing
further communication between the BOINC clientdomU and serverboinc. This effectively cut off the
BOINC clientdomU from either downloading new jobs or trying to submit possibly corrupted results.

6 Discussion and Future Work

In this section we discuss the limitations of our current prototype and briefly mention lessons we learned
during its construction. We also point out areas for future exploration.
Retrospective In Section 1, we presented three requirements for distributed referencemonitors. We now
revisit these requirements in light of our architecture, prototype and experiments.

1. Distributed tamper-proofness: Our prototype requires a VM to successfully attest its ability to uphold
the security policies relevant for membership in a particular distributed coalition. We perform both
bind-time checks and periodic checks – resulting in tamper-responding behavior. The labeled IPsec
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tunnel protects the flow of information between members of a distributed coalition.
2. Distributed mediation The labeled IPsec tunnel, SELinux policy in the MAC VM, and sHype policy

in Xen ensure that all communication involving members of a distributed coalition is subject to the
constraints of the distributed reference monitor.

3. Compatible security policies Our prototype uses statically configured policy semantics on all mem-
bers of a distributed coalition. Attestation ensures that the security policies for each member of the
distributed coalition are consistent with expected values. A significant amount of work remains in
policy development and verification of security goals. First, we must explore attestation policies that
dictate reference monitor tamper-responding requirements and mediation abilities. Second, we must
examine how distribution of these policies interacts with reference monitoring function. For example,
is the risk of information leakage between distributed coalitions greater than acceptable for the refer-
ence monitor? Third, we need to examine composition of distributed coalitions andtransfer of VMs
from one distributed coalition to another.

Minimizing MAC VMs and the Distributed Reference Monitor In our prototype, the size of the MAC
VM is on the order of a regular Linux distribution. The quantity of code in this VM violates the code size
constraints for reference monitors—a problem which has plagued everycommercial reference monitor we
know of. The majority of the code even in a minimal Linux installation is extraneousin a MAC VM. The
critical components for the MAC VM in a bridging system are (1) the operatingsystem which boots in the
VM; (2) the interface with the hypervisor MAC system; (3) the interface with the labeled secure tunnel to
other machines in the distributed coalition; (4) the policy for the labeled securetunnel; (5) the attestation
mechanisms in the MAC VM; (6) the attestation policy; and (7) the mechanism for determining policy
compatibility (e.g., when joining a distributed coalition). Instead of running a fullLinux kernel in the MAC
VM, specialized code can be run which drives the network interface over which the secure labeled tunnel
connects, and supports the critical components just described. Hypervisors that can assign the responsibility
for a particular device to a particular VM (adevice driver VM) can help to reduce the code size of a MAC
VM. We note that such device driver VMs exist in enterprise-grade hypervisors (e.g., IBM’s PHYP) and are
a planned feature for the next major release of Xen.
Layering Security Policy Our distributed MAC architecture enables layering of security policies. A
distributed MAC system is arranged such that the most important security properties are achieved by the
lowest-complexity (most assurable) mechanisms. In other words, the bridging system enforces coarse-
grained policies. We do not considerintra-VM security controls—these remain in the scope of application
developers. Thus, a full commercial system cannot be built on distributedMAC alone. We expect that finer-
grained, application-specific mechanisms will be in place in the user VMs running on top of distributed
MAC. This structure is advantageous since the most security-critical components are also the most robust.
Recall our example where the distributed MAC system enables a service provider to host competing enter-
prises on the same physical platform—a practice which is rare today because of the difficulty of enforcing
service-level agreements.

7 Related Work

Virtual Private Networks (VPNs) allow roaming individuals to connect to a geographically constrained
network as though they were located within those constraints. Today, IPsec [25] is commonly used in the
implementation of VPNs. While VPNs enhance the security of communication across the untrusted Internet,
they are founded on the assumption that all users of the network are benign. As the size of organizations
increases, this assumption becomes increasingly troublesome.

Kang et al. explore distributed MLS computing in high-assurance environment [20]. The authors com-
bine single-level systems to multi-level distributed environments by using the network pump [21] to safely
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connect systems of different security levels. Reeds [34] describes the networking of similar machines that
are mutually trusted by administration. He outlooks into connecting heterogeneous machines and states the
requirements of such interconnected systems to mutually discover each other’s TCB, policy, and software
implementation properties. These are among the problems we are addressing here.

Lampson’s Logic of Authentication [28] defines a general approach for administering authorizations
in a distributed system based on discretionary management of access and delegation statements. Trust
management approaches add programs that compute authorizations to certificates to enable more general
delegations [8, 12, 29, 30]. These approaches are also discretionary, and the flexibility of delegation presents
challenges for MAC information flow control.

Bauer et al. present a scheme for distributed proving in access controlsystems [5]. Distributed proving
schemes such as this are effectively an extension of discretionary access controls across machines. They
do not scale as well as mandatory access controls, since policy size increases with the number of subjects.
With bridging, the policy size can remain the same even as the number of systems inthe distributed coalition
grows.

Seshadri et al. propose Pioneer [39], a system for achieving run-timeattestation of code executing on
a particular hardware platform. This work is currently preliminary, but the approach shows promise as an
alternative for TPM-based attestation. This work is complementary to our distributed MAC system, which
could leverage run-time attestation as well as TPM-based attestation.

XenoServers is a distributed computation effort that served as the original motivation for the develop-
ment of Xen [27]. The XenoServers effort is still under development and does not yet enjoy widespread
use.

Globus is an open architecture for grid computing [14]. Globus has been designed with attention to
security, concentrating on using a certification authority for a particular project that can issue certificates for
all participants [48]. The security design for Globus assumes that Globusis run on dedicated, administered
machines. Globus is not designed to be securely run alongside commodity applications (e.g., untrustworthy
downloads from the Internet).

8 Conclusions

We developed a distributed systems architecture in which MAC policies can be enforced across physically
separate systems, therebybridging the reference monitor between those systems. The major insights are that
attestation can serve as a basis for extending trust to remote reference monitors and that it is actually possible
to obtain effective reference monitor guarantees from a distributed reference monitor. This work provides
a basic mechanism and guarantees for building a distributed reference monitor for a BOINC system. In
addition, the architecture also enables exploration of MAC, secure communication, and attestation policies
and the construction of reference monitors from a set of open source components. As the community gains
experience with MAC bridging and new architectural features become available (e.g., TPMs [46], Intel
LT [16], and Intel VT [17]), the quantity of code in the bridged TCB can be further reduced. Our bridging
architecture enables security policy to be layered based on its complexity, from coarse-grained hypervisor-
level policy up to sophisticated application-level policy.
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