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Buffer Scalability of Wireless Networks
Predrag R. Jelenković Petar Momčilović Mark S. Squillante

Abstract— We investigate the existence of scalable protocols
that can achieve the capacity limit of c/

√

N per source-
destination pair in a large wireless network of N nodes when
the buffer space of each node does not grow with the size of
the network N. We show that there is no end-to-end protocol
that is capable of carrying out the limiting throughput of c/

√

N

with nodes that have constant buffer space. In other words,
this limit is achievable only with devices whose buffers grow
with the size of the network. On the other hand, we establish
that there exists a protocol which realizes a slightly smaller
throughput of c/

√

N log N when devices have constant buffer
space. Furthermore, we show that the required buffer space can
be very small, capable of storing just a few packets. This is
particularly important for wireless sensor networks wheredevices
have limited resources. Finally, from a mathematical perspective,
this paper furthers our understanding of the difficult probl em of
analyzing large queueing networks with finite buffers for which,
in general, no explicit solutions are available.

Index Terms— Ad-hoc wireless network, wireless sensor net-
work, large-scale network, scaling laws, finite buffer queueing
network.

I. I NTRODUCTION

The growth of modern communication infrastructures, such
as the Internet and various wireless networks, over the last
decade has surpassed the expectations of everyone. Indeed,
going back in time to the origins of these networks, it would
have been hard even to imagine the importance and scale to
which these networks have developed. Now, projecting into
the future, we strongly believe that this growth trend will only
continue, if not accelerate. Hence, the communication devices
and protocols of today must be capable of operating with the
same efficiency in the very large-scale networks of the future.
In this regard, we investigate the behavior of a network as its
size grows while the buffer space of each device, one of the
primary communication resources, stays finite. Specifically, we
term a protocol, or in general a network architecture, to be
buffer scalable, or simply scalable, if the performance of the
network does not degrade as its size grows due to the limited
buffer space in each node, i.e., buffer space is not a source of
bottlenecks.

The critical importance of scalability is widely recognized
by practitioners and well documented in the systems engi-
neering literature. However, the definitions of scalability are
often either vague or simply absent. Hence, we believe that
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P. Momčilović is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109; e-mail:
petar@eecs.umich.edu.

M.S. Squillante is with the Mathematical Sciences Department, IBM
T.J. Watson Research Center, Yorktown Heights, NY 10598; e-mail:
mss@us.ibm.com.

there is a strong need for developing a precise mathematical
foundation for investigating the notions of scalability. Fur-
thermore, since building experimental large-scale networks is
basically impractical, the theoretical approach has a unique
advantage for providing insights into the scaling properties of
communication networks.

One of the basic concerns in building large-scale networks
is that minor inefficiencies which can be well tolerated in small
networks can accumulate and become dominant factors in
large networks. To further illustrate this point, considera single
link of capacity one packet/time slot and no buffer space.
Suppose that two independent flows with identical statistical
properties and average rate of 0.25 packets/time slot sharethis
link. Now, even if we assume that the flows are quite “smooth”,
just a small amount of jitter that can be represented with
Bernoulli arrivals can result in the reduction of throughput to
0.4375 instead of 0.5 packets/time slots. Thus, in the presence
of multi-hop routes such small inefficiencies could accumulate
and yield a significant throughput decrease.

Using this simple example as motivation, we focus on
how the throughput scales in large wireless networks with
finite buffers. Before discussing our results we present a brief
overview of the literature that investigates the capacity limits
of wireless networks. In [1], a random network model of
static wireless networks was introduced. For this model, the
authors showed that throughput per source-destination pair is
O(1/

√
N) asN → ∞, whereN is the number of nodes in the

network (refer to Appendix A for definitions of the standard
asymptotic notation used throughout the paper). In the same
paper a scheme that achievesΘ(1/

√
N log N) per source-

destination pair was presented. The scheme was generalized
to a parametrized version [2] (see also [3], [4]) that results
in the optimal throughput-delay trade-off for throughputsthat
are O(1/

√
N log N). In [5] it was shown that throughput

Θ(1/
√

N) in fact can be achieved. Results in [1] were
rederived in [6] for the corresponding constant packet size
model. Extensions of the original model and their analyses
can be found in [7], [8], [9]. We note that the capacity of
wireless networks relates to the capacity of lattices – refer
to [10] and the references therein.

In this paper, we investigate the existence of scalable
protocols that can achieve the capacity limit, derived in [1], of
c/
√

N per source-destination pair in a large wireless network
of N nodes. More specifically, focusing on scalability with
respect to the buffer space, we establish that there is no
protocol with end-to-end acknowledgments that is capable of
carrying out the limiting throughput ofc/

√
N when each

node has constant buffer space. In other words, this limit is
achievable only with devices whose buffer grows with the
size of the network. On the other hand, we show that there
exists a protocol which realizes a slightly smaller throughput



2

of c/
√

N log N with devices that have constant buffer space.
Furthermore, we establish that the required buffer space can
be very small, capable of storing just a few packets, which
is particularly important for wireless sensor networks where
devices have limited resources. In addition, we show that
any protocol which is capable of achieving the throughput of
c/
√

N log N with finite buffers has to employ a local buffer
coordination scheme. This insight may provide guidance for
designing efficient scalable wireless protocols in practice.

The present study is related to the study of the throughput-
delay trade-off [2], [3], [4] since the finiteness of bufferslimits
the delay incurred by packets, given that these packets are not
dropped. However, apart from this heuristic connection, the
expected delay considered in [2], [3], [4] does not provide re-
sults on buffer scalability because the dynamics of the network
change under the constraints imposed by finite buffers.

Finally, from a mathematical perspective, this paper furthers
our understanding of the difficult problem of analyzing large
queueing networks with finite buffers for which no general
explicit solutions, e.g., the product-form solution of Jackson
networks, are available.

The paper is organized as follows. The next section contains
some of the preliminary results on a single server queue model.
In Section III we introduce a motivating example of a one-
dimensional multi-hop route. A model of a wireless network
is described and discussed in Section IV. The main results
of the paper are presented in Section V. Concluding remarks
can be found in Section VI. The Appendix provides additional
mathematical details.

II. PRELIMINARIES ON A SINGLE SERVER QUEUE

This section contains basic results on a single server queue
that will be used in the remainder of the paper. Throughout
the section we assume that the server works at unit rate with
the packet (customer) service requirements being independent
and identically distributed (i.i.d.) exponential random variables
with meanµ−1, independent from the packet arrival times. The
service discipline is first-come-first-served (FCFS).

We start by considering two queues with buffers of sizes
b1 andb2 packets (including any one in service), respectively.
Let {A(j)

i } and {D(j)
i }, j = 1, 2, be positive, monotonically

increasing sequences, representing customer arrival and de-
parture times to these queues, respectively. In general, weuse
superscripts to distinguish quantities that relate to different
queues. LetQ(bj)(t) denote the number of customers in queue
j (of sizebj) at time t and define

Λ
(j)
b (t) :=

∑

i:A
(j)
i

≤t

1{Q(bj)(A
(j)
i ) ≥ b}.

Note that, whenb1 < ∞, the quantityΛ(1)
b1

(t) represents the
number of packets lost in queue1 in the interval[0, t].

The first lemma establishes a stochastic comparison of
the two queues with different buffer sizes when the arrival
sequences are monotonically related.

Lemma 1: If Q(b1)(0) = Q(b2)(0), b1 ≤ b2 ≤ ∞ and
{A(1)

i } ⊆ {A(2)
i }, then{D(1)

i } ⊆ {D(2)
i } and, for allb, t ≥ 0,

EΛ
(1)
b (t) ≤ EΛ

(2)
b (t). (1)

Proof: The first step of the proof is to establish that there
is a coupling between the service times of the two queues such
that, for all t > 0,

Q(b1)(t) ≤ Q(b2)(t). (2)

To this end, we couple the service times in these queues
such that the packets with overlapping time in service depart
simultaneously from both systems. The coupling is feasible
due the memoryless property of the exponential distribution
of service times.

Then, the proof is by induction over the times{ti}i≥0,
t0 ≡ 0, right after an arrival or departure in either queue.
Suppose thatQ(b1)(tj) ≤ Q(b2)(tj), j ≤ i for somei > 0.
If an arrival occurred right beforeti+1, then (2) holds for
t = ti+1 due to the assumption{A(1)

i } ⊆ {A(2)
i }. On the

other hand, if a departure occurs right beforeti+1 then either
customers depart from both queues or only from the one with
buffer b2. However, in the latter case (due to the coupling) one
hasQ(b1)(ti+1) = 0 and, therefore, (2) holds. Note that the
coupling also yields{D(1)

i } ⊆ {D(2)
i }.

Finally, we consider (1). The definition of functionsΛ(j)
b

and (2) yield

Λ
(1)
b (t) =

∑

i:A
(1)
i

≤t

1{Q(b1)(A
(1)
i ) ≥ b}

≤
∑

i:A
(1)
i

≤t

1{Q(b2)(A
(1)
i ) ≥ b}.

From the preceding inequality, the non-negativity of the in-
dicator function and the assumption of the lemma, it easily
follows that

Λ
(1)
b (t) ≤

∑

i:A
(2)
i

≤t

1{Q(b2)(A
(2)
i ) ≥ b}

= Λ
(2)
b (t).

This concludes the proof of the lemma.
Our next goal is to establish a lower bound on the loss

rate in a finite buffer queue with stationary and ergodic arrival
times. Recall that the service times are assumed to be i.i.d.
exponential and independent from the arrival times. Note that
the minimum loss rate for arrival sequences with specified
mean will be positive since the buffer is finite and service
times have unbounded support.

More formally, consider a positive increasing sequence of
arrival times{Ai}i≥0, A0 = 0, with stationary and ergodic
interarrival times{Ai+1−Ai}i≥0 that are equal in distribution
to A. Let ρ := (µEA)−1 denote the offered traffic load, where
µ−1 is the average service time. Note that since the buffer is
finite, the offered load does not need to be below 1. Given
that the buffer can accommodateb customers (including any
one in service), the loss probabilityp(b), i.e., the long-term
fraction of lost packets, is defined as

p(b) := lim
k→∞

1

k

k
∑

i=1

1{Q(b)(Ai) = b}, (3)
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whereQ(b)(t) is the number of packets in the queue at time
t and the existence of the limit is ensured by stationarity and
ergodicity; recall thatQ(b)(t) is right-continuous and, thus,
Q(b)(Ai) represents the number of customers in the queue
just before theith arrival. In addition, using the ergodicity
and stationarity assumptions it is easy to show that theloss
rate κ(b) satisfies

κ(b) = p(b)/EA.

The loss probability can be lower bounded as in the follow-
ing lemma.

Lemma 2: For anyb > 0,

p(b) ≥ (b + 1)−1e−b/ρ.

Remark 1: If the arrival sequence is assumed to be i.i.d.,
a tighter lower bound can be obtained by analyzing a finite
buffer GI/M/1 queue.

Proof: Let N(t) be the number of arrivals in[0, t] in a
Poisson process of rateµ. Note thatN(Ak) can be interpreted
as the number of potential customers served between the
arrival of (k + 1) customers. Given that the system is in
stationarity, for anyk > 0,

p(b) = k−1
E

[

k
∑

i=1

1{Q(b)(Ai) = b}
]

, (4)

since
p(b) = P[Q(b)(Ai) = b].

Now note that the event{k − N(Ak−1) > b} implies that at
least one packet is lost in the time interval[A1, Ak]. Besides
the non-negativity of the queue att = 0, this follows from the
observation that exactlyk customers arrive in[A1, Ak] and at
mostN(Ak−1) customers depart. Hence, (4) renders

p(b) ≥ k−1
P[k − N(Ak−1) > b]

= k−1
P[N(Ak−1) < k − b].

Settingk = b + 1, results in

p(b) ≥ (b + 1)−1
P[N(Ab) = 0]

= (b + 1)−1
Ee−µAb

that, in conjunction with Jensen’s inequality, yields

p(b) ≥ (b + 1)−1e−µEAb .

The statement follows from the preceding inequality and
EAb = bEA.

Next, we consider a buffer management policy under which
the buffer is divided intos partitions, each being able to
accommodateb customers (including possibly one in service).
Upon an arrival to the system, a customer uniformly at random
chooses a partition of the buffer. If the number of customers
in the chosen partition is less thanb, then the newly arrived
customer is accommodated in the given partition. Otherwise,
one packet is dropped from the partition (at this point we do
not specify whether it is the newly arrived customer or one
of the customers in the partition). Intuitively, since a packet
can be lost even if some partitions are not full, it is clear

that the given buffer management policy results in a higher
loss probability than the one with complete buffer sharing
(single partition of sizesb). The service policy is FCFS. As
in (3), denote the long-term fraction of lost customers with
p(b, s); note that the stationarity and ergodicity of the system
follows from the stationarity and ergodicity of the arrival
sequence, monotonicity of this queueing system and Loynes’
construction [11]. The following lemma estimates losses in
this slightly more complicated system. By setting the number
of partitions to 1 (s = 1), Lemma 3 reduces to Lemma 2.

Lemma 3: For anyb > 0 ands > 0,

p(b, s) ≥ s−b(b + 1)−1e−b/ρ.

Proof: The proof is very similar to the proof of Lemma 2.
Consider a sequence of(b + 1) arrivals to the system. Then,
the probability of loosing a single customer (out of(b + 1))
due to an overflow of a particular partition is bounded from
below by

s−(b+1)(b + 1)−1
Ee−µAb ≥ s−(b+1)(b + 1)−1e−b/ρ.

Thus, the loss probability is lower bounded by

p(b) ≥ s s−(b+1)(b + 1)−1e−b/ρ

= s−b(b + 1)−1e−b/ρ

since a packet can be lost due to an overflow in any one of
the s partitions.

This section is concluded with an estimate on a hitting time
in a single server queue. In particular, we consider a multi-
class FCFS M/M/1 queue with service rateµ and aggregate
arrival rateλ < µ. Classi customers arrive to the system at
Poisson rateλi (the number of classesC is finite),

∑

λi =
λ. Service times are class independent, and the system is in
steady state at timet = 0. Let li(t) be the number of classi
customers in the system at timet (including possibly one in
service). For a setΓ ⊆ {1, . . . , C} define

lΓ(t) :=
∑

i∈Γ

li(t), λΓ :=
∑

i∈Γ

λi.

Let τΓ(b) be the first time that the number of customers in
classes belonging toΓ reaches levelb, i.e.,

τΓ(b) = inf{t > 0 : lΓ(t) ≥ b}.

Given that the system is in stationarity att = 0, it is possible
to haveτΓ(b) = 0. The following lemma provides an estimate
on the overflow timeτΓ(b).

Lemma 4: Let ρ := λ/µ andγΓ := λΓ/λ. For anyT > 0,
we have

P[τΓ(b) < T ] ≤ 2λΓT

(

ργΓ

1 − ρ(1 − γΓ)

)b−1

+ e−λΓT/4.

Proof: Given in [12].
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Fig. 1. A multi-hop path consisting ofN nodes. Each node has limited
buffer space to store packets.

III. M OTIVATION : MULTI -HOP ROUTE

In this section we consider a multi-hop route consisting
of N nodes labeled by the natural numbers, as illustrated
in Fig. 1. Namely, we examineN queues of unit capacity
in tandem with each queue having a finite buffer capable of
storing b packets. Packets arrive to the first queue according
to a Poisson process of rateλ0 < 1. Service times are
exponential with unit mean and independent from the Poisson
arrival process. In addition, the service requirements of asingle
packet are independent in different queues and independent
from the requirements of other packets.

We now lower and upper bound the rateλN at which
packets leave the last nodeN as a function ofN and the
buffer sizeb. Note thatλN represents the throughput of the
route. Lemma 1 allows one to bound the rate at which packets
are lost (dropped due to a full buffer) at each node. By letting
all nodes prior to nodei have an infinite buffer, it is clear, from
Lemma 1, that the loss rate at theith node is upper bounded
by the stationary loss rate in a finite buffer M/M/1 queue with
arrival rateλ0, given bycbλ

b+1
0 , where

c−1
b :=

b
∑

j=0

λj
0

is the normalization constant. This follows from the fact that
the infinite buffer system is reversible, and, hence, the loss
probability is given bycbλ

b
0 [13, Sec. 1.6]. Therefore, the total

rate at which packets are lost in the considered finite buffer
network is smaller thanNcbλ

b+1
0 , rendering the following

lower bound
λN ≥ λ0 − Ncbλ

b+1
0 . (5)

In order to establish an upper bound on the throughput, we
define the following function

fb(x) := x
(

1 − (b + 1)−1e−b/x
)

.

According to Lemma 2, quantityfb(x) can be interpreted as
an upper bound on the maximum throughput of a queue having
finite buffer b, exponential i.i.d. service requirements of unit
mean, and offered loadx < 1. Using the fact that the output
of queuei represents the input for the next queue(i + 1), the
monotonicity offb(x) in x for all b results in

λN ≤ fb(fb(· · · fb(λ0) · · · )),

where the functionfb(·) is iteratedN times. Thus, by the
definition of fb(·), it is easy to obtain an upper bound

λN ≤ λ0

N
∏

i=1

(

1 − (b + 1)−1e−b/λi

)

≤ λ0

(

1 − (b + 1)−1e−b/λN

)N

, (6)
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Fig. 2. The maximum throughput of a multi-hop path (see Fig. 1) as a
function of the buffer space available at each hop under the hop-by-hop
transmission scheme. In this particular example the path consists ofN = 100

nodes.

sinceλi ≥ λi+1 for i = 0, . . . , N − 1. Inequality (6) implies
that, in order to keepλN = Θ(1) as N → ∞, the buffer
size b needs to grow at least logarithmically in the number
of hopsN . However, (5) indicates that havingb = O(log N)
is enough to sustain constant throughput as the length of the
network becomes large.

Next, we turn our attention to the performance of a hop-by-
hop transmission scheme [14, p. 507]. The network topology
is the same as in the preceding analysis (see Fig. 1). However,
a nodei starts packet transmissions only when the buffer at
the downstream node can accommodate an incoming packet.
The caseb = 1 corresponds to the scenario in which a node
can hold only a single packet (possibly in service). Packets
are added to the first node’s buffer as soon as space becomes
available. Analytical results for achievable throughput when
b > 1 are not available. Results of a numerical experiment
provided in Fig. 2 demonstrate the dependency of throughput
on the buffer sizeb. Whenb = 1, the problem of establishing
the maximum throughput reduces to finding the current in an
asymmetric exclusion process [15]. In particular, forb = 1
it is known [15, Theorem 3.28, p. 272] that the maximum
throughput converges to 1/4 asN → ∞. However, it should be
noted that hop-by-hop schemes in networks with more general
topologies are susceptible to deadlocks and mechanisms for
their avoidance need to be implemented; refer to [16] and the
references therein.

IV. W IRELESSNETWORK MODEL

We consider a variation of the standard random network
topology model [1], [2], [6] whereN nodes are randomly
placed in a unit area square (see Fig. 3). More specifically, if
Xi denotes the position of theith node, then the variables
{Xi}N

i=1 are independent and uniformly distributed inside
the unit square. Each node is the source of one flow and
can serve as the destination for some other flows. Namely,
each source node chooses its destination independently and
uniformly among the remaining(N − 1) nodes. This results
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in distances between sources and destinations that areΘ(1)
units on average (recall that the asymptotic notation is defined
in Appendix A). By a flow, say from nodei to j, we
understand the (infinite) collection of packets generated at i
with destinationj. A node generates packets, independently
of other nodes and the network state, according to a Poisson
process with rateλ and attempts to inject those packets into
the network. It is appropriate to think of packet generation
times at nodei as times at which some information becomes
available at nodei and needs to be communicated to nodej. At
any particular node, all packets have i.i.d. service requirements
that are independent from their service requirements at other
nodes, arrival times and, in general, the state of the network.
The distribution of service is assumed to be exponential, which
will be justified in the remainder of this section.

Two models that govern successful packet transmission
between a pair of nodes have appeared in the literature [1]:
physical and relaxed protocol models. It has been estab-
lished [1] that these models are equivalent under the following
two assumptions: (i) the fading factor in the physical model
is greater than 2, and (ii) all nodes use the same power
for transmission (i.e., they have a common range). Under
the relaxed model, a transmission from nodei to nodej is
successful if for some∆ > 0 and allk 6= i, j

d(k, j) ≥ (1 + ∆) d(i, j), (7)

whered(i, j) is the (Euclidian) distance between nodesi and
j. Typically, models in the literature consider slotted systems.
Such an assumption is justified in the presence of a centralized
scheduler, and if (7) is satisfied then a packet is successfully
transmitted from nodei to node j with probability 1 in a
single time slot. We deviate from this model by assuming that
successful transmission fromi to j is still possible under (7)
with the understanding that the amount of time required to
successfully transmit a packet israndom with finite mean.
Such an assumption on the model is justified by the following
arguments:

• Centralized scheduling is unlikely to be feasible in large
ad-hoc wireless networks. Hence, a slotted system is
likely to be replaced with asynchronous transmission that
is a result of distributed scheduling.

• The nodes in the network could have limited power
supply and the physical channel might be highly vari-
able. Thus, in certain time intervals only transmission at
reduced rates (or no transmission at all) is feasible.

• The layered architecture of current networks contributes
to the randomness of transmission times. For example,
transmission errors on the data-link layer as well as
possible collisions on the MAC layer contribute to such
randomness.

As a first order approximation we assume that, under (7),
transmission times are exponentially distributed with mean that
is proportional to the packet size in bits. The exact parameter
of the distribution depends on the details of the transmission
model and is independent ofN . Evaluation of this parameter
is beyond the scope of this paper since we focus only on the
qualitative network behavior as a function of its size.

Under the specified algorithm, we denote byϑN (b) the
long-term throughput that each source-destination pair can
achieve when there areN nodes in the network, each having
storage space of sizeb packets. The units ofϑN (b) arebits/s.
Each source-destination pair is assigned a route and an end-to-
end scheme is defined by packets being transmitted along this
route without taking into account whether there is available
buffer space at the next node. In other words, packets can be
lost due to a full buffer at an intermediate node.

This section is concluded with a remark on packet sizes. We
emphasize thatϑN (b) is a function of the number of packets
that can be stored at each node, not the number of bits. As the
number of nodes in the network increases the packet size might
need to increase in order to keep the payload size constant.
This stems from the fact that one needslog N bits to identify
the destination node, e.g., if each packet carries its node’s
address then each packet has to be at leastlog N bits in size.
Our main result in the next section, Theorem 1, takes into
account that the packet size might be an increasing function
of the network size.

V. SCALABILITY

This section contains the main results of the paper that
characterize the memory scalability of large wireless networks
in the data plane. In particular, we study the throughput
dependency on the network size in the presence of limited
buffer space at individual nodes. Lets denote the packet size
in bits.

Our first result indicates that achievingΘ(1/
√

N) through-
put per source-destination pair is not feasible when nodes
have a fixed amount of buffer space. Informally, achiev-
ing Θ(1/

√
N) throughput requires that only short hops are

used [1], [5] resulting in packets traversing a large (Θ(
√

N))
number of hops. Hence, given that losses are inevitable (see
Lemma 2), buffer sizes need to increase with route lengths,
i.e., the network size. In the following proposition and Propo-
sition 2 we only assume that the packet generation times
are stationary and ergodic (see Lemma 2). However, in our
main Theorem 1 we assume Poisson generation of packets, as
specified by our model in Section IV.

Proposition 1: Assume that packet transmission times are
exponential random variables with means/µ. If each source
generates packets at rate not higher thanc/(s

√
N) (packets/s),

then, in order to achieveε/
√

N throughput (bits/s) per source-
destination pair (c ≥ ε), buffer space atΘ(N) nodes need to
scale asΩ(log N) in N almost surely (a.s.).

Proof: We start by establishing that, if all source-
destination pairs achieve at leastε/

√
N bits/s throughput for

someε > 0, then there existsδ > 0 such that at leastδN
nodes have utilization higher thanδ (for all N large enough).
To this end, if at mostδN , δ > 0, nodes have utilization higher
thanδ, then the long-term rate at which the network processes
packets is bounded from above with

((1 − δ)N · δ + δN · 1)µ/s = (2δ − δ2)µN/s packets/s,

or equivalently(2δ − δ2)µN bits/s. On the other hand, if all
source-destination pairs achieve at leastε/

√
N bits/s through-

put for someε > 0, then the total rate at which packets are



6

injected in the network must be at leastε
√

N/s. This, together
with the fact that for a sufficiently smallζ > 0 at least a quarter
of the flows traverse at leastζ

√
N hops a.s. (see Lemma 7 in

Appendix C), implies the total network offered load is at least

ε
√

N

s
· 1

4
ζ
√

N =
εζN

4s
packets/s a.s.,

or equivalently εζN/4 bits/s. Since the amount of work
processed in the network must be at least equal to the amount
of work generated by packets delivered to their destinations,
one has

(2δ − δ2)µ ≥ εζ/4.

Hence, the existence ofε > 0 implies δ > 0 a.s..
Next, we argue about the buffer space. Letgb(x) be the

lower bound on the loss rate (packets/s) at a node with
utilization x and buffer spaceb packets. By Lemma 2, one
has

gb(x) =
µx

s
(b + 1)−1e−b/x,

since utilizationx implies the arrival rate ofµx/s. Given the
preceding discussion, the total network loss rateκN satisfies
a.s.

κN ≥ δNgb(δ) =
µδ2

s
N(b + 1)−1e−b/δ packets/s. (8)

The total number of packets delivered to destinations is equal
to the number of packets injected into the network minus the
number of lost packets, i.e.,

c

s
√

N
N − κN ≥ ε

s
√

N
N.

The preceding equation and (8) yield an implicit estimate onb

(b + 1)−1e−b/δ ≤ c − ε

µδ2
√

N

from which it is clear thatb = Ω(log N) a.s..
In the rest for the paper we construct a protocol that is

capable of achieving a high throughput, proved in our main
Theorem 1, with buffers of constant size. The key component
of our protocol is a local buffer coordination that we motivate
in the upcoming Proposition 2.

For constructing our protocol, it is sufficient to consider
the parameterized scheme introduced in [2]. Namely, the unit
square is divided intoa−1

N squares of size
√

aN ×√
aN (for

convenience we assume that1/
√

aN is an integer so that
the squares cover the unit square exactly). See Fig. 3 for an
illustration. The created squares are termed cells. A packet
is delivered from its source to the destination by relaying it
between cells. A packet can be sent from a cell only to one
of its four neighboring cells. No multi-cell hops are allowed.
Given this cell based scheme, the next lemma states that each
cell in the network can transmit packets to its neighbors at a
fixed rate independent of the state of other cells. Recall that
s denotes the packet size (in bits).

Lemma 5: All cells in the network can transmit packets
simultaneously to one of their neighboring cells with trans-
mission times being independent exponential random variables
with mean s/µ that are independent ofN , for someµ ∈
(0,∞).
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Fig. 3. The transmission algorithm is parametrized byaN that defines the
cell size. Only transmissions between neighboring cells are allowed.

Remark 2: The parameterµ can be interpreted as a per-bit
service rate.

Proof: The proof follows from the model described
in Section IV and the fact that only a finite number of
cells interfere with a given cell under the protocol model [2,
Lemma 2].

Next, we discuss an issue that arises only due to the
finiteness of the buffer space in the network. The network
performance depends on whether a buffer coordination algo-
rithm is deployed. Such an algorithm operates in each cell
and its goal is the efficient use of buffer space in cells. To
motivate a potential need for such an algorithm, we consider
the following example. Suppose that a node in an adjacent
cell has a packet that requires relay through a given cell.
The node that has the packet can, in principle, forward it
to any of the nodes in the cell. However, if the next relay
node is chosen without consideration of buffer contents, an
unnecessary packet loss can occur. Namely, a packet could
be forwarded to a node that can not accommodate any more
packets due to a full buffer. A buffer coordination algorithm
assists nodes in adjacent cells in forwarding packets to nodes
that have available buffer space, whenever possible. In that
case a packet loss occurs only if no node in a cell has buffer
space available. The design of such an algorithm is beyond
the scope of this paper, given our focus on the fundamental
qualitative behavior of the network as a function of its size.
However, we point out that it could be designed using a token
approach (when the whole cell also implements the FCFS
scheduling policy). In this case the amount of memory required
to implement the buffer coordination protocol at each node can
be limited to the size of a single packet. More sophisticated
approaches are possible as well. Although we consider only a
protocol that fully utilizes the buffer at each cell, we notethat
results from the load balancing literature suggest that protocols
which examine the buffer contents of a small number of nodes
before forwarding/storing a packet are expected to perform
reasonably well.
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The following proposition characterizes the network per-
formance with no buffer coordination. In contrast to the case
in which nodes have infinite buffer space, it is important to
further specify the routing policy between two cells. In par-
ticular, we assume that when a packet is transmitted between
neighboring cells, it is forwarded to a random node in the
destination cell. In [1] (see also [2]) it was shown that under
the straight line routing scheme and centralized scheduling it
is possible to achieveΘ(1/

√
N log N) throughput for every

source-destination pair, i.e.,

lim
N→∞

P[ϑ(∞) = c/
√

N log N is feasible] = 1.

In particular, one needs to chooseaN = Θ(log N/N) [2].
The following proposition motivates the need for a buffer
coordination protocol within cells. Namely, without such a
protocol, otherwise feasibleΘ(1/

√
N log N) throughput can

not be achieved with limited buffer space at nodes.
Proposition 2: Assume no buffer coordination andaN =

Θ(log N/N). If each source generates packets at rate
not higher thanc/(s

√
N log N), then in order to achieve

ε/
√

N log N bits/s throughput per source-destination pair
(c ≥ ε) the buffer spaces atΘ(N) nodes need to scale
as Ω(log N/ log log N), i.e., for b = o(log N/ log log N) as
N → ∞ and anyc > 0

lim
N→∞

P[ϑN (b) = c/
√

N log N is feasible] = 0.

Remark 3: Comparing Propositions 1 and 2 yields that
without a buffer coordination protocol a

√
log N reduction on

rate results only inlog log N reduction in the required buffer
size.

Proof: The proof is very similar to that of Proposition 1.
However, the focus of the analysis is on cells rather than nodes.
Using the same arguments as in the proof of Proposition 1, it
is straightforward to argue that if all source-destinationpairs
achieveε/

√
N log N bits/s throughput for someε > 0, then

there existsδ > 0 such that the eventG := {at leastδa−1
N =

δN/ logN cells have utilization higher thanδ} obeys

lim
N→∞

P[G] = 1.

The choice ofaN yields (see Lemma 8 in Appendix C) that
there existsγ < ∞ such that

lim
N→∞

P[B] = 1,

where eventB :={each cell contains at mostγ log N nodes}.
Without a buffer coordination algorithm in place, the loss rate
in a cell with at mostγ log N nodes and utilization greater
thenx, using Lemma 3, is lower bounded by

gb(x) =
µx

s
(γ log N)−b(b + 1)−1e−b/x packets/s,

whereb is the buffer space at each node and the number of
partitions is in fact equal to the number of nodes. Further-
more, the following lower bound holds for the total loss rate
(packets/s) in the network on eventG ∩ B:

κN ≥ δa−1
N gb(δ) =

µδ2N

s log N
(γ log N)−b(b + 1)−1e−b/δ. (9)

The total number of packets delivered to their destinationsis
equal to the number of packets injected into the network minus
the number of lost packets, i.e.,

c

s
√

N log N
N − κN ≥ ε

s
√

N log N
N.

Hence, the preceding inequality and (9) imply that on event
G ∩ B we have

(γ log N)−b(b + 1)−1e−b/δ ≤ c − ε

µδ2
√

N log N
.

Rewriting the left-hand side of the preceding inequality as

e−b log log N−log(b+1)−b(1/δ+log γ)

and the right-hand side as

c − ε

µδ2
e−

1
2 log N− 1

2 log log N ,

it is easy to conclude thatb needs to scale at least as
Ω(log N/ log log N).

The next theorem is the main result of the paper. It states
that with a buffer coordination algorithm in place, a small re-
duction in the throughput fromΘ(1/

√
N) to Θ(1/

√
N log N)

allows for a buffer scalable algorithm. The result follows from
the fact that the cell size which allows forΘ(1/

√
N log N) is

sufficiently large to contain enough nodes, and, thus, enough
buffer space that ensures low loss rates when the buffer is
utilized efficiently. In particular, each cell contains buffer space
capable of storingΘ(log N) packets. Recall that the units of
ϑN (b) are bits/s.

Theorem 1: There exists an end-to-end buffer-scalable al-
gorithm, i.e., there existb∗ andc > 0 such that

lim
N→∞

P[ϑN (b∗) = c/
√

N log N is feasible] = 1.

Remark 4: It is apparent from the proof that in order to
achieveΘ(1/

√
N log N) bit/s throughput it is sufficient if

each node contributes a single packet buffer space for storing
forwarded packets.

Remark 5: The model can be somewhat relaxed. In partic-
ular, each node does not need to communicate with only one
other node. Other communication patterns are possible and the
theorem remains valid as long as the load on each cell remains
bounded.

Proof: To prove the theorem it suffices to construct a
protocol that achievesΘ(1/

√
N log N) throughput per source-

destination pair given that each node has a buffer that can
accommodate onlyb∗ packets. We stress that the algorithm
considered in the proof is not the most efficient one, and it is
devised to allow for analytical tractability to demonstrate the
desired qualitative network behavior.

The algorithm operates as follows:

• Routing policy. Packets are forwarded from their sources
to destinations along cells using the column-first rout-
ing [17]. See Fig. 3 for an example of how packets from
nodei are routed to nodej. Note that under such a routing
scheme the number of cells each packet traverses is at
most2/

√
aN .
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Fig. 4. Under the considered algorithm each cell can be modeled as a
set of four finite buffer queues. Each queue forwards packetsto only one
of the neighboring cells. There is no bandwidth and buffer space sharing
(multiplexing) between the four queues. The queues can forward packets
to one of the three queues in the neighboring cell (or the finaldestination)
depending on packet’s route.

• Buffer management policy. Buffer space at each node
is divided into two logical parts: one packet space is
reserved for storing forwarded packets while the rest of
the buffer ((b∗−1) packet spaces) is designated for storing
the node’s own packets. The buffer space designated
for forwarded packets at all nodes in a given cell is
managed by that cell’s buffer coordination algorithm. The
buffer coordination algorithm creates four virtual buffers
of equal size (up to a single packet space). In each one of
these four virtual buffers, packets destined for the same
cell are stored, e.g., in the first virtual buffer packets to
be forwarded to the up cell are stored, in the second
virtual buffer packets to be forwarded to the right cell
are stored, etc. All packets to be forwarded to the same
cell are transmitted in a FCFS manner.

• Bandwidth sharing policy. Bandwidth available for wire-
less communication is divided into four equal parts (using
one of the available technologies, e.g., FDMA). Each
quarter of the bandwidth can be used throughout the
network (by all cells) to forward (transmit) packets only
in one direction (up, right, down, or left). Such a policy
corresponds to a scheme in which each cell consists of
4 virtual servers, each forwarding packets to one of the
neighboring cells; see Fig. 4 for an illustration. Note
that according to Lemma 5 each virtual server is able
to transmit packets at a fixed non-zero rate.

• Frame based operation. Time is divided into frames of
lengthT time units. At the beginning of each frame the
network is initialized in a random state, as described
below (see Fig. 5). During a frame packets are forwarded
according to the above rules until the end of the frame
is reached or a discard event occurs. If the end of the
frame is reached, all packets that remain in the network
at that moment are dropped. If the discard event occurs
before the end of the frame, all packets in the network are

T

I F F FI I

Fig. 5. The algorithm uses frames of fixed lengthT time units to transport
packets. Each frame (F) is preceded by an initialization period (I).

dropped and no new packets are accepted to the network
until the beginning of the next frame. The discard event
occurs when in one of the cells a packet arrival occurs
and the newly arrived packet can not be accommodated in
the buffer according to the buffer management policy, i.e.,
the packet has to be dropped. For example, if a node has
(b∗ − 1) of its own packets in the buffer and it generates
a new packet, then the discard event occurs.

• Initialization. The random state is the steady state of the
network with the same topology and traffic flows but
with each node having an infinite buffer. A probabilistic
description of such a state is well known since the infinite
buffer network admits a product-form solution. The pack-
ets with which the network is initialized contain dummy
payloads; however, they are treated by the network in
the same way as regular packets. Note that due to the
initialization procedure the frame can be discarded right
at its beginning. Full details of the initialization procedure
are outlined in Appendix B. Here we just point out that
the time TI required to initialize the network satisfies
ETI = o(sN3) asN → ∞.

Now, the remainder of the proof is divided into three parts.
Part I. We estimate the load and amount of buffer space

available in each cell. To complete the description of the
scheme, the size of cellsaN needs to be specified. We choose
aN to be the smallest function ofN such that each cell
contains at leastβ log N nodes for someβ > 0. Let ki denote
the number of nodes in theith cell. By Lemma 8 of Appendix
C, for every fixedβ > 0 there existsa(β) > 1 such that if
aN = a(β) log N/N , then

lim
N→∞

P[k↓ > β log N ] = 1, (10)

wherek↓ := min1≤i≤a−1
N

ki is the minimum number of nodes
contained in a cell. Lemma 8 also states that there exists a
finite constantγ > β (independent ofN ) such that

lim
N→∞

P[k↑ < γ log N ] = 1, (11)

wherek↑ := max1≤i≤a−1
N

ki is the maximum of the number
of nodes contained in a cell. Let each node generate packets at
Poisson rateλ = c/(s

√
N log N), wherec > 0 is a constant

independent ofN , and s is the packet size that can depend
on N . Lemma 9 of Appendix C allows for an estimate of a
potential loadρi of each cell, i.e., the rate at which packets
with cell i being in their route are injected in the network.
Formally,

ρi =
λs

µ

∑

j

1{i∈rj},

whererj is a collection of cells a packet originating in the
jth cell needs to traverse to reach its destination, andµ is
the rate at which packets are served (transmitted to the next
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cell). Equivalently,ρi = λsKi/µ, whereKi is the number of
lines that cross theith cell when all sources are connected to
their destinations using the column-first rule (see Fig. 3 for an
example). Lettingρ↑ denote the maximum potential load

ρ↑ := max
1≤i≤a−1

N

ρi ≤
λs

µ
max

1≤i≤a−1
N

Ki,

and invoking Lemma 9 yield

lim
N→∞

P[ρ↑ ≤ 5
√

aNNλs/µ]

= lim
N→∞

P[ρ↑ ≤ 5c
√

a(β)/µ] = 1, (12)

since aN = α(β) log N/N and λ = c/(s
√

N log N). Now,
define the following event

X :=

{

β log N < k↓ ≤ k↑ < γ log N, ρ↑ ≤ 5c
√

a(β)

µ

}

,

and the corresponding conditional probability measure

PX [·] := P[ · |X ].

Informally, eventX indicates that each cell in the network is
not overloaded and there exists enough buffer space in each
cell. From limits (10), (11) and (12) it follows that

lim
N→∞

P[X ] = 1. (13)

Equation (13) allows one to consider only networks that are
not overloaded and have “sufficient” buffer space.

Part II. Now we estimate the probability of an arbitrary
frame being discarded. Letvi(t), 1 ≤ i ≤ N , be the number
of packets at timet in the ith node buffer that have nodei
as their source. Clearly, we havevi(t) ≤ b∗ − 1 since each
node can accommodate at most(b∗ − 1) of its own packets.
Furthermore, letuij(t), 1 ≤ i ≤ a−1

N , 1 ≤ j ≤ 4, be the
number of packets at timet in the jth virtual buffer of theith
cell that originated in other cells. Without loss of generality
consider the frame over the time interval[0, T ] and define

E := {vi(t) < b∗ − 1, ∀i, ∀t ∈ [0, T ]}
∩ {uij(t) < b, ∀i, ∀j, ∀t ∈ [0, T ]},

where b := ⌊β log N/4⌋. An important observation is that
on eventE no packet losses occur in the original network
during the time interval[0, T ], which yields that the frame
over the interval[0, T ] is not discarded. Equivalently,PX [E ] is
the probability of a frame not being discarded. The following
lemma, whose proof can be found in Appendix D, provides
an estimate of this probability of interest. The dependency
of PX [E ] on parameterβ (see the definition of eventX ) is
through quantityb.

Lemma 6: If ρ := 5c
√

α(β)/µ < 1, then

PX [E ] ≥ 1 −
(

1 +
2µT

s

)

[

N

(

λs/µ

1 − ρ

)b∗−1

− 4a−1
N ρb

]

− (N + 4a−1
N )e−λT/4.

Part III. Next we consider an arbitrary packet in the original
finite buffer network and estimate the conditional probability

p, given eventX , of the packet being delivered to its destina-
tion. LetD be the total amount of time the packet spends in the
network given that it is eventually delivered to its destination.
On eventX , the quantityD can be upper bounded as follows

D ≤
2b∗γ log N/

√
aN

∑

i=1

Si,

where {Si}i≥1 is a sequence of packet service times, i.e.,
an i.i.d. sequence of exponential random variables with mean
s/µ. The bound is due to the finiteness of buffers throughout
the network, i.e., the fact that only a limited number of packets
can be served between the considered packet’s arrivals and
departures. On eventX the amount of buffer space available
at each cell is upper bounded byb∗γ log N and each packet
traverses at most2/

√
aN cells. Then the conditional (on

X ) probability p that an arbitrary packet is delivered to its
destination is lower bounded by

p ≥ qPX [E , U > D] ≥ q(PX [E ] − PX [U ≤ D]),

whereU is a uniformly distributed random variable on[0, T ]
and q := T/(T + ETI). Effectively, the bound states that
if the frame during which the packet is generated is not
discarded and the packet generation time is not close to the
end of the frame, then the packet is delivered successfully.
The pre-factorq is due to the fact that packets do not reach
their destinations if they are generated during the initialization
period. The random variableU represents the amount of time
between packet generation and the end of the current frame.
The uniform distribution ofU yields an easy bound on the
second term in the preceding equation

PX [U ≤ D] ≤ ED

T
=

2sb∗γ log N

µT
√

aN
.

The last inequality and Lemma 6 render

1 − p

q
≤
(

1 +
2µT

s

)

[

N

(

λs/µ

1 − ρ

)b∗−1

+ 4a−1
N ρb

]

+ (N + 4a−1
N )e−λT/4 +

2sb∗γ log N

µT
√

aN
. (14)

The preceding equation highlights the trade-off present in
selecting the frame lengthT . The first term on the right-hand
side is linear inT while the last one is inversely proportion
to T . In other word, the largerT , the higher probability of a
frame being discarded; however, smallT limits the ability of
packets to reach their destinations by the end of the frame.
SettingT = sN3 results inq → 1 asN → ∞. By letting b∗

be sufficiently large (yet finite) andc be sufficiently small, we
have that, asN → ∞,

TN

s

(

λ/µ

1 − ρ

)b∗−1

=
TN

s

(

c/(µ(1 − ρ))√
N log N

)b∗−1

= o(1),

T ρb

s aN
=

TN

α(β) s log N

(

5c
√

α(β)

µ

)⌊β log N
4 ⌋

= o(1),

(N + a−1
N )e−λT/4 =

(

N +
N

log N

)

e
− cT

4s
√

N log N = o(1),
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s logN

T
√

aN
=

s
√

N log N

T
√

α(β)
= o(1).

Combining the above estimates with (14) it is easy to con-
clude that the conditional probability of the packet not being
delivered satisfies, asN → ∞,

1 − p = o(1).

Finally, the proof of the theorem is completed by combining
the preceding estimate onp, λ = c/(s

√
N log N) and (13).

We conclude this section with an observation that whenaN

is chosen to be larger thanΘ(log N/N) the scheme remains
buffer scalable, albeit it achieves lower throughput [2]. The
buffer scalability follows from the fact that the larger thecells,
the more buffer space is available at each cell, and, hence, one
can expect a lower probability of loss.

VI. CONCLUDING REMARKS

Large and rapidly increasing networking infrastructures
place network scalability as the central problem in designing
next generation communication protocols and architectures.
While this problem was addressed by practitioners and system
engineers, there has been, in particular in the context of finite
buffers, little attempt to establish its mathematical foundations.
The need for theoretical investigation is even more necessary
since conducting experimental studies on large-scale networks
is very expensive or practically infeasible.

A straightforward, albeit very inefficient, way to alleviate
the issue of scalability is to build nearly fully connected
networks where each node is only a few hops away from any
other node. Hence, the protocols designed for small networks
are likely to extend well to this large highly connected
network. However, this is not even an option for wireless
ad-hoc networks since achieving theoretical capacity bounds
requires that packets traverse long routes. Even the long routes
would not be a problem in a world of perfect synchronization
without randomness. However, as we argued in the paper,
packet transmission times are inherently random due to the
multitude of effects, ranging from the physical, data-linkto
MAC layer. This leads to the strong dependency between the
loss probability on each hop and the network size. Namely,
the longer the route, the smaller losses on each hop should be
in order to maintain constant end-to-end performance.

In the context of static wireless ad-hoc networks, we demon-
strate that the network can not operate at its capacity limit
while maintaining a constant buffer space in each node. How-
ever, maybe somewhat surprisingly, we construct a provably
scalable protocol that obtains just a slightly smaller throughput
with fixed buffers, capable of storing only a few packets.
This understanding is especially important for wireless sensor
networks that operate with very limited resources.

Scalability of protocols can be studied in mobile wireless
networks [18] as well. Such networks can potentially achieve
much higher throughput ofΘ(1) by exploiting node mobil-
ity [18]. The key idea for increasing the throughput is to
limit the number of hops packets traverse [18]; see also [2],
[19] for studies of throughput-delay trade-off in networkswith
mobility. With finite buffers, overflows can occur not only

because of the random service times, as describe in this paper,
but also because of the random mobility of nodes. Although
details differ depending on the mobility model, the type of
algorithm studied in [18] appears not to be buffer scalable
since it is expected that each node needs to have buffer
space of sizeΘ(N) packets. By considering the family of
algorithms devised in [2], [3], [4] it is possible to determine
the throughput that can be sustained with limited resourcesat
each node.
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APPENDIX

A. Asymptotic notation

Throughout the paper we use standard notational conven-
tions. For two nonnegative functionsg(·) andf(·): (i) g(n) =
Θ(f(n)) means that there exist positive constantsc1, c2 and
n0 such thatc1f(n) ≤ g(n) ≤ c2f(n) for all n ≥ n0, (ii)
g(n) = O(f(n)) means that there exist positive constants
c and n0 such thatg(n) ≤ cf(n) for all n ≥ n0, (iii)
g(n) = Ω(f(n)) means that there exist positive constantsc
andn0 such thatcf(n) ≤ g(n) for all n ≥ n0.

B. Initialization procedure

In this section we discuss an initialization procedure for the
transmission scheme described in Section V. We remark that
there is no unique procedure that achieves the desired goal.
Exact details of different procedures depend on the system
architecture and nodes capabilities.

Since the network needs to be initialized in the steady-
state of the infinite buffer network that admits a product-form
solution, a sequential procedure that initializes one queue at
a time suffices. Therefore, we focus on a single virtual queue
(i.e., one of the four virtual queues in a cell – see Fig. 4).

We assume that each packet contains its destination address
so that nodes (cells) do not need to waste memory on main-
taining routing tables. However, we do assume that nodes have
access to a source of randomness. Each node in the network
can be identified with a number1 ≤ m ≤ N . In addition, each
cell can be identified by a pair(i, j), 1 ≤ i, j ≤ 1/

√
aN , with

i increasing from left to right andj increasing from bottom
to top.

The first step is to establish the utilization of the queue,
i.e., the number of flows served by the queue. A node in
the cell of interest broadcasts its address(i, j) and a number
between 1 and 4 that identifies the queue of interest. After that,
all nodes sequentially indicate, using labelsm to establish
order, whether their flows utilize the queue. Note that for
any particular flow, defined by its source and destination
coordinates, it is easy for a queue to compute whether this flow
utilizes it or not. Therefore, simple counting of the numberof
flows that traverse a particular node establishes the utilization
since all nodes generate packets at the same Poisson rate. This
step of the procedure takesO(N) time units to execute.
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The second step is to generate a random number of dummy
packets and place them at right parts of the virtual buffer.
Dummy packets are generated sequentially. Using a source
of randomness, a node in the cell generates Bernoulli (0-
1) random variables with its parameter being the queue’s
utilization until 0 occurs. If a 1 is generated, one of the
nodes that have packets forwarded by the queue is chosen at
random and that queue’s destination is made the destination
of the dummy packets. The dummy packet is stored in the
virtual buffer according to the buffer management policy. If
the dummy packet can not be stored, then the procedure is
completed with the frame being discarded. Using a random
walk on the nodes, a random node that uses the queue for
forwarding can be obtained in expected timeO(

√
N), and,

thus, the second step can be executed inO(sN3/2) time units.
Upon combining the two steps, it is apparent that the

expected time to initialize the network is asymptotically
O(sN5/2).

C. Auxiliary results

This subsection contains three results on the wireless net-
work model described in Section IV. The first one provides
a lower bound on the number of hops in the case when
all source-destination pairs are able to achieve the maximal
possible throughputΘ(1/

√
N). Effectively, the lemma is a

consequence of the relaxed protocol model defined by (7).
Lemma 7: If each source-destination pair achievesc/

√
N

bits/s throughput (with packets of sizes), then at least 1/4 of
all flows traverse at leastδ

√
N hops a.s. for some sufficiently

small δ > 0.
Proof: Given in [12].

The next lemma estimates the number of nodes in cells as
a function of the cell size. Consider a unit square partitioned
into cells of equal areaaN , as in Figure 3, and recall that
(
√

aN )−1 is assumed to be an integer. Nodes are uniformly
distributed in the unit square withki being the number of
nodes in theith cell (where the labeling of cells is arbitrary).

Lemma 8: Let aN > a log N/N . If a > δ and

a − δ(1 + log(a/δ)) > 1,

then

lim
N→∞

P

[

min
1≤i≤a−1

N

ki > δ log N

]

= 1.

On the other hand, ifaN < a logN/N , then there existsγ <
∞ such that

lim
N→∞

P

[

max
1≤i≤a−1

N

ki < γ log N

]

= 1.

Proof: Given in [12].
The last result of this subsection provides an estimate of cell

loads under the column-first routing. Consider the unit square
partitioned into square cells of sizeaN as in Fig. 3. Let each
source-destination pair be connected with a line that stems
from the column-first routing, and letKi be the number of
such lines that cross theith cell. Namely, if Xi = (xi, yi)
and Xj = (xj , yj) are the coordinates of a source and

destination, respectively, then the line connecting thosetwo
nodes is defined by three points:(xi, yi), (xi, yj), and(xj , yj);
e.g., see Fig. 3. The following lemma bounds the number of
lines connecting source-destination pairs that cross a single
cell. A similar result was established in [2] for a unit torus
and the straight-line routing scheme.

Lemma 9: If aNN > 1 andaN = o(1) asN → ∞, then

lim
N→∞

P

[

max
1≤i≤a−1

N

Ki > 5
√

aNN

]

= 0.

Proof: Given in [12].

D. Proof of Lemma 6

Consider a network of the same topology and traffic flows
as the original one, however, with virtual buffers in each cell
having infinite buffer space. As before, the buffer policy is
FCFS within each virtual buffer. The network is in stationarity
at time t = 0. Given this scheduling policy and the Poisson
assumption on times when packets enter the network, we
observe that the network of virtual buffers is in fact a multi-
class Jackson network (also known as a Kelly network) that
admits a product-form solution [20, p. 101], [21, p. 123]. A
customer (packet) class corresponds to a particular flow in the
network. In this new infinite buffer network, packets belonging
to any flow and departing any cell form a Poisson stream.

Define quantitiesv∞i (t) and u∞
ij (t) to correspond to vari-

ablesvi(t) anduij(t), respectively, that are previously defined
for the finite buffer network. Namely, letv∞i (t), 1 ≤ i ≤ N , be
the number of packets originated at nodei that are at timet in
ith node buffer in the infinite buffer network. Likewise, define
the collection of quantitiesu∞

ij (t), 1 ≤ i ≤ a−1
N , 1 ≤ j ≤ 4.

According to the initialization procedure, we have

vi(0) = v∞i (0) ∧ (b∗ − 1), (15)

uij(0) = u∞
ij (0) ∧ b, (16)

whereb = ⌊β log N/4⌋.
In order to estimatePX [E ], we introduce two events:

I := {vi(0) < b∗ − 1, ∀i} ∩ {uij(0) < b, ∀i, ∀j},

E∞ := {v∞i (t) < b∗ − 1, ∀i, ∀t ∈ [0, T ]}
∩ {u∞

ij (t) < b, ∀i, ∀j, ∀t ∈ [0, T ]}.

The first eventI, defined for the finite buffer network, indi-
cates whether the frame[0, T ] is discarded right att = 0. The
second eventE∞ indicates that quantitiesv∞i (t) and u∞

ij (t)
remain bounded in the infinite buffer network during the whole
duration of the frame. Next, it is straightforward to relatethe
conditional probabilitiesE , E∞ andI as follows:

PX [E ] = PX [E , I] = PX [E∞, I]

≥ 1 − PX [E∞] − PX [I], (17)

whereE∞ andI indicate the complementary events ofE∞ and
I, respectively. The second equality in the preceding equation
is due to the fact that in the absence of losses in the finite
buffer network the two networks behave identically, i.e., all
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the packet transitions between cells are the same. Bounding
the conditional probability of eventI using (15) and (16) is
easy since the infinite buffer network is in stationarity at time
t = 0:

PX [I] ≤
N
∑

i=1

PX [v∞i (0) ≥ b∗] +

a−1
N
∑

i=1

4
∑

j=1

PX [u∞
ij (0) > b]

≤ N

(

λs/µ

1 − ρ

)b∗

+ 4a−1
N ρb+1. (18)

In the preceding relationship, it is important to consider only
the conditional probabilities on eventX since on eventX
we have that each queue in the network is not overloaded
(ρ < 1) and results for stable Kelly networks apply. The
bound is due to the fact that the number of customers in each
queue is geometrically distributed where the parameter of the
distribution is its load. In addition, each packet is of a certain
class with probability that is equal to the ratio of arrival rates
of this particular class and all classes together.

To analyze the probability of eventE∞ we introduce two
families of stopping times

τi(b
∗) := inf{t > 0 : v∞i (t) ≥ b∗},

τij(b) := inf{t > 0 : u∞
ij (t) > b},

i.e., τi(b
∗) is the first time the number of packets originated

in nodei reaches levelb∗ in the ith node buffer, given that the
system is in stationarity at timet = 0. Then the union bound
renders

PX [E∞] = PX

[

min
1≤i≤N

τi(b
∗) ∧ min

1≤i≤a−1
N

, j=1,...,4
τij(b) < T

]

≤
N
∑

i=1

PX [τi(b
∗) < T ] +

a−1
N
∑

i=1

4
∑

j=1

PX [τij(b) < T ].

The routing, buffer management and bandwidth sharing poli-
cies ensure that the infinite buffer network is feed-forward.
Namely, queues in the network can be labeled in such a way
that each packet traverses queues with an increasing order of
labels (see Fig. 6). This fact allows one to estimate the hitting
times since input processes to individual virtual buffers and
the node’s designated local buffers are independent of their
states. In particular, applying Lemma 4 yields the following
estimate

PX [E∞] ≤2NλT

(

λs/µ

1 − ρ

)b∗−1

+ Ne−λT/4

+ 8a−1
N ρµTs−1ρb + 4a−1

N e−λT/4, (19)

where we used the fact that on eventX all queues have their
load bounded from above byρ and the fact that if the arrival
rate of packets from outside the cell is non-zero then it is
at leastλ. Combining (17), (18) and (19) withρ < 1 and
λ < µ/s yields the desired result

PX [E ] ≥ 1 − (1 + 2µT/s)

[

N

(

λs/µ

1 − ρ

)b∗−1

+ 4a−1
N ρb

]

−(N + 4a−1
N )e−λT/4.

This concludes the proof of the lemma.
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Fig. 6. Queues in the network (see Fig. 4) can labeled with integers in such a
way that each packet traverses queues with an increasing order of labels. The
figure shows a labeling for a network that consists of 9 cell, i.e., 36 queues.
Column-first routing is used. For example, the route from thelower-left cell
to the upper-right cell is 1-2–25-26.
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