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Abstract

It was recently proved in [12] that the Least-Recently-Used (LRU) caching policy, in the presence
of semi-Markov modulated requests that have a generalized Zipf’s law popularity distribution, is as-
ymptotically insensitive to the correlation in the request process. However, since the preceding result
is asymptotic, it remains unclear how small the cache size can become while still retaining this in-
sensitivity property. In this paper, assuming requests come from a nearly completely decomposable
Markov-modulated process, we characterize the critical cache size below which the dependency of re-
quests dominates the cache performance. It appears surprising that the critical cache size is very small,
and in fact it is sub-linear to the sojourn times of the modulated chain that determines the dependency
structure.

Keywords: network caching, least-recently-used caching, move-to-front searching, nearly completely
decomposable Markov processes, Markov-modulated processes, Zipf’s law



1 Introduction

The basic idea of caching is to maintain high-speed access to a subset of x popular items out of a larger
collection of N documents that are otherwise accessed at a slower rate. In the context of Internet applications
and services, such as Web access and content delivery, caching has been widely recognized as an effective
way to reduce the latency for downloading Internet documents. This is achieved by keeping the popular
documents in high-speed caches that are located close to the users requesting these documents. Naturally,
the problem of selecting and possibly dynamically updating the contents of a cache is central to the efficient
operation of any caching system. The broad popularity of the LRU policy stems from its many desirable
characteristics, including high hit ratio, low complexity, and flexibility to dynamically adapt to possible
changes in the request patterns.

Due to its importance, the LRU caching has received a significant attention from the literature, both
from the context of the combinatorial (worst-case) [2, 3, 13, 14] and probabilistic (average-case) analysis;
the letter is the focus of this paper. In particular, we consider the LRU algorithm in the presence of strong
statistical correlation that often characterizes the access patterns for Internet documents; e.g., see [1, 4, 11]
and the references therein. However, most of the existing work on the average-case analysis of LRU caches
is either performed under the assumption of independent and identically distributed (i.i.d.) requests or it is
computationally intractable. To alleviate this problem, in our recent work in [12] we develop a novel, analyt-
ically explicit method for analyzing LRU caches in the presence of semi-Markov modulated requests. This
way of modeling dependency provides the flexibility for capturing possibly strong statistical correlation,
including the widely reported long-range dependence of the access patterns for Web documents. The main
results from [12, 11] imply that asymptotically, for large cache sizes, the cache fault probability behaves the
same as in the corresponding LRU system with i.i.d. requests [10]. This surprising insensitivity was further
validated experimentally in [12, 11] where we found an excellent agreement between the asymptotic results
and those from simulation, even for relatively small cache sizes.

Since the results from [12] are asymptotic, they do not provide information on how small the cache sizes
can become while still retaining the recently discovered insensitivity property. Our present work attempts to
answer this question by studying the cache performance through a joint scaling of the dependence structure
of the requests and the cache size. The request sequence is modeled as a nearly completely decomposable
(NCD) Markov-modulated process with the modulating Markov process having transition rates linearly
proportional to a scaling parameter δ. The jumps in this modulating process occur on a time scale of the
order 1/δ, which implies that the dependency in the request process increases as δ ↓ 0. We scale the
cache size as an increasing function of 1/δ and identify a critical cache sizing below which the dependency
(locality) dominates the cache performance. It is somewhat unexpected that this critical cache size is very
small in comparison to the time scale of transitions in the modulating process; in fact, it is sub-linear in 1/δ.

The remainder of this paper is organized as follows. In Section 2 we define the model used in our study,
while in Section 3 we present a summary of results that are used in our main theorems. The main results are
provided in Theorems 2 and 3 of Section 4, together with a discussion of their implications. In Section 5 we
conclude the paper.

2 Model description

A LRU cache of size x can be described as follows. Consider a universe of N documents (items), from which
x can be placed in an efficiently accessible location called the cache. Each time a request for a document is
made, the cache is searched first. If the document is not found in the cache (cache fault), additional delay
is incurred to access the item from the outside universe and it is added to the cache by replacing the least
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recently accessed document in the cache. The performance measure of interest for this algorithm is the LRU
fault probability, i.e., the probability that the requested document is not found in the cache.

Analyzing the LRU policy is equivalent to investigating the Move-To-Front (MTF) searching algorithm.
In order to justify this claim, we assume that the x documents in the cache, under the LRU rule, are arranged
in the increasing order of their last access times. Every time there is a request for a document that is not
in the cache, the document is brought to the first position of the cache and the last document in the cache
is moved to the outside universe. Clearly, the fault probability stays the same if the remaining N − x
documents in the outside universe are arranged in any specific order. In particular, they can be arranged in
the increasing order of their last access times. The obtained searching scheme performed on the ordered list
of all documents is called the MTF algorithm. Furthermore, it is clear from the previous arguments that the
LRU fault probability is equal to the tail of the MTF search cost, i.e., the position of the requested document
evaluated at the cache size. Additional arguments that justify the connection between the MTF search cost
distribution and the LRU cache fault probability can be found in [9], [6], and [10]. We therefore proceed
with a description of the MTF algorithm.

More formally, consider a finite set of documents L = {1, . . . , N}, and a sequence of document requests
that arrive at time points {τn, −∞ < n < ∞} which represent a Poisson process of unit rate. At each point
τn, we use Rn to denote the document that has been requested, i.e., the event {Rn = i} represents a request
for document i at time τn. The sequence {Rn} is assumed to be independent of the Poisson arrival points
{τn}. The dynamics of the MTF algorithm are defined as follows. Suppose that the system starts at the
arrival instant τ0 of the 0th request with an initial permutation Π0 of the MTF list. Then, every time τn

(n ≥ 0) that a document is requested, its position in the list is first determined and this value represents the
searching cost CN

n at time τn. The list is then updated by moving the requested document to the first position
of the list and shifting one position down those documents that were in front of the requested item. Note
that, according to the discussion in the preceding paragraph, P[CN

n > x] represents the fault probability of
a cache of size x at time τn.

Next, we characterize the dependence structure of the request process. Let N δ = {Tn, −∞ < n < ∞},
T0 ≤ 0 < T1, be a Poisson point process with rate δ > 0. Furthermore, let {Jn, −∞ < n < ∞} be a finite-
state, irreducible, aperiodic Markov chain taking on values in {1, . . . , M} and independent of N δ. This
process is assumed to be stationary with marginal distribution πk = P[Jn = k]. Then, by embedding this
Markov chain into the Poisson process N δ, we construct a piecewise constant right-continuous modulating
process J , where J is defined as Jt = Jn for Tn ≤ t < Tn+1. Note that the transition rates in J are linearly
proportional to δ and, therefore, this is a NCD process for small δ.

For each 1 ≤ k ≤ M , let q
(k)
i be a probability mass function where q

(k)
i is used to denote the probability

of requesting document i when the underlying process J is in state k, 1 ≤ i ≤ N . The dynamics of Rn are
then uniquely determined by the modulating process J according to the equation

P[Rl = il, 1 ≤ l ≤ n | Jt, t ≤ τn] =
n∏

l=1

q
(Jτl

)

il
,

where n ≥ 1; that is, the sequence of requests Rn is conditionally independent given the modulating process
J . We use qi = P[R = i] =

∑M
k=1 πkq

(k)
i to express the marginal request distribution and assume that

qi > 0, 1 ≤ i ≤ N .
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3 Preliminary results

The model described in the previous section is a special case of the more general one introduced in [12]
and, therefore, the results established therein hold and some of them are applied in this paper to prove
our main results. In particular, Lemma 1 of [12] shows that the search cost CN

n , N < ∞, converges in
distribution to the stationary value CN when the request process {Rn} is stationary and ergodic. For the
reason of completeness, we state this result below. Then, in the following subsection we provide results that
characterize the tail of the stationary search cost distribution and the limiting search cost distribution when
the number of documents N → ∞. Next, Subsection 3.2 contains results on MTF searching with i.i.d.
requests that were stated and proved in [10] and [12] and will be used in proving our main theorems.

Lemma 1 If the request process {Rn} is stationary and ergodic, then for any initial permutation Π0 of the
list, the search cost CN

n converges in distribution to CN as n → ∞, where

CN �
N∑

i=1

∞∑
m=1

(1 + Si(m − 1))1[R−m = i,Ri(m − 1), R0 = i],

Si(m) is the number of distinct documents, different from i, among R−m, . . . , R−1, and event Ri(m) �
{R−j �= i, 1 ≤ j ≤ m}, m ≥ 1; Si(0) ≡ 0, Ri(0) ≡ Ω (where Ω represents a sample space).

3.1 Representation results

In this subsection we state the representation result for the stationary search cost CN that was derived in
[12] and represents the starting point for our analysis. Before stating the theorem we introduce the necessary
notation. Let σt be the σ-algebra σ(Ju, −t ≤ u ≤ 0) containing the history of the process Jt in the interval
[−t, 0] and denote the conditional probability Pσt [·] = P[·|σt]. Furthermore, let Nj(u; J) be the number of
requests for document j in [−u, 0), 0 < u ≤ t, and define an indicator function Bj(t; J) = 1[Nj(t; J) > 0],
j ≥ 1, being equal to 1 if item j was requested in [−t, 0). Then, the number of distinct documents Si(t; J),
different from i, that were requested in [−t, 0) can be expressed as

Si(t; J) �
∑

j �=i,1≤j≤N

Bj(t; J), (1)

where
Pσt [Bj(t; J) = 1] = 1 − e−q̂jt. (2)

Empirical request probabilities q̂j ≡ q̂j(t), j ≥ 1, and probabilities π̂k � π̂k(t), 1 ≤ k ≤ M , are defined as

q̂j �
M∑

k=1

q
(k)
j π̂k and π̂k ≡ 1

t

∫ 0

−t
1[Ju = k] du. (3)

Next, we state the main representation theorem.

Theorem 1 The stationary distribution of the searching cost CN satisfies

P[CN > x] = E

∫ ∞

0

N∑
i=1

q
(J0)
i q

(J−t)
i e−q̂itPσt [Si(t; J) > x − 1]dt, (4)

with Si(t; J), Bi(t; J) and q̂i satisfying equations (1), (2) and (3), respectively.
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In the proposition that follows we investigate the limiting search cost distribution when the number of
items N → ∞. Now, assume that the probability mass functions q

(k)
i , 1 ≤ k ≤ M are defined for all i ≥ 1.

Using these probabilities, for a given modulating process J and each 1 ≤ N ≤ ∞ we define a sequence of
request processes {RN

n }, whose conditional request probabilities are equal to

q
(k)
i,N =

q
(k)
i∑N

i=1 q
(k)
i

, 1 ≤ i ≤ N ;

then, for each finite N , let CN be the corresponding stationary search cost. In the case of the limiting request
process Rn = R∞

n , similarly as in (1), introduce Si(t; J) =
∑

j �=i Bj(t; J) to be equal to the number of
different items, not equal to i, that are requested in [−t, 0); Bj(t; J) is the Bernoulli variable representing
the event that item j was requested at least once in [−t, 0). Then, the following proposition states the
convergence of the stationary search cost CN in distribution as N → ∞ and provides the representation
formula (5) used in our analysis.

Proposition 1 The constructed sequence of stationary search costs CN converges in distribution to C as
N → ∞, where the distribution of C is given by

P[C > x] = E

∫ ∞

0
f̂(t)Pσt [Si(t; J) > x − 1] dt, (5)

where f̂(t) is defined as

f̂(t) �
∞∑
i=1

q
(J0)
i q

(J−t)
i e−q̂it. (6)

Remark 1 Throughout this paper we will exploit the properties that the variables Sj(t; J), Bj(t; J), j ≥ 1,
are monotonically increasing in t and that the variables Bj(t; J), j ≥ 1, are conditionally independent given
σt. This conditional independence arises from the Poisson arrival structure, as is apparent from the deriva-
tion in [12]. In general, when the request times are not Poisson, e.g., discrete-time arrivals, these variables
may not be conditionally independent. For i.i.d. requests, the Poisson embedding technique was first intro-
duced in [8]. �

Remark 2 It is clear that the derivation of the above results does not rely on the fact that the requests arrive
at a constant rate [12]. Thus, our results can be generalized to the case where the arrival rate depends on
the state of the modulating process J , i.e., the rate can be set to λk when Jt = k. We do not consider this
extension, since it further complicates the notation without providing any significant new insight. �

Remark 3 For the i.i.d. case, Proposition 1 was proved in Proposition 4.4 of [7]. �

3.2 Results for i.i.d. requests

We next provide several lemmas that consider the LRU caching scheme under independent requests, which
will be used in proving our main theorems. The MTF model with i.i.d. requests follows from our general
problem formulation when the modulating process is assumed to be a constant, i.e., Jt ≡ constant. In
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this case the Bernoulli variables {Bj(t), j ≥ 1} indicating that a document j was requested in [−t, 0)
are independent with success probabilities P[Bi(t) = 1] = 1 − e−qit. Then, using the notation Si(t) �∑

j �=i Bj(t), it is easy to see that the distribution of the limiting stationary search cost C from Proposition 1
reduces to

P[C > x] =
∫ ∞

0

∞∑
i=1

q2
i e

−qitP[Si(t) > x − 1]dt. (7)

The following two results, originally proved in Lemmas 1 and 2 of [10], are restated here for conve-
nience. Throughout this paper we shall use some standard notation. For any two real functions a(t) and b(t)
and fixed t0 ∈ R ∪ {∞} we will use a(t) ∼ b(t) as t → t0 to denote limt→t0 [a(t)/b(t)] = 1. Similarly, we
say that a(t) � b(t) as t → t0 if lim inft→t0 a(t)/b(t) ≥ 1; a(t) � b(t) has a complementary definition.

Lemma 2 Assume that qi ∼ c/iα as i → ∞, with α > 1 and c > 0. Then, as t → ∞,

∞∑
i=1

q2
i e

−qit ∼
c

1
α

α
Γ

(
2 − 1

α

)
t−2+ 1

α ,

where Γ is the Gamma function.

Lemma 3 Let S(t) =
∑∞

i=1 Bi(t) and assume qi ∼ c/iα as i → ∞, with α > 1 and c > 0. Then, as
t → ∞,

m(t) � ES(t) ∼ Γ
(

1 − 1
α

)
c

1
α t

1
α .

The next two lemmas are originally proved in [12]. They are repeatedly used in establishing our main
results. Throughout this paper we shall use H to be a sufficiently large positive constant, whereas h will
be used to denote a sufficiently small positive constant. The values of H and h are generally different in
different places. For example, H/2 = H , H2 = H , H + 1 = H , etc.

Lemma 4 Let {Bi, i ≥ 1} be a sequence of independent Bernoulli random variables, S =
∑∞

i=1 Bi and
m = E[S]. Then for any ε > 0, there exists θε > 0, such that

P[|S − m| > mε] ≤ He−θεm.

Lemma 5 If 0 ≤ qi ≤ H/iα for some fixed α > 1, then for any x ≥ 1,

P[C > x] ≤ H

xα−1
.

Finally, the result established in the following lemma is repeatedly used in the proof of Theorem 2.

Lemma 6 Let c2/iα ≤ qi ≤ c1/iα, α > 1, for some positive constants c1, c2. Then, for any x > 0

P[C > x] ≥ h

xα−1
.
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Proof: Note that for any ε > 0 and x large enough, the tail of the search cost C can be lower bounded as

P[C > x] =
∫ ∞

0

∞∑
i=1

q2
i e

−qitP[S(t) > x − 1]dt

≥ P[S(Hxα) > x − 1]
∫ ∞

Hxα

∞∑
i=1

q2
i e

−qitdt

≥ (1 − ε)
∞∑
i=1

qie
−Hxαqi , (8)

where the first inequality follows from the monotonicity of S(t), while the second inequality is obtained by
applying Lemmas 3, 4 and integration. Next, from the assumptions of this lemma, we have

∞∑
i=1

qie
−Hqix

α ≥
∞∑

�x�+1

c2

iα
e−H xα

iα

≥ c2e
−H

∫ ∞

x+1

1
uα

du

≥ h

xα−1
,

which in conjunction with (8) proves the result. �

4 Main results

In this section we state and prove our main results. We show that depending on the way the cache size x and
parameter δ scale, we obtain different performance characteristics with respect to the cache fault probability.

In preparation for these proofs we denote the epochs of reversed jump points Tn � −T−n, n ≥ 0;
this notation is convenient since C depends on Jt for values t ≤ 0. Furthermore, we define S(k)(t) �
B

(k)
i (t) + S

(k)
i (t) = B

(k)
i (t) +

∑
j �=i B

(k)
j (t), 1 ≤ k ≤ M , where B

(k)
i (t), i ≥ 1, are Bernoulli random

variables with P[B(k)
i (t) = 1] = 1 − e−q

(k)
i t; in addition, let C(k) correspond to the stationary search cost

with i.i.d. requests when Jt ≡ k.

4.1 Asymptotic decomposability

The following theorem establishes the critical cache size scaling as a function of the parameter δ below
which the dependency in the request process dominates cache performance, i.e., the insensitivity result does
not hold.

Theorem 2 Let qi ≤ c1/iα, α > 1, and there exists k, 1 ≤ k ≤ M , such that q
(k)
i ≥ c2/iα, c2 > 0. If xδ

satisfies xδδ
1/α → 0 as δ → 0, then

P[C > xδ] ∼
M∑

k=1

πkP[C(k) > xδ] as xδ → ∞. (9)

7



Proof: To simplify notation we write x ≡ xδ. First, we prove the lower bound. Since S(t; J) = S(k)(t) a.s.
on {J0 = k} for all −T0 ≤ t ≤ 0, the representation formula given in (5) implies

P[C > x] = E

∫ ∞

0
f̂(t)Pσt [Si(t; J) > x − 1]dt

≥ E

∫ T0

0

∞∑
i=1

(q(J0)
i )2e−q

(J0)
i t

P[S(J0)
i (t) > x − 1|J0]dt

≥
M∑

k=1

P[J0 = k, T0 > Hxα]
∫ ∞

0

∞∑
i=1

(q(k)
i )2e−q

(k)
i t

P[S(k)
i (t) > x − 1]dt −

M∑
k=1

πk

∫ ∞

Hxα

∞∑
i=1

(q(k)
i )2e−q

(k)
i tdt.

(10)

Now, since q
(k)
i ≤ qi/ mink πk � q̄i, 1 ≤ k ≤ M , qi ≤ c1/iα and xe−x ≤ e−1 (for x ≥ 0), the second

summand in (10) can be bounded as

M∑
k=1

πk

∫ ∞

Hxα

∞∑
i=1

(q(k)
i )2e−q

(k)
i tdt ≤

M∑
k=1

πk
1

Hxα

�H1/αx�∑
i=1

q
(k)
i Hxαe−q

(k)
i Hxα

+
1

(mink πk)

∫ ∞

H1/αx

c1

yα
dy

≤ e−1

H1−1/αxα−1
+

c1

(mink πk)H1−1/α(α − 1)xα−1

≤ 1

H
α−1
2α

1
xα−1

, (11)

for H large enough. Then, by the assumption of the theorem, P[J0 = k, T0 > Hxα] = πke
−Hδxα → πk as

δ → 0 (x → ∞), and, therefore, from (10) and (11) we obtain

P[C > x] �
M∑

k=1

πkP[C(k) > x] − 1

H
α−1
2α

1
xα−1

as x → ∞.

Next, by applying Lemma 6 and letting H → ∞, we conclude

P[C > x] �
M∑

k=1

πkP[C(k) > x] as x → ∞. (12)

Next, we prove the upper bound. After splitting the integral in (5), we define

P[C > x] = E

∫ T0

0
+E

∫ ∞

T0

� I1(x) + I2(x). (13)

First, we provide an upper bound for I1(x). Since S(t; J) = S(k)(t) a.s. on {J0 = k}, we derive

I1(x) = E

M∑
k=1

1[J0 = k]
∫ T0

0

∞∑
i=1

(q(k)
i )2e−q

(k)
i t

P[S(k)
i (t) > x − 1]dt

≤
M∑

k=1

πk

∫ ∞

0

∞∑
i=1

(q(k)
i )2e−q

(k)
i t

P[S(k)
i (t) > x − 1]dt

=
M∑

k=1

πkP[C(k) > x], (14)
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where the inequality is obtained after replacing T0 with ∞.
Next, in deriving an estimate I2(x), we use q

(J−t)
i e−q̂itdt = −d(e−q̂it) as follows:

I2(x) ≤ E

∞∑
i=1

q
(J0)
i

∫ ∞

T0

q
(J−t)
i e−q̂itdt

= E

∞∑
i=1

q
(J0)
i

∫ ∞

T0

−d(e−q̂it)

= E

∞∑
i=1

q
(J0)
i e−q

(J0)
i T0

=
M∑

k=1

πk

∞∑
i=1

q
(k)
i δ

q
(k)
i + δ

.

Since the first assumption of the theorem implies q
(k)
i ≤ H/iα, 1 ≤ k ≤ M , using the inequality

∞∑
i=1

q
(k)
i

q
(k)
i + δ

≤
∞∑
i=1

1
1 + hδiα

≤
∫ ∞

0

1
1 + hδzα

dz ≤ 1
(hδ)1/α

∫ ∞

0

1
1 + yα

dy, (15)

we obtain

I2(x) ≤ Hδ1−1/α = o

(
1

xα−1

)
as x → ∞, (16)

where the last equality is implied by the assumption of the theorem since xδ1/α → 0 as δ → 0 yields
δ1−1/α = o(1/xα−1) as x → ∞. Finally, this last observation together with (14) and Lemma 6 imply
I2(x) = o(I1(x)) as x → ∞, which, in conjunction with (13) and (12), concludes the proof of the theorem.
�

4.2 Asymptotic insensitivity

The following theorem establishes the scaling of the cache size as a function of the parameter δ for which
the insensitivity result holds.

Theorem 3 Let qi ∼ c/iα as i → ∞, α > 1. If xδ satisfies xδδ
1/α/ log xδ → ∞ as δ → 0, then

P[C > xδ] ∼ K(α)P[R > xδ] as xδ → ∞, (17)

where

K(α) �
(

1 − 1
α

)[
Γ

(
1 − 1

α

)]α

;

Γ is the Gamma function.

Proof: Again, to simplify the notation, we set x ≡ xδ. First we prove the upper bound. After splitting the
integral in (5), we define

P[C > x] = E

∫ T�hxαδ�

0
+E

∫ ∞

T�hxαδ�

� I1(x) + I2(x). (18)
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Now, we estimate an upper bound for I1(x). After conditioning on the value of T�hxαδ�, we obtain

I1(x) = E

[
1[T�hxαδ� > 2hxα]

∫ T�hxαδ�

0
f̂(t)Pσt [S(t; J) ≥ x]dt

]

+ E

[
1[T�hxαδ� ≤ 2hxα]

∫ T�hxαδ�

0
f̂(t)Pσt [S(t; J) ≥ x]dt

]
,

where f̂(t) is defined in (6). Note that f̂(t) ≤
∑∞

i=1 q
(J0)
i = 1 and∫ ∞

0
f̂(t)dt = 1, (19)

since −d(e−q̂it) = e−q̂itd(
∑M

k=1 q
(k)
i

∫ 0
−t 1[Ju = k]du) = e−q̂itq

(J−t)
i dt. Then, using (19),

I1(x) ≤ E

[
1[T�hxαδ� > 2hxα]

∫ ∞

0
f̂(t)dt

]
+ E

∫ 2hxα

0
Pσt [S(t; J) ≥ x]dt

≤ P[T�hxαδ� > 2hxα] + E

∫ 2hxα

0
Pσt [S(t; J) ≥ x]dt. (20)

Next, note that the empirical distributions are uniformly bounded by q̂i =
∑M

k=1 π̂kq
(k)
i ≤

∑M
k=1 q

(k)
i ≤

q̄i � qi/ mink πk < ∞, since mink πk > 0. Then, we define independent Bernoulli random variables B̄i(t),
i ≥ 1, with P[B̄i(t) = 1] = 1 − e−q̄it and S̄(t) �

∑∞
i=1 B̄i(t); S̄(t) is constructed to be non-decreasing in

t. Note that for every ω, Pσt [Bi(t; J) = 1] ≤ P[B̄i(t) = 1] and, therefore, Pσt [S(t; J) ≥ x] ≤ P[S̄(t) ≥ x]
uniformly in ω. Thus, we further upper bound the second integral in (20) as

2hxα
P[S̄(2hxα) ≥ x] ≤ Hxαe−hθhxα

,

where the last inequality follows from Lemmas 3 and 4 for h small enough and some constant θh > 0. The
preceding inequality and (20) imply, as x → ∞,

I1(x) ≤ P[T�hxαδ� > 2hxα] + o

(
1

xα−1

)
. (21)

Next, after exploiting the large deviation bound for the sum of exponential i.i.d. random variables, we obtain
for some θ > 0,

P[T�hxαδ� > 2hxα] ≤ e−θhxαδ = e−θh xαδ
log x

log x = o

(
1

xα−1

)
as x → ∞, (22)

since xαδ/ log x → ∞ as x → ∞, which can be easily implied from xδ1/δ/ log x → ∞ as δ → 0. Finally,
from (21) and (22), we conclude that, as x → ∞,

I1(x) = o

(
1

xα−1

)
. (23)

In order to estimate I2(x), we define the set A(n) as

A(n) � ∩1≤k≤M

{∣∣∣∣τk(Tn) − πk(n + 1)
δ

∣∣∣∣ ≤ 2ε
πk(n + 1)

δ

}
, (24)
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where τk(Tn) represents the total time that process J spends in state k in the interval (−Tn, 0). Next, due

to the memoryless property of the exponential distribution, note that τk(Tn) d=
∑Nn(k)

i=0 εi, where Nn(k) is
equal to the number of times that the Markov chain {J−Ti} visits state k and εi are exponential i.i.d. random
variables with mean 1/δ, both for 0 ≤ i ≤ n. Then,

P

[
τk(Tn) > (1 + ε)

πk(n + 1)
δ

]
≤ P[Nn(k) ≥ (1+ε)πk(n+1)]+P


�(1+ε)πk(n+1)�∑

i=0

εi > (1 + 2ε)
πk(n + 1)

δ


 .

(25)
Next, note that for any 0 < θ < δ and any positive integer n

P

[
n∑

i=1

εi > (1 + ε)
n

δ

]
= P

[
eθ
�n

i=1 εi > eθ(1+ε)n
δ

]
≤ e−n[ θ

δ
(1+ε)+log(1− θ

δ
)],

where in the last expression we applied Markov inequality. Therefore,

P

[
n∑

i=1

εi > (1 + ε)
n

δ

]
≤ inf

0<u<1
e−n[u(1+ε)+log(1−u)] = e−n(ε+log(1+ε)), (26)

where u in the previous expression is used instead of θ/δ. Then, after applying a well-known large deviation
result on finite state ergodic Markov chains (e.g., see Section 3.1.2 of [5]) to bound the first term of (25) and
using (26), we conclude, that there exists a constant θk(ε) > 0, independent from δ, that satisfies

P

[
τk(Tn) > (1 + ε)

πk(n + 1)
δ

]
≤ e−θk(ε)n. (27)

Using analogous arguments to the ones in (25), (26) and (27), for estimating the exponential upper bound

for P

[
τk(Tn) < (1 − ε)πk(n+1)

δ

]
, in conjunction with the union bound, we conclude

P[Ac(n)] ≤ max
k

P

[∣∣∣∣τk(Tn) − πk(n + 1)
δ

∣∣∣∣ > 2ε
πk(n + 1)

δ

]
≤ He−θεn, (28)

for some positive constant θε > 0, independent from δ.
At this point, we are ready to proceed with estimating the integral I2(x). After intersecting with A(n)

and Ac(n), we define

I2(x) ≤ E

∞∑
n=�hxαδ�

∫ Tn+1

Tn

f̂(t)Pσt [S(t; J) ≥ x]dt

= E

∞∑
n=�hxαδ�

1[Ac(n)]
∫ Tn+1

Tn

f̂(t)Pσt [S(t; J) ≥ x]dt + E

∞∑
n=�hxαδ�

1[A(n)]
∫ Tn+1

Tn

f̂(t)Pσt [S(t; J) ≥ x]dt

� I21(x) + I22(x). (29)

Then, by using (28), we obtain

I21(x) ≤
∞∑

n=�hxαδ�
P[Ac(n)] ≤ He−θεhxαδ = o

(
1

xα−1

)
as x → ∞. (30)
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Next, we estimate I22(x). Since S(t; J) is a.s. non-increasing in t, after splitting the sum we obtain

I
(2)
22 (x) ≤ E

�gεxαδ�∑
n=�hxαδ�

1[A(n)]
∫ Tn+1

Tn

f̂(t)PσTn+1
[S(Tn+1; J) ≥ x]dt+E

∞∑
n=�gεxαδ�+1

1[A(n)]
∫ Tn+1

Tn

f̂(t)dt,

(31)
where gε will be defined later. We define S∗(n) =

∑∞
i=1 B∗

i (n), where {B∗
i (n), i ≥ 1} is a sequence of

independent Bernoulli random variables with P[B∗
i (n) = 1] = 1 − e−(1+2ε)qi(n+1)/δ; S∗(n) is constructed

to be non-decreasing in n. Then, for every ω ∈ A(n),

PσTn
[Bi(Tn; J) = 1] = 1 − e−

�M
k=1 q

(k)
i τk(Tn) ≤ P[B∗

i (n) = 1],

and, therefore, by stochastic dominance

PσTn
[S(Tn; J) ≥ x] ≤ P[S∗(n) ≥ x]. (32)

Now, using (19) and the monotonicity of S∗(n) in n, we upper-bound the first term in (31) as

E

�gεxαδ�∑
n=�hxαδ�

1[A(n)]
∫ Tn+1

Tn

f̂(t)PσTn+1
[S(Tn+1; J) ≥ x]dt ≤

�gεxαδ�∑
n=�hxαδ�

P[S∗(n) ≥ x]

≤ gεx
αδP[S∗(gεx

αδ) ≥ x].

Finally, if we pick gε to be

gε � (1 − 2ε)α[
Γ

(
1 − 1

α

)]α
c(1 + 2ε)

,

and then apply Lemmas 3 and 4 to estimate the upper bound for the first term in (31), we derive

E

�gεxαδ�∑
n=�hxαδ�

1[A(n)]
∫ Tn+1

Tn

f̂(t)PσTn+1
[S(Tn+1; J) ≥ x]dt = o

(
1

xα−1

)
as x → ∞. (33)

Next, we derive the asymptotics of the second term in (31). Note that for every ω ∈ A(n) and t ∈
(Tn, Tn+1]

f̂(t) =
∞∑
i=1

q
(J0)
i q

(J−Tn+1
)

i e−q
(1)
i τ1(Tn)−···−q

(M)
i τM (Tn)e−q

(J−Tn+1
)

i (t−Tn)

≤
∞∑
i=1

q
(J0)
i q

(J−Tn+1
)

i e−(1−2ε)qi
n
δ e−q

(J−Tn+1
)

i (t−Tn) (34)

and, therefore, after integration with respect to t and applying the bound 1− e−x ≤ x, x ≥ 0, we obtain that
the second term in (31) can be upper bounded as

E

∞∑
n=�gεxαδ�+1

1[A(n)]
∫ Tn+1

Tn

f̂(t)dt ≤ E

∞∑
n=�gεxαδ�+1

1[A(n)]
∞∑
i=1

q
(J0)
i q

(J−Tn+1
)

i (Tn+1 − Tn)e−(1−2ε)qi
n
δ

≤
∞∑

n=�gεxαδ�+1

∞∑
i=1

E[E[q(J0)
i |J0]E[q

(J−Tn+1
)

i (Tn+1 − Tn)|J0]]e−nqi(1−2ε)/δ, (35)
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where in the last inequality we used conditional independence of the Markov chain. Due to the asymptotic
independence of the aperiodic, finite state Markov chains, i.e., P[J−Tn = k|J0 = l] → P[J−Tn = k] as
n → ∞, together with (35), (33) and (31), we conclude, as x → ∞,

I
(2)
22 (x) ≤ (1 + ε)

∞∑
n=�gεxαδ�+1

∞∑
i=1

q2
i

1
δ
e−(1−2ε)qi

n
δ + o

(
1

xα−1

)
. (36)

The sum from the previous inequality can be further upper-bounded as

∞∑
n=�gεxαδ�+1

∞∑
i=1

q2
i

1
δ
e−(1−2ε)qi

n
δ ≤

∫ ∞

gεxαδ

∞∑
i=1

q2
i

1
δ
e−(1−2ε)

qi
δ

tdt. (37)

Next, after applying Lemma 2, computing the integral, multiplying it with xα−1 and then taking the lim sup
as x → ∞, we derive

lim sup
x→∞

I
(2)
22 (x)xα−1 ≤ K(α)

(1 + ε)2(1 + 2ε)1−
1
α

(1 − 2ε)1+α− 1
α

, (38)

which by passing ε → 0, and in conjunction with (36), (33), (31), (30), (29) and (18) proves the upper
bound.

The estimation of the lower bound of (5) starts from

P[C > x] ≥ E

∞∑
n=�gεxαδ�

1[A(n)]
∫ Tn+1

Tn

f̂(t)PσTn
[S(Tn; J) ≥ x]dt,

where gε � (1+2ε)α

[Γ[1− 1
α

]]αc(1−ε)
. Then, using analogous arguments to those in obtaining (32), with redefined

P[B∗
i (n) = 1] = 1 − e−(1−2ε)qi(n+1)/δ, i ≥ 1, we obtain

E

∞∑
n=�gεxαδ�

1[A(n)]
∫ Tn+1

Tn

f̂(t)PσTn
[S(Tn; J) ≥ x]dt ≥ P[S∗(gεx

αδ) > x]E
∞∑

n=�gεxαδ�
1[A(n)]

∫ Tn+1

Tn

f̂(t)dt.

Then, after applying Lemmas 3 and 4 for large enough x, lower bounding f̂(t) analogously as in (34), and
computing the integral, we obtain

P[C > x] ≥ (1 − ε)
∞∑

n=�gεxαδ�

∞∑
i=1

q
(J0)
i q

(J−Tn+1
)

i (Tn+1 − Tn)e−(1+2ε)qi
n+1

δ −
∞∑

n=�gεxαδ�
P[Ac(n)].

Finally, after applying analogous arguments as in (35), (36), (37) and (38), to estimate the asymptotic
lower bound of the first term in the previous expression, in conjunction with (30), we conclude the proof of
this theorem. (The details of the proof of the lower bound are omitted in order to avoid repetitions of the
arguments.)

�
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4.3 Discussion

Note that when x < 1/δp for some p > 0, the condition xδ1/α/ log x → ∞ of Theorem 3 is implied by
xδ1/α/ log(1/δ) → ∞. Thus, for H large enough and for all x > H log(1/δ)/δ1/α, the cache behaves
as the corresponding i.i.d. system with marginal distribution {qi}. Hence, under this asymptotic scaling,
the correlation structure plays no role. On the other hand, Theorem 2 states that for very small caches, x ≤
1/(Hδ1/α), the cache performance is distinctly different from that of the corresponding i.i.d. system; in fact,
the fault probability is decomposed into a mixture of i.i.d. systems. Informally, we see that this qualitative
transition in the cache performance occurs around cache sizes on the order of 1/δ1/α. As previously stated,
it is surprising that this value is very small (almost negligible) in comparison with the time scale of jumps
(1/δ) in the modulating process J .

5 Concluding remarks

In this paper we investigate the performance, namely fault probability, of LRU caches in the presence of cor-
related requests. It has been recently discovered (see [12, 11]) that for the semi-Markov modulated requests
and generalized Zipf’s law marginal request distributions, the caching performance does not depend on the
correlation in the request traffic for large cache sizes; more precisely, LRU cache performance is asymptoti-
cally identical to the i.i.d. case with the same marginal request distribution. However, it remained unknown
what is the critical cache size below which this asymptotic insensitivity does not hold. Our goal in this paper
was to determine this critical size. In order to pursue the analysis, we observed a specific case of the model
introduced in [12, 11], where requests are modulated by a nearly completely decomposable Markov process.
By exploiting the analytic techniques introduced in [12], we discover the critical scaling between the cache
size x and the transition rate of the modulating (Markov) process δ. The result is somewhat surprising, since
the analysis shows that the critical cache size is sublinear, and, therefore, much smaller than the time scale
of transitions in the modulating process 1/δ. Furthermore, Theorem 3 identifies a transition region for cache
sizes as a function of δ above which the previously mentioned insensitivity result holds.
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[12] P. R. Jelenković and A. Radovanović. Least-recently-used caching with dependent requests. Theoretical Com-
puter Science, 326:293–327, 2004.

[13] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the ACM, 32(3):652–686, 1985.

[14] Neal E. Young. On-line paging against adversarially biased random inputs. J. Algorithms, 37(1):218–235, 2000.

15


