
RC23780 (W0511-044) November 7, 2005
Mathematics

IBM Research Report

Modeling and Analysis of Dynamic Coscheduling in
Parallel and Distributed Environments

Mark S. Squillante1, Yanyong Zhang2, Anand Sivasubramaniam3,
Natarajan Gautam3, Hubertus Franke1, Jose Moreira1

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

2Rutgers University
Piscataway, NJ 08854

3Pennsylvania State University
University Park, PA 16802

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Modeling and Analysis of Dynamic Coscheduling in Parallel and

Distributed Environments

Mark S. Squillante,∗ Yanyong Zhang,† Anand Sivasubramaniam,‡

Natarajan Gautam,‡ Hubertus Franke,∗ Jose Moreira∗

Abstract

Scheduling in large parallel systems continues to be an important and challenging research prob-
lem. Several key factors have resulted in the emergence of a new class of scheduling strategies:
Dynamic coscheduling. Given their large design and performance spaces, it is difficult to fully ex-
plore the benefits and limitations of the proposed dynamic coscheduling approaches for large systems
solely with the use of simulation or experimentation. We therefore formulate a general mathemati-
cal model of this class of scheduling strategies, and derive an exact and approximate matrix-analytic
analysis for relatively small and large instances of the model, respectively. The results of numerical
experiments with our approximation are in excellent agreement with detailed simulation results. Our
analysis is then used to explore fundamental design and performance tradeoffs associated with the
class of dynamic coscheduling policies across a broad spectrum of parallel computing environments.

Keywords: stochastic models, parallel systems, parallel scheduling, queueing theory, performance optimization.

1 Introduction

Parallel system scheduling is challenging because of the numerous factors involved in implementing such

a scheduler, including the workload, native operating system (OS), node hardware, network interface,

network, and communication software. Over the past decade, parallel computing is centered around off-

the-shelf clusters for their cost-effectiveness, which further complicate scheduling issues because these

platforms usually employ user-level messaging (to reduce latencies and improve bandwidth), wherein

the OS is unaware of the task waiting for a message. Multiprocessors have traditionally addressed this

problem using a technique called coscheduling [11] or gang scheduling [5], wherein tasks of a job are

scheduled on their respective nodes during the same time quantum. However, gang scheduling is not

a very attractive nor scalable option for off-the-shelf clusters, since it requires periodic synchronization

across the nodes to coordinate the effort. At the same time, on the application side, an ever increasing

number of applications, which are rapidly shifting from CPU intensive to I/O intensive or communication

intensive, co-exist on the same cluster platform, making gang scheduling unsuitable.

∗IBM Watson Research Center, Yorktown Heights, NY 10598, USA. {mss,frankeh,jmoreira}@us.ibm.com
†Rutgers University, Piscataway, NJ 08854, USA. yyzhang@ece.rutgers.edu
‡Pennsylvania State University, University Park, PA 16802, USA. anand@cse.psu.edu; ngautam@psu.edu

1

As a result, there have been recent efforts [4, 14, 8] to design a new class of scheduling mecha-

nisms – broadly referred to as dynamic coscheduling – which approximate coscheduled execution with-

out explicitly synchronizing the nodes. These techniques use local events (such as message arrival) to

estimate what is happening at remote nodes, and adjust their local schedules accordingly. They are able

to simply adjust task priorities (e.g., this can be implemented using a loadable driver [14, 8]) to achieve

this goal, leaving it to the native OS to do the actual scheduling. These scheduling mechanisms have

been shown to be easier to implement, incur less overheads, and result in more effective schedules than

exact coscheduling in a specific computing environment [19].

The design and performance spaces of dynamic coscheduling mechanisms are quite complex, and

a myriad of heuristics are possible to schedule the tasks. Without a unifying performance evaulation

framework, it is very difficult to perform an extensive analysis of the benefits and limitations of these

different mechanisms and heuristics, especially given so many diverse parameters for the parallel sys-

tem and workload. As a result, it is difficult to say which approaches perform best, and under what

conditions, and thus many important design and performance questions remain open. For instance, it

is not clear how the performance of these mechanisms compare as the size and traffic intensity of the

system increases. What is the effect of varying the relative fraction of computation (requiring only CPU

resources), communication and I/O components in the application, which represents different parallel

workloads? Each dynamic coscheduling mechanism has tunable parameters. How can we select values

for these parameters to get the best performance? As the underlying hardware or OS changes how do the

relative benefits of the different alternatives compare? While one could use experimentation [8] and sim-

ulation [19] to study relatively small systems, the suitability of these mechanisms for large systems has

not been explored. This is one of the motivating factors for our study as several large clusters, ranging

from hundreds to thousands of processors, have been deployed both in production and research environ-

ments to handle the high-performance computing needs of both scientific and commercial applications.

Analytical models can be used to address each of the key problems and issues described above, thus

complementing previous (and future) experimental and simulation based studies. While some analytical

models have been developed for exploring the assignment of tasks to processors (e.g., [12, 15]) and for

analyzing certain forms of gang scheduling (e.g., [16]), there has been no prior research to our knowledge

that develops analytical models of the behavior of the various dynamic coscheduling strategies recently

proposed. The reasons for this center around the inherent complexity of developing such mathematical

models and analysis given the dynamic and complex interactions among the parallel processors.

This paper therefore fills a crucial void by developing and exploiting the first general analytical mod-

els and analysis (to our knowledge) that accurately capture the execution of dynamically coscheduled

parallel systems. We formulate a general mathematical model of this class of scheduling strategies within

a unified framework that allows us to investigate a wide range of parallel systems and that supports incor-

2

porating different scheduling heuristics, workload parameters, system parameters and overheads, policy

parameters, and so on. We derive an exact matrix-analytic analysis for relatively small parallel systems,

and an approximate matrix-analytic analysis for the large systems motivating our study. A key aspect of

our approximate approach consists of probabilistically capturing the various correlations and dynamic

behaviors of the parallel system and scheduling policy based on a general stochastic decomposition and

fixed-point iteration. Our models and analysis include important aspects of real parallel environments

such as the effects of increased contention for system resources, and provides detailed statistics on system

and application states (in addition to performance measures) that can be used to explain the overall re-

sults, to isolate hotspots (for subsequent optimization), and to gain a better understanding of the benefits

and limitations of different dynamic coscheduling approaches. These models and analysis significantly

extend and generalize the corresponding results presented in our previous conference paper [18].

Many numerical experiments have been conducted as part of our study. We first consider the ac-

curacy of our approximate approach and find the results to be in excellent agreement with those from

detailed simulations of a relatively small parallel system, often being within 5% and always less than

10%. Moreover, the accuracy of our approach increases with the size of the system and our primary

interests are in large parallel systems. Using our general models and analysis, we then evaluate in detail

for the first time the benefits and limitations of previously proposed dynamic coscheduling mechanisms

under a wide range of different workload and system configurations, significantly expanding the results

in [18] by exploiting our more general models and analysis. The advantages of such general, flexible

and configurable models are demonstrated by conducting studies with different computing environments

to explore and understand the fundamental design and performance space issues and tradeoffs associ-

ated with the various dynamic coscheduling strategies. While the motivation for our models comes from

the suitability of dynamic coscheduling mechanisms for cluster environments, our general models are

broadly applicable and can be used to examine the behavior of these mechanisms on a diverse set of

parallel and distributed systems subject to a diverse set of workloads.

The next section summarizes the dynamic coscheduling mechanisms. We present our parallel system

environment and the corresponding stochastic models in §3. Our general mathematical analysis of these

parallel dynamic coscheduling models is provided in §4, and a representative sample of the results from

our numerical experiments is presented in §5. We summarize the contributions of this work in §6.

2 Dynamic Coscheduling Policies

In this section we briefly review the three previously proposed dynamic coscheduling mechanisms,

namely Spin-Block (SB), Demand-based Coscheduling (DCS) and Periodic Boost (PB). We also de-

scribe the system, called Local Scheduling (LS), that does not attempt to do any coscheduling between

the nodes, and leaves it to the native OS at each node to time share its processor.

3

Local Scheduling (LS). The native OS is left to schedule the tasks at each node, with no coordination

among the nodes. Most off-the-shelf/commercial OS schedulers use some version of the multi-level

feedback queue to implement time sharing. There are a certain number of priority levels, with jobs

waiting at each level, and a time quantum associated with that level. In this paper, we associate equal

time quanta for all priority levels which is the case in Windows NT. When a task initiates an I/O operation,

it relinquishes the CPU, and is put in a blocked state. Upon I/O completion, it typically receives a priority

boost and is scheduled again.

Spin Block (SB). Versions of this mechanism have been considered in the context of implicit coschedul-

ing [4, 1] and DCS [14]. In this scheme, a task spins on a message receive for a fixed amount of time (spin

time) before blocking itself. The rationale here is that if the message arrives in a reasonable amount of

time (spin time), the sender task is also currently scheduled and the receiver should hold on to the CPU.

Otherwise, it should block so that CPU cycles are not wasted. When the message does arrive, the task is

woken up, and consequently gets a boost in priority to get scheduled again. There are costs associated

with blocking and waking up (requires an interrupt on message arrival). Our model is flexible enough

to allow either fixed or variable (adaptive) spin times and the model derivation allows for incorporating

several heuristics that can be used to tune the spin times adaptively.

Demand-based Coscheduling (DCS). DCS [14] uses an incoming message to schedule the task for

which it is intended. The underlying rationale is that the receipt of a message denotes the higher likeli-

hood of the sender task being scheduled at the remote workstation at that time. Upon message arrival, if

the intended task is not currently scheduled, an interrupt overhead is paid for re-scheduling that task.

Periodic Boost (PB). This mechanism has been proposed as an interrupt-less alternative to address the

inefficiencies arising from scheduling skews between tasks. Instead of immediately interrupting the host

CPU on message arrival as in DCS, the actions are slightly delayed. A kernel activity becomes active

periodically to check (in round-robin order) if there is a task with a pending message, and if so it boosts

the priority of that task. Even if there is no such task, but the currently scheduled one is busy waiting for

a message, the activity boosts another task with useful work to do. Though interrupts are avoided, there

is the fear of delaying the actions more than necessary. At the same time, making this too frequent would

increase the overheads.

3 System Environment and Models

Our stochastic models of the parallel systems and workloads of interest in this study are based on the

broad spectrum of parallel computing environments found in practice; see [16, 9] and the references cited

4

therein. Similarly, our stochastic models of the above dynamic coscheduling mechanisms are based on

actual implementations described in the research literature [14, 8], and the costs used for the various

scheduling actions have also been drawn from experimental results. This collection of stochastic models

significantly extends and generalizes the corresponding results in our previous paper [18].

3.1 Parallel System

The parallel system consists of P identical processors, each capable of executing any of the parallel tasks

comprising an application. Every processor can operate at a maximum multiprogramming level (MPL),

which is usually governed by resource availability (e.g., memory/swap space) to provide reasonable

overall performance for the executing jobs. Processors are interconnected by a network that has both a

latency and a contention component. Upon arrival, jobs specify a certain number of processors that they

require (which is equal to the number of tasks in that job). Each of the tasks belonging to the job is then

assigned to a processor that is not already operating at its maximum MPL. Even if only one of the tasks

cannot be assigned, the job waits in a system queue and the scheduler assigns jobs from this queue in a

first-come first-serve (FCFS) order.

Our analysis will primarily focus on the case in which the MPL at every processor allocated to an

application is the same. This is often the case in many large parallel systems that are spatially partitioned

together with some type of packing scheme to fill holes in the time-sharing slots. It is important to note,

however, that our approach is not limited to this case, and in §4 we briefly discuss how our approach

can be used to also handle the case in which the set of processors executing an application have different

MPLs. Let M denote the maximum MPL at the processor partitions in the system. Another primary

focus in this paper is on large parallel computer systems which are playing an important role in many

scientific and commercial applications.

3.2 Parallel Workload

Parallel jobs are assumed to arrive to the system from an exogenous source according to a Markovian

Arrival Process (MAP) having descriptors (SA
0 ,SA

1) of order mA with mean rate λ. An arrival is placed

in the FCFS system queue when all M time-sharing slots are filled in each of the processor partitions

of the desired size. The time-sharing quantum lengths (QLs) and the context-switch (CS) overheads at

each processor are respectively assumed to be independent and identically distributed (i.i.d.) following

the PH-type distributions PH(χ,SQ) and PH(ξ,SO) of orders mQ and mO having means τ−1 and δ−1.

The applications comprising the system workload consist of parallel tasks, each of which alternates

among several stages of execution in an iterative manner. As is common in the class of large parallel

applications, we assume that the applications tend to be long-running with a relatively large number of

iterations. The number of iterations for each application, NA, is assumed to follow a (shifted) geometric

5

distribution with parameter pNA
, i.e., P[NA = 1 + n] = (1 − pNA

)npNA
, n ∈ ZZ+. We consider a general

class of parallel applications in which each iteration consists of a computation stage, an I/O stage, and

a communication stage (i.e., sending and receiving messages among tasks). The service times of these

per-iteration computation, I/O and communication stages are respectively assumed to be i.i.d. according

to the order mB , mI and mC PH-type distributions PH(β,SB), PH(η,SI) and PH(ζ,SC) with means

µ−1, ν−1 and γ−1. As part of the communication stage, a task may also have to wait for the receipt

of a message from a peer parallel task. We also consider an all-to-all communication strategy, where a

task may have to wait for messages from all other tasks before proceeding. All of the above stochastic

sequences are assumed to be mutually independent.

The chosen structure for a parallel job stems from our experiences with numerous parallel applica-

tions. Several scientific applications, such as those in the NAS benchmarks [2], and Splash suite [13],

exhibit such behavior. For instance, computation of a parallel multidimensional FFT requires a proces-

sor to perform a one-dimensional FFT, following which the processors exchange data with each other

to implement a transpose, and the sequence repeats iteratively. I/O may be needed to retrieve the data

from the disk during the dimensional FFT operation since these are large data sets. Similarly a parallel

SOR has each processor compute matrix elements by averaging nearby values, after which the processors

exchange their latest values for the next iteration.

The stochastic processes assumed for the mathematical model are important in that they determine

both the generality of our solution and the usefulness of our model in practice. We therefore exploit the

general class of MAPs and PH-type distributions; refer to [10, 6] for more details including definitions,

notation and known results. The use of MAPs and PH-type distributions for all model parameters is of

theoretical importance in that we exploit their properties to derive solutions of various instances of our

general stochastic scheduling models. It is also of practical importance in that, since the class of PH-type

distributions is dense within the set of probability distributions on [0,∞), and since the class of MAPs

provides a general framework for capturing the dependence structure and variability of a process, any

stochastic process on this space for the parallel computing environments of interest can in principle be

represented arbitrarily closely by a MAP or a PH-type distribution. Moreover, a considerable body of

research has examined the fitting of PH-type distributions and MAPs to empirical data, and a number of

algorithms have been developed for doing so; e.g., see [7] and the references cited therein. By appropri-

ately setting the parameters of our models, a wide range of parallel application and system environments

can be investigated.

4 Mathematical Analysis

In this section we present an overview of our general mathematical analysis of the foregoing parallel

scheduling models within a unified framework that allows us to investigate all classes of parallel ap-

6

plication and system environments of interest using a single formulation. This analysis significantly

extends and generalizes the corresponding results presented in [18]. However, due to space limitations,

the mathematical details of this analysis are provided in a separate companion paper [17]. Herein we

first summarize an approach that makes it possible to obtain an exact solution for relatively small paral-

lel systems using our results, which also illustrates some of the difficulties and complexities of an exact

analysis. We then summarize an approximate approach to address the fundamental problems involved in

the mathematical modeling and analysis of large instances of this complex parallel system. Our approx-

imate analysis is based on a general form of stochastic decomposition in which we derive distributional

characterizations of the dynamic interactions and dependencies among the parallel processors under

various dynamic coscheduling policies. We then exploit this distributional characterization to obtain a

reduced state-space representation, for which we derive a matrix-analytic analysis based on a fixed-point

iteration. Our analysis can be shown to be asymptotically exact in P for certain model instances, and nu-

merous simulation-based experiments generally demonstrate that the accuracy of our approach increases

with the value of P and that this approximation is very accurate even for relatively small parallel systems.

We also obtain performance measures of interest in terms of our exact and approximate solutions, and

then extend both solution approaches to incorporate the impact of resource contention.

4.1 Exact Matrix-Analytic Analysis

The parallel dynamic coscheduling models can be represented by a continuous-time stochastic process

{X(t) ; t ∈ IR+}, defined on an infinite, multi-dimensional state space ΩX where each state x ∈ ΩX

records: the total number of parallel jobs in the system; the state of the arrival process; the state of the

overall service process for each parallel job at each processor (including scheduling priority ordering);

and the state of the QL process (including CS overhead) at each processor. This formulation is exact and

it exploits known closure properties of PH-type distributions [10, 6], most notably that the convolution

of PH-type distributions is also of PH-type. We therefore can generally capture the various stages of

execution (e.g., computation, I/O and communication) for the classes of parallel applications of interest

via a single PH-type distribution that represents the appropriate combinations of the PH-type distributions

for each of these stages of execution as well as other system behavior (e.g., the impact of a task waiting

to receive a message). We refer to this combined process as the overall service process.

Let πX be the stationary distribution for the stochastic process {X(t) ; t ∈ IR+}. Assuming this

process to be irreducible and positive recurrent, the invariant probability vector is uniquely determined

by solving πXQX = 0 and πXe = 1, where QX is the generator matrix for the process, and e denotes

the column vector of appropriate dimension containing all ones. The elements of the generator matrix

are constructed based on the above formulation and the dynamic transitions among the stages of behavior

for the parallel system, which also depend upon the specific dynamic coscheduling strategy.

7

By exploiting the structure of the generator QX from our formulation, the invariant probability vector

πX of the process {X(t) ; t ∈ IR+} can be obtained from standard matrix-analytic results [10, 6]. While

this provides an exact solution, instances of the model even for very small parallel systems can cause

the computational complexity to become prohibitive. We therefore establish results to calculate the sta-

tionary probability vector πX (and πY below) that significantly reduce the time and space complexities

over numerically computing the solution from standard results; refer to [17] for the mathematical details.

This makes it possible for us to compute exact solutions for relatively small instances of the dynamic

coscheduling models that are otherwise prohibitively expensive.

Still, a primary difficulty in the above (exact) approach for solving larger instances of the stochastic

process {X(t) ; t ∈ IR+}, which records the state of each processor in the system, is the combinatorial

explosion of the size and complexity of its state space ΩX . A similar difficulty exists in analyzing

the stochastic process that records the state of every processor in each of the partitions in isolation,

particularly given the large parallel computing environments motivating our study. We next present an

overview of our approximate solution approach that addresses these issues.

4.2 Stochastic Decomposition

To create a tractable formulation for large instances of our model, we first partition the system into sets of

processors that are executing the same collection of parallel applications. We approximate each of these

processor partitions by assuming that the distribution of the state of each processor in a given partition

is stochastically independent and identical to the distribution of the states of the other processors in

the partition. For each processor partition, the corresponding decomposed continuous-time stochastic

process {Y (t) ; t ∈ IR+}, representing each individual processor in the partition, then can be solved

in isolation by modifying its overall service process to reflect the distributional behavior of the other

processors in the partition. Thus, the complex dependencies among the processors of a partition and

their complex dynamic interactions are probabilistically captured, in part, through the overall service

process. Performance measures for the entire partition can be obtained by analyzing the model of a

single processor in this manner via a fixed-point iteration, and performance measures for the entire

parallel system are obtained by combining the solutions for each of the partitions in the system.

This formulation of our approach assumes a specific parallel computing environment in which each

of the processors allocated to an application has the same MPL, as noted in §3.1. However, our approach

also can be used to handle large parallel systems in which the set of processors executing an application

has different numbers of applications assigned to them. This is achieved by further partitioning the set of

processors allocated to an application based on their MPL. Our approach is then used to solve in isolation

the decomposed stochastic process representing each individual processor in each of these subpartitions

by modifying its overall service process to reflect the distributional behavior of the other processors in

8

the subpartition, as well as the processors in the other subpartitions. The fixed-point iteration of our

approach is extended in a relatively straightforward manner to handle these subpartitions.

4.2.1 Matrix-Analytic Analysis

Consider a particular processor from a specific processor partition represented by a continuous-time

stochastic process {Y (t) ; t ∈ IR+}, defined on a state space ΩY where each state y ∈ ΩY records: the

number of parallel jobs at the given processor; the state of the arrival process; the state of the overall

service process for each parallel job at the processor (including scheduling priority ordering); and the

state of the QL process (including CS overhead) at the processor. Let πY be the stationary distribution

for the stochastic process {Y (t) ; t ∈ IR+}. Assuming this process to be irreducible and positive re-

current, the invariant probability vector is uniquely determined by solving πY QY = 0 and πY e = 1,

where QY is the generator matrix for the process {Y (t) ; t ∈ IR+}. We again exploit the structure of

the generator QY from our formulation to efficiently obtain the invariant probability vector πY of the

process {Y (t) ; t ∈ IR+} using a combination of standard matrix-analytic results [10, 6] and our results

established in this study [17]. This makes it possible for us to compute solutions for large instances of the

dynamic coscheduling models that are otherwise intractable. Moreover, the algorithm (based on our re-

sults) used to compute these solutions is numerically stable across a wide spectrum of model parameters,

and we encountered no numerical stability problems throughout the numerous experiments performed as

part of our study, some of which are provided in §5.

The elements of the generator matrix QY are constructed based on the above formulation and the

dynamic transitions among the stages of behavior for the parallel system, which also depend upon the

specific version of dynamic coscheduling of interest. Our approach includes capturing these dynamic

behaviors in the overall service process. The first 3 stages of the overall service process for each applica-

tion represent the computation, I/O and communication stages of execution. In the following overview of

the technical details of our analysis of each processor under all coscheduling strategies, we assume that

the communication stage of each task consists of sending a single message to one other task followed

by receiving a single message from one other task. (More general cases of sending/receiving multiple

messages are addressed within the context of our approach in §4.2.2.) We further assume that the com-

munication stage is comprised of the total processor demands for the send operation and the portion of

the processor demands for the receive operation up to the point of checking if the message from another

task has arrived; the processor demands for the remainder of the receive operation are included as part

of the computation stage of the next iteration. For this reason, we shall henceforth use “send stage” and

“communication stage” interchangeably. Recall that a CS occurs on an I/O operation. At the end of the

I/O stage for each iteration, the job completes and departs the system with probability (w.p.) pNA
, and

otherwise it proceeds to the send stage. Upon completion of this communication stage, the application

9

immediately enters the computation stage of the next iteration if the message to be received has already

arrived, which occurs w.p. p̂A. On the other hand, if the message to be received has not arrived, then the

sender of the message can be in 1 of 4 (generic) states, namely computation, I/O, send and waiting for a

message from yet another processor. The corresponding events that the sender of the message is active

in the computation, I/O or send stages occur w.p. p̂B, p̂I and p̂C , respectively.

Let TS denote the maximum number of iterations, at any given time, that a waiting task can be ahead

of the task which will be sending the corresponding message, under the dynamic coscheduling policy

being examined. To elucidate the exposition, suppose that TS = 1 in the following illustrative examples

which implies that at any time the 2 communicating tasks are not more than 1 iteration apart. (The

general case for TS is considered in §4.2.2.) We therefore have, under most of the coscheduling policies

(except SB), stages 4, 5 and 6 of the overall service process for each (waiting) application represent the

computation, I/O and communication stages of execution for the sender. The measures p̂A, p̂B , p̂I , p̂C and

the PH-type distributions for the waiting stages (as well as other measures involved in the mathematical

details) are all calculated from our model solution and form the basis for a fixed-point iteration that

is discussed in §4.2.2. More general communication strategies are handled in a similar manner. For

example, in the case of an all-to-all communication strategy, we derive a formula for the distribution

of time that the task waits for messages from all other tasks (based on distributions conditioned on the

state of the system), and then we use a PH-type distribution to estimate (or bound) this waiting time

distribution.

We now turn to the specific details of the dynamic system behavior and set of transitions for our model

of each processor under each coscheduling strategy of interest, as illustrated in Fig. 1. To further clarify

the presentation, the following examples assume an exponential distribution for each stage of execution

and use a random communication pattern between tasks, i.e., during each iteration, a task only sends and

receives 1 message, and its receiver and sender are randomly chosen. By replacing each exponential state

with a set of states representing the desired PH-type distribution, we obtain the more general models that

are solved by our matrix-analytic analysis. We also assume the message transmission overhead is 0.

Local Scheduling (LS). The execution of an application task on a processor is managed by the under-

lying OS. From the application behavior viewpoint, a task goes through 6 execution stages: computation

(w.p. p̂B), I/O (w.p. p̂I), sending messages (w.p. p̂C), waiting for messages from tasks doing computation,

waiting for messages from tasks doing I/O, and waiting for messages from tasks in the process of sending

them. From the underlying OS viewpoint, a task can be in 1 of 3 states: running, ready, or blocked. The

combination of these 2 dimensions determines the state of a task at any instant; see Fig. 1(a). Let us next

look at the transition rules between these states, first focusing on transitions common to all policies and

then turning to LS specific transitions.

10

S1 S1’

�

S2

S3

�

�

S3’

�

S4 S4’

�

S5

S6

�

�

S6’

�

pA ���

�

(1 -) * *p pA B �

S5’

�(1 -) * *p pA I �

(1 -) * *p pA C �

Execution Stages:

S1 : computation + running
S1’ : computation + ready

S2 : I/O + blocked

S3 : send + running
S3’ : send + ready

s4 : wait (sender in computation) + running
S4’ : wait (sender in computation) + ready

S5 : wait (sender in I/O) + running
S5’ : wait (sender in I/O) + ready

S6 : wait (sender in send) + running
S6’ : wait (sender in send) + ready

S1 S1’

�

S2

S3

�

�

S3’

�

S5

S4’

�

S6

S7

�

�

pA ���

�

(1 -) * * SBp pA I

(1 -) * * SBp pA C

(1 -) * * SBp pA B

S4

(1 -) *pA �

�

Execution Stages:

S1 : computation + running
S1’ : computation + ready

S2 : I/O + blocked

S3 : send + running
S3’ : send + ready

S4 : spin + running
S4’ : spin + ready

S5 : wait (sender in computation) + blocked

S6 : wait (sender in I/O) + blocked

S7 : wait (sender in send) + blocked

(a) LS (b) SB
S1 S1’

�

S2

S3

�

�

S3’

�

S4 S4’

�

S5

S6

�

�

S6’

�

pA ���

�

(1 -) * *p pA I �

(1 -) * *p pA C �

(1 -) * *p pA B �

S5’

�

*(pB � �� �� �
	
 	
 	
 	

+ pI C*(*� �� � �
	
 	
 	

+ p

*(pB � �� �� �
	
 	
 	
 	

+ pI C*(*� �� � �
	
 	
 	

+ p

Execution Stages:

S1 : computation + running
S1’ : computation + ready

S2 : I/O + blocked

S3 : send + running
S3’ : send + ready

s4 : wait (sender in computation) + running
S4’ : wait (sender in computation) + ready

S5 : wait (sender in I/O) + running
S5’ : wait (sender in I/O) + ready

S6 : wait (sender in send) + running
S6’ : wait (sender in send) + ready

(x) P x P x ρ*

(x) P x P x ρ*

(x) P x P x ρ*

1γ(vi) P x

(v) γ 2

(vii) (1-P) x 1γ

S3

S1

S4 S5

S6

S8

S7

S9

(i) Q

(ii)

(ii)

µ(iii)

ν(iv)

S2

(ii)

(i) Q

(ix) r
* ρ

S10

(i) Q (ii),

S1: COMP (C) + RUNNING

S2: COMP (C) + READY

S3: I/O (I) + BLOCKED

S4: SEND (S) + RUNNING

S5: SEND (S) + READY

S6: SPIN NO MSG (PN) + RUNNING

S7: SPIN NO MSG (PN) + READY

S8: SPIN MSG (PY) + READY

S9: PICK UP MSG + RUNNING

S10: PICK UP MSG + READY

(x) P x

(i) Q

(viii) r

(ii)

Execution Stages:

S1 : computation + running
S1’ : computation + ready

S2 : I/O + blocked

S3 : send + running
S3’ : send + ready

s4 : wait (sender in computation) + running
S4’ : wait (sender in computation) + ready

S5 : wait (sender in I/O) + running
S5’ : wait (sender in I/O) + ready

S6 : wait (sender in send) + running
S6’ : wait (sender in send) + ready

(c) DCS (d) PB

Figure 1: The state transitions for the 4 coscheduling policies.

Scheme-Independent Transitions: In general, a task moves to a ready state from running whenever

it is context switched out (shown as transitions Si → S ′
i in Fig. 1(a)) at the rate τ of quantum expiration.

The reverse transition to the running state (from ready) depends on the number and states of other tasks

at that CPU (shown as transitions S ′
i → Si). (Note that DCS and PB will transit a task from state S ′

i to

Si for other reasons as well.) The transition rates for S1 → S2 and S2 → S3 are simply a function of

the computation and I/O service rates (µ and ν), resp. These transitions remain the same across the 4

dynamic coscheduling schemes considered in this paper.

Scheme-specific Transitions: Once a task leaves state S3 (finishes sending messages), it either

moves to state S1 (starts next iteration) if the message it will receive is available as determined by the

probability p̂A, or it starts busy-waiting for the message in 1 of the states S4, S5 or S6 depending on the

state of the sender task w.p. (1 − p̂A) × p̂B , (1 − p̂A) × p̂I , or (1 − p̂A) × p̂C , resp. The value of p̂A can

be calculated as discussed in §4.2.2. The transitions S4 → S5 and S5 → S6 are the same as transitions

S1 → S2 and S2 → S3, resp. Once the sender task is in the sending state, the considered task will leave

state S6 at rate γ, and move to state S1 (start next iteration).

Spin Block (SB). A task goes through computation (S1 and S ′
1), I/O (S2), sending messages (S3 and

S ′
3), and waiting for messages. The stage of waiting for messages is further broken down into 5 states:

spinning (S4 and S ′
4), waiting (while blocked) for messages from a task that is doing computation (state

S5), from a sender that is doing I/O (state S6), and from a sender that is sending messages (state S7);

see Fig. 1(b). In addition to the transitions for LS, 2 more transitions are noteworthy for SB. In state

S4, the task spins for time SB−1 if the message has not arrived within that time, then it will block itself

11

and transit to 1 of the 3 states: S5, S6 and S7 depending on the state of the sending task. A subsequent

message arrival will transition the task out of the blocked state as shown by the transition S7 → S1.

Demand-based Co-Scheduling (DCS). The main differences between DCS (Fig. 1(c)) and LS (Fig. 1(a))

are in that a message arrival when the task is waiting for a message immediately takes it to the next itera-

tion, represented by the transition S ′
6 → S1. For the very same reason, the priority boost can again affect

the rates at which the task transitions from some of the ready states back to the corresponding running

states, i.e., from states S ′
1 and S ′

3 to S1 and S3, resp. The rate of message arrival before the considered

task starts waiting for it can be calculated as p̂B × 1
µ−1+ν−1+γ−1 + p̂I × 1

ν−1+γ−1 + p̂C × γ.

Periodic Boost (PB). The states remain the same as in LS, with the only differences in transition rates

due to the periodic activity which can boost priorities. These differences will affect the transitions from

ready to running states when the task is in computation, sending and waiting stages (from states S ′
1, S ′

3

and S ′
6 to states S1, S3 and S1, resp.) as was the case for DCS; see Fig. 1(d). This rate is defined as

p̂A × P̂ ∗ × ρ, where p̂A is the probability of this task having a pending message (calculated as discussed

in §4.2.2) when the periodic activity takes place, P̂ ∗ is the probability that all the other tasks at that CPU

which have higher priority than this task do not have a pending message (i.e., (1 − p̂A)n if there are n

such tasks), and PB denotes the frequency for this periodic activity.

4.2.2 Fixed-Point Iteration

The analysis of §4.2.1 forms the solution to our decomposed stochastic model, in terms of π Y , provided

that certain aspects of the parallel system behavior are known. These unknown measures consist of p̂A,

p̂B , p̂I , p̂C and other measures involved in the mathematical details. Estimates of these measures of

the dynamic system behavior are calculated in terms of the decomposed model solution, and a fixed-

point iteration is used to obtain the final solution for the processor partition. We now briefly present

an overview of our general approach for LS, initially focusing on the specific example of the previous

section and then turning to the more general case. The corresponding analysis for each of the other

coscheduling strategies is derived in an analogous manner; refer to [17].

To calculate p̂B , p̂I and p̂C in terms of the decomposed model solution, recall that these measures

represent the set of probabilities that the sender of the message being waited for (by the receiving task

being modeled) is active in the computation, I/O and send stages, respectively. Due to the assumptions of

stochastically independent and identical processors as part of our approximate matrix-analytic solution,

these probability vectors then can be expressed in closed matrix form in terms of πY and a separate

probabilistic analysis of the stochastic process {Y (t) ; t ∈ IR+}. A related derivation yields closed-form

expressions for the initial probability vectors β ′
k
, η′

k
and ζ ′

k
(following the notation of §3) of the stage

12

4, 5 and 6 PH-type distributions. The measure p̂A represents the probabilities that the modeled task

immediately enters the computation stage of the next iteration upon completion of the communication

stage because the message to be received has already arrived. Since TS = 1, the sender of this message

must either be in stages 4, 5 or 6, and thus we can similarly express p̂A in closed matrix form. Finally,

the PH-type distributions for stage 5 represent the times that the sender (of the message being waited

for by the receiving task being modeled) spends in the I/O stage up until entering the send stage and

gaining access to the processor. We construct these distributions from the decomposed model solution

by analyzing first passage times in a new Markov process {Y ′(t) ; t ∈ IR+} derived from the original

process {Y (t) ; t ∈ IR+}. The stage 5 distributions PH(η ′
k
,SI′

k) then can be obtained either directly from

this first passage time analysis or by constructing a more compact PH-type distribution to match as many

moments (and/or density function) of the first passage times in this process {Y ′(t) ; t ∈ IR+} as are of

interest, using any of the best known methods for doing so; e.g., see [7] and the references therein.

Our approach to handling general instances of the stochastic parallel LS model depends in part upon

the specific value of TS for the system of interest. When TS is relatively small, we simply expand our

approach above to capture the cases in which a series of up to TS additional senders are waiting for

messages from other processors by repeating TS times the execution stages 4, 5 and 6. For example,

the �th set of waiting stages, consisting of execution stages 4 + 3�, 5 + 3� and 6 + 3�, are entered

according to a set of rules analogous to those governing transitions from stage 3 to stages 4, 5 and 6

where each transition rule is multiplied by the probability (1 − p̂A)�, which represents the probability

that the sender of the message to be received by the task being modeled is itself waiting on a series of �

processors to send their corresponding messages, � = 0, . . . , TS . A set of transition rules analogous to

those governing transitions from stage 6 to stage 1 are also appropriately constructed for each of these

sets of waiting stages to make the transition to the next set of waiting stages in the series. On the other

hand, when TS is relatively large, we can simply use the execution stages 4, 5 and 6 of our original

approach together with a form of the geometric distribution. In particular, upon completing stage 6, the

system returns to stages 4, 5 and 6 w.p. (1 − p̂A) (following appropriately modified versions of the set

of rules governing transitions from stage 3 to stages 4, 5 and 6) and otherwise enters stage 1 according

to appropriately modified versions of the set of rules governing transitions from stage 6 to stage 1. Of

course, both approaches can be used in combination. Lastly, the sending and receiving of multiple

messages is accommodated as follows. The sending of multiple messages is simply incorporated in the

corresponding PH-type distribution(s) of the model. Our approach is extended to handle the case of

receiving messages from multiple tasks by replacing the expressions and arguments provided above with

versions of these expressions and arguments based on the appropriate order statistics. As previously

noted, in the case of all-to-all communication, we derive an expression for the distribution of time that

the task waits for messages from all other tasks and use a PH-type distribution to estimate this waiting

13

time distribution.

Let κ = (p̂A, p̂B, p̂I , p̂C , β ′, η′, ζ ′). Note that κ is expressed in terms of the decomposed model

solution, and thus we use a fixed-point iteration to solve the stochastic process. Initial values are chosen

for κ and the components of the stationary probability vector πY are obtained using our matrix-analytic

analysis. This solution yields new values for κ via the above equations and the model is solved again

with these new values. This iterative procedure continues until the differences between the values of an

iteration and those of the previous iteration are arbitrarily small. Numerous experiments were performed

with this fixed-point iteration. We note that the fixed-point iteration always converged quite rapidly, and

that in all of the cases tested, changing the initial values had no effect on the calculated fixed-point, i.e.,

the model solution was insensitive to the initial values chosen for κ.

4.3 Performance Measures

Various performance measures of interest can be obtained from the components of the stationary proba-

bility vector π. In particular, the mean number of parallel jobs in the system, or partition, and the mean

response time of these jobs can be expressed in closed matrix form in terms of the stationary distribution

πX or πY . Another set of performance measures of interest is the long-run proportion of time that a

processor spends performing computation, I/O, communication, CS, and some form of waiting. These

measures also can be expressed in closed matrix form in terms of πX or πY . Refer to [18].

4.4 Resource Contention

The above analysis solves our parallel dynamic coscheduling models in the case where there is no con-

tention for system resources among the processors in a partition or across the entire system. However,

the processing capacity of the entire parallel system can degrade significantly when there is interference

among the processors executing parallel applications due to various factors; e.g., increased contention

for the communication network. We focus here on network contention, noting that our approach can be

extended to consider other sources of contention and their impact on performance. The degradation in

system performance due to network contention is complex and depends upon many aspects of the paral-

lel system being considered. Of particular importance are the characteristics of the network, the speed

of the processors, and the execution patterns of the parallel applications. We now present an overview of

a simple, yet effective, general approach to incorporate these effects in our analysis, where the specific

parallel architecture details are implicitly included in the resource contention model parameters.

Let fd(k) denote the performance degradation factor for the processor partition of interest (comprised

of K processors), or the entire system (K = P), when k of K processors are performing communication

operations, fd(0) = 0 and fd(k) < 1; i.e., the corresponding network communication capacity of the

system is given by (1− fd(k)). Note that values for the function fd(k) can be estimated using a separate

14

model (e.g., see [3]) or obtained via measurement on existing computer systems. In our exact analysis,

we directly use fd(k) in all states where k processors are performing communication operations by

scaling the PH-type distribution PH(ζ,SC) for the per-iteration communication demands of the parallel

applications in the analysis of §4.1 according to γ ′ = γ(1 − fd(k)) such that (γ ′)−1 = −ζ(SC)−1e.

In our approximate analysis, due to our stochastic homogeneity assumptions, the long-run proportion

of time that k of the K processors are performing communication operations, denoted by qK(k), is bino-

mially distributed with parameters K and p̃C . Using the functions fd(k) and qK(k), the average service

rate of per-iteration communication stages can thus be expressed as γ ′ = γ/(1−qK(0))
∑K

k=1 qK(k)(1−
fd(k)). The normalization factor in this expression accounts for the fact that at least 1 processor must

be performing communication operations when the natural service rate of the modeled processor is γ.

Hence, the potential system performance degradation due to network contention is incorporated in our

approximate analysis by scaling the PH-type distribution PH(ζ,SC) in the analysis of §4.2 according to

this equation for γ ′ such that (γ ′)−1 = −ζ(SC)−1e. The final solution of the resulting stochastic process

then can be obtained via appropriately modified versions of the fixed-point iteration.

5 Results

We now exploit our mathematical analysis of §4 to study fundamental properties of the dynamic coschedul-

ing strategies defined in §2 across a wide range of parallel computing environments as represented by the

parallel system and workload models of §3.

We first present some results that validate our approximate analysis against detailed simulations,

and then we turn to examine in detail the large design and performance spaces of the four dynamic

coscheduling mechanisms. In each case, we provide a representative sample of the results from our nu-

merical experiments. The intensity of computation, communication and I/O in a workload is designated

by µ−1

µ−1+ν−1+γ−1 , γ−1

µ−1+ν−1+γ−1 , and ν−1

µ−1+ν−1+γ−1 respectively, where µ−1, ν−1 and γ−1 are the mean com-

putation, I/O and communication latencies incurred by a task in each iteration. The default parameter

settings for our numerical and simulation experiments are: CS cost 200us, interrupt cost 50us, QL 20ms,

γ−1 185.48us, priority change cost 3us, message queue check cost 2us, PB interval 1ms, fixed maximum

spin time 200us, message size 4096 bytes. However, these parameters may take on other values when

explicitly specified. Many of these values have been drawn from actual system platforms. Most of the

results presented in this section are based on nearest neighbor communication pattern.

5.1 Validation

Given that our analysis derived in §4.2 yields an approximate solution, we first must validate the results

of this analysis against detailed simulations to demonstrate the accuracy of our approach. Fig. 2 presents

15

0

0.05

0.1

0.15

λ

R
el

at
iv

e
er

ro
r

o
f

re
sp

o
n

se
 t

im
e

Comm. intensive workload

Local
SB
DCS
PB

0

0.05

0.1

0.15

λ

R
el

at
iv

e
er

ro
r

o
f

re
sp

o
n

se
 t

im
e

CPU intensive workload

Local
SB
DCS
PB

0

0.05

0.1

0.15

λ

R
el

at
iv

e
er

ro
r

o
f

re
sp

o
n

se
 t

im
e

IO intensive workload

Local
SB
DCS
PB

Figure 2: Validation Results

the relative errors of our models and analysis as a function of the arrival rate λ for a 32-processor system.

A representative sample of the results are provided for all four dynamic coscheduling strategies under

computation-intensive, communication-intensive and I/O-intensive workloads. In each case, our model

is in excellent agreement with detailed simulations of a relatively small parallel system, often being

within 5% and always less than 10%. Moreover, the accuracy of our approach increases with the size

of the system where our primary interests are in large parallel systems consisting of many computing

nodes.

5.2 Impact of Load

1 2 3 4 5 6 7 8

x 10
−3

0

100

200

300

400

500

600

700

800

900

1000

λ

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local
SB
DCS
PB

2 4 6 8 10 12 14

x 10
−3

0

50

100

150

200

250

300

λ

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local
SB
DCS
PB

2 4 6 8 10 12

x 10
−3

0

50

100

150

200

250

300

350

400

450

500

λ

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local
SB
DCS
PB

(a) Comm. Intensive workload (µ−1 = 0.14ms,

γ−1 = 0.19ms, ν−1 = 0.024ms)

(b) CPU Intensive workload (µ−1 = 36ms, γ−1 =

0.19ms, ν−1 = 2ms)

(c) I/O Intensive workload (µ−1 = 10ms, γ−1 =

0.19ms, ν−1 = 5ms)

Figure 3: Impact of Load on Response Time, 1
PNA

(µ−1 + γ−1 + ν−1) = 38.19 second.

Fig. 3 provides a representative sample of the results for investigating the effects of the arrival rate

on the mean job response time under three types of workloads. In general, the differences between the

schemes are less significant with lower communication in the workload, as is to be expected. Even in the

CPU and I/O intensive workloads, the LS and DCS mechanisms saturate earlier than the other two, and

this becomes more apparent in the communication intensive workload. Overall, we can say that LS and

DCS are not very desirable. Note that, until now, no one has been able to study these mechanisms for

dynamic job arrivals with such a broad spectrum of arrival rates.

16

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Communication Intensity

M
ax

im
u

m
 T

h
ro

u
g

h
p

u
t

(
X

 1
0−3

)

Local
SB
DCS
PB

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
ra

ct
io

n
 o

f
ea

ch
 c

o
m

p
o

n
en

t

µ−1
 =

 0
.1

0

µ−1
 =

 0
.1

1

µ−1
 =

 0
.1

2

µ−1
 =

 0
.1

3

µ−1
 =

 0
.1

4

µ−1
 =

 0
.1

6

µ−1
 =

 0
.1

9

µ−1
 =

 0
.2

7

µ−1
 =

 0
.4

0

µ−1
 =

 0
.5

0

µ−1
 =

 0
.6

0

µ−1
 =

 1

µ−1
 =

 2

MPL 0 MPL 1, Busy MPL 1, Idle MPL 2, Busy

MPL 2, Idle MPL 3, Busy MPL 3, Idle

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
ra

ct
io

n
 o

f
ea

ch
 c

o
m

p
o

n
en

t

µ−1
 =

 0
.1

0

µ−1
 =

 0
.1

1

µ−1
 =

 0
.1

2

µ−1
 =

 0
.1

3

µ−1
 =

 0
.1

4

µ−1
 =

 0
.1

6

µ−1
 =

 0
.1

9

µ−1
 =

 0
.2

7

µ−1
 =

 0
.4

0

µ−1
 =

 0
.5

0

µ−1
 =

 0
.6

0

µ−1
 =

 1

µ−1
 =

 2

MPL 0 MPL 1, Busy MPL 1, Idle MPL 2, Busy

MPL 2, Idle MPL 3, Busy MPL 3, Idle

(a) Maximum Throughput
(b) System Profile at Maximum Utilization for SB

(time unit is millisecond)

(c) System Profile at Maximum Utilization for PB

(time unit is millisecond)

0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

4

Communication Intensity

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 1

03 s
ec

o
n

d
s)

Local
SB
DCS
PB

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
ra

ct
io

n
 o

f
ea

ch
 c

o
m

p
o

n
en

t

µ−1
 =

 0
.1

0

µ−1
 =

 0
.1

1

µ−1
 =

 0
.1

2

µ−1
 =

 0
.1

3

µ−1
 =

 0
.1

4

µ−1
 =

 0
.1

6

µ−1
 =

 0
.1

9

µ−1
 =

 0
.2

7

µ−1
 =

 0
.4

0

µ−1
 =

 0
.5

0

µ−1
 =

 0
.6

0

µ−1
 =

 1

µ−1
 =

 2

CPU I/O Comm.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
ra

ct
io

n
 o

f
ea

ch
 c

o
m

p
o

n
en

t

µ−1
 =

 0
.1

0

µ−1
 =

 0
.1

1

µ−1
 =

 0
.1

2

µ−1
 =

 0
.1

3

µ−1
 =

 0
.1

4

µ−1
 =

 0
.1

6

µ−1
 =

 0
.1

9

µ−1
 =

 0
.2

7

µ−1
 =

 0
.4

0

µ−1
 =

 0
.5

0

µ−1
 =

 0
.6

0

µ−1
 =

 1

µ−1
 =

 2

CPU I/O Comm.

(d) Average Response Time (λ=0.006)
(e) Application Profile for SB (time unit is millisec-

ond, λ=0.006)

(f) Application Profile for PB (time unit is millisec-

ond, λ=0.006)

Figure 4: Impact of Communication Intensity on Response Time, ν−1/µ−1 = 0.17, γ−1 = 0.19ms,
1

PNA

(µ−1 + γ−1 + ν−1) = 38.19 second.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

IO Intensity

M
ax

im
u

m
 T

h
ro

u
g

h
p

u
t

Local
SB
DCS
PB

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
ra

ct
io

n
 o

f
ea

ch
 c

o
m

p
o

n
en

t

ν−1
 =

 2

ν−1
 =

 3

ν−1
 =

 4

ν−1
 =

 5

ν−1
 =

 6

ν−1
 =

 7

ν−1
 =

 8

ν−1
 =

 9

ν−1
 =

 1
0

ν−1
 =

11

MPL 0 MPL 1, Busy MPL 1, Idle MPL 2, Busy

MPL 2, Idle MPL 3, Busy MPL 3, Idle

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
ra

ct
io

n
 o

f
ea

ch
 c

o
m

p
o

n
en

t

ν−1
 =

 2

ν−1
 =

 3

ν−1
 =

 4

ν−1
 =

 5

ν−1
 =

 6

ν−1
 =

 7

ν−1
 =

 8

ν−1
 =

 9

ν−1
 =

 1
0

ν−1
 =

11

MPL 0 MPL 1, Busy MPL 1, Idle MPL 2, Busy

MPL 2, Idle MPL 3, Busy MPL 3, Idle

(a) Maximum Throughput
(b) System Profile at Maximum Utilization for SB

(time unit is millisecond)

(c) System Profile at Maximum Utilization for PB

(time unit is millisecond.)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

350

IO Intensity

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local
SB
DCS
PB

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
ra

ct
io

n
 o

f
ea

ch
 c

o
m

p
o

n
en

t

ν−1
 =

 2

ν−1
 =

 3

ν−1
 =

 4

ν−1
 =

 5

ν−1
 =

 6

ν−1
 =

 7

ν−1
 =

 8

ν−1
 =

 9

ν−1
 =

 1
0

ν−1
 =

11

CPU I/O Comm.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
ra

ct
io

n
 o

f
ea

ch
 c

o
m

p
o

n
en

t

ν−1
 =

 2

ν−1
 =

 3

ν−1
 =

 4

ν−1
 =

 5

ν−1
 =

 6

ν−1
 =

 7

ν−1
 =

 8

ν−1
 =

 9

ν−1
 =

 1
0

ν−1
 =

11

CPU I/O Comm.

(d) Average Response Time (λ=0.008)
(e) Application Profile for SB (time unit is millisec-

ond, λ=0.008)

(f) Application Profile for PB (time unit is millisec-

ond, λ=0.008)

Figure 5: Impact of I/O Intensity, µ−1 = 10ms, γ−1 = 0.19ms, 1
PNA

(µ−1 + γ−1 + ν−1) = 38.19 second.

5.3 Impact of Workload Characteristics

Since communication intensive and I/O intensive workloads are most interesting, we focus on these two

workloads in Figs. 4 and 5. In both of these figures: (a) shows the maximum achievable throughput

for the given configuration; (b) shows the profile of the system utilization with SB at the maximum

17

throughput point in terms of what fraction of the time three tasks are present at a processor (which we

denote as MPL3, with this in turn broken down into that spent in executing application code, and that

when it is idle due to all these three tasks being in a blocked or I/O state), MPL2, MPL1 and having

no task to execute (MPL0); and (c) conveys the same information for PB. The performance is presented

from the application’s perspective in (d) which shows the mean response time for a given arrival rate,

and the profile of the time spent by the application in the three operations (at this arrival rate) is given for

SB and PB in (e) and (f), respectively.

These figures reconfirm the results in the previous subsection for varying system load, with LS and

DCS performing poorly. For the communication intensive workload, PB does better than SB in terms of

both throughput and response time. The benefits of PB are accentuated as the communication intensity

increases. Clearly, we can see that the fraction of the time spent in communication increases with the

intensity in Figs. 4(e) – (f), but the increase is more gradual for PB than for SB. This can be explained

based on the behavior in (b) and (c), where we can see MPL3-idle is significantly higher in SB than in

PB. At such high communication intensities, blocking to relinquish the processor incurs CS and interrupt

overheads with little benefits since there is no other work to do (everyone is blocked). PB which does

not switch under those conditions does not experience the CS costs, and thus yields better performance.

For the I/O intensive workload, the differences among the schemes are less noticeable since the

performance is dictated more by the I/O in the application than by the schemes themselves (which do

not behave differently for I/O). In fact, as suggested by the curves in Fig. 5(d), our model confirms

that the response times under all of the scheduling strategies converge at large I/O intensities. The

reason why throughput increases and response time decreases for this case (which is in contrast to the

communication intensive figures), is because I/O can be performed concurrently by tasks at a node (while

computation/communication cannot) in this instance of our model. The profile graphs show similar

behavior to that of the communication intensive workload. At this point, we can also explain why SB

does marginally better than PB for I/O intensive (and, incidentally, CPU intensive) workloads. With large

computation or I/O fractions, the skewness of the work to be done among the tasks of an application also

increases. This can cause tasks to spin more than the message latencies in PB, while SB can limit the

effect of such skewness. For the communication intensive workload, this skewness gets smaller, and PB

realizes the full benefits of spinning.

One could ask how do the results change with an alternative communication pattern to the nearest-

neighbor communication strategy used above. To address this question, Fig. 6 shows the impact of

load on the schemes with the all-to-all communication pattern that is common in some applications

(such as FFT). Overall, we find similar trends as in the nearest-neighbor communication. The only

point to note is that the differences between PB and SB become less significant for the communication

intensive workload. This communication pattern tends to keep processors automatically more or less

18

synchronized, thus lessening the effect of scheduling skews.

0 1 2 3 4 5 6 7 8

x 10
−3

0

100

200

300

400

500

600

700

800

900

1000

λ

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local
SB
DCS
PB

0 0.002 0.004 0.006 0.008 0.01 0.012
0

50

100

150

200

250

300

λ

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local
SB
DCS
PB

0 0.002 0.004 0.006 0.008 0.01
0

50

100

150

200

250

300

350

400

450

500

λ

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local
SB
DCS
PB

(a) Comm. Intensive workload (µ−1 = 0.14ms,

γ−1 = 0.19ms, ν−1 = 0.024ms)

(b) CPU Intensive workload (µ−1 = 36ms, γ−1 =

0.19ms, ν−1 = 2ms)

(c) I/O Intensive workload (µ−1 = 10ms, γ−1 =

0.19ms, ν−1 = 5ms)

Figure 6: Impact of Load on Response Time, 1
PNA

(µ−1 +γ−1 +ν−1) = 38.19s, All-to-all communication

5.4 Impact of Maximum MPL (M)

Fig. 7 considers the impact of the maximum MPL (M) on the dynamic coscheduling strategies. Increas-

ing M can help to reduce the processor idling (during I/O or when waiting for a message) by providing

more opportunities to switch to another task and execute useful work. As a result, performance improve-

ments due to higher values of M are more noticeable in the I/O intensive workload, or in schemes where

the waiting time is high (DCS). This is also the reason why SB needs a higher value of M to become as

competitive as PB for the communication intensive workload, but it should be noted that too high a value

for M is not appropriate due to practical resource limitations.

5.5 Optimum QL (τ−1)

For any scheme, a small time quantum increases the impact of CS overheads, while at the same time

a small quantum can mitigate the effects of scheduling skews across processors (to avoid large wait

times). These two contrasting factors play a role in determining a good operating point for the time

quantum. Fig. 8 captures the effect of these factors for the four schemes on the three workload classes.

In general, for the LS and DCS schemes (which are more susceptible to scheduling skews as was shown

in earlier results), the second factor that can mitigate scheduling skews is more important, causing the

good operating points for LS and DCS in Fig. 8 to be more to the left than those for SB or PB. In fact,

SB and PB would prefer a long time quantum, since they do not really rely on the native OS scheduler

and perform the task switches whenever needed. As for the effect of the workload itself, CPU and I/O

intensive workloads should prefer longer time quanta (because the first factor concerning CS overheads

are more important) than the communication intensive workload.

19

Local SB DCS PB
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 1

03 s
ec

o
n

d
s)

 M = 2
M = 3
M = 4

Local SB DCS PB
0

50

100

150

200

250

300

350

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

M = 2
M = 3
M = 4

Local SB DCS PB
0

50

100

150

200

250

300

350

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

M = 2
M = 3
M = 4

(a) Comm. Intensive workload (µ−1 = 0.14ms,

γ−1 = 0.19ms, ν−1 = 0.024ms, λ = 0.003)

(b) CPU Intensive workload (µ−1 = 36ms, γ−1 =

0.19ms, ν−1 = 2ms, λ = 0.0123)

(c) I/O Intensive workload (µ−1 = 10ms, γ−1 =

0.19ms, ν−1 = 5ms, λ = 0.01)

Figure 7: Impact of M on response time, 1
PNA

(µ−1 + γ−1 + ν−1) = 38.19 seconds.

0 5 10 15 20 25 30 35 40 45
100

110

120

130

140

150

160

170

Quantum length (τ−1) (X millisecond)

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local
SB
DCS
PB

0 5 10 15 20 25 30 35 40 45
100

150

200

250

300

350

400

Quantum length (τ−1) (X millisecond)

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local
SB
DCS
PB

0 5 10 15 20 25 30 35 40 45

150

200

250

300

350

400

450

Quantum length (τ−1) (X millisecond)

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local
SB
DCS
PB

(a) Comm. Intensive workload (µ−1 = 2ms, γ−1

= 0.19ms, ν−1 = 0.34ms, λ = 0.004)

(b) CPU Intensive workload (µ−1 = 36ms, γ−1 =

0.19ms, ν−1 = 2ms, λ = 0.0103)

(c) I/O Intensive workload (µ−1 = 10ms, γ−1 =

0.19ms, ν−1 = 5ms, λ = 0.0095)

Figure 8: Impact of QL (τ−1) on Response Time, 1
PNA

(µ−1 + γ−1 + ν−1) = 38.19 seconds.

5.6 Impact of System Overheads

Fig. 9(a) studies the impact of the mean CS costs (δ−1) on the relative performance of the schemes for

the communication intensive workload. LS and PB are less influenced by CS costs in comparison with

SB or DCS, which switch more often depending on message arrivals (rather than on the basis of who

can proceed). For the compute intensive workload in Fig. 9(b), PB and DCS are more influenced by the

CS overheads since there is the possibility of switching to another task (when a message arrives for it)

that was pre-empted while performing useful computation. In such situations, SB will switch to that task

only when the current quantum expires or when the currently scheduled task blocks. The reader should

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
80

100

120

140

160

180

200

220

240

Context−Switch Overhead (δ−1) (X millisecond)

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local (X 15)
SB
DCS
PB

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
100

150

200

250

300

350

400

450

500

550

Context−Switch Overhead (δ−1) (X millisecond)

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 s

ec
o

n
d

s)

Local (X 4)
SB
DCS
PB

(a) Communication Intensive workload (λ = 0.030, µ−1 =

0.14ms, γ−1 = 0.19ms, ν−1 = 0.002ms)

(b) CPU Intensive workload (λ = 0.013, µ−1 = 36ms, γ−1 =

0.19ms, ν−1 = 2ms)

Figure 9: Impact of CS Overheads (δ−1) on Response Time, 1
PNA

(µ−1 + γ−1 + ν−1) = 38.19 seconds.

20

note that the scales for LS are different (its values have been scaled down).

5.7 Optimum Spin Time

For SB, the choice of the spin time is a crucial issue. Fig. 10(a) shows the effect of the spin time on

four different workloads. The curves are normalized with respect to the performance for the default spin

time. Fig. 10(a) shows that the ideal spin time (giving the lowest response time) is very sensitive to the

workload. This makes the selection of a good spin time on a real system very difficult, but it further

highlights the importance of the use of our models and analysis. It also should be noted that in the results

presented in previous sections, the chosen spin times are reasonably close to their ideal values (no more

than 5–10% off).

0 0.5 1 1.5 2
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Spin time (X millisecond)

R
el

at
iv

e
ch

an
ge

 o
f

re
sp

on
se

 ti
m

e

µ−1 = 10ms, ν−1 = 5ms
µ−1 = 36ms, ν−1 = 2ms
µ−1 = 0.14ms, ν−1 = 0
µ−1 = 0.14ms, ν−1 = 0.001ms

0 0.5 1 1.5 2
0.95

1

1.05

1.1

1.15

1.2

PB interval (X millisecond)

R
el

at
iv

e
ch

an
g

e
o

f
re

sp
o

n
se

 t
im

e

µ−1 = 0.14ms
µ−1 = 0.4ms
µ−1 = 1ms
µ−1 = 2ms
µ−1 = 36ms

(a) Spin Time for SB (λ = 0.003) (b) PB Interval (λ=0.003, ν−1/µ−1 = 0.17)

Figure 10: Design Choices for SB and PB, 1
PNA

(µ−1 + γ−1 + ν−1) = 38.19 seconds.

5.8 Optimum PB Frequency

One of the important design considerations for PB is selecting the frequency of the kernel activity. Across

the spectrum of workloads ranging from very high to very low communication intensities, we find that

the ideal frequency of invocation lies between 0.3ms to 1ms in Fig. 10(b) (the lines are normalized with

respect to a 1ms frequency). These results suggest that an invocation frequency of between 0.5 to 1ms

would provide good performance across the entire workload spectrum for PB.

5.9 Impact of Job Duration

Fig. 11 compares the response times of two job durations (one of which is 100 times that of the other)

as a function of the load for the four schemes. While the absolute values of the mean response times

increase with the job duration and the saturation points are reached at a lower arrival rate, we find that

the overall trends and differences between the schemes are quite similar. Hence, PB and SB continue to

appear to be good choices, regardless of the job duration.

21

1 2 3 4 5 6 7 8

x 10
−3

0

100

200

300

400

500

600

700

800

900

1000

λ
A

ve
ra

g
e

jo
b

 r
es

p
o

n
se

 t
im

e
(X

 s
ec

o
n

d
s)

Local
SB
DCS
PB

0 1 2 3 4 5 6 7 8

x 10
−5

0

1

2

3

4

5

6

λ

A
ve

ra
g

e
jo

b
 r

es
p

o
n

se
 t

im
e

(X
 1

04 s
ec

o
n

d
s)

Local
SB
DCS
PB

(a) 1
PNA

(µ−1 + γ−1 + ν−1) = 38.19 seconds (b) 1
PNA

(µ−1 + γ−1 + ν−1) = 3819 seconds

Figure 11: Impact of Job Duration (Communication intensive, µ−1 = 0.14ms, γ−1 = 0.19ms, ν−1 =

0.024ms)

5.10 Impact of Resource Contention

We consider the impact of network contention on parallel system performance under the 4 dynamic

coscheduling strategies via the analysis of §4.4. The corresponding set of results are not included due to

space limitations. We note, however, that these results demonstrate the very same general trends as have

been observed above, although with an overall degradation in performance caused by network contention

which exacerbates the effects described above. This degradation in performance is most significant at

moderate to fairly high traffic intensities, and especially for communication intensive workloads.

6 Concluding Remarks

The increasing deployment of loosely coupled off-the-shelf clusters of workstations has led to the devel-

opment of a new class of mechanisms, called dynamic coscheduling, that attempt to coschedule com-

municating tasks whenever needed without explicit synchronization. Our study has addressed a critical

void in scheduling for these parallel systems by developing and validating a general mathematical model

within a unified framework in order to study the design and performance spaces of dynamic coschedul-

ing mechanisms across a wide range of system and workload parameters. We derive an exact matrix-

analytic analysis for relatively small parallel systems, and an approximate matrix-analytic analysis based

on a general stochastic decomposition and fixed-point iteration. Results from numerical experiments

with our model are in excellent agreement with those from detailed simulations of fairly small systems,

often within 5% and always less than 10%. Given the complex dynamic interactions among the different

aspects of both the parallel computing environment and the dynamic coscheduling strategy, these results

provide further evidence of the benefits of our general approach especially for large parallel systems.

Our numerical experiments show that it is not advisable to allow the native OSs at each node to

switch between tasks at their disposition. Some amount of coordination is definitely needed. Of the

three previously proposed dynamic coscheduling mechanisms, DCS does not fare as well as the others

22

across a broad spectrum of workload and system parameters. SB and PB have their relative merits, with

the latter faring better whenever the workload is more communication intensive, or when the overheads

for interrupts are higher. PB is also preferable whenever nodes are not operating at the full multipro-

gramming level. Our model and analysis can be used as a design tool to fine tune the parameters for

these mechanisms (spin time in SB and periodic frequency in PB) to derive good operating points. With

SB, the choice of the spin time is important for determining performance, while a frequency of once

every 0.5–1 millisecond provides good performance for PB across the entire workload spectrum con-

sidered. Both of these mechanisms are relatively immune to the native OS switching activity, by taking

over whenever the communication events call for coscheduling and becoming less intrusive otherwise.

These mechanisms are good choices regardless of whether the system is subject to short running interac-

tive jobs or long running parallel applications. All of these mechanisms have been evaluated based on a

user-level communication mechanism. It should be noted that the results presented here for SB are with

a fixed spin time, though the model itself allows adaptive tuning of this value (which more recently has

been shown to be a better alternative).

Our model and analysis is able to answer several important issues such as the optimal frequency

for invoking the periodic boost mechanism, the optimal frequency of context switching, a direct way

of calculating the optimal fixed spin time for SB, and the impact of workload characteristics on these

issues. We would also like to point out that while the results and experiments have explored a wide

and representative range of workload and system parameters, there still are other considerations that one

could use our model to explore, such as more communication patterns.

References

[1] A. C. Arpaci-Dusseau, D. E. Culler, A. M. Mainwaring. Scheduling with Implicit Information in

Distributed Systems. In Proc. ACM SIGMETRICS Conf. Meas. and Model. Comp. Sys., 1998.

[2] D. Bailey et al. The NAS Parallel Benchmarks. Intl. J. Supercomputer Appl., 5(3):63–73, 1991.

[3] D. Culler, J. P. Singh. Parallel Computer Architecture: A Hardware-Software Approach. Morgan

Kauffman, 1998.

[4] A. C. Dusseau, R. H. Arpaci, D. E. Culler. Effective Distributed Scheduling of Parallel Workloads.

In Proc. ACM SIGMETRICS Conf. Meas. and Model. Comp. Sys., pp. 25–36, 1996.

[5] D. G. Feitelson, L. Rudolph. Gang Scheduling Performance Benefits for Fine-Grained Synchro-

nization. J. Par. and Dist. Comp., 16(4):306–318, Dec. 1992.

[6] G. Latouche, V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modeling.

ASA-SIAM, 1999.

23

[7] G. Latouche, P. Taylor. Advances in Algorithmic Methods for Stochastic Models. Notable, 2000.

[8] S. Nagar, A. Banerjee, A. Sivasubramaniam, C. R. Das. A Closer Look at Coscheduling Approaches

for a Network of Work stations. In Proc. ACM Symp. Par. Alg. and Arch., pp. 96–105, Jun. 1999.

[9] V. K. Naik, S. K. Setia, M. S. Squillante. Processor allocation in multiprogrammed, distributed-

memory parallel computer systems. J. Par. and Dist. Comp., 46(1):28–47, Oct. 1997.

[10] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. The

Johns Hopkins Univ. Press, 1981.

[11] J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. In Proc. Intl. Conf. Dist. Comp.

Sys., pp. 22–30, May 1982.

[12] K. C. Sevcik. Application scheduling and processor allocation in multiprogrammed parallel pro-

cessing systems. Perf. Eval., 19:107–140, 1994.

[13] J. P. Singh, W.-D. Weber, A. Gupta. SPLASH: Stanford Parallel Applications for Shared-Memory.

Tech. Rep. CSL-TR-91-469, Computer Systems Lab, Stanford Univ., 1991.

[14] P. G. Sobalvarro. Demand-based Coscheduling of Parallel Jobs on Multiprogrammed Multiproces-

sors. PhD thesis, Dept. EECS, MIT, Cambridge, MA, Jan. 1997.

[15] M. S. Squillante. Matrix-analytic methods in stochastic parallel-server scheduling models. In

Advances in Matrix-Analytic Methods for Stochastic Models. Notable, 1998.

[16] M. S. Squillante, F. Wang, M. Papaefthymiou. Stochastic analysis of gang scheduling in parallel

and distributed systems. Perf. Eval., 27&28:273–296, Oct. 1996.

[17] M. S. Squillante, Y. Zhang, A. Sivasubramaniam, N. Gautam. Generalized parallel-server fork-join

queues with dynamic scheduling of iterative multi-stage tasks. Tech. Rep., IBM Res. Div., 2005.

[18] M. S. Squillante, Y. Zhang, A. Sivasubramaniam, N. Gautam, H. Franke, J. Moreira. Modeling

and analysis of dynamic coscheduling in parallel and distributed environments. In Proc. ACM

SIGMETRICS Conf. Meas. and Model. Comp. Sys., pp. 43–54, Jun. 2002.

[19] Y. Zhang, A. Sivasubramaniam, J. Moreira, H. Franke. A Simulation-based Study of Scheduling

Mechanisms for a Dynamic Cluster Environment. In Proc. ACM Intl. Conf. Supercomputing, pp.

100–109, May 2000.

24

