
RC23784 (W0511-053) November 7, 2005
Computer Science

IBM Research Report

Blutopia: Cluster Life-cycle Management

F. Oliveira
Rutgers University

J. Patel
University of Illinois at Urbana-Champaign

E. Van Hensbergen, A. Gheith, R. Rajamony
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Blutopia

Cluster Life-cycle Management

DRAFT

F. Oliveira

fabiool@cs.rutgers.edu

Rutgers University

J. Patel

jaypatel@uiuc.edu

University of Illinois

at Urbana-Champaign

E. Van Hensbergen ∗

bergevan@us.ibm.com

IBM Research

A. Gheith

ahmedg@us.ibm.com

IBM Research

R. Rajamony

rajamony@us.ibm.com

IBM Research

November 2, 2005

Abstract

We have implemented a proof-of-concept prototype named Blutopia that embodies our

ideas of a new software life cycle management paradigm driven chiefly by simplicity. Aiming

at facilitating management, Blutopia allows administrators to deploy multiple machines fast

and effortlessly in as little time as it takes to perform a system reboot. It is equally easy to

manage and augment the deployed infrastructure by assigning new roles, upgrading existing

roles, and rolling back software versions and/or configuration in the event of unexpected prob-

lems arising from an administrative task. Underlying our administrative paradigm is stackable

file system technology providing the ability to efficiently manipulate layers of the file system,

perform instantaneous snapshots, and institute copy-on-write layers to capture local modifica-

tions to an otherwise shared system or application image. We conducted a preliminary perfor-

mance analysis of our mechanism and concluded that it degraded neither the performance nor

scalability of the cluster nodes on which it was deployed.

∗Supported in part by the Defense Advanced Research Projects Agency under contract no. NBCH30390004.

1

1 Introduction

The computing infrastructure on which small and medium-sized firms rely is becoming increas-

ingly complex. Many such companies depend on software components distributed over a number

of servers running internal application suites as well as providing on-line Internet services. These

distributed components include database servers, email servers, identity management, applica-

tion servers, web servers, load-balancers, and many others. This diversity of mutually dependent

software complicates the fundamental tasks of systems management: initial installation, software

upgrade, new hardware deployment, and coherent cluster configuration.

The complexity of system deployment and configuration is mitigated to some extent by the exis-

tence of value added resellers (VAR) and regional system integrators (RSI) which bundle hardware,

operating systems, middleware, applications, and administration tools. The installation and config-

uration of these bundles is still predominantly a manual process. End-customers must go through

the tedious process of installing systems from CD-ROM or DVD media and then must manually

configure the cluster.

New hardware, software upgrades, or configuration changes require the end-user to manually take

machines out of service, make the changes, test the new configuration, and then redeploy the

server to a production environment. If the administrator wishes to expand capacity or re-provision

the cluster to balance the workload, they must repeat the previously mentioned tedious installation

process making sure that all appropriate patches and configurations are applied to each node – an

error prone process at best. That humans invariably make mistakes worsens the problem. Sev-

eral studies have shown that human mistakes committed during system administration were the

predominant cause of service disruptions and outages [5, 11, 10, 9].

Customers purchase servers to run software components of interest to them, therefore an effective

systems management solution must revolve around the installation, maintenance, and management

of these components. We have built a prototype to assist in the management of a cluster’s software

life-cycle named Blutopia. It seeks to automate many of the aforementioned tasks, provide version

control of system changes, and reduce time to install, upgrade, configure, re-provision, and deploy

services.

In the remainder of this paper, we first present the high-level architecture of Blutopia in Section 2.

In Section 3, we explore Blutopia’s functionality by unveiling how it manages roles and versions.

Section 4 describes the underlying implementation that enables these features. Section 5 evaluates

Blutopia’s overhead, presenting the results of the preliminary performance analysis we conducted.

We finish the paper by surveying related work in Section 6 and pointing out our planned extensions

to this work in Section 7.

2

2 Design

The aforementioned notion of a software-component-centric systems management tool leads to

Blutopia’s basic administration unit: the role. Imagine a scenario in which brand new servers are

delivered to the end customer by a value added reseller (VAR) or regional system integrator (RSI).

With Blutopia, initial deployment can be accomplished by unpacking the hardware, plugging it into

an existing network, turning it on, and assigning pre-existing roles to each system through a web-

interface served from the storage appliance, management module, or administrative server. As the

infrastructure evolves, new machines can be brought into service by simply assigning pre-existing

roles to them. Likewise, as new roles, versions, or configurations become available, administra-

tors can re-provision the cluster in a matter of minutes. In addition, Blutopia empowers system

administrators with the ability to quickly rollback machines to checkpoints instantiated prior to

the execution of administrative tasks. An arbitrary number of these checkpoint snapshots can be

logged by the Blutopia server.

2.1 Definitions

Blutopia is a tool meant to manage a set of services that are required by the end user. The services

may range from a Web-based bookstore to payroll and personnel management suites to be used

internally by a business. A service is comprised of a set of components that work in conjunction,

where each component is associated with a role. For example, a Web-based bookstore service

might use five components: one component whose assigned role is “LVS (Linux Virtual Server)

front-end load balancer”, three components whose roles are “Apache Web server”, and one com-

ponent designated as “MySQL database server”. Blutopia also supports multiple versions of roles.

For instance, the users might be able to choose among two different versions of the role “Apache

Web server”.

Besides support for management and deployment of services, another function Blutopia provides

is extensibility. Users may create new roles, as well as capture new versions of a role, making

them available for future deployment. In a typical business setting, local IT staff would manage

and deploy services, whereas contracted publishers would supply new roles and upgrades. The

details on how Blutopia deals with roles and versions are unveiled in Section 3.

2.2 Architecture

Figure 1 depicts Blutopia’s architecture. The so-called Blutopia network embodies all machines

running services managed by Blutopia, as well as the manager machine running Blutopia itself.

3

Network Monitor

Logic Engine

Control Center

System
Inventory Store

Blutopia Network

Network

Figure 1: Blutopia architecture.

As shown in Figure 1, Blutopia has four core components: a Control Center, a Logic Engine, a

Network Monitor, and a Network Store.

From a high-level perspective, users interact with Blutopia by means of a GUI, issuing commands

to the Control Center which in turn invokes the functions exported by the Logic Engine. The latter

interacts with the Network Store to perform the actions needed to carry out the user commands.

The current status of the cluster is collected by the Network Monitor and is reflected in the Control

Center user interface.

In the next few paragraphs, we briefly describe the internals of each Blutopia component and how

they interact with each other.

Network Monitor. As one would expect, the Network Monitor performs connectivity-related ac-

tions. It constantly monitors the network in order to detect new hardware, broken links, and service

disruptions. When a new machine is detected, the Network Monitor updates the System Inventory

(see Figure 1), a database that stores information about all machines belonging to the Blutopia Net-

work. Whenever the Network Monitor detects a service disruption, it reports that the corresponding

machine is unreachable and in the near future will activate autonomic recovery agents within the

Logic Engine. The current prototype system provides the Network Monitor functionality through

scripts monitoring the DHCP server log and the Ganglia monitoring infrastructure [8].

Control Center. Upon receiving a command from the user, the Control Center updates the Sys-

tem Inventory with new configuration information and calls the corresponding Logic Engine agent.

4

It also displays notification messages on the GUI corresponding to the status information it receives

from the Logic Engine and the Network Monitor. Our prototype Control Center is implemented as

a set of PHP scripts which interface with AJAX Javascript GUI interfaces [4].

Logic Engine. The Logic Engine is Blutopia’s heart. It is composed of a set of administrative

agents which interact with the System Inventory and Network Store to implement the various

functions which will be described in Section 3. The Logic Engine records the association of system

images to machines in the System Inventory. Its agents are responsible for adjusting configurations

as new applications are deployed or as services move to different physical machines. The prototype

Logic Engine is currently implemented as a set of Perl scripts.

Network Store. The last and potentially most important component is the Network Store which

keeps the file system and kernel images used by the machines belonging to the Blutopia Network.

The key enabling feature of our Network Store implementation is the ability to efficiently stack

file systems providing copy-on-write (COW) layers as well as multiple shared file system image

layers providing content, configuration, applications, and system software. The same technology

enables us to instantaneously snapshot the file system before each administrative change, giving us

the ability to roll-back system state to correct configuration errors. We detail how stackable storage

technology is leveraged by Blutopia in Section 4.

We have deployed our prototype implementation of Blutopia on an IBM Blade Center, installing

our infrastructure on an IBM Total Storage appliance and targeting disk-less IBM HS20 xSeries

blades. We envision migrating the Blutopia infrastructure to the integrated Blade Center manage-

ment module in the near future. While our prototype targets a Blade Center embodiment running

Linux, there is nothing preventing its use with more traditional Intel and PowerPC based servers

running either Linux, Windows, or AIX.

3 Administrative Tasks

3.1 Component Installation

Machine Detection. Before installation, all new machines must be configured to boot over the

network through the PXE boot protocol. The Network Monitor detects the addition of a new

machine when the machine issues a DHCP request for an IP address to Blutopia. At this moment,

the Network Monitor stores information pertinent to the new machine in the System Inventory and

the machine is given a default boot image containing only limited functionality. After booting from

5

Figure 2: Install function: detecting a new machine.

the default image (a process which takes approximately two minutes), the new machine effectively

joins the Blutopia Network, becoming available for future operations. Note that multiple machines

can be added to the Blutopia Network at the same time.

Figure 3: Install function: assigning a role to a new machine.

Role Assignment. After initial installation of new machines has been completed, Blutopia’s mes-

saging system, which is part of the Control Center (see Section 2.2), sends a message to the system

administrator through the GUI notifying them of the presence of new machines in the Blutopia

6

Network, as shown in Figure 2. Afterwards, whenever the user wishes, they can give the new

machines names and assign roles to them. In effect, role assignment turns the new machines into

components of the service provided at the user site, as defined in Section 2.1. Figure 3 shows

Blutopia’s interface for machine naming and role assignment. As can be seen in the figure, the

machine was given the name “m5” and the role “dbserver” was selected. The other roles available

in the example are “webserver” and “loadbalancer”. Furthermore, note that Blutopia provides a

pre-defined role called “spare”, which is automatically assigned to all new machines during initial

installation. After roles are assigned to a machine, a reboot command is issued by the Logic En-

gine. Once the reboot completes (typically in couple of minutes), the new service is fully-available

and integrated with the rest of the cluster.

The Blutopia system provides support for installation and role assignment to multiple systems

simultaneously with no additional overhead. Hence, for all practical purposes, the installation of a

service with multiple components takes about the same time as installing a single component. The

overall time for installation and role assignment is inherently related to the speed of the machines

and network conditions. In our tests, a whole service with six components was brought on-line

within less than three minutes.

3.2 Upgrade

Figure 4: Upgrade function: upgrading a component to a newer version.

7

From time to time, value added resellers and regional system integrators may provide updated

component images containing the latest bug fixes and security updates from an upstream software

publisher. These updated images may be transported over the Internet or on conventional media

such as CD-ROM or DVDs. The updated images need only be copied to the Blutopia server. Once

updated images are available, Blutopia trivializes the process of upgrading a component to a newer

version.

The system administrator selects an upgrade option for a given component from the Control Center

GUI which provides a drop-down list with all currently available versions, as illustrated in Figure 4.

If so desired, multiple components may be upgraded simultaneously.

The Blutopia Logic Engine manages upgrades by maintaining a strict order of single, linear de-

pendencies. In other words, a new version of a role is directly dependent exclusively on only

one previous version of the role. For example the version 2.0.54 of the role “Webserver” may be

dependent on version 1.0.33. The way dependencies are generated will be examined in Section 3.5.

3.3 Re-provision

We define the re-provision of a machine as changing the role currently assigned to it. For in-

stance, imagine an on-line three-tier Internet service composed of two Web servers, four appli-

cation servers, and one database server. Suppose that a more powerful machine is purchased to

host the database. Eventually, after the new machine is set up to run the database, the machine

previously designated as the database server might be re-provisioned so that it can be re-integrated

into the service as either a Web server, or an application server. Yet another situation for which

re-provision is suitable is alleviating a bottleneck tier in on-line Internet services. In the example of

the three-tier Internet service, if the second tier (application servers) becomes overloaded and there

are no extra machines to be deployed, re-provisioning one of the Web servers by transforming it

into an application server, might significantly improve the overall system performance.

Re-provision, as implemented in Blutopia, is actually a generalization of assignment of a role to

a new machine (see Section 3.1). During installation of a new machine, when the system admin-

istrator assigns a role to it she is, in effect, replacing the default “spare” role with another role.

Similarly, in re-provisioning, the system administrator replaces the role of a machine that has been

previously installed. While it is not currently implemented in the prototype, support for migrating

components between physical machines through re-provisioning is planned for the near future.

8

3.4 Rollback

Blutopia provides the administrator with the ability to rollback any server to a previously saved

checkpoint. As mentioned earlier, all Blutopia operations result in an instantaneous checkpoint of

the system prior to the action being taken. As such, rollback can be used to back-out a component

upgrade, reverse a re-provision operation, and correct operator error.

Figure 5: Rollback function: selecting a previous state.

To rollback a system, the user needs to choose a historical state from a list of the recorded check-

points for that particular node. Figure 5 illustrates what the list of saved states looks like. In the

figure, the user selected a state in which the component had been assigned the role “webserver”

whose version was 2.0.54. Note that each entry of the list has two additional fields: one time stamp

that indicates when the component was assigned the corresponding role, and another time stamp

showing when the component was last used with that role. It is possible to have a pair of role and

version appearing in the list of states multiple times, provided that the entries have different time

stamps. This same facility could be used to checkpoint content and manual configuration changes

or even provide nightly snapshots for backup purposes.

3.5 Packager

The packager function allows a software publisher, value added reseller, or even the local IT staff

to create new roles, customized roles, or new versions of a role.

9

Figure 6: Packager function: selecting a machine.

Creating upgrades. The first step in the creation of an upgrade is to choose a machine to derive

the upgrade from; eligible machines are those running the role for which an upgrade is desired. To

illustrate how upgrade creation works, let us assume that we want an upgrade for the “webserver”

role whose current version is 2.0.54. The administrator or software publisher would log on the

machine running “webserver” version 2.0.54 and manually upgrade the software. After doing so,

the administrator informs Blutopia that a new version is available on the chosen machine. This is

a two step process: first, the machine previously operated upon has to be selected in Blutopia’s

GUI, as shown in Figure 6; second, the role name and version have to be given to Blutopia, as in

Figure 7. When the Packager operation completes, the new version of the role will be available to

the installation and upgrade operations.

Creating roles. The process of creating a new role is identical to that of upgrade creation, except

that the publisher has to initiate it on a machine running the “spare” (default) role. This restriction

is not actually required, but it simplifies role creation. A Live-CD utility disk may be provided in

the future to allow creation of roles from systems outside of an existing Blutopia network.

10

Figure 7: Packager function: creating a new class or version.

4 Implementation

This section describes the details underlying Blutopia’s architecture. It gives some background

information on Unionfs [14], the stackable file system which is the foundation of Blutopia, and

discusses how it is used to execute the tasks discussed in the previous section.

4.1 Background: Unionfs

Unionfs is a stackable file system designed for the Linux kernel series 2.4 and 2.6 that lies be-

tween the VFS (Virtual File System) layer and the lower-level file systems — e.g. ext2, ext3,

NFS, ISO9660, etc. It captures calls made to VFS and modifies the behavior of the corresponding

operations before issuing them to the underlying file systems in order to provide the functionality

of names pace unification. The main idea behind names pace unification is to recursively merge

different directories (possibly belonging to different file systems) into a single unified view. In

Unionfs terminology, each merged directory is called a branch, and the resulting merged file sys-

tem is called a union. For instance, one could build a union based on both the root directory of

an ext3 file system on disk, and the root directory of an ISO9660 file system on a CD. These two

branches are then treated as a single file system.

To cope with the possibility of a given file name appearing in more than one branch, Unionfs

associates a precedence level with each branch. Given a set of branches containing a conflicting

file name, the branch with the highest precedence dictates what the file contents will be.

11

Although conceptually simple, names pace unification is a powerful feature that provides many

benefits. In particular, Blutopia exploits Unionfs names pace unification in three ways: to share

common base and role images, to obtain instantaneous system snapshots, and to provide fast re-

provisioning of systems.

Blutopia provides each machine with access to a network root file system. While systems have

the illusion of exclusive access to a unique root file system, parts of it are actually shared among

all machines. Each newly detected machine is given a Unionfs file system comprised of two

branches: one read-only branch containing the base operating system, and one read-write copy-

on-write (CoW) branch. All machines share the read-only branch, whereas each one has its own

CoW branch. Unionfs branches will be hereafter referred to as layers. A Unionfs file system,

as used by Blutopia, can be thought of as a stack of layers where the topmost layer is the only

read-write branch and, obviously, the one with highest precedence.

After the system administrator has assigned a role to a spare machine, Blutopia gives the machine

a three-layer union with the following composition, from the bottom to the top: a base operating

system layer, a role-specific layer, and a unique CoW layer. Such a stack can be seen on the left

hand side of Figure 8. As one might have realized, all machines share the bottom-most layer;

similarly, machines designated with a common role share the role-specific layer, yet each one has a

unique CoW layer. After preparing the new union as a result of role assignment, Blutopia records

the binding of the new union to the machine and reboots it so as to enforce the file system changes.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

RO

RO

RW

Webserver 1.0.33

Base OS

CoW layer 1

CoW layer 2

Webserver 2.0.54

RO

RO

RO

RW

RO

Webserver 1.0.33

Base OS

CoW layer 1

Figure 8: Component running “Webserver” is upgraded from version 1.0.33 to 2.0.54.

Upgrades of a component create a new union which differs from the base install in two aspects:

(1) the role-specific layer corresponding to the new version is inserted between the role-specific

layer of the previous version and the original CoW layer; (2) the previous CoW layer is marked as

read-only, and a new CoW layer is pushed on top of the stack. Figure 8 illustrates a component that

12

Base OS

CoW layer 2

RO

RO

RW

Dbserver 4.11RO

RO

RW

Webserver 1.0.33

Base OS

CoW layer 1

Figure 9: Component running “Webserver” is re-provisioned as “Dbserver”.

runs the role “Webserver” being upgraded from version 1.0.33 to 2.0.54. The diagram on the left

side shows the original Unionfs composition, and the resulting union is shown on the right side.

Note the creation of a new CoW layer and the insertion of the role’s new version layer.

It is worth mentioning the reasons why a new CoW layer is created and the previous one is kept

as read-only in the union. Inserting a new CoW layer provides a safe rollback state (originally

discussed in section 3.4), whereas preserving the old CoW layer ensures that all customizations

and configuration changes made to the previous version will be kept, thereby relieving the system

administrator from the burden of reconfiguring the upgraded software from scratch.

In a nutshell, upgrade leads to the creation of a union that contains a new CoW layer on top of any

previous CoWs, followed by as many role-specific layers as the number of nodes in the dependency

list of the new version, terminating with the base operating system layer. After the union is set up,

the machine is rebooted.

As a result of re-provisioning, the machine being operated upon is given a Unionfs file system

comprised of a new CoW layer, the role-specific layer, and the base operating system layer. Fig-

ure 9 depicts the re-provision operation on a machine originally assigned the role “Webserver”.

The diagram on the left side shows the Unionfs file system before re-provision, and the resulting

union is shown on the right side, after the machine was assigned the role “Dbserver”. Note the

differences between the two CoW layers.

One should notice a fundamental difference between upgrade and re-provision. While the former

operation always keeps older CoW layers in the union, the latter does not. During re-provision,

keeping the previous CoWs in the new union is not important because the machine will be assigned

a totally different role; on the other hand, preserving the CoWs after an upgrade has the benefit

of preserving all configurations and customizations made to the previous version, which can be

re-used by the system administrator in their entirety most of the time. For instance, if a component

is upgraded after the software publisher advertised a new version whose configuration files and

format are backwards compatible, the system administrator would not need to do any work besides

a few mouse clicks to select the machine and the new version.

13

RO

RO

RW

Dbserver 4.0.11

Base OS

CoW layer 1

(a)

RO

RO

RW

Webserver 2.0.54

Base OS

CoW layer 2

(b)

RO

RO

Webserver 2.0.54

Base OS

RWCoW layer 3

ROCoW layer 2

(c)

Figure 10: Unions handled during rollback from “Dbserver” to “Webserver”: (a) union before

rollback; (b) union corresponding to the state chosen for rollback; (c) new union created as a result

of rollback.

In order to implement rollback, Blutopia records the state of a component right before the user

performs an upgrade, re-provision, or rollback on it. The state of a component as recorded by Blu-

topia is defined by the following pieces of information: (1) the role and version of the component;

(2) the configuration of the Unionfs file system used by that component, i.e., the names of the

layers and their attributes — read-only or read-write; and (3) the actual contents of each Unionfs

layer. One should notice that saving a component’s state does not impose a severe space overhead,

given that the base operating system layer (shared by all machines in the Blutopia Network) and

any role-specific layer (shared by the machines assigned the same role) are not replicated, i.e.,

only one instance of such layers is kept. The contents of the aforementioned layers do not need

to be saved for rollback purposes because those layers are not writable. The disk-space overhead

due to rollback support stems from all CoW layers that are created in the system, but they tend to

occupy far less space than do the shared layers. Blutopia never re-uses a CoW layer; every time a

new CoW layer is needed for installation, upgrade, re-provision, or rollback, an empty directory is

created and used as a new Unionfs layer.

Let us suppose that the component selected by the user is currently assigned the role “Dbserver”

version 4.0.11, and that its current Unionfs file system has the composition shown in Figure 10(a).

Moreover, let us assume that the state selection performed by the user is done as in Figure 5, and

that the corresponding layers of the Unionfs file system are the ones shown in Figure 10(b). After

the user chooses the state and applies the rollback function, the Logic Engine will do the following

actions: (1) it adds an entry for the current state of the component — “Dbserver” version 4.0.11 —

into the list of states that the component can be rolled back to; (2) it creates a new union based on

the composition of the Unionfs file system that the component was using when the selected state

was saved, i.e., a new union identical to the one in Figure 10(b); and (3) it inserts a new CoW layer

on top of the newly created union, and transforms the previous CoW layer into read-only, the result

14

Webserver 2.0.54

Webserver 3.1.1

RO

RO

RW

Base OS

CoW layer 1

Figure 11: An upgrade is created based on “Webserver” 2.0.54. The resulting version is named

3.1.1.

being the union shown in Figure 10(c). The machine is then rebooted.

The step (3) described above ensures that the selected state will be preserved: all modifications

made to it after rollback will be isolated in the new CoW layer. The benefit of this approach is to

allow the user to rollback to any state multiple times.

The nature of stackable file systems makes the packaging of new roles and upgrades quite trivial.

Upon receiving the role name and version from the user interface, Blutopia copies the contents of

the CoW layer of the target machine where the upgrade was carried out, and stores it as a new role

version available for future deployments, as depicted in Figure 11.

In essence, the CoW layer contains only the changes made to the file system since the machine was

assigned the role “Webserver” 2.0.54. For that reason, Blutopia internally marks the new version

of the role “Webserver” (in our example, 3.1.1) as dependent on the version from which it was

derived (2.0.54, in our example). Whenever the version 3.1.1 is assigned to a machine, the new

union created as a result will always contain the layer “Webserver” 3.1.1 on top of “Webserver”

2.0.54 because of the dependency (see Section 3.2).

5 Performance Analysis

The primary overhead of Blutopia is imposed by our use of stackable file systems. Long-lived com-

ponents may accumulate dozens of layers from upgrades, rollbacks, and configuration changes. It

is vital to understand how the depth of a union can impact component performance. Furthermore,

since Blutopia is based on a centralized disk-storage, we must also evaluate the interplay between

deep unions and remote disk access. To that end, in this section we present the results of running

the widely used Postmark [6] benchmark, along with a simple stat micro-benchmark of our own

15

 0

 50

 100

 150

 200

 250

 300

 350

 4 6 8 10 12 14 16

E
la

ps
ed

 ti
m

e
(s

)

Number of layers

Unionfs over NFS
Ext2 over NFS
Local Unionfs

Local Ext2

Figure 12: Postmark: 10,000 files ranging from 500 and 1,024 bytes, 100,000 transactions.

design.

All of our experiments were conducted with Blutopia server running on a server equipped with a

single 1.6 GHz Intel Xeon processor, 4 GB of RAM, and 10K RPM IBM Ultrastar SCSI disks.

This machine provided the centralized disk-storage by means of an NFS server and Unionfs ver-

sion 1.0.13. The other machines belonging to the Blutopia network were disk less IBM HS20

blade servers equipped with two 2.8 GHz Intel Xeon processors and 1 GB of RAM. The Blutopia

server and blades were connected through a Gigabit Ethernet network. All machines ran Red Hat

Enterprise Linux release 4 with kernel version 2.6.12.2.

5.1 Postmark Benchmark

Postmark stresses the storage subsystem by creating an initial pool of files with a configurable

range of sizes. It then randomly deletes files, creates new files, reads and writes data to the files.

The intent of the workload is to mimic the constant use of multiple short-lived files which is

common in electronic commerce sites.

Figure 12 shows the results of Postmark for our system. We configured Postmark to generate an

initial pool of 10,000 files, whose sizes range from 500 to 1,024 bytes, and to perform 100,000

operations. The same random number generator seed was used throughout all benchmark runs

to guarantee reproducibility. The graph shows how the runtime varies as we increase the number

of Unionfs layers. Each point in the graph, corresponding to 3, 9, and 16 Unionfs layers, was

determined by performing 20 runs of the benchmark, discarding the greatest and the smallest

values, and taking the average of the 18 remaining samples. Before each experimental run, we

warmed up the buffer cache so that disk-access time did not dominate the results. We configured

Unionfs to manage file deletion by means of “whiteouts”. Also, note that the distribution of the

16

 0

 10

 20

 30

 40

 50

 4 6 8 10 12 14 16

E
la

ps
ed

 ti
m

e
(s

)

Number of layers

Unionfs over NFS
Ext2 over NFS
Local Unionfs

Local Ext2

Figure 13: Results for the stat micro-benchmark.

original files among the Unionfs branches reflects the typical evolution of a component from initial

installation (3 layers) to multiple upgrades (9 and 16 layers), but the files created and operated on

by Postmark are obviously located on the topmost CoW layer, the only writable Unionfs branch.

There are two pairs of related curves in the graph. The curves on the bottom show the results of

applying Postmark to the Ext2 file system and to Unionfs (on top of Ext2) locally on the Blutopia

server machine. For 3 layers, Unionfs exhibits an overhead of 136% as compared with Ext2. The

overhead increases linearly, with a subtle slope, as the number of layers increases, demonstrat-

ing Unionfs’s reasonable scalability. Our result was different from that presented by Wright et

al. [14] who claimed Unionfs overhead does not increase with the number of layers. They ran their

Postmark with a slightly different configuration: 20,000 files, ranging from 500 to 10K bytes, and

200,000 transactions. We attempted to duplicate their configuration and discovered the larger the

data set, the less visible the overhead (and its variation) becomes since the results are dominated

by disk-access time.

The two curves on the upper portion of Figure 12 show the results of running Postmark on one blade

server accessing Blutopia’s Ext2 and Unionfs file systems through NFS over a Gigabit Ethernet

network. This scenario is more representative since it portrays how the storage will be accessed

by the Blutopia Network. The network latency dominates the results making the Unionfs overhead

negligible. This outcome confirms that Unionfs will not pose any scalability problem for the

remote storage-access approach taken by Blutopia.

5.2 Stat Micro-benchmark

Since Postmark was limited to writing and accessing files on the top layer of Unionfs (where

they were created), we wrote a micro-benchmark that performs stat on a number of files at a

17

lower layer of the stack. The files to be operated on are supplied to the micro-benchmark from

a pre-computed list; in particular, our data set is comprised of 202,014 files, spread over 1,097

directories, amounting to 3.9 GB. For runs with Unionfs the data set was completely placed on the

second layer, counting bottom up.

The results for this micro-benchmark are presented in Figure 13. We show the accumulated time

to perform the stat operations. As in the previously commented benchmark, we used 3, 9, and

16 Unionfs layers. The graph shows the same pairs of related curves that were shown in the

previous graph, the one on the bottom being generated by running the micro-benchmark on the

local Ext2 and Unionfs file systems of the Blutopia server. In this case, Unionfs demonstrates an

overhead of 202% as compared with Ext2, and the overhead increases linearly with the number of

layers. Running the micro-benchmark from a blade accessing the Blutopia Ext2 and Unionfs file

systems via NFS leads to a negligible Unionfs overhead for the aforementioned reason: the result

is dominated by the network latency.

6 Related Work

Systems management issues have started drawing the attention of the systems research community.

Brown and Patterson have proposed a framework for providing an enterprise-wide undo function-

ality [2]. They implemented a proof-of-concept prototype applicable to an e-mail store hosted by

a single machine. In their work, the focus is solely on the undo capability; the proposed tool does

not address the system administration tasks themselves.

Another piece of research targeted at systems management is component validation [9]. The main

idea behind validation is to make sure that each component operated upon by the system admin-

istrator is introduced into the service only after the system observes that it behaves as expected.

Components under operation/validation are isolated in a virtual network; transitioning from the

virtual to the real network and vice-versa is done transparently and without reconfiguration. The

autonomic validation of software upgrades and configuration changes would be a powerful feature

to add to Blutopia’s existing workload. Integration of such a automatic administrative work flow

is something we plan to explore in future work.

Whitaker et al. [13] propose debugging configuration errors by rolling back the system to a point in

time where the error is not present. The main idea of their solution is to search the space of logged

disk states in order to identify the cause of the error. This search is carried out by booting a virtual

machine off each relevant state previously logged and determining if that state makes the system

work. This approach exhibits some resemblance to Blutopia’s rollback. They use a time-travel

disk to log every file system change, whereas Blutopia relies on Unionfs CoW layers to get file

18

system snapshots.

Like Blutopia, there are other research efforts targeted at making system administration easier.

The Collective [12, 3] is a computing utility that groups related machines as a single unit of system

administration called a virtual appliance. Collective assigns virtual appliances to hardware auto-

matically and dynamically. It is able to capture the configuration of an appliance and keep it when

its software is updated, so that it can be transparently reapplied. Also, Ajmani et al. [1] proposed

a methodology and an infrastructure to promote fully automatic software upgrades. Finally, the

Microvisor system [7] provides a virtual machine infrastructure that allows system administrators

to perform maintenance tasks on machines without requiring them to be taken out of the on-line

service.

7 Future Work

In pursuing our grand vision of making Blutopia a truly autonomic systems management solution

we foresee an exciting research agenda. In the next paragraphs we describe some avenues that we

plan on exploring over the next few years.

Self-configuration. In the autonomic computing realm we envision component self-configuration

as a key feature of Blutopia. A self-configuration framework would allow Blutopia to automati-

cally and transparently reconfigure the whole service as machines are assigned roles, upgraded,

and rolled back. We are primarily concerned with configuration related to the interaction between

service components. It is obvious that if a number of machines are used to provide a service, they

must interact with one another to exchange information. For instance, in a typical multi-tier Inter-

net service, Web servers forward requests to application servers which, in turn, contact a database

server; the replies flow in the opposite direction from the database server towards the Web servers.

Blutopia’s self-configuration system should be generic enough to perform automatic configuration

of all roles, even those that have yet to be created and published. As far as the end customer is

concerned, nothing changes. The GUI given to the end customer remains the same; the available

operations are installation, role assignment, upgrade, and rollback. Whenever roles “X” and “Y”

are assigned, Blutopia would transparently modify the necessary configuration files to guarantee

the appropriate interaction between machines running those roles.

Component validation. In some situations, the system administrator working at the customer

site might want to perform actions not supported by Blutopia. For instance, a specialized system

administrator might start changing configuration parameters to tune the performance of compo-

19

nents. While performing actions not supported by Blutopia, the user might make mistakes that

cause the whole service to misbehave or to become unavailable. To cope with human mistakes

we’d like to incorporate an automated validation infrastructure [9] as part of Blutopia. Before op-

erating on a machine, the administrator would ask the Blutopia to take the machine out of service

and into the validation environment. Once the user has performed the administrative actions, they

would request the Blutopia to validate and re-deploy the component into the on-line service. The

machine would then be automatically checked for correctness and re-integrated only if validation

succeeds; otherwise the machine is automatically rolled back before being redeployed. As de-

scribed in a previous work [9], the correctness checking could be done by driving the component

with real workload and inspecting the output it produces. The separation between the on-line ser-

vice and the validation environment can be accomplished by means of network virtualization. The

main benefit of validation is to avoid exposing human mistakes to the on-line service.

Dynamic policy caching. Currently, the machines managed by Blutopia rely completely on the

Network Store to access the file system. To be more precise, Blutopia is currently oblivious to the

existence of local disks. Hence, another avenue to improve Blutopia performance and scalability

would be to take advantage of local storage by using them for caching purposes. The rationale

behind this idea is to avoid overloading the centralized Network Store and reduce access latency.

This feature may be more valuable for medium-sized companies with larger cluster installations.

References

[1] S. Ajmani, B. Liskov, and L. Shrira. Scheduling and Simulation: How to Upgrade Distributed Sys-

tems. In Proceedings of the 9th Workshop on Hot Topics in Operating Systems (HotOS IX), May

2003.

[2] A. B. Brown and D. A. Patterson. Undo for Operators: Building an Undoable E-mail Store. In

Proceedings of the 2003 USENIX Annual Technical Conference, June 2003.

[3] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam. The collective: A cache-based system

management architecture. In Proceedings of the Second Symposium on Networked Systems Design

and Implementation (NSDI ’05), May 2005.

[4] J. J. Garret. Ajax: A new approach to web applications. February 2005.

[5] J. Gray. Why do Computers Stop and What Can Be Done About It? In Proceedings of 5th Symposium

on Reliability in Distributed Software and Database Systems, Jan. 1986.

[6] J. Katcher. Postmark: A New Filesystem Benchmark. Technical Report TR3022, Network Appliance,

1997. http://www.netapp.com/tech library/3022.html.

20

[7] D. E. Lowell, Y. Saito, and E. J. Samberg. Devirtualizable Virtual Machines - Enabling General,

Single-Node, Online Maintenance. In Proceedings of the 11th International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS IX), Oct. 2004.

[8] B. N. C. Matthew L. Massie and D. E. Culler. The ganglia distributed monitoring system: Design,

implementation, and experience. Parallel Computing, 30(7), July 2004.

[9] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen. Understanding and Dealing

with Operator Mistakes in Internet Services. In Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’04), Dec. 2004.

[10] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do Internet Services Fail, and What Can Be

Done About It. In Proceedings of the USENIX Symposium on Internet Technologies and Systems

(USITS’03), Mar. 2003.

[11] D. A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox,

E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft.

Recovery-Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies. Tech-

nical Report UCB//CSD-02-1175, University of California, Berkeley, Mar. 2002.

[12] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow, M. S. Lam, and M. Rosenblum.

Virtual appliances for deploying and maintaining software. In Proceedings of the Seventeenth Large

Installation Systems Administration Conference (LISA ’03), October 2003.

[13] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration Debugging as Search: Finding the Nee-

dle in the Haystack. In Proceedings of the USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’04), Dec. 2004.

[14] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P. Quigley, E. Zadok, and M. N. Zubair. Versatility

and unix semantics in namespace unification. ACM Transactions on Storage (TOS), 1(4), November

2005.

21

