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Buffer Scalability of Wireless Networks

Predrag R. Jelenkovit Petar Momcilovi€ Mark S. Squikan

Abstract— We investigate the existence of scalable protocolsthere is a strong need for developing a precise mathematical
that can achieve the capacity limit of ¢/v'N per source- foundation for investigating the notions of scalabilityurF
destination pair in a large wireless network of N nodes when thermore, since building experimental large-scale neta/is

the buffer space of each node does not grow with the size ofb ically i tical. the th tical h h .
the network N. We show that there is no end-to-end protocol asically impractical, the theoretcal approach has a usiq

that is capable of carrying out the limiting throughput of ¢/v/N advantage for providing insights into the scaling prosrof
with nodes that have constant buffer space. In other words, communication networks.

this limit is achievable only with devices whose buffers grav One of the basic concerns in building large-scale networks
with the size of the network. On the other hand, we establish s that minor inefficiencies which can be well tolerated iredim

that there exists a protocol which realizes a slightly smadir . .
throughput of ¢/«/NTog N when devices have constant buffer networks can accumulate and become dominant factors in

space. Furthermore, we show that the required buffer spacean large networks. To further illustrate this point, consideingle
be very small, capable of storing just a few packets. This is link of capacity one packet/time slot and no buffer space.
particularly important for wireless sensor networks wheredevices  Suppose that two independent flows with identical statibtic
thhf?"e "m'te]ﬁj rﬁlsources' Flgallyt, frgrn a T?ﬁhe(;“.f?“cﬁ' pe'{;pc“"ef’ properties and average rate of 0.25 packets/time slot shiare

IS PAper 1urthers our understanding ot the artcut probl €m of- ;- Now, even if we assume that the flows are quite “smooth”,

analyzing large queueing networks with finite buffers for which, » .
in general, no explicit solutions are available. just a small amount of jitter that can be represented with

. , Bernoulli arrivals can result in the reduction of throughpu
Index Terms— Ad-hoc wireless network, wireless sensor net- 0.4375 instead of 0.5 kets/ti lots. Th in th
work, large-scale network, scaling laws, finite buffer queeing : .Ins ead of L. packels .Ime.s_o S', us, In the prese
network. of multi-hop routes such small inefficiencies could accuateil
and yield a significant throughput decrease.
Using this simple example as motivation, we focus on
|. INTRODUCTION how the throughput scales in large wireless networks with

The growth of modern communication infrastructures, sudthite buffers. Before discussing our results we presentief br
as the Internet and various wireless networks, over the |18yerview of the literature that investigates the capadgityits
decade has surpassed the expectations of everyone. Indébgvireless networks. In [1], a random network model of
going back in time to the origins of these networks, it woulgtatic wireless networks was introduced. For this mode, th
have been hard even to imagine the importance and scaleghors showed that throughput per source-destinatianipai
which these networks have developed. Now, projecting inf8(1/V'N) asN — oo, whereN is the number of nodes in the
the future, we strongly believe that this growth trend witlp network (refer to Appendix A for definitions of the standard
continue, if not accelerate. Hence, the communicationogsvi @8Symptotic notation used throughout the paper). In the same
and protocols of today must be capable of operating with tR@Per a scheme that achievegl/,/Nlog N) per source-
same efficiency in the very large-scale networks of the futurdestination pair was presented. The scheme was generalized
In this regard, we investigate the behavior of a network @s f0 @ parametrized version [2] (see also [3], [4]) that result
size grows while the buffer space of each device, one of tikthe optimal throughput-delay trade-off for throughpthtat
primary communication resources, stays finite. Specificat  are O(1/y/Nlog N). In [5] it was shown that throughput
term a protocol, or in general a network architecture, to &(1/V/N) in fact can be achieved. Results in [1] were
buffer scalable, or simply scalable, if the performancehaf t rederived in [6] for the corresponding constant packet size
network does not degrade as its size grows due to the limité¥del. Extensions of the original model and their analyses
buffer space in each node, i.e., buffer space is not a sotircee8n be found in [7], [8], [9]. We note that the capacity of
bottlenecks. wireless networks relates to the capacity of lattices —rrefe

The critical importance of scalability is widely recognize t0 [10] and the references therein.
by practitioners and well documented in the systems engi-In this paper, we investigate the existence of scalable
neering literature. However, the definitions of scalapitire Protocols that can achieve the capacity limit, derived in ¢
often either vague or simply absent. Hence, we believe it N per source-destination pair in a large wireless network

of N nodes. More specifically, focusing on scalability with
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of ¢/v/Nlog N with devices that have constant buffer space.

Furthermore, we establish that the required buffer spaoe ca Proof: The first step of the proof is to establish that there
be very small, capable of storing just a few packets, whidk a coupling between the service times of the two queues such
is particularly important for wireless sensor networks vehethat, for all¢ > 0,

devices have limited resources. In addition, we show that (51) (52)

any protocol which is capable of achieving the throughput of QY (1) < QV (). (2)

To this end, we couple the service times in these queues
Qich that the packets with overlapping time in service depar

simultaneously from both systems. The coupling is feasible

The present study is related to the study of the throughpldh th | tv of th tial distrilouti
delay trade-off [2], [3], [4] since the finiteness of bufféimits of zervei}céntei}rr:gsry €ss property ot the exponential distributio

the delay incurred by packets, given that these packetsare n Then, the proof is by induction over the timds;},>

. .. . y 7 f12>09
dropped. However, gpart frpm this heuristic connectpn, t o = 0, right after an arrival or departure in either aueue.
expected delay considered in [2], [3], [4] does not provigle rSuppose thaQ®) (t,) < QU)(t,), j < i for somei > 0
sults on buffer scalability b_ecagse the dy“a”.“‘?s of the ardw If an arrival occurréd _right befér’eiﬂ_ then (2) holds fc'>r
change under the constraints imposed by finite buffers. { = ;1) due to the assumptio@Af.l)} c {A§2)}- on the

Finally, from a mathematical perspective, this paper fensh ther hand. if a d ¢ {ht bef th ith
our understanding of the difficult problem of analyzing kargo er hand, I a departure occurs right betore, then either
qustomers depart from both queues or only from the one with

gueueing networks with finite buffers for which no generab . )
- : ) : uffer b,. However, in the latter case (due to the coupling) one
explicit solutions, e.g., the product-form solution of Ksan has Q") (t;,1) — 0 and, therefore, (2) holds. Note that the

networks, are available. . . 1) (2)
The paper is organized as follows. The next section contaffRUPling also yields{ D; "} € {D;™}.

some of the preliminary results on a single server queue mode Finally, we consider (1). The definition of functions”
In Section Ill we introduce a motivating example of a oneand (2) yield

designing efficient scalable wireless protocols in practic

dimensional multi-hop route. A model of a wireless network W)/ (b1) ¢ 4(1)
is described and discussed in Section IV. The main results Ay () = Zl HQ™(AT) = b}
of the paper are presented in Section V. Concluding remarks wA <t
can be found in Section VI. The Appendix provides additional < Z 1{Q(b2)(141(‘1)) > b}
mathematical details. A <
[l. PRELIMINARIES ON A SINGLE SERVER QUEUE From the preceding inequality, the non-negativity of the in

This section contains basic results on a single server quélieator function and the assumption of the lemma, it easily
that will be used in the remainder of the paper. Throughot@llows that
the section we assume that the server works at unit rate with

1 2
the packet (customer) service requirements being indegpgnd Al(7 )(t) aS Z 1{Q(b2)(’4§ )) 2 b}
and identically distributed (i.i.d.) exponential randoariables AP <t
with meanu—!, independent from the packet arrival times. The — Az(;Q)(t)-
service discipline is first-come-first-served (FCFS).
We start by considering two queues with buffers of sizeBhis concludes the proof of the lemma. u

by andb, packets (including any one in service), respectively. Our next goal is to establish a lower bound on the loss
Let {AY} and {DY}, j = 1,2, be positive, monotonically rate in a finite buffer queue with stationary and ergodiovatri
increasing sequences, representing customer arrival and @mes. Recall that the service times are assumed to be i.i.d.
parture times to these queues, respectively. In generalisere €xponential and independent from the arrival times. No# th
superscripts to distinguish quantities that relate toedéfit the minimum loss rate for arrival sequences with specified
queues. LeQ®)(t) denote the number of customers in queug@ean will be positive since the buffer is finite and service

j (of sizeb,) at imet and define times have unbounded support.
() 4y . (b5) A (9) More formally, consider a positive increasing sequence of
A7 (t) = Z H{Q™/(4;7) = b} arrival times {4;}:>0, Ao = 0, with stationary and ergodic
AP <t interarrival times{ A, 1 — 4, },>0 that are equal in distribution

to A. Let p := (uEA)~! denote the offered traffic load, where
u~ 1 is the average service time. Note that since the buffer is
fir}ite, the offered load does not need to be below 1. Given
that the buffer can accommodaiecustomers (including any
ne in service), the loss probabilip(b), i.e., the long-term
fraction of lost packets, is defined as

Note that, wherb; < oo, the quantityAl(i)(t) represents the
number of packets lost in queudein the interval|0, ¢].

The first lemma establishes a stochastic comparison
the two queues with different buffer sizes when the arriv%l
sequences are monotonically related.

Lemma 1. If Q®)(0) = Q®2)(0), by < by < oo and
{ADY € (AP} then{DM}  {DP} and, for allb, ¢ > 0, k

— lim X D)(A) —
EAD (1) < EA®) (1) M p0) =l 13 QA = b} 3)



whereQ(®(t) is the number of packets in the queue at timthat the given buffer management policy results in a higher
t and the existence of the limit is ensured by stationarity amalss probability than the one with complete buffer sharing
ergodicity; recall thatQ®(¢) is right-continuous and, thus, (single partition of sizesb). The service policy is FCFS. As
Q™ (A;) represents the number of customers in the queire(3), denote the long-term fraction of lost customers with
just before theith arrival. In addition, using the ergodicity p(b, s); note that the stationarity and ergodicity of the system
and stationarity assumptions it is easy to show thatltise follows from the stationarity and ergodicity of the arrival
rate x(b) satisfies sequence, monotonicity of this queueing system and Loynes
construction [11]. The following lemma estimates losses in
k(b) = p(b)/EA. this slightly more complicated system. By setting the numbe
The loss probability can be lower bounded as in the follovef partitions to 1 § = 1), Lemma 3 reduces to Lemma 2.
ing lemma. Lemma 3: For anyb > 0 ands > 0,
Lemma 2: For anyb > 0,

p(b) > (b+1)"te 7.

p(b,s) > s (b +1)"te /7.

Remark 1: If the arrival sequence is assumed to be i.i.d., Proof: The proofis very similar to the proof of Lemma 2.

a tighter lower bound can be obtained by analyzing a finifeonsider a sequence 6§ + 1) arrivals to the system. Then,
buffer GI/M/1 queue. the probability of loosing a single customer (out @f+ 1))

Proof: Let N(t) be the number of arrivals if0, ] in a due to an overflow of a particular partition is bounded from
Poisson process of rate Note thatV (4y) can be interpreted below by
as the number of potential customers served between the _(b11) e _(b11) Yy
arrival of (k + 1) customers. Given that the system is in (b+1)" Ee ™™ >s (b+1)""e 7.

stationarity, for anyk > 0, o
Thus, the loss probability is lower bounded by

k
> HeM M) = b}l : ) p(b) > 55~ D (b 4 1)1/
=1 _ S_b(b + 1)—le—b/p

pb) =k'E

since

- ®(A) =
p(b) = PQ™(4i) = b]. since a packet can be lost due to an overflow in any one of

Now note that the evenfk — N (A;_;) > b} implies that at the s partitions. u
least one packet is lost in the time interyal;, A;]. Besides  This section is concluded with an estimate on a hitting time
the non-negativity of the queue &t= 0, this follows from the in a single server queue. In particular, we consider a multi-
observation that exactly customers arrive inA;, A;] and at class FCFS M/M/1 queue with service rgieand aggregate
most N (Ax_1) customers depart. Hence, (4) renders arrival rateA < p. Classi customers arrive to the system at
. Poisson rate\; (the number of classe§' is finite), >° \; =
p(b) 2 k" Plk — N(Ap—1) > 0] . Service times are class independent, and the system is in
=k 'PIN(Ap—1) <k —1]. steady state at time= 0. Let ;(t) be the number of class
. . . customers in the system at timgincluding possibly one in
Settingk = b+ 1, results in service). For a sef C {1,...,C} define
p(b) > (b+1)"'P[N(4) = 0]
— (b 1) "Ee A In(t) ==Y _L(t), Ar:=)»_ X
el el
that, in conjunction with Jensen’s inequality, yields
L uEA Let 7 (b) be the first time that the number of customers in
p(b) = (b+1)" e classes belonging tb reaches leveb, i.e.,
The statement follows from the preceding inequality and )
EA, = bEA. - 0 (b) = inf{t > 0: Ip(t) > b}.
Next, we consider a buffer management policy under whicél . . . o .
the buffer is divided intos partitions, each being able to ven that the system is in gtauonantyta-et: 0 itis pOSS|_bIe
accommodaté customers (including possibly one in service o haverr (b) = 0._The following lemma provides an estimate
Upon an arrival to the system, a customer uniformly at randon the overflow timerr (b).
chooses a partition of the buffer. If the number of customers-emma 4: Let p := A/p and~r := Ar/A. For anyT > 0,
in the chosen partition is less thanthen the newly arrived W& have
customer is accommodated in the given partition. Otherwise b—1
one packet is dropped from the partition (at this point we do P[(b) < T] < 2ArT (L) + e MT/4,
not specify whether it is the newly arrived customer or one 1=p(—r)
of the customers in the partition). Intuitively, since a lpsic
can be lost even if some partitions are not full, it is clear Proof: Given in [12]. [ ]
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I1l. M OTIVATION: MULTI-HOP ROUTE § 05 "
In this section we consider a multi-hop route consisting g .

of N nodes labeled by the natural numbers, as illustrated %4
in Fig. 1. Namely, we examiné&V queues of unit capacity
in tandem with each queue having a finite buffer capable of
storing b packets. Packets arrive to the first queue according , ‘ ‘ ‘
to a Poisson process of rate, < 1. Service times are 0 S erene ackets 15 20
exponential with unit mean and independent from the Poisson '
arrival process. In addition, the service requirementssifgle Fig. 2. The maximum throughput of a multi-hop path (see Figad a
packet are independent in different queues and independgfftion of the buffer space available at each hop under the-ty-hop
f the requirements of other packets transmission scheme. In this particular example the patkists of N = 100
rom a p : ) nodes.

We now lower and upper bound the ratg; at which
packets leave the last nod€ as a function of N and the
buffer sizeb. Note that\y represents the throughput of the . , . L

. P>\ =0,...,N—1.

route. Lemma 1 allows one to bound the rate at which packs{gce/\l = i fori =0,..., N~ 1. Inequality (6) implies

are lost (dropped due to a full buffer) at each node. By Igttin _at, in order to keep\y = 6(1) as N o9 the buffer
. _ e o Size b needs to grow at least logarithmically in the number
all nodes prior to nodéhave an infinite buffer, it is clear, from

Lemma 1, that the loss rate at tith node is upper bounded.of hops V. However, (5) indicates that havirig= O(log V)

by the stationary loss rate in a finite buffer M/M/1 queue witfy enough to sustain constant throughput as the length of the
bl network becomes large.

arrival ratedo, given bycyAo ™, where Next, we turn our attention to the performance of a hop-by-
) L hop transmission scheme [14, p. 507]. The network topology
G = Z b is the same as in the preceding analysis (see Fig. 1). However
J=0 a nodei starts packet transmissions only when the buffer at
is the normalization constant. This follows from the facatth the downstream node can accommodate an incoming packet.
the infinite buffer system is reversible, and, hence, the lo§he caseb = 1 corresponds to the scenario in which a node
probability is given by, A [13, Sec. 1.6]. Therefore, the totalcan hold only a single packet (possibly in service). Packets
rate at which packets are lost in the considered finite buffare added to the first node’s buffer as soon as space becomes
network is smaller tharNcb)\g“, rendering the following available. Analytical results for achievable throughputenw
lower bound b > 1 are not available. Results of a numerical experiment
AN > Ao — Nep\it. (5) provided in Fig. 2 demonstrate the dependency of throughput
) on the buffer sizé. Whenb = 1, the problem of establishing
In order to establish an upper bound on the throughput, W&, maximum throughput reduces to finding the current in an
define the following function asymmetric exclusion process [15]. In particular, for= 1
— _ -1_—b/ax it is known [15, Theorem 3.28, p. 272] that the maximum
fola) =@ (1 (b+1)~e ) ' throughput converges to 1/4 85 — oo. However, it should be
According to Lemma 2, quantity,(x) can be interpreted as noted that hop-by-hop schemes in networks with more general
an upper bound on the maximum throughput of a queue haviiegologies are susceptible to deadlocks and mechanisms for
finite buffer b, exponential i.i.d. service requirements of unitheir avoidance need to be implemented; refer to [16] and the
mean, and offered load < 1. Using the fact that the outputreferences therein.
of queuei represents the input for the next qudue- 1), the
monotonicity of f,(z) in « for all b results in IV. WIRELESSNETWORK MODEL

AN < folfo- foho)-+)), We consider a variation of the standard random network
) o . topology model [1], [2], [6] whereN nodes are randomly

where the functionf,(-) is iterated N' times. Thus, by the paced in a unit area square (see Fig. 3). More specifically, i
definition of f,(-), it is easy to obtain an upper bound X, denotes the position of thih node, then the variables

0.3r

N {X;}X, are independent and uniformly distributed inside
v < )\OH (1 —(b+ 1)_1e_b/ki) the unit square. Each node is the source of one flow and
i=1 can serve as the destination for some other flows. Namely,
< Xo (1 b+ 1)_16_1,/”)]\7 ©6) each source node chooses its destination independently and
- ’ uniformly among the remainingV — 1) nodes. This results



in distances between sources and destinations tha®érg Under the specified algorithm, we denote By;(b) the
units on average (recall that the asymptotic notation imddfi long-term throughput that each source-destination pair ca
in Appendix A). By a flow, say from node to j, we achieve when there a¥ nodes in the network, each having
understand the (infinite) collection of packets generated astorage space of siZzepackets. The units ofd (b) arebitg/s.
with destinationj. A node generates packets, independentlyach source-destination pair is assigned a route and atoend-
of other nodes and the network state, according to a Poissand scheme is defined by packets being transmitted along this
process with rate\ and attempts to inject those packets intooute without taking into account whether there is avadabl
the network. It is appropriate to think of packet generatidouffer space at the next node. In other words, packets can be
times at node as times at which some information becomel®st due to a full buffer at an intermediate node.
available at nodéand needs to be communicated to ngdat This section is concluded with a remark on packet sizes. We
any particular node, all packets have i.i.d. service regoénts emphasize that v (b) is a function of the number of packets
that are independent from their service requirements arotlthat can be stored at each node, not the number of bits. As the
nodes, arrival times and, in general, the state of the n&twonumber of nodes in the network increases the packet sizetmigh
The distribution of service is assumed to be exponentiakivh need to increase in order to keep the payload size constant.
will be justified in the remainder of this section. This stems from the fact that one neddg N bits to identify

Two models that govern successful packet transmissitire destination node, e.g., if each packet carries its sode’
between a pair of nodes have appeared in the literature [a§ldress then each packet has to be at legsy bits in size.
physical and relaxed protocol models. It has been estdBur main result in the next section, Theorem 1, takes into
lished [1] that these models are equivalent under the fafigw account that the packet size might be an increasing function
two assumptions: (i) the fading factor in the physical modeff the network size.
is greater than 2, and (ii) all nodes use the same power

for transmission (i.e., they have a common range). Under V. SCALABILITY
the relaxed model, a transmission from nad® nodej is This section contains the main results of the paper that
successful if for someé\ > 0 and allk # 4, j characterize the memory scalability of large wireless ek
) o in the data plane. In particular, we study the throughput
d(k,j) = (1 + A)d(i, 7), (") dependency on the network size in the presence of limited
whered(i, j) is the (Euclidian) distance between nodeznd It;lug:at; space at individual nodes. Letdenote the packet size

4. Typically, models in the literature consider slotted syss.
Such an assumption is justified in the presence of a cerddhliz
scheduler, and if (7) is satisfied then a packet is succdgsf
transmitted from nodé to node;j with probability 1 in a

single time slot. We deviate from this model by assuming th
successful transmission froimto ; is still possible under (7)
with the understanding that the amount of time required
successfully transmit a packet iandom with finite mean. .
Such an assumption on the model is justified by the foIIowiHstie
arguments: t

Our first result indicates that achieviy1/v/N) through-

ut per source-destination pair is not feasible when nodes

ave a fixed amount of buffer space. Informally, achiev-

g‘;[g ©(1/+/N) throughput requires that only short hops are

used [1], [5] resulting in packets traversing a lar@g (' N))
umber of hops. Hence, given that losses are inevitable (see
emma 2), buffer sizes need to increase with route lengths,

., the network size. In the following proposition and pwe

ion 2 we only assume that the packet generation times

) o ) o are stationary and ergodic (see Lemma 2). However, in our

« Centralized scheduling is unlikely to be feasible in largg,5in Theorem 1 we assume Poisson generation of packets, as
ad-hoc wireless networks. Hence, a slotted system éﬁecified by our model in Section IV.
likely to be replaced with asynchronous transmission that proposition 1: Assume that packet transmission times are
is a result of distributed scheduling. o exponential random variables with meayy. If each source

« The nodes in the network could have limited pow€generates packets at rate not higher théav/N) (packets/s),
supply and the physical channel might be highly varien in order to achieve/v/N throughput (bits/s) per source-

able. Thus, in certain time intervals only transmission estination pair > ), buffer space a®(IV) nodes need to
reduced rates (or no transmission at all) is feasible. .51 a)(log N) in N almost surely (a.s.).

« The layered architecture of current networks contributes  proof:  \We start by establishing that, if all source-

to the randomness of transmission times. For examplfastination pairs achieve at leasty/N bits/s throughput for
transmission errors on the data-link layer as well agme: - 0, then there exist§ > 0 such that at leasiN
possible collisions on the MAC layer contribute to sucRoges have utilization higher than(for all N large enough).
randomness. To this end, if at mosi N, § > 0, nodes have utilization higher
As a first order approximation we assume that, under (Thand, then the long-term rate at which the network processes
transmission times are exponentially distributed with migat packets is bounded from above with
is proportional to the packet size in bits. The exact paramet
of F?hepdistribution deppends on the details of the traﬁsmissi (L=0)N-0+0N-1)p/s = (20— 6*)uN/s packetsls
model and is independent @f. Evaluation of this parameter or equivalently(25 — §2)uN bits/s. On the other hand, if all
is beyond the scope of this paper since we focus only on theurce-destination pairs achieve at legst'N bits/s through-
qualitative network behavior as a function of its size. put for somees > 0, then the total rate at which packets are



injected in the network must be at least N /s. This, together V8
with the fact that for a sufficiently smajl > 0 at least a quarter

of the flows traverse at leagt/N hops a.s. (see Lemma 7 in 7
Appendix C), implies the total network offered load is atdea | %J
eVN 1

I
000007,

. ZQ/N = Ei—N packets/s a.s.
S S

|
U
7

7 Z 00
or equivalentlys(N/4 bits/s. Since the amount of work N %;2 /Z/ﬁ /? %@%
processed in the network must be at least equal to the amount ! ! é@/ ! New
of work generated by packets delivered to their destination | | Z?% | N
Q=" [ / I
one has (25— 8 > eC/d ZZZ//
- e . I I 7 I
—wezelt T
Hence, the existence ef> 0 impliesd > 0 a.s.. é//?g/j

Next, we argue about the buffer space. lggtz) be the
lower bound on the loss rate (packets/s) at a node with

utilization x and buffer spacé packets. By Lemma 2, one

has Fig. 3. The transmission algorithm is parametrizedaby that defines the
e cell size. Only transmissions between neighboring ceksadiowed.
=5

[

gv(x) b—i—l)_le_b/””,

since utilizationz implies the arrival rate ofiz/s. Given the
preceding discussion, the total network loss rate satisfies  Remark 2: The parameter can be interpreted as a per-bit
a.s. service rate.
2 . .
Ky > SNgy(8) = ﬂN(bJr 1)~le~t/  packetsls (8) | Propf. The proof follows from the mo_del described
s in Section IV and the fact that only a finite number of
The total number of packets delivered to destinations iskqueells interfere with a given cell under the protocol model [2

to the number of packets injected into the network minus themma 2]. ]
number of lost packets, i.e., Next, we discuss an issue that arises only due to the
¢ € finiteness of the buffer space in the network. The network
——N — Ky > N. S
sVN svV'N performance depends on whether a buffer coordination algo-

nfithm is deployed. Such an algorithm operates in each cell

The preceding equation and (8) yield an implicit estimaté o ) X , ,
and its goal is the efficient use of buffer space in cells. To

(b+1)"te ¥ < CQ_ ° motivate a potential need for such an algorithm, we consider
puo2v'N the following example. Suppose that a node in an adjacent
from which it is clear that = Q(log N) a.s.. m cell has a packet that requires relay through a given cell.

In the rest for the paper we construct a protocol that Bhe node that has the packet can, in principle, forward it
capable of achieving a high throughput, proved in our matn any of the nodes in the cell. However, if the next relay
Theorem 1, with buffers of constant size. The key componembde is chosen without consideration of buffer contents, an
of our protocol is a local buffer coordination that we motéza unnecessary packet loss can occur. Namely, a packet could
in the upcoming Proposition 2. be forwarded to a node that can not accommodate any more

For constructing our protocol, it is sufficient to considepackets due to a full buffer. A buffer coordination algonith
the parameterized scheme introduced in [2]. Namely, the uassists nodes in adjacent cells in forwarding packets tesod
square is divided inta' squares of sizg/ay x \/an (for that have available buffer space, whenever possible. I tha
convenience we assume that,/ay is an integer so that case a packet loss occurs only if no node in a cell has buffer
the squares cover the unit square exactly). See Fig. 3 for gpace available. The design of such an algorithm is beyond
illustration. The created squares are termed cells. A gacklee scope of this paper, given our focus on the fundamental
is delivered from its source to the destination by relaying qualitative behavior of the network as a function of its size
between cells. A packet can be sent from a cell only to oméowever, we point out that it could be designed using a token
of its four neighboring cells. No multi-cell hops are allaive approach (when the whole cell also implements the FCFS
Given this cell based scheme, the next lemma states that escieduling policy). In this case the amount of memory resglir
cell in the network can transmit packets to its neighbors att@implement the buffer coordination protocol at each naate ¢
fixed rate independent of the state of other cells. Recatl tHze limited to the size of a single packet. More sophisticated
s denotes the packet size (in bits). approaches are possible as well. Although we consider only a

Lemma 5: All cells in the network can transmit packetsprotocol that fully utilizes the buffer at each cell, we ntiat
simultaneously to one of their neighboring cells with trangesults from the load balancing literature suggest thabps
mission times being independent exponential random @sabwhich examine the buffer contents of a small number of nodes
with means/u that are independent aV, for someu € before forwarding/storing a packet are expected to perform
(0, 00). reasonably well.



The following proposition characterizes the network peifhe total number of packets delivered to their destinatisns
formance with no buffer coordination. In contrast to theecagqual to the number of packets injected into the network sinu
in which nodes have infinite buffer space, it is important tthe number of lost packets, i.e.,

further specify the routing policy between two cells. In par ¢ N c N
. . ; - _N- >
ticular, we assume that when a packet is transmitted between sv/Nlog N AN = 2 Nlog N

neighboring cells, it is forwarded to a random node in the o ) )
destination cell. In [1] (see also [2]) it was shown that undd’ence, the preceding inequality and (9) imply that on event
the straight line routing scheme and centralized scheglitin 9 N B we have

is possible to achiev®(1/y/Nlog N) throughput for every —b —1,-b/5 < c—-¢
source-destination pair, i.e., (Ylog N)(b+1)""e ~ u62/Nlog N’
lim P[9(c0) = ¢/+/Nlog N is feasiblé = 1. Rewriting the left-hand side of the preceding inequality as
N —o0o

—bloglog N—log(b+1)—b(1/5+lo
In particular, one needs to choosgs = ©(log N/N) [2]. e osee so+D=o/otlos )

The following proposition motivates the need for a buffegq ihe right-hand side as
coordination protocol within cells. Namely, without such a

protocol, otherwise feasibl®(1//Nlog N) throughput can € Cp-3logN—jloglog N,
not be achieved with limited buffer space at nodes. (102

Proposition 2: Assume no buffer coordination andy = it is easy to conclude thab needs to scale at least as
O(log N/N). If each source generates packets at rat®logN/loglogN). u

not higher thanc/(sy/Nlog N), then in order to achieve The next theorem is the main result of the paper. It states
e/v/Nlog N bits/s throughput per source-destination pathat with a buffer coordination algorithm in place, a small r

(c > ¢) the buffer spaces a®(N) nodes need to scaleduction in the throughput fror®(1/v/N) to O(1/v/Nog V)

as Q(log N/loglog N), i.e., forb = o(log N/loglog N) as allows for a buffer scalable algorithm. The result followsrh

N — oo and anyc > 0 the fact that the cell size which allows féx(1/+/N log N) is
lim Plo~(b) — /Nloz N is feasiblé = 0. sufficiently large to contain enough nodes, and, thus, emoug
N [ (b) = ¢/ o8 ¢ buffer space that ensures low loss rates when the buffer is

utilized efficiently. In particular, each cell contains farfspace
Remark 3: Comparing Propositions 1 and 2 yields thagapable of storingd(log V) packets. Recall that the units of
without a buffer coordination protocol @log N reduction on 1 (b) are bits/s.
rate results only ifoglog N reduction in the required buffer Theorem 1: There exists an end-to-end buffer-scalable al-

size. gorithm, i.e., there exigi* andc > 0 such that
Proof: The proof is very similar to that of Proposition 1.

However, the focus of the analysis is on cells rather thareaod Jim POy (b7) = ¢/+/Nlog N is feasiblg = 1.
Using the same arguments as in the proof of Proposition 1, it
is straightforward to argue that if all source-destinafairs Remark 4: It is apparent from the proof that in order to

achievee//Nlog V bits/s throughput for some > 0, then  ,cpieve 9(1//NTog V) bit/s throughput it is sufficient if

: o -1 _
there exists) > 0 such that the everf := {at leastiayy = g0k node contributes a single packet buffer space fongtori
dN/log N cells have utilization higher thah} obeys forwarded packets.

lim P[G] = 1. Remark 5: The model can be somewhat relaxed. In partic-

N—oo ular, each node does not need to communicate with only one
The choice ofay yields (see Lemma 8 in Appendix C) thatother node. Other communication patterns are possibletand t
there existsy < co such that theorem remains valid as long as the load on each cell remains

lim P[B] = 1, bounded. o

N—oo Proof: To prove the theorem it suffices to construct a

where eveni3 :={each cell contains at mostlog N nodeg. Pprotocol that achieveS(1/./N log N') throughput per source-
Without a buffer coordination algorithm in place, the loager destination pair given that each node has a buffer that can
in a cell with at mostylog N nodes and utilization greateraccommodate only* packets. We stress that the algorithm

thenz, using Lemma 3, is lower bounded by considered in the proof is not the most efficient one, and it is
L L 1 devised to allow for analytical tractability to demonstrahe
ge(z) = ~—(vlog N)™"(b+1)""e™"*" packets/s desired qualitative network behavior.

whereb is the buffer space at each node and the number ofThe algorithm operates as follows:

partitions is in fact equal to the number of nodes. Further-+ Routing policy. Packets are forwarded from their sources
more, the following lower bound holds for the total loss rate 0 destinations along cells using the column-first rout-

(packets/s) in the network on eve@i B: ing [17]. See Fig. 3 for an example of how packets from
) nodei are routed to nodg Note that under such a routing
Ky > dantgr(0) = po"N (vlog N) P (b+1)"te /%, (9) scheme the number of cells each packet traverses is at

slog N most2/./ay.
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Fig. 4. Under the considered algorithm each cell can be reddek a
set of four finite buffer queues. Each queue forwards packetsnly one
of the neighboring cells. There is no bandwidth and buffescepsharing
(multiplexing) between the four queues. The queues can afi@vpackets
to one of the three queues in the neighboring cell (or the fileatination)
depending on packet’s route.

F 1B F 1 F

T

Fig. 5. The algorithm uses frames of fixed lengthtime units to transport
packets. Each frame (F) is preceded by an initializatioriopefl).

dropped and no new packets are accepted to the network
until the beginning of the next frame. The discard event
occurs when in one of the cells a packet arrival occurs
and the newly arrived packet can not be accommodated in
the buffer according to the buffer management policy, i.e.,
the packet has to be dropped. For example, if a node has
(b* — 1) of its own packets in the buffer and it generates
a new packet, then the discard event occurs.
Initialization. The random state is the steady state of the
network with the same topology and traffic flows but
with each node having an infinite buffer. A probabilistic
description of such a state is well known since the infinite
buffer network admits a product-form solution. The pack-
ets with which the network is initialized contain dummy

payloads; however, they are treated by the network in
the same way as regular packets. Note that due to the
initialization procedure the frame can be discarded right
at its beginning. Full details of the initialization proced

are outlined in Appendix B. Here we just point out that
the time 77 required to initialize the network satisfies
ET; = o(sN3) asN — oo.

« Buffer management policy. Buffer space at each node

is divided into two logical parts: one packet space is
reserved for storing forwarded packets while the rest of
the buffer (b*—1) packet spaces) is designated for storing

the node’s own packets. The buﬁer_ space de5|gna_tedl\low, the remainder of the proof is divided into three parts.
for forwarded packets at all ”Od‘?s ina given cell is Part I. We estimate the load and amount of buffer space
[)naﬁnaged b&’.th‘?t cellls bl.th:]er coor(;hna]:uon al.gtor'tlhgq'ﬁ-rhgvailable in each cell. To complete the description of the
utier coordination aigorithm creates four virtual bu erscpeme, the size of cellsy needs to be specified. We choose
of equal size (up to a single packet space). In each ON€O to be the smallest function oV such that each cell
these four virtual buffers, packets destined for the Sangérntains at least log N nodes for some > 0. Let k; denote
cell are stored, e.g., in the first virtual buffer packets %e number of nodegs in thigh cell. By Lemma'l 8 of ,&ppendix

be forwarded to the up cell are stored, in the seco ' . .
virtual buffer packets to be forwarded to the right cell”’ for every fixedfs > 0 there existsa(5) > 1 such that if

are stored, etc. All packets to be forwarded to the samé ~
cell are transmitted in a FCFS manner.
Bandwidth sharing policy. Bandwidth available for wire- _ N
less communication is divided into four equal parts (usingherek! := min, _, 1 k; is the minimum number of nodes
one of the available technologies, e.g., FDMA). Eackontained in a cell. Lemma 8 also states that there exists a
quarter of the bandwidth can be used throughout tfigite constanty > 3 (independent ofV) such that
network (by all cells) to forward (transmit) packets only . 7 _
in one direction (up, right, down, or left). Such a policy ngnoo Pl <vlogN] =1, (11)
corresponds to a scheme in which each cell consists pfare e’ .— max L k: is the maximum of the number

: - = 1<i<a*t Vi
4 virtual servers, each forwarding packets to one of thg ,,jes contained in a cell. Let each node generate padkets a
ne|ghbor|ng_ cells; see Fig. 4 for an |Ilustrat|on.. NOt®isson rate\ — ¢/(s/NTog N), wherec > 0 is a constant
that accordlng to Lemma_l 5 each virtual server is ab'ﬁdependent ofN, and s is the packet size that can depend
to transbmlt packets_ ata _flxed_ nz_n-_geré) _rate.f ¢ on N. Lemma 9 of Appendix C allows for an estimate of a
Frame based operation. Time is divided into frames of ,,iantia| loadp; of each cell, i.e., the rate at which packets

length 7" time units. At the beginning of each frame i, cell ; being in their route are injected in the network.
network is initialized in a random state, as describ

a(8)log N/N, then
lim Pk > Blog N] =1, (10)

N—o0

ally,
below (see Fig. 5). During a frame packets are forwarde y As
according to the above rules until the end of the frame Pi = mn Z Liier,}s
is reached or a discard event occurs. If the end of the J

frame is reached, all packets that remain in the netwowkherer; is a collection of cells a packet originating in the
at that moment are dropped. If the discard event occuith cell needs to traverse to reach its destination, and
before the end of the frame, all packets in the network atiee rate at which packets are served (transmitted to the next



cell). Equivalently,p; = AsK;/u, whereK; is the number of p, given eventY, of the packet being delivered to its destina-
lines that cross théh cell when all sources are connected ttion. Let D be the total amount of time the packet spends in the
their destinations using the column-first rule (see Fig.r3afo network given that it is eventually delivered to its destioa.
example). Lettingo! denote the maximum potential load  On eventX, the quantityD can be upper bounded as follows
pT = max pi< E max Ko, 2b*ylog N/\/an
1<i<aj’ Bo1<i<ay! D < Si,
i=1

and invoking Lemma 9 yield where {S;};>1 is a sequence of packet service times, i.e.,

lim Plp! < 5/anNAs/p) an i.i.d. sequence of exponential random variables withrmea
Nooe o : s/u. The bound is due to the finiteness of buffers throughout
= lefloo Plpt <5ev/a(B)/p] =1, (12)  the network, i.e., the fact that only a limited number of petsk

can be served between the considered packet’s arrivals and
departures. On evert the amount of buffer space available
at each cell is upper bounded b{ylog N and each packet
5¢y/a(B) traverses at mosg/,/ay cells. Then the conditional (on
X = {ﬁlogN <kl <K' <ylogN, p! < — } »  X) probability p that an arbitrary packet is delivered to its
destination is lower bounded by

sinceay = a(f)log N/N and A = ¢/(s/Nlog N). Now,
define the following event

and the corresponding conditional probability measure

P[] = P[-|X].

p = qPx[€, U> D] > q(Px[€] —Px[U < DJ),

whereU is a uniformly distributed random variable ¢@ 7]
Informally, eventX’ indicates that each cell in the network isand ¢ := T/(T + ET7). Effectively, the bound states that
not overloaded and there exists enough buffer space in edcthe frame during which the packet is generated is not

cell. From limits (10), (11) and (12) it follows that discarded and the packet generation time is not close to the
lm PlA] = 1 13 end of the frame, then the packet is delivered successfully.
N [X]=1. (13) The pre-factorg is due to the fact that packets do not reach

Equation (13) allows one to consider only networks that afgelr destinations if they are generated during the inziion
not overloaded and have “sufficient” buffer space. period. The random variablg represents the amount of time

Part Il. Now we estimate the probability of an arbitrar)petwee” packet generation and the end of the current frame.
frame being discarded. Lef(t), 1 < i < N, be the number The uniform distribution ofU yields an easy bound on the

of packets at time in the ith node buffer that have node S€cond term in the preceding equation

as their source. Clearly, we have(t) < b* — 1 since each P[U < D] < ED _ 2sb*ylog N

node can accommodate at mgst — 1) of its own packets. M=M= T T Jan
. —1 .

Furthermore, letu;;(1), 1 < i < ay', 1 < j < 4, be the pg |55t inequality and Lemma 6 render

number of packets at timein the jth virtual buffer of theith

cell that originated in other cells. Without loss of genityal 1P (4 " 2uT N As/ bt L dalp
consider the frame over the time interyal 7'] and define q = s 1—p NP
E = {Ui(t) <b*—1,Vi,Vt e [O,T]} + (N + 4a]—vl)ef)\T/4 + 28b;710gN. (14)
N {uw(t) < b, \V/Z,\V/j, VYt € [O,T]}, KL/ ON

The preceding equation highlights the trade-off present in
electing the frame length. The first term on the right-hand
ide is linear inT" while the last one is inversely proportion
to T'. In other word, the larger’, the higher probability of a
frame being discarded; however, smallimits the ability of
ackets to reach their destinations by the end of the frame.
ettingT = sN3 results ing — 1 as N — oo. By letting b*
nRe sufficiently large (yet finite) andbe sufficiently small, we
have that, asV — oo,

whereb := |Blog N/4|. An important observation is that
on event& no packet losses occur in the original networg
during the time interval0, T, which yields that the frame
over the interval0, T is not discarded. Equivalentl®.¢[£] is
the probability of a frame not being discarded. The follagvin
lemma, whose proof can be found in Appendix D, provid
an estimate of this probability of interest. The depende
of Px[£] on parametepd (see the definition of event) is
through quantityb. . -
Lemma 6: If p:= 5c/a(B)/pn < 1, then TN ()\/_u) :ﬂ (C/(u(l—p))) —o(1),

2uT As/ b1 s L—p ] v/ Nlog N

>1- - P — —1,b Blog N

Pxle] > 1 (1+ ; ) N(l_p) 4aNp] TN e/l J_O(l)
— (N +dayt)e /4, san  «af)slog N 1 )

Part I11. Next we consider an arbitrary packet in the original
finite buffer network and estimate the conditional prokapil
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slogN _ syNlogN _ o(1). because of the random service times, as describe in this,pape
T\/an T+/a(B) but also because of the random mobility of nodes. Although

Combining the above estimates with (14) it is easy to cof€tails differ depending on the mobility model, the type of

clude that the conditional probability of the packet notrigei &90rithm studied in [18] appears not to be buffer scalable
delivered satisfies, a& — oo, since it is expected that each node needs to have buffer

space of size9(N) packets. By considering the family of
1—p=o(1). algorithms devised in [2], [3], [4] it is possible to detemai

Finally, the proof of the theorem is completed by combinintghaecah;%l:jgehpm that can be sustained with limited resouates

the preceding estimate gn A = ¢/(sy/Nlog N) and (13).m
We conclude this section with an observation that whgn
is chosen to be larger tha®(log N/N) the scheme remains
buffer scalable, albeit it achieves lower throughput [2heT  The authors would like to thank Nick Maxemchuk for

buffer scalability follows from the fact that the larger tbells, pointing out reference [16].
the more buffer space is available at each cell, and, hemee, o
can expect a lower probability of loss. APPENDIX

ACKNOWLEDGEMENT

A. Asymptotic notation
VI. CONCLUDING REMARKS .
Throughout the paper we use standard notational conven-

Large and rapidly increasing networking infrastructuresns For two nonnegative functiogg-) and £(-): (i) g(n) =

place network scalability as the central problem in designi O(f(n)) means that there exist positive constantsc, and
next generation communication protocols and architesturg, “ ;e thate; f(n) < g(n) < caf(n) for all n > no, (ii)

While this problem was addressed by practitioners and systg(n) = O(f(n)) means that there exist positive constants
engineers, there has been, in particular in the context ®éfin. 4 ;. such thatg(n) < cf(n) for all n > ng, (i)

buffers, little attempt to es_tablish its_ ma_thematical fdations. g(n) = Q(f(n)) means that there exist positive constants
T_he need for _theoret|ca_1l mvestlgatl(_)n is even more Necgssang,, such thatef(n) < g(n) for all n > ng.
since conducting experimental studies on large-scalearksv
is very expensive or practically infeasible. o

A straightforward, albeit very inefficient, way to allewat B- INitialization procedure
the issue of scalability is to build nearly fully connected In this section we discuss an initialization procedure Far t
networks where each node is only a few hops away from atrgnsmission scheme described in Section V. We remark that
other node. Hence, the protocols designed for small nesvotkere is no unique procedure that achieves the desired goal.
are likely to extend well to this large highly connectedxact details of different procedures depend on the system
network. However, this is not even an option for wirelesarchitecture and nodes capabilities.
ad-hoc networks since achieving theoretical capacity dsun Since the network needs to be initialized in the steady-
requires that packets traverse long routes. Even the lantgso state of the infinite buffer network that admits a productifo
would not be a problem in a world of perfect synchronizatiosolution, a sequential procedure that initializes one quau
without randomness. However, as we argued in the papatime suffices. Therefore, we focus on a single virtual queue
packet transmission times are inherently random due to tfie., one of the four virtual queues in a cell — see Fig. 4).
multitude of effects, ranging from the physical, data-littk ~ We assume that each packet contains its destination address
MAC layer. This leads to the strong dependency between tbe that nodes (cells) do not need to waste memory on main-
loss probability on each hop and the network size. Nametgining routing tables. However, we do assume that nodes hav
the longer the route, the smaller losses on each hop shouldalseess to a source of randomness. Each node in the network
in order to maintain constant end-to-end performance. can be identified with a numbér< m < N. In addition, each

In the context of static wireless ad-hoc networks, we demoeell can be identified by a pait, j), 1 < i,j < 1/,/an, with
strate that the network can not operate at its capacity limitincreasing from left to right ang increasing from bottom
while maintaining a constant buffer space in each node. Hote- top.
ever, maybe somewhat surprisingly, we construct a provablyThe first step is to establish the utilization of the queue,
scalable protocol that obtains just a slightly smaller tigloput i.e., the number of flows served by the queue. A node in
with fixed buffers, capable of storing only a few packetshe cell of interest broadcasts its addrésg) and a number
This understanding is especially important for wirelegssse between 1 and 4 that identifies the queue of interest. Aftdr th
networks that operate with very limited resources. all nodes sequentially indicate, using labets to establish

Scalability of protocols can be studied in mobile wirelessrder, whether their flows utilize the queue. Note that for
networks [18] as well. Such networks can potentially achiewany particular flow, defined by its source and destination
much higher throughput o®(1) by exploiting node mobil- coordinates, it is easy for a queue to compute whether this flo
ity [18]. The key idea for increasing the throughput is tautilizes it or not. Therefore, simple counting of the numbér
limit the number of hops packets traverse [18]; see also [2jpws that traverse a particular node establishes the atiitin
[19] for studies of throughput-delay trade-off in networkish  since all nodes generate packets at the same Poisson rie. Th
mobility. With finite buffers, overflows can occur not onlystep of the procedure takéx( V) time units to execute.
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The second step is to generate a random number of dumd®stination, respectively, then the line connecting thise
packets and place them at right parts of the virtual bufferodes is defined by three points;, v:), (x;, y;), and(z;, y;);
Dummy packets are generated sequentially. Using a souecg., see Fig. 3. The following lemma bounds the number of
of randomness, a node in the cell generates Bernoulli (hes connecting source-destination pairs that cross glesin
1) random variables with its parameter being the queue&sll. A similar result was established in [2] for a unit torus
utilization until 0 occurs. If a 1 is generated, one of thand the straight-line routing scheme.
nodes that have packets forwarded by the queue is chosen dtemma 9: If axyN > 1 anday = o(1) asN — oo, then
random and that queue’s destination is made the destination

of the dummy packets. The dummy packet is stored in the lim P| max K;>5ayN| =0.

virtual buffer according to the buffer management polidy. | N—oo  l1<i<ay!

the dummy packet can not be stored, then the procedure is

completed with the frame being discarded. Using a random Proof: Given in [12]. [ |

walk on the nodes, a random node that uses the queue for
forwarding can be obtained in expected tifGév/N), and, D Proof of Lemma 6

thus, the second step can be executef(aN®/%) time units. Consider a network of the same topology and traffic flows
Upon combining the two steps, it is apparent that the pology

. L . .__as the original one, however, with virtual buffers in each ce
expected time to initialize the network is asymptotlcall%aving infinite buffer space. As before, the buffer policy is
O(SN5/2). . ’

FCFS within each virtual buffer. The network is in statiatar
at timet¢ = 0. Given this scheduling policy and the Poisson
C. Auxiliary results assumption on times when packets enter the network, we
This subsection contains three results on the wireless nebserve that the network of virtual buffers is in fact a multi
work model described in Section IV. The first one provideglass Jackson network (also known as a Kelly network) that
a lower bound on the number of hops in the case whedmits a product-form solution [20, p. 101], [21, p. 123]. A
all source-destination pairs are able to achieve the mdxingastomer (packet) class corresponds to a particular flowen t
possible throughpu®(1/v/N). Effectively, the lemma is a network. In this new infinite buffer network, packets belimyg
conseguence of the relaxed protocol model defined by (7).to any flow and departing any cell form a Poisson stream.
Lemma 7: If each source-destination pair achievgs/N Define quantitiesy?°(t) and u{¥(¢) to correspond to vari-
bits/s throughput (with packets of siz§ then at least 1/4 of ablesv;(t) andu;;(t), respectively, that are previously defined
all flows traverse at least,/ N hops a.s. for some sufficiently for the finite buffer network. Namely, let<(¢), 1 <i < N, be
small§ > 0. the number of packets originated at nadbat are at time in
Proof: Given in [12]. m :th node buffer in the infinite buffer network. Likewise, defin
The next lemma estimates the number of nodes in cells tag collection of quantities?(t), 1 < i < ay', 1<j <4
a function of the cell size. Consider a unit square partégbn According to the initialization procedure, we have
into cells of equal areay, as in Figure 3, and recall that oo N
(yay)~! is assumed to be an integer. Nodes are uniformly vi(0) = v(0) A (b — 1), (15)
distributed in the unit square with; being the number of u5(0) = ugy (0) A b, (16)
nodes in theith cell (where the labeling of cells is arbitrary)whereb — |Blog N/4).
Lemma 8: Letay > alog N/N. If a> 6 and In order to estimaté v [€], we introduce two events:
a = 6(1 +log(a/d)) > 1, T = {0;(0) < b* — 1, ¥} 1 {ui; (0) < b, Vi, V5,
then

lim P| min k; >dlogN| =1.
N—oo _19‘5@1

E® = {v°(t) < b* —1, Vi, vt € [0,T]}
N {uss(t) < b, Vi, V4, vt € [0, T}

On the other hand, i,y < alog N/N, then there exists < The first eventZ, defined for the finite buffer network, indi-

oo such that cates whether the franje, T is discarded right at = 0. The
r ] second event™ indicates that quantitiesy®(¢) and u;s ()
lim P | max k; <vylogN| =1 remain bounded in the infinite buffer network during the vehol

N— i<a-l . o .
o [Isisay _ duration of the frame. Next, it is straightforward to reldte

conditional probabilitie€, £ andZ as follows:

Proof: Given in [12]. ]
The last result of this subsection provides an estimatelbf ce Py[E] = Px[€, I] = Px[E>, T]
loads under the column-first routing. Consider the unit sgua > 1 Px[E%] - Py[T] 17)

partitioned into square cells of sizey as in Fig. 3. Let each

source-destination pair be connected with a line that stemvbere£> andZ indicate the complementary eventsssf and
from the column-first routing, and lek; be the number of Z, respectively. The second equality in the preceding equati
such lines that cross thi&h cell. Namely, if X; = (x;,y;) is due to the fact that in the absence of losses in the finite
and X; = (z;,y;) are the coordinates of a source anduffer network the two networks behave identically, i.dl, a



the packet transitions between cells are the same. Bounding
the conditional probability of everif using (15) and (16) is
easy since the infinite buffer network is in stationarityiate
t=0:

1

N an 4
Px[Z] < Pa[vi(0) > 0]+ > > Prfugf(0) > 0]
i i=1 j=1

(18)

b
<N (%) +day'ptth

In the preceding relationship, it is important to considelyo
the conditional probabilities on evert since on eventY
we have that each queue in the network is not overloaded
(p < 1) and results for stable Kelly networks apply. Th%

12

3 6 9
-— -—
36 25 35 26| 34 27
— — -
10‘ 13‘ 16 ‘
R R [y
2 5 8
- -
33 22 32 23| 31 24
— —t-
11‘ 14‘ 17 |
[y [y R
1 4 7
-— -—
30 197* 29 207* 28 21
12 15 18

ig. 6. Queues in the network (see Fig. 4) can labeled wittgis in such a
ay that each packet traverses queues with an increasieg ofdabels. The

bound is due to the fact that the number of customers in eagfire shows a labeling for a network that consists of 9 cel, B6 queues.
queue is geometrically distributed where the parametehf tColumn-first routing is used. For example, the route fromItveer-left cell

distribution is its load. In addition, each packet is of ataier
class with probability that is equal to the ratio of arrivates
of this particular class and all classes together.

To analyze the probability of eved> we introduce two
families of stopping times

7;(0%) :=1inf{t > 0: v7°(t) > b},
7i5(b) == inf{t > 0: uy (t) > b},
i.e., 7;(b*) is the first ime the number of packets originated(®!
in nodei reaches level in theith node buffer, given that the (4

system is in stationarity at time= 0. Then the union bound
renders

(1]
(2]

(5]
(6]

Py [E>]

Py min

1<i<ay', j=1,...,4

= min_ 7;(b*) A

Ry Tij(b) <T

N ay' 4 7
< Z]P)X[Tz(b*) < T] + ZZ]P)X[TZ](I)) < T]
i=1

i=1 j=1 (8]
The routing, buffer management and bandwidth sharing poli9]
cies ensure that the infinite buffer network is feed—forwavrﬁﬁllO
Namely, queues in the network can be labeled in such a y]
that each packet traverses queues with an increasing ofder o
labels (see Fig. 6). This fact allows one to estimate théngitt [11]
times since input processes to individual virtual buffensl a

the node’s designated local buffers are independent of thgp]

states. In particular, applying Lemma 4 yields the follogvin

estimate
As/p b*—1
(—) + Ne /4
I—p

+ 8a§1puTs_1pb + 4a]_vle_’\T/4,

[13]

Py [E%] <2NAT [14]

19) 19

where we used the fact that on eveéitall queues have their
load bounded from above hyand the fact that if the arrival
rate of packets from outside the cell is non-zero then it is7]
at leastA. Combining (17), (18) and (19) withh < 1 and
A < p/s yields the desired result

b —1
A
N (%) + 4aN1pb1

—(N 4 4ayt)e 74,
This concludes the proof of the lemma.

[16]

[18]

]P)X[g] >1- (1 + 2,U/T/S) [19]

[20]
[21]

to the upper-right cell is 1-2-25-26.
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