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ABSTRACT
The optimality of shortest remaining processing time (SRPT) and
its variants with respect to minimizing mean sojourn time is well
known. However, higher-order statistical properties of customer
sojourn times are also very important. We therefore consider al-
ternative scheduling approaches in queueing systems with the goal
of providing mean sojourn times close to those under SRPT while
also providing better higher-order statistics. Our analysis includes
deriving expressions for the mean, variance and tail asymptotics of
the customer sojourn time distribution in these alternative queueing
systems. This mathematical framework is then exploited to deter-
mine the control parameters of these alternative scheduling policies
in order to optimize performance functions that combine the mean
and higher-order statistics of sojourn times in a general and flexi-
ble manner. Our results show that one of the alternative scheduling
policies provides the greatest flexibility with respect to optimiz-
ing these general sojourn time objective functions, and in particular
can achieve the desired goal of mean sojourn times comparable to
SRPT with superior higher-order statistics.

1. INTRODUCTION
Stochastic models and related queueing-theoretic results have

played a fundamental role in the design of scheduling strategies
of both theoretical and practical interest. This has been especially
the case in single-server queueing systems; refer to [16, 44, 43,
45, 27, 52] and the references cited therein. In particular, it is
well known that scheduling the service of customers according to
the shortest remaining processing time (SRPT) policy and its vari-
ants minimizes the mean sojourn time of customers [43, 27, 52].
Some more recent studies have further argued that SRPT does not
unfairly penalize large customers in order to benefit small cus-
tomers, and hence these studies propose the use of SRPT to im-
prove performance in Web sites (e.g., [14, 4, 20] and database sys-
tems (e.g., [33]).

On the other hand, as Schrage and Miller point out in their orig-
inal study [44], the SRPT policy can raise several difficulties for
a number of important reasons. Such difficulties can arise from
the inability to accurately predict service times, or the complicated

nature of implementing the preemptive aspect of the SRPT policy
which requires keeping track of the remaining service times of all
waiting customers as well as of the customer in service. Normally,
preemption also incurs additional costs, and thus one might want to
avoid the preemption of customers in service whose remaining ser-
vice time is not much larger than that of a new arrival. The results
of a recent study further suggests that the workloads found at vari-
ous commercial Web sites consist of multiple classes of customers
based on the different service requirements of these customers [18].

We therefore consider a corresponding multiclass (fixed) pri-
ority policy as an alternative to SRPT for scheduling the service
of customers. Our objective is to alleviate some of the potential
difficulties with SRPT while achieving mean sojourn times close
to those obtained under SRPT. In fact, Schrage and Miller [44]
consider scheduling policies related to multiclass (fixed) priority
queues (with two classes) in order to alleviate some of the poten-
tial difficulties with SRPT while achieving mean sojourn times that
attempt to approximate those under SRPT. This approach has the
added advantage that the precise service time of each customer is
not required. Instead, one only needs to be able to partition the
workload into classes where the service times within each class are
relatively similar and the service times across classes are relatively
different. This partitioning of the workload into multiple classes
also provides an additional form of control that can be used to de-
termine the optimal multiclass priority policy and its parameters.

On the other hand, minimizing the mean sojourn time of cus-
tomers is only one of several important scheduling objectives, and a
priority policy that yields a small gain in first moment sojourn times
can perform very poorly in terms of higher-order statistics [52],
such as the second moment and tail distribution asymptotics. In
particular, it often has been argued that a system with reasonable
and predictable sojourn times may be more desirable than a system
that is faster on average but exhibits high variability and/or large
deviations from the mean [11, 28, 12, 46]. The original study of
Schrage and Miller [44], however, does not consider any of these is-
sues related to the higher-order statistics of customer sojourn times.

We therefore consider versions of the corresponding multiclass
priority queue, using a first-come first-serve (FCFS) ordering within
each class, as alternative approaches for scheduling the service of
customers in queueing systems, with the goal of providing mean
sojourn times relatively close to those obtained under SRPT while
also providing better higher-order statistical properties. Serving
customers within each class according to a FCFS queueing dis-
cipline can minimize the sojourn time variance within each class
(among disciplines that do not affect the per-class queue length
distribution) [22], can maximize the sojourn time tail asymptotics
within each class [48], and can reduce the preemptions among cus-
tomers with fairly similar service times, whereas the priority disci-



pline among the classes can yield a service ordering close to SRPT,
provided that the service time variability within each class is rela-
tively low. As we shall demonstrate and quantify, there is an impor-
tant tradeoff between improving (respectively, degrading) the mean
sojourn time and degrading (respectively, improving) the higher-
order sojourn time statistics, especially at heavy traffic intensities.

Specifically, we consider single-class SRPT M/G/1 queues and
multiclass Fixed Priority (FP) M/G/1 queues, thus extending the
comparison in [44] beyond the first moment and beyond two classes.
The M/G/1 FP queue, however, is somewhat limited for our pur-
poses to control the mean and higher-order statistics of customer
sojourn times. Hence, we also consider multiclass M/G/1 prior-
ity queues under time-function scheduling (TFS) [17] in which the
customers are scheduled according to general functions of the time
they spend in the system. More precisely, the priority of each cus-
tomer increases according to a monotonically nondecreasing per-
class function of its time in system and the customer with the high-
est instantaneous priority value in the queue is selected for service
at each scheduling epoch. The time-function parameters provide
additional forms of control over higher-order sojourn time statis-
tics. Our focus in this paper is on linear time-functions where the
priority of each customer increases linearly with its time in system.

One of the main goals of this paper is to develop a theoretical
foundation for alternative scheduling policies that provide mean
sojourn times comparable to SRPT with superior higher-order sta-
tistical properties. We therefore derive expressions for the statisti-
cal properties of the per-class sojourn times in linear TFS (LTFS)
M/G/1 queues, specifically providing results for the mean, variance
and tail behavior of customer sojourn times. To the best of our
knowledge, these are the first second moment sojourn time results
for LTFS M/G/1 queues and the first large-deviations decay rate re-
sults for the sojourn time tail distribution in LTFS GI/G/1 queues
to appear in the research literature. We also derive closed-form ex-
pressions and a linear algorithm to determine a set of LTFS control
parameters that satisfy a given vector of sojourn times, which sim-
ilarly provide the first such results to appear in the literature. The
corresponding first two moments and large-deviations results for
single-class SRPT and multiclass FP M/G/1 queues are presented
and used for comparison, with some extensions for FP queues.

Our analysis demonstrates that the LTFS policy can satisfy the
above goals by exploiting the results derived in this paper. In par-
ticular, by exploiting our results for performance measures and
control parameters, we show that LTFS can provide mean sojourn
times that are comparable to those obtained under SRPT while also
providing superior second moment properties for customer sojourn
time than those obtained under SRPT and FP. Our analysis also
shows that LTFS provides a large-deviations decay rate of customer
sojourn times that is superior (faster and better) to the correspond-
ing large-deviations decay rate under SRPT and shares some of the
characteristics of the maximal (fastest and best) decay rate. In fact,
we establish an explicit ordering among the large-deviations decay
rate under FCFS, LTFS, FP and SRPT scheduling policies.

Another main goal of this paper is to develop a theoretical foun-
dation for the control of alternative scheduling policies to optimize
general performance functions that combine the mean and higher-
order statistics of customer sojourn times in a flexible manner to
realize the goals of a broad spectrum of applications. Specifically,
in determining the optimal scheduling policy, we formulate a utility
optimization problem with utility defined as a function of the first
two moments of customer sojourn times, where we exploit recent
results in portfolio theory to obtain a general mean-variance utility
function and use this to explore a spectrum of mean-variance objec-
tives. Our analysis includes determining how to optimally segment

the service time distribution of the single-class workload from the
original M/G/1 SRPT preemptive-resume queue into the per-class
service time distributions of the multiclass workloads to be used in
the FP and LTFS M/G/1 queues. These results are obtained based
in part on our derivations of the first two moments of the sojourn
times in LTFS M/G/1 queues. It is important to note that this analy-
sis is not restricted to the specific utility function considered herein
and thus can be applied more generally.

Once again, our analysis demonstrates that the LTFS policy can
satisfy the above goals by exploiting the results derived in this pa-
per. Specifically, by exploiting our results for performance mea-
sures and control parameters, for a large range of parameters of the
utility function, we can optimize the LTFS control parameters to
yield superior utility values than under SRPT.

Our primary focus in this paper is on the theoretical founda-
tions noted above. However, the theoretical results we derive and
present throughout the paper within the context of M/G/1 (and, in
some cases, GI/G/1) queues are also generally important in prac-
tice, even for a wide variety of non-M/G/1 (and non-GI/G/1) type
environments. In particular, based on numerous simulations with
traces from a large-scale production Web site, we find that our
theoretical results are completely consistent with those obtained
from these simulation experiments demonstrating that the trends
observed from our theoretical results tend to hold more generally
in practical systems. Moreover, a great deal of experience over the
past few years where the LTFS policy has been deployed in a wide
variety of production environments has demonstrated that the LTFS
policy can be implemented efficiently with very low overhead while
yielding performance characteristics that are completely consistent
with our theoretical results presented in this paper [?].

Some aspects of our analysis are related to the so-called achiev-
able region approach (e.g., refer to [12, 15]), and in fact LTFS is
a general class of scheduling policies that correspond to interior
points of the achievable polytopes. There are, however, important
differences between the two paradigms. This includes the class of
scheduling policies considered in the achievable region approach
(e.g., [12, 2, 15]) versus those considered in our present study.
Moreover, our mathematical framework directly considers higher-
order statistical properties from first principles, whereas to the best
of our knowledge the achievable region literature has only consid-
ered second moment properties as constraints; e.g., see [2].

The remainder of the paper is organized as follows. We first
consider M/G/1 queues under the various scheduling policies of
interest, summarizing known results and deriving new results of in-
terest. §3 compares the statistical properties of these M/G/1 queues
based on the results presented in §2, including our use of mean-
variance objective functions. We then consider in §4 the optimal
segmentation of the original SRPT single-class workload into the
per-class service time distributions of the multiclass FP and LTFS
workloads. §5 briefly examines our theoretical results based on
simulations with large-scale production Web site traces. Conclud-
ing remarks are provided in §6.

2. MATHEMATICAL ANALYSIS
Consider the standard M/G/1 queue in which customers arrive

according to an independent Poisson process A(t) with finite rate
λ = 1/E[A] and customer service times are independent and iden-
tically distributed (i.i.d.) having a common distribution function
F (·) with finite first two moments E[S] = µ−1 =

R ∞
0

t dF (t) and
E[S2] =

R ∞
0

t2 dF (t). Let ρ = λ/µ denote the traffic intensity.
When preemption is allowed, we shall focus on preemptive-resume
scheduling disciplines in which preempted customers resume ser-
vice where they left off without any penalties. Let T denote the ran-



dom variable (r.v.) for the overall customer sojourn time, W the r.v.
for the overall customer waiting time, and R the r.v. for the overall
customer residence time, where T = W + R. Note that when pre-
emption is not allowed, then R follows the service time distribution
F (·), and thus E[R] = E[S] and E[R2] = E[S2]. Let MX(θ) =
E[eθX] generally denote the moment generating function of a r.v.
X, and let f(n) ∼ g(n) denote that limn→∞ f(n)/g(n) = 1 for
any functions f and g.

We also consider the standard multiclass M/G/1 queue in which
class k customers arrive according to an independent Poisson pro-
cess Ak(t) with finite rate λk = 1/E[Ak] and class k customer ser-
vice times are i.i.d. having a common distribution function Fk(·)
with finite first two moments E[Sk] = µ−1

k =
R ∞
0

t dFk(t) and

E[S2
k] =

R ∞
0

t2 dFk(t), where λ =
PK

k=1 λk and µ−1 =
PK

k=1 µ−1
k (λk/λ).

(Note in particular that this supports the so-called heavy-tailed prop-
erty considered in [4].) Let ρk = λk/µk denote the traffic intensity
for class k, and thus ρ = λ/µ =

PK
k=1 ρk. Customers within each

class are served in a FCFS manner. Let Tk denote the r.v. for the
class k sojourn time, Wk the r.v. for the class k waiting time, and
Rk the r.v. for the class k residence time, where Tk = Wk + Rk.
Note that when preemption is not allowed, then Rk follows the ser-
vice time distribution Fk(·), and thus E[Rk] = E[Sk] and E[R2

k] =
E[S2

k]. From the law of total probability, we then have

E[T ] =
KX

k=1

E[Tk]P[ class k customer ] =
KX

k=1

E[Tk]
λk

λ
, (1)

E[T 2] =
KX

k=1

E[T 2
k ]P[ class k customer ] =

KX
k=1

E[T 2
k ]

λk

λ
. (2)

Our primary focus in this section is the first two moments and
the tail behavior of the customer sojourn time distribution in M/G/1
priority queues (and GI/G/1 priority queues in the case of tail be-
havior results) under the SRPT, FP and LTFS scheduling policies.
We shall assume throughout that ρ < 1.

2.1 Shortest Remaining Processing Time
The SRPT policy schedules in a preemptive manner the customer

with the smallest remaining processing time at every point in time.
An analysis of M/G/1 SRPT preemptive-resume queues was first
derived by Schrage and Miller [44], from which we obtain expres-
sions for the first two moments of the customer sojourn times as
follows

E[T ] = E[R] + E[W ] =

Z ∞

0

1 − F (t)

1 − ρ(t)
dt +

λ

2

Z ∞

0

 R p
0 t2dF (t) + p2(1 − F (p))

(1 − ρ(p))2

ff
dF (p), (3)

E[T 2] = E[R2] + 2E[R]E[W ] + E[W 2], (4)

=

Z ∞

0

Z p

0

λ
R t
0 y2dF (y)

1 − ρ(t)
dt +

»Z p

0

dt

1 − ρ(t)

–2ff
dF (p) + 2

„Z ∞

0

1 − F (t)

1 − ρ(t)
dt

«

„
λ

2

Z ∞

0

 R p
0 t2dF (t) + p2(1 − F (p))

(1 − ρ(p))2

ff
dF (p)

«

+ λ

Z ∞

0

R p
0

t3dF (t) + p3(1 − F (p))

3(1 − ρ(p))3
dF (p) +

2λ2
Z ∞

0


„R p

0 t2dF (t) + p2(1 − F (p))

« R p
0 t2dF (t)

2(1 − ρ(p))4

ff
dF (p), (5)

where ρ(p) = λ
R p

0
tdF (t).

The large-deviations decay rate of the sojourn time distribution
in GI/G/1 SRPT preemptive-resume queues has been recently ob-
tained by Nuyens and Zwart [38], where the result depends upon

whether or not the service time distribution has a mass at its right
endpoint. Define xS ≡ sup{x : P[S > x] > 0}. The correspond-
ing results are summarized in the following two theorems.

THEOREM 1 (NUYENS,ZWART). In GI/G/1 SRPT preemptive-
resume queues with P[S = xS] = 0, we have as x → ∞

log P[T > x] ∼ −Λ∗x, (6)

where

Λ∗ = sup
θ≥0

{θ − Λ(θ)}, (7)

Λ(θ) = −M−1
A (1/MS(θ)). (8)

THEOREM 2 (NUYENS,ZWART). In GI/G/1 SRPT preemptive-
resume queues with P[S = xS] > 0, we have as x → ∞

log P[T > x] ∼ −Λ∗x, (9)

where

Λ∗ = sup
θ∈[0,Λ̂∗]

{θ − Λ(θ)}, (10)

Λ(θ) = −M−1

Ä1
(1/MS̈1

(θ)), (11)

Λ̂∗ = sup{θ : MA(−θ)MS(θ) ≤ 1}, (12)

and (in this SRPT case) Ä1 and S̈1 are generic r.v.s for the inter-
arrival and service times, respectively, of customers with service
times strictly less than xS .

2.2 Fixed Priority
The FP scheduling policy, which gives priority to class k cus-

tomers over class k′ customers for all 1 ≤ k < k′ ≤ K, has
received considerable attention in the research literature. In par-
ticular, it is well-known that the first two moments of the class k
sojourn times in M/G/1 FP preemptive-resume queues are given by

E[Tk] =

Pk
j=1 λjE[S2

j ]

2(1 − ρ+
k−1)(1 − ρ+

k )
+

E[Sk]

1 − ρ+
k−1

, (13)

E[T 2
k ] =

Pk
j=1 λjE[S3

j ]

3(1 − ρ+
k−1)

2(1 − ρ+
k )

+
E[S2

k]

(1 − ρ+
k−1)

2
+

„ Pk−1
j=1 λjE[S2

j ]

(1 − ρ+
k−1)2

+

Pk
j=1 λjE[S2

j ]

(1 − ρ+
k−1)(1 − ρ+

k )

«
E[Tk], (14)

where ρ+
k ≡ Pk

j=1 ρj . Variants of these results were first obtained
by Miller [36], Takács [49] and Welch [51].

Similarly, the first two moments of the class k sojourn times in
nonpreemptive M/G/1 FP queues can be expressed as

E[Tk ] =

PK
j=1 λjE[S2

j ]

2(1 − ρ+
k−1)(1 − ρ+

k )
+ E[Sk], (15)

E[T 2
k ] =

PK
j=1 λjE[S3

j ]

3(1 − ρ+
k−1)

2(1 − ρ+
k )

+

„Pk
j=1 λjE[S2

j ]

«„PK
j=1 λjE[S2

j ]

«

2(1 − ρ+
k−1)2(1 − ρ+

k )2
+

„Pk−1
j=1 λjE[S2

j ]

«„PK
j=1 λjE[S2

j ]

«

2(1 − ρ+
k−1)3(1 − ρ+

k )
+ E[Sk]. (16)

Variants of (15) were first given by Cobham [10], whereas variants
of (16) were first obtained by Kesten and Runnenburg [21].



Turning to the asymptotic tail behavior, first observe that the
large-deviations decay rate of the sojourn time distribution for class
1 customers in preemptive and nonpreemptive GI/G/1 FP queues
is the same as the large-deviations decay rate of the sojourn time
distribution in the corresponding single-class FCFS queue, which
Stolyar and Ramanan have recently shown to be maximal among
all work-conserving scheduling policies [48]. Further note that this
asymptotic decay rate is not affected by whether the FP policy is
preemptive or nonpreemptive, which is certainly not the case for the
first two sojourn time moments as evident from the results above.
This yields our desired tail asymptotic result for class 1.

THEOREM 3. In preemptive and nonpreemptive GI/G/1 FP queues
we have as x → ∞

log P[T1 > x] ∼ −Λ̂∗x, (17)

where

Λ̂∗ = sup{θ : MA(−θ)MS(θ) ≤ 1}. (18)

The corresponding tail asymptotic result for customers of class 2
is presented in [1] for the M/G/1 queue and in [38] for the GI/G/1
queue.

THEOREM 4. In preemptive and nonpreemptive GI/G/1 FP queues
we have as x → ∞

log P[T2 > x] ∼ −Λ∗x, (19)

where

Λ∗ = sup
θ∈[0,Λ̂∗]

{θ − Λ(θ)}, (20)

Λ(θ) = −M−1
A1

(1/MS1 (θ)), (21)

and Λ̂∗ is as given in (18).

Finally, we extend the above results to obtain the correspond-
ing large-deviations decay rate for all customer classes and for the
overall customer sojourn time distribution as follows.

THEOREM 5. In preemptive and nonpreemptive GI/G/1 FP queues,
we have as x → ∞

log P[T > x] ∼ −Λ∗x, (22)

log P[Tk > x] ∼ −Λ∗
kx (23)

where

Λ∗ =
KX

k=1

Λ∗
k

λk

λ
, (24)

Λ∗
1 = sup{θ : MA1 (−θ)MS1 (θ) ≤ 1}, (25)

Λ∗
k = sup

θ∈[0,Λ̂∗]

{θ − Λk(θ)}, k ≥ 2, (26)

Λk(θ) = −M−1

Âk
(1/M

Ŝk
(θ)), k ≥ 2, (27)

and Âk and Ŝk denote the aggregated arrival and service times for
classes of 1, 2, · · · , k.

PROOF. The results for classes 1 and 2 follow immediately from
Thms. 3 and 4, respectively. To obtain the corresponding results
for classes k = 3, . . . , K, we consider the aggregation of classes
1, . . . , k − 1 into a new (single) higher priority class with class k
as a new lower priority class. Since the large-deviations decay rate
is not affected by whether the FP policy is preemptive or nonpre-
emptive, we will base our arguments on the preemptive case. In
particular, the decay rate of the sojourn time tail distribution for
class k does not depend upon any lower class j = k + 1, . . . , K.
Hence, upon applying Thm. 4 to the system with the aggregated
higher priority class substituted for class 1 and the lower priority
class k substituted for class 2, we obtain (23),(26),(27) from (18) –
(21). Eq. (24) then follows upon conditioning on class k.

2.3 Linear Time-Function Scheduling
The corresponding sojourn time results for the LTFS policy, where

the priority of each customer increases according to a linear func-
tion of its time in system with slope bk and offset zero and the
highest priority customer among all classes is served in either a
nonpreemptive or preemptive-resume fashion with ties broken in a
FCFS manner, are much less well established in the research lit-
erature. Kleinrock [23, 24] derives expressions for the per-class
mean sojourn time in nonpreemptive and preemptive-resume LTFS
M/M/1 queues, and subsequently extends these first moment re-
sults for the corresponding nonpreemptive M/G/1 queue (although
restriction to exponential service times is unnecessarily included
in the derivation) [27]. However, to the best of our knowledge,
there are no second moment sojourn time results for nonpreemp-
tive and preemptive-resume LTFS M/G/1 queues in the research
literature, as well as no previous first moment sojourn time re-
sults for preemptive-resume LTFS M/G/1 queues. Moreover, to
the best of our knowledge, there are no results in the literature on
the tail behavior of the sojourn time distribution in nonpreemptive
and preemptive-resume LTFS GI/G/1 queues. The results of our
present study fill these major gaps in the research literature.

2.3.1 Moments of Sojourn Times
Our goal is to derive expressions for E[T ] and E[T2] under LTFS.

Due to space restrictions, we cannot present our results for both
the preemptive and nonpreemptive LTFS queues. Hence, in this
section we focus on our results for nonpreemptive LTFS M/G/1
(and, in some cases, GI/G/1) queues because of the arguments in
the introduction and those in [44] that tend to favor nonpreemptive
over preemptive-resume disciplines, which includes the additional
overheads of the latter. Our approach is based on a generaliza-
tion of classical approaches for decomposing the per-class sojourn
times in multiclass M/G/1 priority queues that rely primarily on the
PASTA (Poisson Arrivals See Time Averages) property and Little’s
Law [52, 3]. Assume throughout that b1 ≥ b2 ≥ . . . ≥ bK ≥ 0.

Consider an arbitrary arrival at some time t of a so-called tagged
customer of class k in a nonpreemptive LTFS M/G/1 queue. Let
Njk be the r.v. denoting the number of class j customers in the
system at time t that receive service before the tagged class k cus-
tomer, Mjk the r.v. denoting the number of class j customers that
arrive after time t and receive service before the tagged class k cus-
tomer, and W0 the r.v. denoting the residual life of the customer
in service at time t. Then the waiting time of the tagged class k
customer can be expressed as

Wk = W0 +
KX

j=1

„NjkX
i=1

Xji +

MjkX
i=1

Yji

«
, (28)

for k = 1, . . . , K, where Xj1, Xj2, . . . and Yj1, Yj2, . . . are se-

quences of i.i.d. r.v.s such that Xji
d
=Yji

d
=Sj for all j = 1, . . . , K.

Our solutions for E[Tk] and E[T 2
k ] are based on the derivation of

solutions for the probability measures involved in the above equa-
tion. The solutions for these probability measures are presented in
a sequence of results, theorems and lemmas that follow. Then, at
the end of the section, we present our main results in two theorems
based on this sequence of results derived below.

Kleinrock [23, 25] first established the following M/G/1 conser-
vation law that will be useful for our purposes below.

THEOREM 6 (KLEINROCK). For a nonpreemptive M/G/1 queue
under any work-conserving scheduling policy, the mean per-class
waiting times E[Wk] must satisfy

KX
k=1

ρkE[Wk] =
ρE[W0]

1 − ρ
. (29)



From (28), we obtain the first two moments of the class k sojourn
times (recalling that Rk = Sk in the nonpreemptive case)

E[Tk] = E[Wk] + E[Sk], (30)

E[T 2
k ] = E[W 2

k ] + 2E[Wk]E[Sk] + E[S2
k], (31)

in terms of

E[Wk] = E[W0] + E

» KX
j=1

„NjkX
i=1

Xji +

MjkX
i=1

Yji

«–
, (32)

E[W 2
k ] = E[W 2

0 ] + 2E

»
W0

KX
j=1

„NjkX
i=1

Xji +

MjkX
i=1

Yji

«–

+ E

» KX
j=1

„NjkX
i=1

Xji +

MjkX
i=1

Yji

«ff2–
. (33)

Under the assumptions of a nonpreemptive M/G/1 queue, it can be
easily shown that the first two moments of the residual life of the
customer in service at time t are given by (e.g., see [26])

E[W0] =
KX

k=1

ρk
E[S2

k ]

2E[Sk]
, (34)

E[W 2
0 ] =

KX
k=1

ρk
E[S3

k]

3E[Sk]
. (35)

Upon multiplying Eq. (28) for any pair k, k′ and taking expecta-
tions, we obtain

E[WkWk′ ] = E[W 2
0 ] + E

» KX
j=1

„NjkX
i=1

Xji +

MjkX
i=1

Yji

«–

E

» KX
j=1

„Njk′X
i=1

Xji +

Mjk′X
i=1

Yji

«–
+

E

»
W0

KX
j=1

„NjkX
i=1

Xji +

MjkX
i=1

Yji

«–
+

E

»
W0

KX
j=1

„Njk′X
i=1

Xji +

Mjk′X
i=1

Yji

«–
. (36)

Similarly, multiplying Eq. (28) for each k by W0 and taking expec-
tations yields

E[W0Wk] = E[W 2
0 ] + E

»
W0

KX
j=1

„NjkX
i=1

Xji +

MjkX
i=1

Yji

«–
. (37)

To complete our solution for E[T2
k ], we need to determine the mea-

sures E[W 2
k ], E[WkWk′ ] and E[W0Wk] provided in (33), (36) and

(37), respectively, which yields a total of K +
“

K
2

”
+ K =

K(K + 3)/2 unknowns.
The next two lemmas provide our results for the first two mo-

ments of Njk and Mjk.

LEMMA 7. For the r.v. Njk , we have

E[Njk] = λjE[Wj ], ∀j ≤ k, (38)

E[N2
jk] = (λ2

j/2)E[W 2
j ] + E[Njk], ∀j ≤ k, (39)

E[Njk] = λjE[Wj ]
bj

bk
, ∀j > k, (40)

E[N2
jk] =

„
λjE[Wj ]

bj

bk

«2

+ λjE[Wj ]
bj

bk
, ∀j > k, (41)

for j, k = 1, . . . , K.

PROOF. Observe that all class j ≤ k customers in the system
at time t will receive service before the tagged class k customer,
since its smaller or equal slope bk and arrival time t prevents the
tagged class k customer from overtaking those class j ≤ k cus-
tomers who arrived before time t. Eqs. (38) and (39) then follow
from the PASTA property and distributional versions of Little’s
Law [30, 19, 7, 6], as the required properties for each customer
class hold under our model assumptions. Now, based on the def-
inition of Njk , consider a class j > k customer who arrives at
time t′ < t, is in the system at time t, and receives service before
the tagged class k customer. These conditions are satisfied by a
class j > k customer provided that t − t′ < Wj ≤ t − t′ + Wk.
The upper limit ensures that the priority of the class j > k cus-
tomer at time t − t′ + Wk (i.e., bj(t − t′ + Wk)) is not less than
the priority of the tagged class k customer at the same time (i.e.,
bkWk). From bkWk = bj(t− t′ + Wk) we obtain the relationship
t− t′ +Wk = bk/(bk −bj)(t− t′). Since the arrivals of such class
j > k customers follow a non-homogeneous Poisson process, and
the time dependent arrival moments can be expressed as functionals
of Wj , we have

E[Njk] =

Z ∞

0
λjP[y < Wj ≤ bk

bk − bj
y]dy,

= λjE[Wj ] − λj
bk − bj

bk
E[Wj ],

which yields (40). Eq. (41) then follows because Njk can be treated
as a Poisson r.v.

LEMMA 8. For the r.v. Mjk, we have

E[Mjk] = λj [1 − (bk/bj)]E[Wk], ∀j < k, (42)

E[M2
jk] = (λ2

j/2)E[W 2
k ][1 − 2(bk/bj) + (bk/bj)

2]

+ E[Mjk ], ∀j < k, (43)

Mjk = 0, with probability 1, ∀j ≥ k, (44)

for j, k = 1, . . . , K.

PROOF. Eq. (44) follows directly from the fact that no customer
with an equal or smaller slope bj and arrival time after t can over-
take the tagged class k customer for all j ≥ k. When j < k, since
the priority of the tagged class k customer when it starts service
is given by bkWk, then Mjk is the number of class j < k cus-
tomers arriving in the time interval (t, t + Zj) such that bkWk =
bj(Wk − Zj), or equivalently Zj = [1 − (bk/bj)]Wk. From Lit-
tle’s Law [30, 52, 3] we have E[Mjk] = λjE[Zj ] which yields
(42). Similarly, it follows from distributional versions of Little’s
Law [19, 7, 6] that E[M2

jk] = (λ2
j/2)E[Z2

j ] + E[Mjk], since the
required properties for each customer class hold under our model
assumptions. Finally, from Zj = [1 − (bk/bj)]Wk we obtain
Eq. (43).

Since Njk and Mjk are stopping times for the i.i.d. sequences
of r.v.s Xj1, Xj2, . . . and Yj1, Yj2, . . ., respectively, both with fi-
nite first two moments, we have the following results from Wald’s
equation [9].

LEMMA 9.

E

»NjkX
i=1

Xji

–
= E[Njk]E[Sj ], (45)

E

»MjkX
i=1

Yji

–
= E[Mjk]E[Sj ], (46)

E

»„NjkX
i=1

Xji

«2–
= E[Njk]E[S2

j ] + E[Sj ]
2(E[N2

jk ] − E[Njk]), (47)

E

»„MjkX
i=1

Yji

«2–
= E[Mjk]E[S2

j ] + E[Sj ]
2(E[M2

jk] − E[Mjk]). (48)



PROOF. Eqs. (45) and (46) follow immediately from Wald’s equa-
tion and the properties of the r.v.s involved. Similarly, (47) and (48)
follow immediately from the second moment version of Wald’s
equation and the r.v. properties.

To complete our solution, we derive the remaining measures con-
ditional on the waiting time for the tagged customer Wk. In partic-
ular, upon conditioning on Wk, it is easy to see that Mjk is condi-
tionally independent of the other variables. We therefore have

W 2
k = E[W 2

k |Wk] = E[W 2
0 |Wk]

+ 2E

»
W0

KX
j=1

„NjkX
i=1

Xji +

MjkX
i=1

Yji

«˛̨
˛Wk

–

+ E

» KX
j=1

„NjkX
i=1

Xji +

MjkX
i=1

Yji

«ff2 ˛̨
˛Wk

–
(49)

and

E

» KX
j=1

„NjkX
i=1

Xji +

MjkX
i=1

Yji

«ff2 ˛̨̨
Wk

–

=
KX

j,�=1,j �=�


E

»NjkX
i=1

Xji

N�kX
i=1

X�i

˛̨̨
Wk

–

+ E

»MjkX
i=1

Yji

˛̨
˛Wk

–
E

»M�kX
i=1

Y�i

˛̨
˛Wk

–

+ E

»NjkX
i=1

Xji

˛̨
˛Wk

–
E

»M�kX
i=1

Y�i

˛̨
˛Wk

–ff

+
KX

j=1


E

»„NjkX
i=1

Xji

«2 ˛̨̨
Wk

–
+ E

»„MjkX
i=1

Yji

«2 ˛̨̨
Wk

–

+ E

»„NjkX
i=1

Xji

«„MjkX
i=1

Yji

«˛̨̨
Wk

–ff
. (50)

Since Njk can be treated as a Poisson r.v. (c.f. proof of Lem. 7), we
obtain for the product of two related compound Poisson r.v.s

E

»NjkX
i=1

Xji

N�kX
i=1

X�i

˛̨
˛Wk

–

= E

»N
(0)
j�k

+N
(j)
j�kX

i=1

Xji

N
(0)
j�k

+N
(�)
j�kX

i=1

X�i

˛̨
˛Wk

–

= E

»
E

»N
(0)
j�k

+N
(j)
j�kX

i=1

Xji

N
(0)
j�k

+N
(�)
j�kX

i=1

X�i

˛̨̨
Wk, N

(0)
j�k

––

= E[Sj ]E[S�]E

»
E[(N

(0)
j�k)2|Wk] + E[N

(0)
j�k|Wk]E[N

(j)
j�k|Wk]

+E[N
(0)
j�k|Wk]E[N

(�)
j�k|Wk] + E[N

(j)
j�k |Wk]E[N

(�)
j�k|Wk]

–
, (51)

where N
(0)
j�k and N

(j)
j�k, N

(�)
j�k, N

(k)
j�k are the common and remaining

components of the correlated Poisson r.v., respectively. Observe
that the variance of N

(0)
j�k is the same as the covariance of Njk

and N�k, and thus it can be uniquely determined by the measures
E[Wj |Wk], E[W�|Wk] and E[WjW�|Wk].

As a result of conditional independence, we have

E[W0

MjkX
i=1

Xji|Wk] = ρj [1 − bk/bj ]E[W0]E[Wk]. (52)

The continuation of our calculations yields, for j > k,

E[W0

NjkX
i=1

Xji|Wk] = E[E[W0

NjkX
i=1

Xji|Wk, W0]|Wk]

=
ρjbj

bk
E[W0[E[Wj|W0, Wk]|Wk]

=
ρjbj

bk
E[W0Wj |Wk], (53)

and very similar calculations for j ≤ k yields

E[W0

NjkX
i=1

Xji|Wk] = ρjE[W0Wj |Wk]. (54)

Moreover, we have for the product of two compound Poisson r.v.s

E

»NjkX
i=1

Xji

N�k′X
i=1

X�i

–
= E

»»NjkX
i=1

Xji

N�k′X
i=1

X�i

–˛̨
˛Wk, Wk′

–

= E[Sj ]E[S�]E[E[NjkNjk′ |Wk, Wk′ ]]. (55)

Once again, given the knowledge that Njk and Njk′ are Poisson
r.v.s, the same arguments as above can be used to finalize this result.

Our main results on sojourn time moments under LTFS based
on the foregoing derivations are then summarized in the next two
theorems.

THEOREM 10. In a nonpreemptive LTFS M/G/1 queue, the over-
all mean customer sojourn time can be expressed as

E[T ] =
KX

k=1

(E[Wk] + E[Sk])(λk/λ), (56)

E[Wk] =
(E[W0]/(1 − ρ)) − PK

i=k+1 ρiE[Wi](1 − bi/bk)

1 − Pk−1
i=1 ρi(1 − bk/bi)

, (57)

PROOF. Upon applying (45),(46) from Lem. 9 to (32), substi-
tuting Eqs. (38),(40) from Lem. 7 and Eqs. (42),(44) from Lem. 8
into the resulting expression, and simplifying we have

E[Wk] =
E[W0] +

Pk
i=1 ρiE[Wi] +

PK
i=k+1 ρiE[Wi](bi/bk)

1 − Pk−1
i=1 ρi(1 − bk/bi)

.

The triangular set of equations in (57) then follows from the con-
servation law given in (29) and straightforward algebra. Eq. (56)
directly follows from the law of total probability, the definition of
Tk, and the fact that E[Rk] = E[Sk] in nonpreemptive queues.

THEOREM 11. The second moment of customer sojourn times
in a nonpreemptive LTFS M/G/1 queue is given by

E[T 2] =
KX

k=1

E[T 2
k ](λk/λ), (58)

E[T 2
k ] = E[W 2

k ] + 2E[Wk]E[Sk] + E[S2
k], (59)

E[W 2
k ] = E[W 2

0 ] + 2E[W0

KX
j=1

(

NjkX
i=1

Xji

MjkX
i=1

Yji)]

+ E[{
KX

j=1

(

NjkX
i=1

Xji +

MjkX
i=1

Yji)}2], (60)

which can be efficiently computed from the expressions (29) – (57).



PROOF. Eq. (58) directly follows from the law of total proba-
bility, whereas the definition of Tk, the fact that E[Rk] = E[Sk]
in nonpreemptive queues, and direct calculations yield (59). Upon
squaring and taking expections of both sides of (28) and simplify-
ing we obtain (60). To solve for E[T2

k ] in (59) and substitute the re-
sult in (58), we need to determine the measures E[W2

k ], E[WkWk′ ]
and E[W0Wk] provided in (60), (36) and (37), respectively. This

yields a system of K +
“

K
2

”
+ K = K(K + 3)/2 equations of

unknowns in terms of (29) – (57). It follows from the derivations
above that all of the measures in this system of equations can be
expressed as linear functions of the unknowns and that this system
of linear equations has a coefficient matrix which is triangular and
nonsingular. These properties then can be exploited to efficiently
compute E[T 2

k ] which in turn yield E[T 2] via (58).

2.3.2 Tail Behavior of Sojourn Times
We now turn to consider the large-deviations decay rate of the

sojourn time distribution in GI/G/1 LTFS queues. Let us first intro-
duce some notation and preliminary results used in our analysis.

Recall that Ak(t) denotes the arrival process for customers of
class k. Denote by Ak1, Ak2, . . . and Sk1, Sk2, . . . the sequences
of interarrival time and service time r.v.s, respectively, such that

Aki
d
=Ak and Ski

d
=Sk for all k = 1, . . . , K. Define Jk(t) ≡PAk(t)

i=1 Ski to be the amount of class k work that has arrived to
the system by time t, and W the total amount of work in system
observed by a customer arrival. Let PV

k be a generic busy period
of class k customers and PV

k (x) a busy period of class k customers
with an initial customer of size x, both in a GI/G/1 queue under

policy V . We then have P FP
k (x)

d
=inf{t ≥ 0 : x + Jk(t) ≤ t}. Let

W V
k denote the stationary waiting time experienced by class k cus-

tomers in a GI/G/1 queue under policy V . Then the following result
due to Nuyens and Zwart [38] will be convenient for our purposes
below.

THEOREM 12 (NUYENS,ZWART). As x → ∞, log P[W FP
2 >

x] ∼ −Λ∗
2x where Λ∗

2, Λ(θ), Λ̂∗ are as given in (20), (21), (18),
respectively.

Our main result on the tail asymptotics of the sojourn time distri-
bution now can be presented in the following theorem, which can
be easily extended to handle preemptive GI/G/1 LTFS queues.

THEOREM 13. For customers of class k in nonpreemptive GI/G/1
LTFS queues, we have as x → ∞

log P[T > x] ∼ −Λ∗x, (61)

log P[Tk > x] ∼ −Λ∗
kx, (62)

where

Λ∗ =
KX

k=1

Λ∗
k

λk

λ
, (63)

Λ∗
k = sup

θ∈[0,Λ̂∗]

{θ − Λk(θ)}, (64)

Λk(θ) = −M−1

Ãk
/(1/MS̃k

(θ)), (65)

and Ãk and S̃k denote the aggregation of arrival and service times
for all classes of customers except those of class k.

PROOF. Let us initially consider the two class case. Obviously,
the busy period of class 1 customers in a FP GI/G/1 queue is longer
than that in a LTFS GI/G/1 queue. Hence, under the LTFS policy,

P[T2 > x] ≤ P[W FP
2 > x],

and from Thm. 12 we know that

log P[W FP
2 > x] ∼ −Λ∗

2x,

which provides an upper bound on the large-deviations decay rate.
Turning to the lower bound, we have for any fixed a > 0

P[T FP
2 > x] ≥ P[W > ax]P[P LTFS

1 (ax) > x],

= e−aΛ̂∗x+o(x)
P[P LTFS

1 (ax) > x]. (66)

Now we proceed to estimate P[P LTFS
1 (ax) > x] by using a fairly

typical change-of-measure argument; e.g., refer to [3, 38]. Define

Pθ[A1i ∈ dx] ≡ e−Λ2(θ)x
P[Ai1 ∈ dx]/MÃ2

(−Λ2(θ)),

Pθ[S1i ∈ dx] ≡ eθx
P[Si1 ∈ dx]/MS̃2

(θ),

where in the 2-class case Ã2 and S̃2 translate to A1 and S1, respec-
tively, and Λ2(θ) is as given in (65). For any ε < a, we choose θ
such that

Λ′
2(θ) = 1 − a + ε.

Define ZA1
n ≡ A11 + . . .+A1n and ZS1

n = S11 + . . .+S1n, from
which we know that

Hε
n = exp(Λ2(θ)ZA1

n − θZS1
n )

is a martingale, and so is 1/Hε
n. We apply option stopping to obtain

P[P LTFS
1 (ax) > x] = Eθ[Hε

τ1(x)1{P LTFS
1 (ax) > x}],

P[P LTFS
1 (ax) > x] ≥ Eθ[Hε

τ1(x)1{P LTFS
1 (ax) > x}1{ZS1

A1(x)
≤ (1 − a + ε)x}],

where τ1(x) is a stopping time for the Borel σ-algebra generated by
A11, . . . , A1n, S11, . . . , S1n. Since Pθ[P

LTFS
1 (ax) > x, ZS1

A1(x) ≤
(1 − a + ε)x] is bounded away from zero uniformly in x for every
ε > 0 by the law of large numbers, we have

lim inf
x→∞ x−1 log P[P LTFS

1 (ax) > x] ≥ −θ(1 − a + ε) + Λ2(θ),

which upon taking the limit as ε → 0 yields

log P[P LTFS
1 (ax) > x] ≥ −x(Λ̂∗(1 − a) − Λ2(Λ̂

∗)) + o(x).

This in combination with (66) provides the desired lower bound,
which together with the upper bound establishes the class 2 result.

It can be easily seen that the same arguments go through to estab-
lish the result for class 1, and then these arguments can be readily
generalized to establish the result for a general number of classes
K. Finally, Eq. (63) follows upon conditioning on class k.

2.3.3 Setting of Control Parameters
The set of slopes {b1, . . . , bK} represent one set of control pa-

rameters available in nonpreemptive LTFS M/G/1 queues to achieve
any feasible vector of desired sojourn times (E[T∗

1 ], . . . , E[T ∗
K ]).

We therefore derive closed-form expressions and a linear algorithm
to determine a set of control parameters {b1, . . . , bK} that satisfy
a given objective vector (E[W∗

1 ] = E[T ∗
1 ]− E[S1], . . . , E[W ∗

K ] =
E[T ∗

K ] − E[SK ]) by inverting the mapping in Eq. (57) for any
K ≥ 2. It is important to note that, to the best of our knowledge,
the only previous results of this type published in the research lit-
erature are based on a much more expensive iterative scheme to
obtain a solution for systems with more than two classes [29].

The mean waiting time for customers of class k in nonpreemp-
tive LTFS M/G/1 queues as a function of the per-class control pa-
rameters is given by (57). Observe the very simple dependence that
E[Wk] has on the control parameters, namely the slopes bk only ap-
pear as ratios. Further observe that the scheduling policy decisions
are not changed upon scaling all control parameters by any fixed



constant, and thus without loss of generality we set bK = 1. Addi-
tional feasibility requirements for the vector (E[W∗

1 ], . . . , E[W ∗
K ])

can be readily verified as part of our recursive algorithm by ensur-
ing the corresponding variables satisfy the obvious constraints.

Following [37, 47], we define

αk ≡
KX

i=1

λiE[S2
i ]

2(1 − ρ)
−

KX
i=k+1

ρiE[Wi], (67)

βk ≡ 1 −
k−1X
i=1

ρi, (68)

Ck ≡
KX

i=k+1

ρibiE[Wi], (69)

Dk ≡
k−1X
i=1

ρi

bi
. (70)

Our main results on closed-form expressions for LTFS control pa-
rameters are then summarized in the subsequent theorem.

THEOREM 14. Consider a nonpreemptive LTFS M/G/1 queue
and a feasible objective performance vector (E[W∗

1 ] = E[T ∗
1 ] −

E[S1], . . . , E[W ∗
K ] = E[T ∗

K ]−E[SK ]). Without loss of generality,
suppose that b1 ≥ b2 ≥ . . . ≥ bK = 1. Then any feasible objective
performance vector must satisfy

E[W0] ≤ E[W ∗
1 ] ≤ E[W ∗

2 ] ≤ . . . ≤ E[W ∗
K ], (71)

and a set of control parameters {b1, . . . , bK} that achieve the fea-
sible objective vector (E[W ∗

1 ], . . . , E[W ∗
K ]) is given by

bk =
−(E[Wk]βk+1 − αk) +

q
(E[Wk]βk+1 − αk)2 + 4CkE[Wk]Dk+1

2E[Wk]Dk+1
,

(72)
for k = 1, . . . , K − 1.

PROOF. Eq. (71) follows directly from (57), the theorem sup-
position and straightforward calculations. Upon substituting the
definitions (67) – (70) and the Eq. (34) into (57), we obtain

E[Wk] =
αk + Ck/bk

βk + bk Dk
.

Substituting the relationships βk+1 = βk − ρk, Dk = Dk+1 −
ρk/bk from (68), (70) and simplifying then yields Eq. (72) since
b1 ≥ b2 ≥ . . . ≥ bK = 1.

The above theorem also forms the basis of our linear algorithm to
obtain a set of control parameters bK−1, . . . , b1 that can be used to
achieve any feasible vector of desired sojourn times (E[T∗

1 ], . . . , E[T ∗
K ])

in the corresponding nonpreemptive LTFS M/G/1 queue. In par-
ticular, observe that the value of bk in Eq. (72) depends only on
the values of b1, . . . , bk−1. We then have the following algorithm
to compute in linear time the control parameters bK−1, . . . , b1 to
achieve a given objective vector of sojourn times (E[T∗

1 ], . . . , E[T ∗
K ]).

Initialization: E[W ∗
k ] = E[T ∗

k ] − E[Sk], for all k = 1, . . . , K;
CK = 0; bK = 1; DK = (E[W0]/(1−ρ)−βKE[W ∗

K ])/(E[W ∗
K ]).

Linear Recursion: The corresponding variables for classes k =
K − 1, K − 2, . . . , 2, 1 are computed consecutively as follows:

Ck = Ck+1 + ρk+1bk+1E[W ∗
k+1]; (73)

bk = RHS of Eq. (72) with E[Wk] = E[W ∗
k ]; (74)

Dk =
αk + Ck/bk − βkE[W ∗

k ]

bkE[W ∗
k ]

. (75)

3. SCHEDULING POLICY COMPARISON
Let us now consider the properties of customer sojourn time

statistics in SRPT, FP and LTFS M/G/1 queues based on the re-
sults derived in the previous section. We first directly focus on the
higher-order statistical properties of the different M/G/1 queues and
then we turn to general functions that combine the various statistics
of customer sojourn times in a general risk-based manner.

3.1 Statistical Properties
As originally suggested by Schrage and Miller [44] and extended

herein to also consider higher-order statistical properties and the
LTFS policy, one can attempt to closely approximate the mean so-
journ times in M/G/1 SRPT preemptive-resume queues with an ap-
propriately chosen multiclass M/G/1 priority queue. In fact, work-
ing in the opposite direction, Phipps [40] took a somewhat related
approach to obtain an exact expression for the mean sojourn time
under nonpreemptive SRPT (also known as shortest job first) by
extending the analysis of Cobham [10] to consider an equivalent
nonpreemptive M/G/1 FP queue with an infinite number of classes,
indexed by the customer service time. In this section we present a
direct comparison of the statistical properties of customer sojourn
times under SRPT, FP and LTFS based on our analysis in §2.

Our goal is to compare E[T2
SRPT] and Λ∗

SRPT with the corresponding
performance measures obtained under instances of FP and LTFS
where E[TFP] = E[TSRPT] + ε and E[TLTFS] = E[TSRPT] + ε′, ε, ε′ >
0. As an initial starting point, and to gain the greatest analyti-
cal insights, we consider two-class M/G/1 priority queues under
FP and LTFS, i.e., instances of these queues with K = 2; mul-
ticlass priority queues with larger values of K are examined in
§3.2 and 5. As a representative example of our results, we fur-
ther consider the service time distribution to be hyperexponential
with parameters (µ1, µ2, p) where E[S] = 1/µ1p + 1/µ2(1 − p),
E[S2] = 2/µ2

1p + 2/µ2
2(1 − p), and µ1 > µ2. We postpone until

§4 our optimal segmentation of the customer service times com-
prising the single-class workload in order to determine the multi-
class workloads of the FP and LTFS M/G/1 priority queues, and for
now we consider the multiclass workload consisting of exponen-
tial class 1 service times with rate µ1, exponential class 2 service
times with rate µ2, and independent Poisson arrival processes with
rates pλ and (1 − p)λ for classes 1 and 2, respectively. Hence,
E[Sk] = 1/µk , E[S2

k] = 2/µ2
k and E[S3

k] = 6/µ3
k . Additional

single-class and multiclass workloads are examined in §3.2 and 5.
The first two moments for the SRPT and FP M/G/1 queues are

directly obtained from the formulas in §2.1 and 2.2, respectively.
For the LTFS M/G/1 queue, we have from Thm. 10 the first moment
results

E[W1] =

„
pλ

µ2
1

+
(1 − p)λ

µ2
2

«
(1 − ρ)−1 − ρ2E[W2]

„
1 − 1

b1

«
, (76)

E[W2] =
(pλ/µ2

1 + (1 − p)λ/µ2
2)/(1 − ρ)

1 − ρ1(1 − 1/b1)
, (77)

and exploiting Thm. 11 we obtain the corresponding second mo-
ment results from the solution of the system of linear equations
in terms of the 5 unknowns E[W2

1 ], E[W 2
2 ], E[W1W2], E[W0W1],

E[W0W2], which can be numerically computed in an efficient man-
ner since the coefficient matrix is triangular and nonsingular.

In Fig. 1, we illustrate the effect of the slope ratio on the second
moment. In a two class LTFS queue, with arrival rate λ1 = 0.2,
λ2 = 0.2, the service distribution for the two classes are exponen-
tial with rate 1 and 0.5 respectively. We let b2/b1 the ratio of the
slopes from the two classes vary from 0.1 to 0.9. It can be observed
that the the second moments change linearly according to the ratio.
When the ratio becomes larger than 1, we can switch the index, and
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Figure 1: The impact of LTFS slope ratio on second moments

obtain the symmetric results, and hence we omit that part. When
b2/b1 approaches 0, the LTFS queue tends toward a fixed priority
queue, and as b2/b1 approaches 1, it tends toward a FCFS queue.
The selection between b1 and b2, and slopes for general cases, pro-
vides great flexibility in achieving different levels of performance
based upon both first two moments. Examples in the next section
will further demonstrate this aspect of the LTFS policy.

Of course, given the optimality of SRPT, it is not possible to
achieve the same mean sojourn time under LTFS as obtained un-
der SRPT. However, based on numerical experiments with the the-
oretical foundation derived in §2, our results demonstrate that it
is possible to approximate the mean sojourn time of SRPT quite
well for reasonable values of ε. Moreover, the performance mea-
sures of the M/G/1 queue under a LTFS policy tend to have the best
higher-order statistics such as smaller variance properties and faster
large-deviations decay rates. Given that these performance results
for the workload considered in this section are completely consis-
tent with the more general results considered later in this section
(a subset of which are presented), we omit plots of these results
in the interest of space. This consistency of results also extends
to simulations with data from a large-scale production Web site (a
subset of which are presented in §5). It is important to empha-
size, however, that we consistently observed among the various
policies which can achieve similar mean customer waiting times
that the LTFS policy exhibits superior higher-order statistical prop-
erties over SRPT and FP. Furthermore, it is very important to note
that increasing the number of classes, together with the results in
§4, will certainly make it possible to obtain closer first-order statis-
tics among the SRPT, FP and LTFS queues. This is clear from a
theoretical perspective (e.g., [40]) and it is also demonstrated by
our numerical results.

We now turn to compare the large-deviations decay rate of the
sojourn time distribution in SRPT, FP and LTFS GI/G/1 queues.
Our main results are summarized in the following theorem.

THEOREM 15.

Λ∗
FCFS > Λ∗

LTFS, Λ∗
FP > Λ∗

SRPT+
> Λ∗

SRPT0
. (78)

where SRPT+ and SRPT0 denotes the SRPT GI/G/1 queue with
P[S = xS] > 0 and P[S = xS] = 0, respectively.

PROOF. Stolyar and Ramanan [48] have shown Λ∗
FCFS to be max-

imal among all work-conserving scheduling policies. Nuyens and
Zwart [38] have established the last inequality between the two ver-
sions of SRPT queues. The first inequality with respect to Λ∗

FP

follows directly from Thms. 3 and 5, since Λ∗
FP is of the same

order as Λ∗
FCFS only for class 1 and is otherwise smaller. From

Eq. (11) of Thm. 2 and Eq. (21) of Thm. 4, we see that ΛFP(θ) <
ΛSRPT+ (θ), and thus Λ∗

FP = supθ∈[0,Λ̂∗]{θ − ΛFP(θ)} > Λ∗
SRPT+

=

supθ∈[0,Λ̂∗]{θ − ΛSRPT+ (θ)}. This together with Thm. 5 yields the
second inequality with respect to Λ∗

FP. It is readily verified from
Thms. 5 and 13 that Λ∗

FP and Λ∗
LTFS are of the same order.

3.2 Mean-Variance Utility Functions
Even though we have considerable formal and numerical evi-

dence (together with the simulation evidence in §5) that the LTFS
policy can satisfy desired mean sojourn times while also providing
better variance properties, another fundamental and general objec-
tive of interest to us is based on utility functions that combine both
the mean and variance of customer sojourn times in a flexible man-
ner so as to realize the goals of a broad spectrum of applications.
Given the first moment of customer sojourn times as the natural
candidate measure for performance, the corresponding second mo-
ment is usually associated with risks through the use of moment
inequalities, such as Chebeschev’s inequality [52, 3]. Therefore,
in determining the optimal scheduling policy, we can formulate the
problem as a function of the first two moments of customer sojourn
times to maximize the overall utility of the system. Similar prac-
tices have been widely adapted in the field of finance, ever since
Markowitz popularized the basic idea; e.g., see [31, 32].

This so-called mean-variance approach is quite popular in port-
folio theory and its applications, and a wide range of specific func-
tional forms for two-parameter preferences have been proposed and
used; e.g., refer to [34, 8, 42]. In particular, the following functional
form for utility

U(θ, σ) = θa − σb, (79)

where θ and σ are the mean and standard deviation of the measure
of interest and a and b are function parameters, has been proposed
and empirically evaluated [42]. This utility function is able to ex-
hibit a broad spectrum of risk attitudes by appropriately choosing
values for the parameters a > 0 and b ∈ R. For example, the
choices a > 1, a = 1 and a < 1 respectively represent decreasing,
constant and increasing absolute risk aversion, whereas the choices
a > b, a = b and a < b respectively represent decreasing, constant
and increasing relative risk aversion. Moreover, Wagener [50] has
recently shown the functional form in (79) to be very efficient from
a computational perspective and to have much greater flexibility in
covering the wide range of risk attitudes of interest than other func-
tional forms that are commonly used in practice. This functional
form is also consistent with those considered in [35].

We therefore are interested in using the functional form in (79)
with θ = E[T ] and σ = (E[T 2] − E[T ]2)1/2. This yields the
following equivalent form of (79) for our purposes:

U(E[T ], (E[T 2] − E[T ]2)1/2) = E[T ]a − (E[T 2] − E[T ]2)b/2.
(80)

We note that a similar functional form can be used with the variance
term replaced by a function of the tail of the sojourn time distribu-
tion, but this is not further explored herein due to space restrictions.

As a representative example of our results, we consider a three-
class queueing system with Poisson arrivals where the proportions
of customer classes 1, 2 and 3 are 80%, 14% and 6%, respectively.
The mean service times for the three classes are 1, 20 and 1000.
Numerical experiments were conducted for both SRPT and LTFS
under different traffic intensities ρ, a small subset of which are pre-
sented in Figs. 2 and 3. To make the comparison fair, for each ρ, we
set the LTFS control parameter slopes such that the mean waiting
time is as close to that of SRPT as possible in each instance of the
queueing system. In addition to LTFS providing smaller higher-



order statistical properties as shown by our results from the previ-
ous section, we also observe the significance of the impact of the
policy in terms of the utility function. We observe in Figs. 2 and 3
that when the traffic is light, understandably, there is no significant
difference between the two policies; when the traffic grows heav-
ier, the impact of the policy change is visibly more significant than
the changes of variability in the service time. In the figure, verti-
cally, we compare the utility function for these two policies with
different coefficients of variation for the service time; horizontally,
we compare the impact of the different selection of (a, b). Once
again, increasing the number of classes, together with the results
in §4, will certainly provide greater optimal utility values in the FP
queues and especially in the LTFS queues.
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Figure 2: Different utility function values under different ser-
vice time SCV, a=0.25, b=1

We also examine the general shape of the utility function when
the relative values of (a, b) are varied while fixing the queueing sys-
tem parameters. These results, omitted due to space restrictions,
show that the shape of the utility functions is generally concave
with respect to b and their derivatives with respect to b have a de-
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Figure 3: Different utility function values under different ser-
vice time SCV, a=0.5, b=1

scending trend as the traffic intensity ρ increases.
Once again, the controls in LTFS M/G/1 queues make it possible

to optimize this utility function for different a, b values which is
much more limited in M/G/1 queues under SRPT and FP.

4. PARTITIONING OF SERVICE TIMES
Our analysis in §2 and 3 assumes that the workloads for the

multiclass FP and LTFS M/G/1 queues have been previously de-
termined. However, in order to completely determine the optimal
scheduling policy and its control parameters, it is equally impor-
tant to obtain the best segmentation of the customer service times
to determine these multiclass workloads. In this section, we con-
sider how to optimally segment the service time distribution of the
single-class workload from the original M/G/1 SRPT preemptive-
resume queue into the per-class service time distributions of the
multiclass workloads to be used in the FP and LTFS M/G/1 queues.

More specifically, we consider the set of variables {p0, p1, . . . ,



pK−1, pK} used to designate the priority class of customers ac-
cording to whether their service times are in the interval (pk−1, pk],
such that BL = p0 ≤ p1 ≤ . . . ≤ pK−1 ≤ pK = BU where
BL and BU are lower and upper bounds on the customer service
times, respectively. Given such a partitioning, the class k cus-
tomer service times are i.i.d. according to a common distribution
function with finite first three moments E[Sk] =

R pk

pk−1
t dF (t),

E[S2
k] =

R pk

pk−1
t2 dF (t), and E[S3

k] =
R pk

pk−1
t3 dF (t), respec-

tively.
We now can formulate the problem of optimally partitioning the

customer service times into multiclass workloads as part of deter-
mining the optimal FP and LTFS control parameters to maximize
the overall utility of the system as a function of the first two mo-
ments of customer sojourn times. Using the functional form for
utility in (80), we have

max
p1,...,pK−1

E[T ]a − (E[T 2] − E[T ]2)b/2 (81)

s.t. BL = p0 ≤ p1 ≤ . . . ≤ pK−1 ≤ pK = BU . (82)

The decision variables are the partition points {p1, . . . , pK−1}, and
the parameters a and b are chosen to weight the first two moments
of the customer sojourn times according to the application area of
interest. Once again, we note that a similar functional form can be
used for the objective in (81) with the variance term replaced by a
function of the tail of the sojourn time distribution.

In general, the objective function is nonlinear in the decision
variables, but the optimal solution can be efficiently computed us-
ing known methods in nonlinear optimization; e.g., see [5, 13].
However, in many cases of interest, the objective function is convex
in the decision variables, and thus the optimal solution can be very
efficiently computed using known methods in convex optimization;
e.g., refer to [5]. Furthermore, it is important to note that the same
approach can be exploited if the objective in (81) is replaced with
a different function of E[T ] and (E[T2] − E[T ]2).

5. SIMULATION EXPERIMENTS
While the main contributions of this paper consist of the fore-

going collection of mathematical results, in this section we briefly
consider the performance characteristics of a single-server queue-
ing system under SRPT and LTFS in practice based on the work-
load from an Internet application environment. Specifically, we use
simulation to estimate the performance of both queueing systems
under the actual workload from each server of a large-scale produc-
tion Web site. The arrival times of customers are obtained directly
from the access logs of the Web site, whereas the corresponding
service times are obtained from measurements on the real system.

The characteristics of this Web site are typical to what has been
reported in the research literature for such Internet application en-
vironments. In particular, most of the pages are dynamic with the
vast majority of the requests being for static objects that comprise
these pages. The service times used in our simulation are obtained
from measurements of the time to serve these dynamic pages and
static objects, which we can identify directly from the contents of
the access logs. Furthermore, we identify and focus on sufficiently
long stationary intervals of traffic periods found in our analysis of
the access logs from each server of the production Web site. Of
particular interest are peak traffic periods, given the importance
of such intervals in capacity planning, dynamic resource alloca-
tion and other applications of performance analysis and scheduling.
These stationary intervals of peak traffic are comprised of traffic pe-
riods whose lengths are on the order of several hours and consist of
at least several hundred-thousand data points, where there can be
tens to hundreds of client requests within a second at each server
during peak traffic periods for the production Web site.

The stationarity of the corresponding arrival and service pro-
cesses extracted from the access logs of each server and system
measurements is confirmed by the stationarity testing method re-
cently proposed in [39]. Detailed statistical analysis of the work-
load data shows that the sequence of interarrival times is long-range
dependent and that the service time distribution has high variabil-
ity. These technical details are important because the system envi-
ronment considered in our simulation experiment is very different
from the M/G/1 (and, in some cases, GI/G/1) queues considered in
the previous sections, but they are outside the scope of this paper;
however, these technical details can be found in [41].

Space restrictions prevent us from including our simulation re-
sults. However, we can summarize that the results from our numer-
ous simulation experiments are completely consistent with those
presented in Figs. 2 and 3. The magnitude of the results vary for
different values of (a, b), but we consistently found that the trends
observed from our theoretical results are identical for the large-
scale production Web site, even with its correlations in the arrival
stream and variability in the service times.

6. CONCLUSIONS
In this paper we have developed a theoretical foundation for a

general class of scheduling policies, LTFS, that provide mean so-
journ times comparable to SRPT with superior higher-order sta-
tistical properties and that provide control mechanisms to optimize
general performance functions which combine the mean and higher-
order statistics of customer sojourn times. Our mathematical anal-
ysis included deriving expressions for the mean, variance and tail
asymptotics of the customer sojourn time distribution in LTFS queue-
ing systems, providing the first higher-order statistical results to ap-
pear in the research literature. We also derived closed-form expres-
sions and a linear algorithm to determine the corresponding control
parameters that satisfy a given vector of sojourn times, which sim-
ilarly provide the first such results to appear in the literature. As
an additional set of control parameters, and based in part on our
derivations of the corresponding performance measures, our anal-
ysis further included the optimal segmentation of the service time
distribution for the original single-class workload into the per-class
service time distributions of the LTFS multiclass workload.

Our study demonstrated that, by exploiting our performance mea-
sure and control parameter results, the LTFS policies can provide
mean sojourn times that are comparable to those obtained under
SRPT while also providing superior second moment properties for
customer sojourn time than those obtained under SRPT. We also
showed that this class of policies provides a large-deviations decay
rate of customer sojourn times that is superior to the correspond-
ing large-deviations decay rate under SRPT and shares some of
the characteristics of the maximal decay rate. These results illus-
trated and quantified a fundamental performance tradeoff between
improving the mean sojourn time and degrading the higher-order
sojourn time statistics, and vice versa, especially at heavy traffic
intensities. Our study further demonstrated that, by exploiting our
performance measure and control parameter results, the LTFS poli-
cies can used to optimize general performance functions that com-
bine the mean and higher-order statistics of customer sojourn times
in terms of mean-variance utility functions based on recent results
in portfolio theory, although our analysis is not restricted to these
utility functions and can be applied more generally.

The theoretical foundation derived and presented in this paper is
also generally important in practice for a broad spectrum of appli-
cation environments. Based on numerous simulations with traces
from a large-scale production Web site, we found that the trends
observed from our theoretical results tend to hold in such Web site



environments. Moreover, a great deal of experience over the past
few years in a wide variety of production environments has demon-
strated that the LTFS policies provide the same performance char-
acteristics as shown by our theoretical results and can be imple-
mented efficiently with very low overhead [?].
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