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Some theory and practical uses

of trimmed L-moments

J. R. M. Hosking

IBM Research Division, T. J. Watson Research Center,

P.O. Box 218, Yorktown Heights, NY 10598

Abstract. Trimmed L-moments, defined by Elamir and Seheult (Comput. Statsist.

Data Anal., 2003), summarize the shape of probability distributions or data samples

in a way that remains viable for heavy-tailed distributions, even those for which the

mean may not exist. We derive some further theoretical results concerning trimmed

L-moments: a relation with the expansion of the quantile function as a weighted sum

of Jacobi polynomials; the bounds that must be satisfied by trimmed L-moments; and

recurrences between trimmed L-moments with different degrees of trimming. We also

give examples how trimmed L-moments can be used, analogously to L-moments, in the

analysis of heavy-tailed data. Examples include identification of distributions using

a trimmed L-moment ratio diagram, shape parameter estimation for the generalized

Pareto distribution, and fitting generalized Pareto distributions to a heavy-tailed data

sample of computer network traffic.

Keywords: Distribution theory, generalized Pareto distribution, L-moment ratio

diagram.





1. Introduction

L-moments are measures of the location, scale and shape of probability distributions.

They are analogous to the conventional moments but can be estimated by linear

combinations of order statistics. L-moments are related to expected values of order

statistics. Let X be a random variable and let Xj:n denote an order statistic, a

random variable distributed as the jth smallest element of a random sample drawn

from the distribution of X. Hosking (1990) defined the L-moments of X to be the

quantities

λ1 = E(X1:1),

λ2 = 1
2
E(X2:2−X1:2),

λ3 = 1
3
E(X3:3− 2X2:3 + X1:3),

λ4 = 1
4
E(X4:4− 3X3:4 + 3X2:4−X1:4),

and in general

λr = r−1
r−1∑
j=0

(−1)j

(
r − 1

j

)
E(Xr−j : r) . (1)

Sample estimators of L-moments can be used as summary statistics for data sam-

ples, and to identify probability distributions and fit them to data. These are similar

to the uses of conventional moments, but L-moments have the advantage that they

exist whenever the mean of the distribution exists, even though some higher moments

may not exist, and are relatively robust to the effects of outliers. However, there are

some applications for which these advantages are insufficient. Some kinds of data,

such as loss distributions in insurance and traffic volumes on computer networks,

involve distributions with very heavy tails, such that there may be doubts about

whether even the first moment exists (see, e.g., Embrechts et al., 1997; Resnick,

1997; Willinger et al., 1998). For these applications it would be useful to have mea-

sures analogous to L-moments that remain meaningful for distributions that have no

mean.
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Trimmed L-moments, defined by Elamir and Seheult (2003), are generalizations

of L-moments that do not require the mean of the underlying distribution to exist.

They are defined by

λ(s, t)
r = r−1

r−1∑
j=0

(−1)j

(
r − 1

j

)
E(Xr+s−j : r+s+t) . (2)

Here s and t are positive integers. The case s = t = 0 yields the original L-moments

defined by Hosking (1990). The term “trimmed” is appropriate because the definition

of λ(s, t)
r does not involve the expectations of the s smallest or the t largest order

statistics of the sample of size r + s + t. Trimmed L-moment ratios τ (s, t)
r = λ(s, t)

r /λ
(s, t)
2

are dimensionless measures of the shape of a distribution.

Elamir and Seheult (2003) derived unbiased sample estimators of trimmed

L-moments, gave expressions for the variances of these estimators, and obtained

parameter estimates based on trimmed L-moments for several distributions. Kar-

vanen (2005) used trimmed L-moments to estimate the parameters of a generalization

of the Cauchy distribution. In this paper we give some further theoretical properties

and illustrate some practical uses of trimmed L-moments.

In Section 2 we extend to trimmed L-moments some theoretical results that have

been proved for L-moments: a sufficient condition for trimmed L-moments to exist,

a proof that the trimmed L-moments uniquely define a distribution, a representa-

tion for the quantile function as a weighted function of orthogonal polynomials in

which the coefficients are related to trimmed L-moments, and bounds on the numer-

ical values of trimmed L-moment ratios. Section 3 illustrates some practical uses of

trimmed L-moments: identification of distributions using a trimmed L-moment ratio

diagram, and efficient estimation of the shape parameter of the generalized Pareto dis-

tribution. This shows how trimmed L-moments can be used similarly to L-moments,

but continue to be useful for data drawn from heavy-tailed distributions. Section 4

describes an alternative way of defining trimmed L-moments that has some theoret-

ical advantages. Section 5 cotains some concluding remarks. All proofs are deferred

to Section 6.
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2. Theoretical results concerning trimmed L-moments

2.1. Existence

Elamir and Seheult (2003) observe that a distribution may be specified by its trimmed

L-moments even if some of its L-moments do not exist, but do not give explicit con-

ditions under which this can occur. The following theorem gives sufficient conditions

for the existence of trimmed L-moments.

Theorem 1. Let X be a real-valued random variable. If E[{max(−X, 0)}1/(s+1)]

and E[{max(X, 0)}1/(t+1)] exist, then so do all of the trimmed L-moments λ(s, t)
r ,

r = 1, 2, ..., of X.

Thus for example the trimmed L-moments λ(1,1)
r exist if E|X|1/2 <∞. This will be

sufficient to permit the analysis of distributions describing many types of heavy-tailed

data.

2.2. Uniqueness

Hosking (1990) showed that only one distribution can have a given set of L-moments.

An analogous result is true for trimmed L-moments.

Theorem 2. A distribution for which the trimmed L-moments λ(s, t)
r , r = 1, 2, ...,

exist is characterized by those trimmed L-moments.

2.3. Relation to orthogonal polynomials

The L-moments of a random variable with quantile function Q( . ) have the represen-

tation

λr+1 =
∫ 1

0
P ∗

r (u) Q(u) du (3)

(Hosking, 1990), where P ∗
r (u) is a shifted Legendre polynomial. These polynomials are

orthogonal on the interval [0, 1] with constant weight function. An analogous result

for trimmed L-moments involves polynomials that are orthogonal on the interval

[0, 1] with weight function us(1−u)t. These are shifted Jacobi polynomials, which we

denote by

P ∗(t,s)
r (x) =

r∑
j=0

(−1)r−j

(
r + t

j

)(
r + s

r − j

)
uj(1− u)r−j . (4)
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Note that P ∗(t,s)
r (u) = P (t,s)

r (2u− 1), where P (t,s)
r (x) is the rth (unshifted) Jacobi poly-

nomial, as defined for example by Abramowitz and Stegun (1972, eq. 22.2.1). The

analogous result to (3) for trimmed L-moments is

λ
(s, t)
r+1 =

r! (r + s + t + 1)!

(r + 1) (r + s)! (r + t)!

∫ 1

0
us(1− u)t P ∗(t,s)

r (u) Q(u) du . (5)

Integration by parts (for details see Section 6) gives a representation involving the

derivative of the quantile function:

λ
(s, t)
r+1 =

(r − 1)! (r + s + t + 1)!

(r + 1) (r + s)! (r + t)!

∫ 1

0
us+1(1− u)t+1 P

∗(t+1,s+1)
r−1 (u) Q′(u) du . (6)

The substitution u = F (x), where F (x) is the cumulative distribution function, gives

λ
(s, t)
r+1 =

(r − 1)! (r + s + t + 1)!

(r + 1) (r + s)! (r + t)!

∫ 1

0
{F (x)}s+1{1− F (x)})t+1 P

∗(t+1,s+1)
r−1 (F (x)) dx ,

(7)

a form that does not require the existence of the derivative of the quantile function.

Further integrations by parts give, for each k = 0, 1, 2, . . . , r,

λ
(s, t)
r+1 =

(r − k)! (r + s + t + 1)!

(r + 1) (r + s)! (r + t)!

∫ 1

0
us+k(1− u)t+k P

∗(t+k,s+k)
r−k (u) Q(k)(u) du , (8)

provided that the required derivatives of the quantile function exist. This result has

not previously been published, even for the original L-moments, for which it takes

the simpler form

λr+1 =
(r − k)!

r!

∫ 1

0
uk(1− u)k P

∗(k,k)
r−k (u) Q(k)(u) du , (9)

and for which the case k = r gives the particularly striking result

λr+1 =
1

r!

∫ 1

0
ur(1− u)r Q(r)(u) du . (10)

L-moments can be defined as the coefficients in the expansion of the quantile

function as a weighted sum of shifted Legendre polynomials Again, an analogous

result for trimmed L-moments involves shifted Jacobi polynomials.
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Theorem 3. Let X be a continuous real-valued random variable such that

E[{max(−X, 0)}2/(s+1)] and E[{max(X, 0)}2/(t+1)] are finite. Let X have quantile

function Q(u) and trimmed L-moments λ(s, t)
r , r = 1, 2, .... Then the representation

Q(u) =
∞∑

r=0

r(2r + s + t + 1)

r + s + t
λ

(s, t)
r+1 P ∗(t,s)

r (u) (11)

is convergent in the weighted mean square sense, with weight function us(1−u)t.

2.4. Recurrences between trimmed L-moments with different degrees of

trimming

Shifted Jacobi polynomials satisfy certain recurrence relations that can be used to

derive corresponding relations between trimmed L-moments with different degrees of

trimming. The main results are

(2r + s + t− 1)λ(s, t)
r = (r + s + t)λ(s, t−1)

r − 1

r
(r + 1)(r + s)λ

(s, t−1)
r+1 , (12)

(2r + s + t− 1)λ(s, t)
r = (r + s + t)λ(s−1, t)

r − 1

r
(r + 1)(r + t)λ

(s−1, t)
r+1 . (13)

For low orders of trimming successive applications of (12) and (13) yield the following

relations between trimmed L-moments and L-moments:

λ(0,1)
r =

r + 1

2r
(λr −λr+1) ;

λ(0,2)
r =

(r + 1)(r + 2)

2r(2r + 1)
λr −

r + 2

2r
λr+1 +

r + 2

2(2r + 1)
λr+2 ;

λ(1,1)
r =

(r + 1)(r + 2)

2r(2r + 1)
(λr −λr+2) .

These results are valid whenever all of the relevant trimmed L-moments exist. They

are of mostly mathematical interest since trimmed L-moments such as λ(1,1)
r are likely

to be of most use when λr does not exist. However, the results do suggest ways

of refining L-moment-based shape measures when they are near their bounds: for

example when τ3 is close to 1, the measure (τ3− τ4)/(1− τ3) may be a useful additional

measure of skewness, since it is a scalar multiple of the trimmed L-skewness τ
(0,1)
3 .
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2.5. Bounds on trimmed L-moment ratios

The L-moment ratios τr have the convenient property that they are all bounded by 1

in absolute value. Trimmed L-moment ratios do not have this property. Instead we

can show that

|τ (s, t)
r | ≤ 2 (m + 1)! (r + s + t)!

r (m + r − 1)! (2 + s + t)!
where m = min(s, t). (14)

Unless s = t = 0, this bound is greater than 1 for all r > 2 and increases as r increases.

It is not difficult to find distributions for which |τ (s, t)
r |> 1 for some r.

For example consider the generalized Pareto distribution, with quantile function

Q(u) = α{1− (1−u)k}/k. The skewness measure τ
(1,1)
3 is a function of the shape

parameter k and exists for k >−2. We find that τ
(1,1)
3 = 10(1− k)/{9(5 + k)}, which

exceeds 1 when k <−35/19 =−1.8421 and approaches 10/9, the upper bound in (14),

as k→−2.

That the upper bound is not 1 makes trimmed L-moment ratios a little more

difficult to interpret than the original L-moment ratios but is not a major practical

problem. It could be avoided by changing the definition of λ(s, t)
r to include an appro-

priate rescaling, but this would make the definition (2) more complex and does not

seem worthwhile.

3. Practical uses of trimmed L-moments

3.1. Sample trimmed L-moments

From an ordered data sample x1≤x2≤ · · ·≤xn, the trimmed L-moment λ(s, t)
r can be

estimated unbiasedly by the “sample trimmed L-moment”

`(s, t)
r =

1

r
(

n

r + s + t

) n−t∑
j=s+1

r−1∑
k=0

(−1)k
(

r − 1

k

)(
j − 1

r + s− k − 1

)(
n− j

t + k

)
xj (15)

— this is a trivial generalization of Elamir and Seheult (2003, eq. (16)). The sample

trimmed L-moment ratios t(s, t)r = `(s, t)
r /`

(s, t)
2 are dimensionless measures of the shape

of a data set, and are consistent estimators of the respective population quanti-

ties τ (s, t)
r .
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Figure 1. L-moment ratio diagrams for untrimmed and trimmed L-moment ratios
of orders 4 and 6. Curves show the L-moment ratios of distributions in the indicated
families, each of which has a single shape parameter. Marked points correspond to
individual distributions.

3.2. The trimmed L-moment ratio diagram

An L-moment ratio diagram is a graph whose axes represent L-moments of different

orders; parametric families of distributions occupy points, lines or regions on the graph

and the sample L-moments of data sets can be plotted as points. This facilitates the

comparison of data samples and the choice of which distribution to fit to a given data

set. Hosking and Wallis (1997) give several examples. A similar diagram can be used

with trimmed L-moments.

As an illustration we consider an L-moment ratio diagram using the even-order

L-moment ratios τ4 and τ6. This is useful for distinguishing between symmetric

distributions, as might arise in financial applications such as Value at Risk (e.g.,

Hosking et al., 2000). Figure 1 shows L-moment ratio diagrams for the original

L-moment ratios and trimmed L-moment ratios with s = t = 1. The curves indicate

the relations between fourth- and sixth-order L-moment ratios for three families of

distributions: the stable and Student t, which each have power-law tails, and the

7



0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.3

0.4

0.5

0.6

0.7

t 4
(1,1)

t
6
(1

,1
)

Stable, α = 0.8 

Student, 0.75 d.f.
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Figure 2. A trimmed L-moment ratio diagram for data samples. Solid symbols
indicate the population trimmed L-moment ratios for the three indicated distibutions.
Open symbols are sample trimmed L-moment ratios from 50 samples of size 1000 from
each of the three distributions.

power exponential distribution, which has probability density function proportional

to exp(−|x|γ) and for which moments of all orders exist. Individual members of these

families are shown as points. The general form of the diagrams is similar, but there

are some important differences. The axis ranges are larger for the trimmed L-moment

ratio diagram, reflecting the bounds of trimmed L-moment ratios derived in (14). The

trimmed L-moment ratio diagram covers a wider range of distributions; for example

the Cauchy distribution, which on the L-moment ratio diagram is the limiting point

as τ4→ 1 and τ6→ 1, appears on the trimmed L-moment ratio diagram at the point

τ
(1,1)
4 = 0.342, τ

(1,1)
6 = 0.202: points on the “Stable” and “Student” curves to the right

of the Cauchy point correspond to distributions for which the mean does not exist.

Figure 2 illustrates the ability of trimmed L-moment ratios to distinguish between

samples from heavy-tailed distributions. The large circles indicate the population

trimmed L-moment ratios from each of three distributions: stable with shape param-

eter 0.8, Student t with 0.75 degrees of freedom, and power exponential with exponent

γ = 0.18. Each of these distributions has τ
(1,1)
4 close to 0.53, but their values of τ

(1,1)
6

differ. For these stable and Student t distributions the mean does not exist. The

plotted points are the sample trimmed L-moment ratios t
(1,1)
4 and t

(1,1)
6 from 50 sam-
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ples of size 1000 from each of these three distributions. There is some overlap between

the clouds of points corresponding to the stable and Student t distributions, which

have similarly heavy tails, but apart from this the sample trimmed L-moment ratios

provide an effective way of distinguishing between these distributions.

3.3. Estimation for the generalized Pareto distribution

The generalized Pareto distribution has quantile function Q(u) = α{1− (1−u)k}/k.

Its upper tail has a power-law form, with probability density function f(x)∼x1/k−1

as x→∞. It is a widely used model for distributions with heavy tails in fields such as

insurance, finance and network traffic modeling. The distribution may be fitted to an

entire data set or to the excesses over some threshold. The mean of the distribution

does not exist when k≤−1; in some applications these values of k are plausible in

practice. Estimation of the shape parameter, and hence of the tail weight, is often of

most interest.

Because the distribution has only one infinite tail, the asymmetrically trimmed

L-moments λ(0, t)
r seem likely to be of most use. We can compute these quantities

using (2): for example

λ
(0, t)
1 =

α

1 + t + k
, λ

(0, t)
2 =

(2 + t)α

2(1 + t + k)(2 + t + k)
.

The parameters can be expressed as a function of trimmed L-moments of orders 1

and 2:

k = (t + 2)(1
2
λ

(0, t)
1 /λ

(0, t)
2 − 1) , α = (t + 1 + k)λ(0, t) .

Replacing population trimmed L-moments by their sample estimates, we obtain an

estimator of the shape parameter:

k̂(0, t) = (t + 2)(1
2
`
(0, t)
1 /`

(0, t)
2 − 1) , α̂(0, t) = (t + 1 + k)`(0, t) . (16)

Hosking and Wallis (1987) showed that probability weighted moment estimators

(equivalent to estimators based on L-moments) of parameters and quantiles of the gen-

eralized Pareto distribution are generally more accurate than the maximum-likelihood

estimates, for shape parameters in the range −0.5 <k < 0 and sample sizes up to 500.

9



–2.0–1.5–1.0–0.50.0

0.0

0.1

0.2

0.3

Shape parameter k

B
ia

s

 E(X2)<∞
 E(X2)=∞
 E(X)<∞

 E(X)=∞
E(X1/2)<∞

–2.0–1.5–1.0–0.50.0

0.1

0.2

0.3

0.4

0.5

Shape parameter k

R
M

S
E

 E(X2)<∞
 E(X2)=∞
 E(X)<∞

 E(X)=∞
E(X1/2)<∞

L–moments

(0,1)–trimmed L–moments

(0,2)–trimmed L–moments

MLE

Figure 3. Bias and RMSE of estimates of the shape parameter of the generalized
Pareto distribution for sample size 100.

For the maximum-likelihood estimate and trimmed L-moment estimators, bias and

root mean square error (RMSE) of estimates of the shape parameter were obtained

using Monte Carlo simulation. Figure 3 shows the results for sample size 100 over a

range of values of k. As k decreases and the tail weight of the distribution increases,

larger amounts of trimming become preferable: first k̂(0,0), then k̂(0,1), then k̂(0,2)

has the lowest RMSE of the trimmed L-moment estimators. Each of the trimmed

L-moment estimators has a range of k values for which it has lower RMSE than

the maximum-likelihood estimate. Thus, particularly if prior knowledge enables the

user to judge the appropriate degree of trimming, trimmed L-moment estimators

can outperform the maximum-likelihood estimate. Note that the trimmed L-moment

estimators can be computed straightforwardly using (16), while the computation of

the maximum-likelihood estimates requires iterative procedures.

3.4. Example: network traffic volumes

Table 1 shows a data set of 720 hourly measurements of traffic through one node

of a computer network. This is a kind of data for which heavy-tailed distributions

are often appropriate. Generalized Pareto distributions were fitted using L-moments,

trimmed L-moments, and the method of maximum likelihood, to excess over various

thresholds. Estimates of the shape parameter, which determines the tail weight, are
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Table 1. Network traffic data.

Smaller values, shown as their frequency in the data set:

0 1 2 3 4 5 6 7 8 9
0–9 288 105 60 18 17 17 8 14 8 4

10–19 6 10 4 2 7 5 3 3 3 1
20–29 5 5 2 2 3 2 1 2 3 2
30–39 1 5 2 1 1 0 0 1 2 1
40–49 3 2 1 1 1 1 0 1 1 0

Larger values, listed individually:

50 53 54 56 57 59 61 62 63 65
69 70 76 76 79 83 83 86 90 91
95 95 105 107 108 122 123 125 130 134

134 146 159 161 181 183 209 209 231 238
250 253 274 274 282 285 297 303 328 335
345 352 356 371 374 423 484 521 526 584
590 616 642 663 706 706 745 769 769 777
794 903 953 1086 1225 1383 1462 1512 1709 1768

1808 3134 5955 6405 20480

Table 2. Shape parameter estimates for excesses over various thresholds for the data
in Table 1. n is the number of data values that exceed the given threshold.

Shape parameter estimates

Threshold n k̂(0,0) k̂(0,1) k̂(0,2) k̂MLE

0 432 –0.92 –1.56 –1.75 –1.74
10 175 –0.83 –1.34 –1.73 –1.56
20 132 –0.79 –1.24 –1.69 –1.45
50 84 –0.71 –0.89 –1.18 –0.88

100 63 –0.67 –0.64 –0.74 –0.69
200 49 –0.68 –0.62 –0.61 –0.71
500 28 –0.72 –0.72 –0.44 –0.82
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Figure 4. Data from Table 1 and distributions fitted to data values in excess of the
threshold 100.

given in Table 2. As the threshold increases the estimated shape parameter generally

takes smaller negative values. This pattern is less extreme for the untrimmed esti-

mator k̂(0,0), which cannot take values less than –1. However, for thresholds in the

100–200 range, the estimates for all methods are in the same range, –0.6 to –0.7, sug-

gesting that data values above these values are well described by a generalized Pareto

distribution. The fitted distributions for threshold 100 are illustrated in Figure 4.

4. Alternative trimmed L-moments

An alternative definition of trimmed L-moments can be derived from the representa-

tion for L-moments based on (6), i.e.

λr+1 =
1

r

∫ 1

0
u(1− u) P

∗(1,1)
r−1 (u) Q′(u) du . (17)

We define alternative trimmed L-moments by λ̃
(s, t)
1 = E Xs+1:s+t+1 and, for a distri-

bution with differentiable quantile function Q(u),

λ̃
(s, t)
r+1 =

(s + t + 1)!

(r − 1) s! (t + 1)!

∫ 1

0
us+1(1−u)t+1 P

∗(1,1)
r−1 (u) Q′(u) du , r = 2, 3, . . .. (18)
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The constant multiplying the integral in (18) is chosen so that the analog of the coef-

ficient of variation for trimmed L-moments, λ̃
(s, t)
2 /λ̃

(s, t)
1 , behaves like its untrimmed

equivalent λ2/λ1 in that it takes values between 0 and 1 for positive random variables.

It is clear from (18) that λ̃(s, t)
r is the rth (untrimmed) L-moment of a distribu-

tion with quantile function derivative us(1−u)tQ′(u). These trimmed L-moments

therefore have the same range of feasible values as L-moments; in particular the

L-moment ratios τ̃ (s, t)
r = λ̃(s, t)

r /λ̃
(s, t)
2 are all bounded by 1 in absolute value. As a

further example, because the lower bound for τ4 given τ3 is τ4≥ (5τ 2
3 − 1)/4 (Hosking,

1990, eq. (2.7)) it immediately follows that the lower bound for τ̃
(s, t)
4 given τ̃

(s, t)
3 is

τ̃
(s, t)
4 ≥{5(τ̃

(s, t)
3 )2−1}/4; this is not true for the trimmed L-moments defined by (2).

Reversing the integration by parts that led to (6), we obtain an expression for

λ̃(s, t)
r in terms of expected order statistics:

λ̃(s, t)
r =

1

r − 1

r−2∑
k=0

(
r − 1

k

)(
r − 1

k + 1

)
(

r + s + t

t + 1 + k

) (E Xr+s−k:r+s+t − E Xr+s−k−1:r+s+t) , r ≥ 2.

(19)

This definition is valid even for distributions for which the quantile function is not dif-

ferentiable. It is of course not as simple as (2), but can be evaluated straightforwardly

when needed. It can be used as the basis for deriving unbiased sample estimates of the

alternative trimmed L-moments, by the same procedure as for trimmed L-moments

(Elamir and Seheult, 2003, sec. 3).

In the case s = t = 1 we obtain the following alternative trimmed L-moments:

λ̃
(1,1)
1 = E X2:3 ,

λ̃
(1,1)
2 = 1

6
E(X3:4−X2:4) ,

λ̃
(1,1)
3 = 1

10
E(X4:5− 2X3:5 + X2:5) ,

λ̃
(1,1)
4 = 1

60
E(4X5:6− 13X4:6 + 13X3:6− 4X2:6) .

These are still linear combinations of expected order statistics, but from order 4

onwards the relative magnitudes of the coefficients of the linear combinations differ

from those of the trimmed L-moments defined in (2). An interesting point is that
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the alternative trimmed L-moments λ̃(s, t)
r are zero for r≥ 3 for a distribution with

quantile function derivative proportional to u−s(1−u)−t, because the polynomial in

the integrand of (18) is then proportional to u(1−u), the weight function of the

orthogonal polynomials P ∗(1,1)
r (u). For s = t = 1 this distribution is the logistic, with

quantile function Q(u) = α log(u/(1−u)). Thus the alternative trimmed L-moments

λ̃(1,1)
r can be regarded as L-moments that have been centered on the logistic distribu-

tion, in contrast with the untrimmed L-moments which are centered on the uniform

distribution.

5. Concluding remarks

Trimmed L-moments are a natural extension of the L-moments defined by Hosking

(1990). Several of their mathematical properties are shared with, or are extensions

of, those of L-moments, and they can used in practice in a similar way to L-moments.

They provide simple and effective methods of inference for distribution with tails so

heavy that the mean does not exist.

A question not discussed in this paper is how to decide, other than by prior

information, on which degrees of trimming are appropriate when using trimmed

L-moments. In some cases it may be possible to decide this question based on

the data themselves. The resulting statistics might be termed “adaptively trimmed

L-moments”. They will be discussed in a subsequent paper.

6. Proofs

Proof of Theorem 1. The conditions E[{max(−X, 0)}1/(s+1)] and

E[{max(X, 0)}1/(t+1)] ensure the existence of the integrals
∫
0 usQ(u)du and∫ 1(1−u)tQ(u)du respectively. To see this, first consider the integral
∫ 1
u (1− v)tQ(v)dv

for some u with 0 <u < 1; without loss of generality take u such that Q(u) > 0 (if

there is no such u then the integral is certainly finite). Let Z(v) = {Q(v)}1/(t+1); note

that Z(v) is an increasing function of v and that, by the assumptions of the theorem,∫ 1
u Z(v)dv <∞. We have

14



∫ 1

u
(1− v)t Q(v) dv =

∫ 1

u
(1− v)t{Z(v)}t+1 dv

= t!
∫ ∫

· · ·
∫

u<v1<v2<···<vt+1<1

{Z(v1)}t+1 dv1 dv2 . . . dvt+1

≤ t!
∫ ∫

· · ·
∫

u<v1<v2<···<vt+1<1

Z(v1) Z(v2) . . . Z(vt+1) dv1 dv2 . . . dvt+1

≤ t!
∫ 1

u

∫ 1

u
· · ·

∫ 1

u
Z(v1) Z(v2) . . . Z(vt+1) dv1 dv2 . . . dvt+1

= t!
(∫ 1

u
Z(v) dv

)t+1

<∞ .

A similar argument shows that, for 0 <u < 1,
∫ u
0 vs Q(v) dv is finite. Therefore so

is
∫ 1
0 us(1−u)t Q(u) du, which apart from a multiplicative constant is E Xs+1:s+t+1

(David and Nagaraja, 2003, eq. (3.1.1′)). Thus, under the conditions of the theorem,

λ
(s, t)
1 = E Xs+1:s+t+1 exists.

From (2), the higher-order trimmed L-moments λ(s, t)
r , r > 1, are sums of expec-

tation of order statistics Xj:r+s+t with j > s or j≤ r + s, which can be written as

multiples of
∫ 1
0 uS(1−u)T Q(u) du with S≥ s and T ≥ t and by the same argument

as above are all finite; thus each λ(s, t)
r exists, for r = 1, 2, . . ..

Proof of Theorem 2. From (2), λ(s, t)
r is a sum of expectation of order statistics

Xj:r+s+t with j > s or j≤ r + s, each of which which can be written as a multiple

of
∫ 1
0 uS(1−u)T Q(u) du with S≥ s and T ≥ t and expressed as a weighted sum of

integrals of the form
∫ 1
0 us(1−u)k Q(u) du, k = t, t + 1, . . . , r + t− s, i.e. as a weighted

sum of expected values of order statistics E Xs+1:s+t+k, k = 1, 2, . . . , r. Thus from the

trimmed L-moments λ(s, t)
r , r = 1, . . . , R, one can determine the expected order statis-

tics E Xs+1:s+t+k, k = 1, 2, . . . , R, and from the complete set of trimmed L-moments

λ(s, t)
r , r = 1, 2, . . ., one can determine the infinite sequence of expected order statistics

E Xs+1:s+t+k, k = 1, 2, . . .. This sequence of expected order statistics suffices to deter-

mine the distribution (Huang, 1975). Therefore the set of trimmed L-moments λ(s, t)
r ,

r = 1, 2, . . ., also determines the distribution.
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Proof of (5). The proof is straightforward: it involves using the expression

E Xr:n =
n!

(r − 1)! (n− r)!

∫ 1

0
ur−1(1− u)n−r Q(u) du (20)

(David and Nagaraja, 2003, eq. (3.1.1′)) to substitute for the expected values in (2),

expressing the resulting sum of integrals as the integral of a sum of powers of

ur+s−k(1−u)t+k, and verifying that the integral in (5) has the same form.

Proof of (6). From the Rodrigues formula for Jacobi polynomials (e.g., Abramowitz

and Stegun, 1972, eq. 22.11.1, for the unshifted polynomials) we have

d

du
{us(1− u)t P ∗(t,s)

r (u)} = −(r + 1)us−1(1− u)t−1P
∗(t−1,s−1)
r+1 (u) . (21)

If the quantile function Q is differentiable, we can integrate (5) by parts, using (21),

to give

∫ 1

0
us(1− u)t P ∗(t,s)

r (u) Q(u) du =
1

r

∫ 1

0
us+1(1− u)t+1 P

∗(t+1,s+1)
r−1 (u) Q′(u) du (22)

— the integrated term,
[
r−1

∫ 1
0 us+1(1−u)t+1 P

∗(t+1,s+1)
r−1 (u) Q(u)

]1
0
, is zero because

existence of the trimmed L-moments ensures that us+1Q(u)→ 0 as u→ 0 and

(1−u)t+1Q(u)→ 0 as u→ 1.

Proof of Theorem 3. We seek an approximation to the quantile function Q(u) of

the form

Q(u) =
R∑

r=0

ar P ∗(t,s)
r (u), 0 < u < 1. (23)

To determine the ar we denote the error of the approximation (23) by

ER(u) = Q(u)−
R∑

r=0

ar P ∗(t,s)
r (u)

and seek to minimize the weighted mean square error
∫ 1
0 us(1−u)t {ER(u)}2 du. The

moment conditions given in the Theorem ensure that this integral is finite, by a proof

similar to that of Theorem 1. We have
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∫ 1

0
us (1−u)t {ER(u)}2 du

=
∫ 1

0
us(1−u)t {Q(u)}2 du− 2

R∑
r=0

ar

∫ 1

0
us(1−u)t P ∗(t,s)

r (u) Q(u) du

+
R∑

r=0

R∑
v=0

arav

∫ 1

0
us(1−u)t P ∗(t,s)

r (u) P ∗(t,s)
v (u) du

=
∫ 1

0
us(1−u)t {Q(u)}2 du− 2

R∑
r=0

ar
(r + 1) (r + s)! (r + t)!

r! (r + s + t + 1)
λ

(s, t)
r+1

+
R∑

r=0

a2
r

(r + s)! (r + t)!

(2r + s + t + 1)r!(r + s + t)!
;

here we have used (5) and the orthogonality properties of the shifted Jacobi polyno-

mials (see Abramowitz and Stegun, 1972, eq. 22.2.1, for the unshifted version). The

weighted mean square error is minimized by choosing

ar =
r(2r + s + t + 1)

r + s + t
λ

(s, t)
r+1 .

That the weighted mean square error tends to zero as R→∞, i.e. that the set of

shifted Jacobi polynomials is complete, is shown by Szegö (1959, chap. 4).

Proof of (12) and (13). The key results are recurrence relations for Jacobi polyno-

mials (Abramowitz and Stegun, 1972, eqs. 22.7.15 and 22.7.16), which when expressed

in terms of shifted Jacobi polynomials become

(2r + s + t + 1)(1−u)P ∗(t,s)
r (u) = (r + t)P ∗(t−1,s)

r (u)− (r + 1)P
∗(t−1,s)
r−1 (u) ,

(2r + s + t + 1)uP ∗(t,s)
r (u) = (r + s)P ∗(t,s−1)

r (u) + (r + 1)P
∗(t,s−1)
r−1 (u) .

Substituting these expressions into (5) immediately yields (12) and (13).

Proof of (14). Using (6) with the substitution u = F (x) we obtain

λ
(s, t)
r+1 = cr

∫ 1

0
{F (x)}s+1{1− F (x)}t+1 P

∗(t+1,s+1)
r−1 (F (x)) dx (24)
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where

cr =
(r − 1)! (r + s + t + 1)!

(r + 1) (r + s)! (r + t)!
. (25)

Now

max
0≤u≤1

|P ∗(t+1,s+1)
r−1 | =

(
r + M

r − 1

)
where M = max(s, t) (26)

(Abramowitz and Stegun, 1972, eq. 22.14.1), and {F (x)}s+1{1−F (x)}t+1≥ 0 for all x

with 0 <x < 1, so

|λ(s, t)
r+1 | ≤ cr

(
r + M

r − 1

) ∫ 1

0
{F (x)}s+1{1− F (x)}t+1 dx = cr

(
r + M

r − 1

)
1

c1

λ
(s, t)
2 .

Thus, writing m = min(s, t), we have

|τ (s, t)
r+1 |= |λ(s, t)

r+1 |/λ
(s, t)
2

≤ cr

c1

(
r + M

r− 1

)

=
(r− 1)! (r + s + t + 1)!

(r + 1) (r + m)! (r + M)!

2 (2 + m)! (2 + M)!

(2 + s + t)!

(r + M)!

(r− 1)! (M + 1)!

=
2 (m + 1)! (r + s + t)!

r (m + r− 1)! (2 + s + t)!
.
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