
RC23787 (W0511-061) November 8, 2005
Computer Science

IBM Research Report

Enabling Context-Sensitive Information Seeking

Michelle X. Zhou, Keith Houck, Shimei Pan, James Shaw,
Vikram Aggarwal, Zhen Wen

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Abstract
Information seeking is an important but often difficult task, espe-
cially when it involves large and complex data sets. We hypothe-
size that a context-sensitive interaction paradigm would greatly
assist users in their information seeking. In particular, such a para-
digm would allow users to both express their requests and receive
requested information in context. Driven by this hypothesis, we
have followed a rigorous process to design, develop, and evaluate
a full-fledged, context-sensitive information system. We started
with a Wizard-of-OZ (WOZ) study to verify the effectiveness of
our envisioned system. We then built a fully automated system
based on the findings from our WOZ study. We targeted the devel-
opment and integration of two sets of technologies: context-sensi-
tive multimodal input interpretation and multimedia output
generation. Finally, we formally evaluated the usability of our sys-
tem in real world conditions. The results show that our system
greatly improves the users’ ability to perform information-seeking
tasks, thus confirming our initial hypothesis. Moreover, these
results indicate that our approaches are capable of supporting con-
text-sensitive information seeking in practical applications.

Keywords
Context-sensitive information seeking, intelligent input interpreta-
tion, automated output generation.

1. INTRODUCTION
People seek information daily, for example, exploring various
options of vacation packages or examining multiple aspects of res-
idential properties. However, information seeking can often be
very difficult and time consuming for two main reasons. First,
users often cannot directly specify their information desires using
conventional WIMP-based interfaces. This becomes more evident
when users do not know exactly what they are looking for at the
beginning of the search (e.g., finding a dream home). In such

cases, users must examine multiple data aspects and explore differ-
ent but related data entities to determine their targets. To express a
query like U1 in Figure 1, users may only be able to approximate
the query by filling multiple forms plus manually stitching
together information gathered at different steps (e.g., finding all
desired cities first and then using the results to find houses). More-
over, most existing systems are context insensitive. Continuing the
above example, most systems cannot directly respond to follow-on
queries like U2/U3. Without being able to easily revise their que-
ries in context, users must start over again (e.g., traversing multi-
level menus to switch navigation targets or reformulating queries
with new search foci or criteria). Second, users cannot easily distill
information from often scattered, one-size-fits-all presentations of
retrieved data. As a result, users have to manually integrate rele-
vant information appearing at multiple places (e.g., one display on
houses and another on schools). A context-insensitive output may
also prevent users from easily identifying important information or
comprehending the information as a whole.

To address the issues mentioned above, we envision context-sensi-
tive information systems that allow users to express their requests
and receive the requested information in context. Driven by this
vision, we have built a full-fledged system, called Responsive
Information Architect (RIA). RIA aids users in their information
seeking from two aspects. First, RIA lets users specify and revise
their requests in context using multiple modalities, including natu-
ral language and GUIs. Second, RIA dynamically creates a multi-
media response that is tailored to the user's interaction context,
including user interests and interaction history.

Figure 1 shows a fragment of user-RIA interaction in a real-estate
domain. Starting with U1, the user asks for a set of houses. Accord-
ingly, RIA dynamically synthesizes a multimedia response based
on a number of factors at run time. For example, based on the
retrieved data and the available space, RIA displays house images

U1 Text: 4+ br, 2+ bath, colonials under $500k
in cities in the north along Hudson

U2 Text: Tell me more about the cities U3 Text: Just those in cities with more than
30000 people

R1 Speech: I found 15 houses R2 Speech: Here are the 4 cities you asked R3 Speech: I found 9 houses

Figure 1. A recorded user-RIA interaction fragment: U1–U3 are user inputs, R1–R3 are corresponding RIA-generated responses.

(a) (b) (c)

Enabling Context-Sensitive Information Seeking

Michelle X. Zhou Keith Houck Shimei Pan James Shaw Vikram Aggarwal Zhen Wen
IBM T. J. Watson Research Center

19 Skyline Dr.

Hawthorne, NY 10532

{mzhou, houck, shimei, shawjc, vikram, zhenwen}@us.ibm.com

2

and MLS numbers. Tailoring to the query expression, RIA also
conveys the relevant city information to provide the spatial context
for the houses. As a follow up, the user wants to examine the cities
further (U2). Using the conversation context, RIA is able to supply
the requested city information (R2). After knowing more about the
cities, the user then shifts back to the houses and asks to filter them
using an additional city population constraint. Again, RIA under-
stands the input in context and returns the requested houses (R3).

Unlike our previously published work, which focuses on a specific
RIA component [22, 31, 30, 21], here we report on the overall
design, development, and evaluation of an end-to-end RIA system.
More importantly, we present concrete evidence to support our two
assertions: 1) RIA-like systems greatly improve user information
seeking experience; and 2) our approaches are practical for build-
ing real-world applications. We organize our evidence around
three fundamental questions:

1. Whether/how does our envisioned system help improve user
information-seeking experience?

2. Whether/how can we implement the desired features of our
envisioned system?

3. How well does the implemented system help users in their infor-
mation seeking?

To address the first question, we conducted a Wizard-of-OZ
(WOZ) study to validate the effectiveness of our envisioned sys-
tem along with its functional requirements.

To address the second question, we evaluated which desired sys-
tem features identified by our WOZ study are feasible to support.
We then built a fully working RIA to support these features. In this
process, we applied the same set of technologies to two different
applications to validate the reusability and extensibility of our
approaches.

To address the third question, we performed a formal user evalua-
tion to determine whether the implemented RIA effectively aids
users in their information seeking.

To the best of our knowledge, we believe that our work is the first
to comprehensively address the entire process of designing, devel-
oping, and evaluating a practical, context-sensitive information
system. As a result, it offers three unique contributions. First, we
share our findings from the WOZ study to pinpoint the minimal
functional requirements of context-sensitive information systems.
Second, we have addressed practical issues in building context-
sensitive input interpretation and output generation technologies
for realistic applications. We have also exploited the synergy
between the input and output technologies to support intelligent
and robust user interaction, which is otherwise very difficult to
achieve. Third, our evaluation results reveal the strength and limi-
tations of our current work, and indicate future research directions.

Currently RIA is embodied in two applications: a residential real-
estate application and a travel application. We use the real-estate
application as our primary testbed for several reasons. First, we
believe that house hunting exhibits the complexity of a typical
information-seeking application. In such an application, users
often need to cross-examine a wide range of interrelated data (e.g.,
houses, neighborhoods, and schools) before reaching a conclusion
(e.g., houses worth visiting). Second, real-estate data is easily com-
prehensible by average users and is readily available, which allows
us to experiment with realistic user scenarios. Third, there are
online real-estate sites that we can directly use for comparison.

In the rest of paper, we start with a brief discussion of related work
before reporting on our WOZ study. Based on the WOZ study
results, we then explain key technical challenges, design rationale,
and implementation of RIA. Last, we present a user evaluation of

the working RIA system.

2. RELATED WORK
Our work is closely related to extensive efforts in both input analy-
sis and output generation [16]. These works focus on specific tech-
niques for understanding multimodal inputs (e.g., [29, 19, 12]) or
for automating the creation of system outputs (e.g., [3, 7, 15, 13]).
In contrast, our work described here is on the overall design, devel-
opment, and evaluation of a full-fledged, intelligent information
system that exploits the synergy between input analysis and output
creation. Moreover, we emphasize the use of these technologies in
support of practical applications that deal with large and complex
data sets and diverse user interaction situations.

Another set of related work is information-seeking dialogue sys-
tems (e.g., [2, 11]) and natural language interfaces to databases
[24]. However, none of them has gone to the extent as RIA does in
developing and integrating context-sensitive multimodal input
analysis with fully automated multimedia presentation generation.

Our work is also related to context-sensitive information retrieval
systems (e.g., [27, 25]). Similar to these systems, RIA uses the
interaction context (e.g., user interests) to aid users in information
seeking. Unlike these systems, which focus on information
retrieval from free text, RIA handles database retrieval. Accord-
ingly, RIA is able to exploit a much finer-grained interaction con-
text established by its input analysis and output creation engines.
For example, RIA understands deeper semantics of a user request
than other systems do.

Our work is built on previous studies on user information-seeking
behaviors [18, 14, 26] and user interaction patterns [20]. While
these studies guide the design of our system, we implement and
validate these theories in practice.

3. WIZARD-OF-OZ (WOZ) STUDY
To observe realistic user interaction behaviors before creating a
fully working system, we employed a WOZ technique that used a
hidden human operator (wizard) to simulate envisioned RIA
behaviors. The goals of our study were to 1) validate the effective-
ness of the envisioned RIA, 2) identify RIA advantages and func-
tional requirements, and 3) learn user interaction patterns and
collect a corpus of actual user expressions for analysis and train-
ing. To achieve these goals, we first built a functional WOZ system
to simulate our envisioned RIA features (e.g., supporting user que-
ries in context). We then conducted a comparison study where we
asked users to use both our WOZ system and an online real-estate
site to complete similar information-seeking tasks.

3.1 WOZ System Setup
Given a user multimodal request, the wizard interprets the user’s
speech input and combines it with other inputs as needed (e.g.,
mouse pointing). The wizard then uses a GUI to compose a com-
mand (e.g., present <houses>) that drives the response creation. To
optimize wizard response time, we use a limited set of parameter-
ized commands to cover various user requests. We also perform
run-time syntax checking on command parameters to minimize
wizard input errors. Given a command, the system builds corre-
sponding database queries, and then presents the retrieved data
using pre-defined visual and verbal presentation templates.

3.2 A Comparison Study
To validate the effectiveness of our envisioned RIA and identify its
advantages along with functional requirements, we compare the
behaviors of our WOZ system with that of a conventional WIMP-
based information system. To obtain meaningful results, we have
designed our study scope and task scenarios such that they are real-
istic enough to emulate a practical application.

3

3.2.1 Study Scope
We chose to compare our WOZ system with www.realtor.com, the
official site of the National Association of Realtors. There are two
types of typical information-seeking task: target search and brows-
ing [14]. A target-search task involves finding a target that meets a
set of well-defined search criteria (e.g., house price range and
style). In contrast, a browsing task involves exploring a data space
using fuzzy criteria (e.g., finding an ideal home). In this study, we
chose to focus on target search tasks for three reasons. First, target
search is well supported by both our WOZ system and by real-
tor.com. Second, target search facilitates an objective comparison
(e.g., comparing task completion rate and time). Third, with a care-
ful design, target search can cover typical user interaction behav-
iors exhibited in browsing, such as orienteering [26].

3.2.2 Task Scenarios
We recruited 18 users (including 2 pilot users) for our study. Each
user session consisted of three parts. First, we profiled the user
using a 9-item questionnaire, such as asking one’s familiarity with
the real-estate domain and with online real-estate sites. Second, we
asked the user to perform two sets of house hunting tasks, one
using our WOZ system, and the other using realtor.com. The goal
was to find the target house and related information (e.g., the
school district data) in the shortest time. Third, we asked the user 6
feedback questions. For each task, we recorded the correct target
identification rate, task completion time, and the number of turns
taken to complete the task. The maximal time allowed per task was
30 minutes. We videotaped every session for later analysis.

To test the usage of context, each task had two parts (A and B),
where part B required certain information obtained from part A
(Figure 2). To make task scenarios realistic, we used house hunting
criteria acquired from several sources: 1) from a dozen eager home
buyers in a separate study, 2) from local real-estate experts, and 3)
from market surveys done by the National Association of Realtors.

To eliminate potential biases like learning effects, we designed two
similar but not identical sets of tasks. We also permuted the task
order and the system usage order to test all combinations.

3.3 Study Results
Figure 3(a–e) show both objective and subjective evaluations, indi-
cating that our WOZ system outperforms realtor.com in every cate-
gory. An ANOVA test also identifies that the usage of system
(using RIA or realtor.com) is the only statistically significant factor
(p < 1e-7) that impacts user performance. To verify the practicality
of our tasks, we asked users to rate how likely they would use the
similar set of house hunting criteria in a real world. We obtained an
average score of 6.41 on a 1 to 7 scale, with 7 being most likely.

Our comparison study not only confirmed the effectiveness of our
envisioned RIA, but it also helped to identify two key advantages
of such a system. First, the WOZ system allowed users to express
their requests flexibly in context, which in turn helped them to eas-
ily express their search targets, update their search criteria, and
switch their data foci. Second, the WOZ system tailored its multi-
media responses to the interaction context, which helped users to
easily distill important information and comprehend all relevant
information as a coherent whole.

Our study also identified several additional user needs. First, it is
desirable for RIA to provide explicit system feedback whenever
possible. For example, since our WOZ system allowed users to
revise their search criteria in context, the users preferred explicit
confirmation of the complete search criteria in effect. Second, it is
desirable for RIA to provide system guidance, since users may not
know what they could ask or how to express their requests. Due to
the diverse user interaction patterns, pre-defined system help may
be insufficient. Third, besides delivering requested information,
the system may need to explain the relation between what is being
asked and what is being retrieved. Figure 4 shows an example of a
simple system response that has confused some users. In this case,
Mt. Kisco school district does not exist, and the city of Mt. Kisco
is covered by the Bedford school district. Without explicitly
explaining such data relationships, there is an information gap
between what a user asks and what she receives. In addition, we
found the template-based output design used in our WOZ system
inadequate for handling diverse interaction situations. For exam-
ple, we could not integrate retrieved houses with a spatial map due
to a lack of dynamic layout and visual context management [28].
The wizard also had to improvise his verbal responses when a suit-
able template-based response was unavailable.

Based on our analysis, we summarize desired RIA functional

Part A: Find houses satisfy the following criteria, and record their
MLS, town name, school district, and tax.

Location: White Plains, Mt. Kisco, and Briarcliff Manor
Price: 350K–550K; Num of Bedrms: 3+; Style: ranch
School district: have the highest graduation rate
Tax: lowest tax when all above criteria met

Part B: Compare the median home price in Chappaque with that of
the town of your choice from Part A; then find houses satisfying:

Location: Chappaqua; Price: 350K–550K; Num of Bedrms: 3+;
Square footage: biggest square footage when above criteria met

Figure 2. A sample task tested in our WOZ study.

(a) (b) (c)
Desired interaction features:
• Support diverse user requests
• Allow query revision in context
• Provide system guidance in context

Desired system output features:
• Provide an integrated view of related information
• Preserve visual context whenever possible
• Provide explicit feedback whenever possible
• Fill in the information gap if needed

(d) (e) (f)

Figure 3. (a–e) are objective and subjective evaluations for two sets of 2-part (parts A and B) tasks. Subjective evaluations are rated
on the scale of 1 (least favorable) to 7 (most favorable). (f) lists user-desired features collected from the study.

 Target Identification Rate

0

50

100

Tasks

R
at

e
(%

)

WOZ 87.5 87.5 87.5 87.5

Realtor 25 50 50 25

Task 1A Task 1B Task 2A Task 2B

Average Completion Time

0:00

12:00

0:00

Tasks

M
in

ut
es

WOZ 6:03 4:26 6:52 3:55

Realtor 16:45 4:36 12:31 9:04

Task 1A Task 1B Task 2A Task 2B

Average Number of Turns

0

50

100

Tasks

N
u

m
b

er

WOZ 12.28571429 9 14.42857143 7.857142857

Realtor 64.5 12 39.5 30.5

Task 1A Task 1B Task 2A Task 2B

The Rating to the Interaction

0

2

4

6

8

Tasks

R
a

tin
g

WOZ 5.5 5.75 5.25 6.125

Realtor 3 3.88 3 2.75

Task 1A Task 1B Task 2A Task 2B

The Rating to the Responses

0

2

4

6

8

Tasks

R
at

in
g

WOZ 5.75 5.75 5.375 6.188

Realtor 4.63 4.375 4.375 3.75

Task 1A Task 1B Task 2A Task 2B

4

requirements in Figure 3(f).

4. CONTEXT-SENSITIVE INFORMATION SYSTEM
We have built RIA to fulfill all the requirements listed in Figure
3(f) except the last one, since complex data inference may be
required to detect the situation and is beyond our current scope of
work. Based on our user feedback, we have also decided to focus
on supporting text input instead of speech input to achieve the
desired system robustness. We first describe RIA’s overall archi-
tecture and main user-RIA interaction flow. We then explain RIA
key technologies, emphasizing the design rationale that we have
used to enable a robust and extensible RIA system.

4.1 RIA Architecture and Main Flow
RIA is a multi-threaded, distributed client-server system (Figure
5a). Starting from the client side, a user uses multiple modalities,
including GUI, natural language, and deictic gestures, to express a
data request. Such a request is then sent to the process dispatcher
on the server side. The dispatcher manages the RIA component
work flow by invoking each component in an order that is defined
in a system configuration file. As each component is called, it
updates the conversation history, which serves as a blackboard for
all the components to exchange and share information.

Given a user request, the dispatcher first calls the input interpreter.
In a user-initiated turn, the interpreter often creates a new conver-
sation segment with a user unit that records the interpretation
result. An interpretation result captures both the intention and
attention of an input [6]. For example, the interpretation of U1 in
Figure 1 is: seeking (intention) a set of houses (attention). The con-

versation facilitator is called next to suggest a set of conversation
acts by weighing various factors, such as the properties of the
retrieved data and communication obligations [21]. In the case of
U1, the conversation facilitator decides to directly present the
requested houses. This decision is then recorded in a RIA unit,
which becomes part of the conversation history (Figure 5b).

A conversation act usually indicates the type of a response without
specifying the exact content (e.g., house attributes) or the form of
the response. The presentation broker is then called to refine each
act. The presentation broker handles content selection and media
allocation, similar to the functions of the content layer defined in
[6]. Consequently, it produces a presentation draft that defines the
intended content [30] and the media usage [32]. Based on the draft,
the speech designer and visual designer create media-specific
responses. The final design is recorded in a data structure called
presentation blueprint that defines all verbal and visual details.
Figure 5(b) is a snapshot of the conversation history up to this
point. The media producer is called last to send the presentation to
be rendered on the client side. Currently, it sends over the audio
produced by a Text-to-Speech (TTS) engine and a visual scene
script (Figure 5).

All components interact with a common information server to
access various data, including application data (e.g., houses in our
real-estate application), conversation history, user model (e.g., user
profile), and environment model (e.g., device capabilities).

As described above, RIA relies on two key sets of technologies:
context-sensitive input interpretation and automated output gener-
ation. Since we have detailed these technologies elsewhere [6, 10,
23, 22, 30, 32, 31], here we explain our design rationale of honing
these technologies for practical applications. Moreover, we empha-
size the exploitation of the synergy between these technologies so
that they can work cooperatively in RIA.

4.2 Context-Sensitive Input Interpretation
Based on our WOZ study, it is highly desirable to have a robust
and accurate input interpretation engine that can understand
diverse user expressions in context. Since building a general pur-
pose interpretation engine is very difficult, RIA focuses only on
understanding user information-seeking requests. Furthermore, we
employ three complementary strategies to enable robust and accu-
rate interpretation of diverse user data requests in context. First, we
use a context-driven approach to optimize RIA interpretation by
exploiting various contexts simultaneously, including data seman-
tics, linguistic cues, and conversation history. Second, we provide
system guidance in context to allow users and RIA to adapt to each
other’s expressions over time. Third, we leverage the strength of
multiple modalities to achieve robust interpretation.

4.2.1 Context-driven interpretation
Currently, RIA focuses on user requests to databases. As we have
observed (e.g., from our WOZ study), while these requests exhibit
substantial syntactic variations, they share a common semantic
structure. Based on this observation and the conversation theory
[8], we use a set of semantic constructs to model a user request.
Specifically, a user request includes two top-level constructs:
intention and attention. Intention encodes the user information-
seeking task (e.g., data access or comparison). Attention captures
the data target of the intention, made up of lower-level constructs,
such as data concepts/attributes to be retrieved, and a set of con-
straints that the retrieved data must satisfy. It also includes derived
meta features that characterize the overall properties of a request.
For example, feature followup signals whether a request is new or a
follow on. Such features are used to tailor RIA responses to a spe-
cific user interaction flow (Section 4.3.3).

Since we focus on a finite set of information-seeking tasks, identi-
fying the intention of a user request is relatively easy. Our main

U3: Tell me about Mt. Kisco school district
WOZ: I found 1 school district, Bedford school district

Figure 4. A potentially confusing system response.

Figure 5. RIA Architecture and a snapshot of conversation his-
tory after step 4.

Output
Rendering

Server Components (RIA Core) Client Components

Speech
Designer

DB2

Presentation
Broker

Presentation
Broker

Conversation
Facilitator

Conversation
History

User model Environment
model

Visual
Designer

Input
Interpreter

Media
Producer

Process Dispatcher

Information Server

ontology

TTS

Input
Capturing

Client InterfaceClient Interface

1

2

3

4 4 5

(a)

Pres. Blueprint

Pres. DraftPres. Draft

USER-UNITUSER-UNIT

SEGMENT

RIA-UNITRIA-UNIT

Conversation ActsConversation Acts

Speech:
“I found 5 houses…”

Graphics:
Scene {

Camera {. . .}
House1 { . . .} . . . }

Speech:
“I found 5 houses…”

Graphics:
Scene {

Camera {. . .}
House1 { . . .} . . . }

Pres. Blueprint

Pres. DraftPres. Draft

USER-UNITUSER-UNIT

SEGMENT

RIA-UNITRIA-UNIT

Conversation ActsConversation Acts

Speech:
“I found 5 houses…”

Graphics:
Scene {

Camera {. . .}
House1 { . . .} . . . }

Speech:
“I found 5 houses…”

Graphics:
Scene {

Camera {. . .}
House1 { . . .} . . . }

(b)

5

effort is thus on interpreting the attention of a request. Similar to
PRECISE [24], RIA focuses on identifying the semantic constructs
of an input (e.g., data concepts and constraints) and the relation-
ships between the constructs (e.g., relationships between two data
concepts). However, unlike PRECISE, which handles only com-
plete requests, RIA allows users to incrementally revise their
requests in context instead of specifying a complete query every
time. To derive the full meanings of incomplete (e.g., “the cheap-
est”) or imprecise requests (“what about Pleasantville”), RIA
exploits various contexts, including data semantics, linguistic cues,
and conversation history [5, 10].

Figure 6 shows a partial interpretation made by RIA. To interpret
this input, RIA first identifies various semantic constructs using a
lexicon that is largely derived automatically from the databases.
RIA then resolves references like “those” and semantic ambigu-
ities such as in “Hawthorne”. To do so, RIA uniformly models
contextual cues as a set of constraints, including conversation his-
tory, data semantics, and syntactic information derived from a syn-
tactic parser [17]. It then uses optimization-based approaches to
derive the most probable interpretation of an input by maximizing
the satisfaction of all constraints (e.g., probabilistic graph-match-
ing in [5]). As a result, RIA is able to consider all constraints
simultaneously, which in turn helps RIA to optimize its interpreta-
tion. Continuing our example above, RIA is able to resolve “those”
to be the houses mentioned before, and identify that “Hawthorne”
most likely be a company location instead of a train station.

A practical issue of this approach is to balance the satisfaction of
various constraints, especially conflicting ones. For U3 in Figure
1(c), there are two conflicting constraints suggesting what “those”
may refer to. A conversation history constraint hints that “those”
likely refers to cities—foci of the previous turn. However, a
semantic constraint may suggest that “those” likely refer to some-
thing else since there is no semantic relation between two sets of
cities. When a conflict rises, RIA tries to satisfy the constraints
with higher priorities. In the above example, RIA favors the
semantic constraint and resolves “those” to be the houses men-
tioned before. In general, we assign priorities to constraints based
on their reliability. For example, semantic constraints derived from
a data ontology are assigned higher priority than that of dynami-
cally inferred conversation history constraints.

As a result, RIA can handle a wide range of user expressions
regardless their syntactic forms, ranging from keywords (e.g.,
“colonials 3+ bedrooms”) to full English sentences, all in context.
Such flexibility of RIA is much appreciated in a practical applica-
tion, where RIA must accommodate various user linguistic styles,
and tolerate imperfect user inputs (e.g., abbreviated and ungram-
matical expressions). Moreover, our approach helps to minimize
the effort for supporting new domains, since it does not require a
large training corpus or a large set of syntactic rules. It is also easy
to incorporate new constraints (e.g., pragmatic constraints) to drive
the interpretation without changing the underlying algorithms.

4.2.2 Adaptive interpretation
Despite our effort described above to help achieve more accurate

and robust interpretation, RIA’s interpretation capability may still
be insufficient for our targeted, real-world applications. Instead of
directly improving RIA interpretation capability in a conventional
way, we build a two-way adaptation engine that allows both users
and RIA to dynamically adapt to each other’s expressions during
the course of interaction [23]. For example, RIA failed to under-
stand U6 in Figure 7 initially, so it suggested five valid alternative
queries using a set of criteria, including matched data semantics
and surface expressions. Among the suggested queries, the user
selected the second one from the list and edited it (U6') to suit her
needs. Accepting U6' and observing the pair (U6, U6') over time,
RIA can then use this association to handle a similar unsupported
request like “Find ranches in good school districts”. Consequently,
the adaptation enhances the usability of RIA by turning a novice
user into a power user, who can work effectively within RIA’s
capability. In addition, RIA improves its interpretation capability
through self-adaptation, minimizing the overall effort of develop-
ing an effective interaction system. As our adaptation algorithms
are detailed in [23], here we discuss two practical issues of inte-
grating such mechanisms within a working RIA.

The first issue is how often RIA should invoke the adaptation
engine. If RIA’s error tolerance is too low, any input errors would
trigger the adaptation process (e.g., typo “then” in “show houses
cheaper then $500k”). As observed in our experiments, this may
result in more user interaction turns and longer task completion
time, since users must correct every error. In contrast, if the error
tolerance is too high, RIA would skip unknown or problematic
expressions without notifying the adaptation engine. As a result,
RIA might misinterpret an input and would not be able to learn
new expressions over time. To achieve a balance, we measure the
error severity occurring in an input using multiple features, includ-
ing the percentage of detected unknown words and the impact of
such words. Through extensive experiments, we tune the error tol-
erance so that the adaptation engine is invoked only when unfor-
givable errors occur.

The second issue is when RIA should invoke the adaptation
engine. RIA processes an input in multiple stages, including label-
ing input tokens using a lexicon and grouping different semantic
constructs. It may identify input ambiguities or anomalies at any
stage. For example, RIA detects the unknown word “good” in U6
(Figure 7) during the labeling stage, since “good” is not in the lex-
icon. Should RIA invoke the adaptation engine immediately or
defer it to a later stage? In practice, calling the adaptation engine
early could avoid unnecessary analysis. For example, even after a
full analysis, RIA would not know better about the unknown
expression “river views” in “show houses with river views”. With-
out a full analysis, however RIA may make less accurate recom-
mendations. Considering U6, without a full analysis RIA cannot
associate “good” with “school districts”. In turn, RIA would rec-
ommend a different set of queries. Currently, RIA invokes the
adaptation engine after a full analysis, favoring the accuracy of
query recommendations over computational efficiency.

Previous request: Show colonials

Figure 6. Partial semantic constructs of an input

just those near IBM Hawthorne

Constraint 1:
companyName = ‘IBM’

Constraint 2:
companyLoc = ‘Hawthorne’
stationName = ‘Hawthorne’

Ref = ‘house’

Constraint:
style = ‘colonial’
Constraint:
style = ‘colonial’

HouseHouse CompanyCompany

Constraint 1Constraint 1 Constraint 2Constraint 2

near

just those near IBM Hawthorne

Constraint 1:
companyName = ‘IBM’

Constraint 2:
companyLoc = ‘Hawthorne’
stationName = ‘Hawthorne’

Constraint 2:
companyLoc = ‘Hawthorne’
stationName = ‘Hawthorne’

Ref = ‘house’Ref = ‘house’

Constraint:
style = ‘colonial’
Constraint:
style = ‘colonial’

HouseHouse CompanyCompany

Constraint 1Constraint 1 Constraint 2Constraint 2

near

U6 Text: Show tudors in good school districts

Figure 7. An example of input adaptation.

U6'

6

4.2.3 Leveraging GUIs and language inputs
Besides combining language inputs and deictic gestures as in other
systems [12, 29, 19], we have explored the usage of GUIs to com-
plement language inputs for two reasons. First, it is easier for users
to use GUIs to express certain data requests (e.g., using a slider for
dynamic data query [1]). Second, GUI inputs are explicit and thus
help RIA to process the accompanying language input. By default,
RIA interprets a user request in the context of previous requests.
However, users may break from the previous conversation flow
without explicitly signaling it in their language input. Consider a
user input “show houses in Armonk” after U3 in Figure 1. It is
unclear whether RIA should inherit the previous house constraints
or simply start fresh. While RIA is able to detect some of these
breaks, it also lets users use a GUI button to explicitly signal the
start of a new flow. In fact, users can use different GUI buttons to
control a conversation flow, including interrupting a RIA response
(barging in), starting over (wiping out the entire conversation his-
tory), and going back (reverting to the previous turn).

4.3 Automated, Customized Output Generation
RIA is designed to support a highly dynamic user conversation,
where it is difficult to predict how the conversation would unfold.
It is thus impractical to plan in advance the content and forms of all
possible RIA responses. To tailor RIA responses to a user interac-
tion context, we develop a suite of automated response generation
technologies. More importantly, we take practical issues into
account when developing these technologies to achieve desired
system coverage and extensibility. Specifically, we devise an opti-
mization-based framework to select response content [30] and
allocate suitable media [32]. We combine machine learning with
other approaches to dynamically synthesize verbal and visual
responses [22, 31]. In addition to tailoring responses to individual
requests, RIA leverages user input patterns to customize responses
to a specific user interaction flow. We also build fall-back mecha-
nisms that allow RIA to act robustly, even in unanticipated situa-
tions (e.g., missing data or machine learning failure).

4.3.1 Optimization-based content and media selection
A user interaction context consists of a number of factors, includ-
ing query expressions and conversation history. Any subtle varia-
tions of these factors, such as changes in data volume or query
patterns, often require different response content or presentation
media to be used. Since it may require a huge set of rules/plans to
handle such diverse situations exhaustively, it is impractical to use
conventional rule/plan-based approaches in RIA. Instead, we
develop an optimization-based framework for content selection
and media allocation [30, 32]. In this framework, we uniformly
model all factors as presentation desirability/cost constraints (e.g.,
a presentation cost constraint derived from device properties). We
then use optimization-based algorithms to maximize the satisfac-
tion of all constraints. For example, we use a graph-matching algo-
rithm to allocate media by maximizing the satisfaction of all
allocation constraints [32]. As a result, RIA optimizes the content
and media selection by dynamically balancing a comprehensive set
of factors. Moreover, our approaches can be easily extended to
cover new situations, since adding a new factor/constraint does not
require modification of the underlying algorithms.

4.3.2 Example-based media-specific design
Similar to the reasons listed above, it is also impractical to use a
rule/plan based approach [3, 7, 15, 13] to create media-specific
outputs in RIA. Instead, we employ case-based learning to create
both visual and verbal responses from a set of graphics and English
sentence examples, respectively. Our learning engines not only can
reuse suitable examples, but they can also compose new forms of
outputs by dynamically combining different example fragments
[22, 31]. As a result, RIA can cover a wide range of interaction sit-
uations using only a small number of examples. For example, it

uses about 20 visual examples and 200 sentence examples for our
real estate application that covers 25+ concepts, each with a num-
ber of attributes (e.g., a house has 40 attributes). The usage of a
small example set helps to set up a system quickly. Moreover, we
can easily extend RIA capability by adding new examples.

Nonetheless, a case-based learning engine alone is inadequate in
meeting all RIA’s needs. For example, it is inefficient to use case-
based learning to abstract sentence aggregation rules, since it
would require a large number of examples [22]. Similarly, case-
based learning would not be used to learn precise visual arrange-
ments from examples (e.g., exact positions and sizes). Such param-
eters must be recomputed for specific visual scenes. Therefore, we
use case-based learning to learn overall presentation structures
(e.g., visual or sentence structure) and use other approaches to fine
tune presentation details. Specifically, our speech designer uses a
rule-based approach to handle sentence aggregation [22]; and our
visual designer uses various other means, including constraint-
based and optimization-based approaches, to fine tune visual lay-
out and manage visual context [28].

4.3.3 Context-sensitive response design using input features
A better understanding of a user input helps to create a more tai-
lored response. To tailor its responses to a specific user interaction
flow, RIA leverages its fine-grained interpretation results, espe-
cially the meta features derived about the request. Here we illus-
trate the use of two such features.

Feature followup is derived during RIA input interpretation to sig-
nal whether a given user request is new or a continuation of a pre-
vious request. In Figure 1, U2 is a follow-on of U1, since it inherits
certain data constraints specified in U1. To maintain the desired
level of semantic continuity between follow-up requests, the visual
designer uses this feature to compute the amount of visual content
overlap between two successive visual responses. In general, RIA
maximizes the overlap between follow-on requests, while reducing
the overlap when a new flow starts [28].

Another derived input feature navDirection, indicating the change
of direction in user data navigation, also influences RIA response
generation. When exploring a data space, a user often changes his
data foci in several ways (Figure 8): filtering a data set (U1–U3),
expanding a data set (U4), or switching to a different data set (U5).
To tailor RIA responses to a user interaction flow, both our visual
and verbal designers exploit this feature in their synthesis. First,
navDirection helps the visual designer to decide the amount of
visual context to be maintained between displays. For example, if
RIA detects that a user is narrowing down a data set, it will reduce
visual content overlap across displays to let users focus on the fil-
tered data set [28]. Similarly, this feature helps the language
designer to decide how much information it should repeat in suc-
cessive verbal responses. To avoid repetitions, the language
designer often generates progressively more terse expressions,
such as ellipses, in response to a series of similar requests like con-
tinuous data filtering (R1–R3). It could also use this feature to gen-
erate more informative responses, confirming the current
navigation direction (R3’).

U1: 4 bedroom, 2 bathrm colonials
R1: I found 47 houses satisfying your criteria
U2: at least 2000 sq.ft.
R2: There are 26 houses
U3: built after 1990
R3: 1 house
R3’: Based on your request, I have narrowed down to 1 house
U4: what about any style
R4: I found 3 houses
U5: Tell me about the schools

Figure 8. The verbal portion of a user-RIA conversation.

7

4.3.4 Robust response generation
Due to technology imperfections and unanticipated interaction
dynamics, RIA may occasionally fail to produce a response. For
example, our case-based learning engine may fail to find qualified
examples to produce a legal verbal output. Unexpected missing or
erroneous data, like missing house locations, could also throw RIA
off its normal visual design course. To act robustly in such situa-
tions, RIA is equipped with a set of fall-back strategies.

First, RIA uses default presentation templates in case it fails to
produce any output following its regular steps. Second, we always
use a combination of mechanisms in case one fails. For example,
we mix a constraint-based approach [9] with a procedural space
management algorithm [4] to determine visual layout, since a con-
straint-based approach alone may not produce adequate solutions
[9]. Third, we give users certain control to explicitly articulate
their needs. For example, if a user happens to miss part of or all
RIA verbal output, she can request RIA to repeat the verbal output.
Similarly, the user can ask RIA to go back to the previous turn to
review the visual output.

5. EVALUATION
We have tested RIA extensively on thousands of user queries in a
real-estate application and installed it at the IBM Industry Solu-
tions Lab for daily customer visits. To demonstrate the reusability
and extensibility of RIA technologies, we have also built a travel
application (e.g., looking for hotels and restaurants). The customi-
zation effort was relatively small (137 KB of declarative defini-
tions), compared to the reusable portion (about 11 MB procedural
code). For example, only 20 new sentence examples were added to
extend RIA’s verbal response coverage for the travel application.

In addition to evaluating RIA in focused areas (e.g., content selec-
tion [30] and media allocation [32]), we also study RIA as a whole
to better understand RIA’s capabilities and limitations. Specifi-
cally, we evaluate how RIA assists both power users and novice
users in their browsing and target search tasks.

5.1 Experiments
We recruited two user groups: 2 power users who were trained to
become knowledgeable about RIA and the real estate domain, and
18 novice users who never used RIA before and may or may not
have house hunting experience. To facilitate comparison, we sub-
scribed to the same multiple listing service as most major real-
estate websites do. In this study, our test data set included 1800+
houses, 70+ cities, 400+ schools, and 100+ landmarks (e.g., parks).

Our experiments included two parts. First, we asked the two power
users to act as realtors and to use RIA to complete a set of brows-
ing tasks. Each power user interviewed 9 of 18 novice users indi-

vidually, who pretended to be home buyers1. During their
interaction, the power user used RIA to look for houses dynami-
cally specified by a home buyer. For comparison purposes, we
recorded the submitted search criteria. We also asked the two
power users to satisfy the same criteria using online real-estate

websites2. Second, we asked the 18 novice users to use RIA to
complete a target search task satisfying 9 criteria, similar to the
tasks tested in our WOZ study (Figure 2). At the end of the study,
the users were asked 6 feedback questions to rate RIA usability.

5.2 Result Analysis
Overall, RIA performed adequately in both tasks, especially com-
pared to existing online real-estate websites. In our first experi-
ments, among 181 search criteria that users dynamically specified,
RIA satisfied 79% of them (143/181), compared to 35% satisfac-

tion rate achieved by any combination of online real-estate sites.
Moreover, RIA achieved a satisfaction rate of 97% for 5 categories
of most commonly specified criteria versus 61% achieved by the
online websites (Figure 9). By our analysis, 80% of the 181 criteria
fell into these five categories, while all 181 criteria spanning over
20 categories, ranging from house amenity (e.g., “eat-in kitchen”)
to location constraints (e.g., “near train stations”). Moreover, we
analyzed the 38 criteria not supported by RIA. They fell into two
categories: 24 requiring free-form text search not supported by
RIA (e.g., “cul-de-sac”), and 14 due to unavailable data in our
database (e.g., city library information).

In our second experiments, 16 out of 18 users completed the task
using RIA. Of the two failed attempts, one found the wrong target
due to human input error and the other did not find the target due to
a system crash at the last user query. Due to the time and effort
required, we did not ask the users to repeat their tasks using any
online tools. Instead, we experimented with several online web-
sites ourselves to complete the task. We did not find any existing
site that can directly satisfy all 9 constraints without requiring
manually stitching requested information at different steps. As a
reality check, we compared these 9 constraints with the user-speci-
fied criteria collected in our first experiments. All 9 constraints
appeared before, and 6 were mentioned by more than 50% of the

users3. For the six subjective evaluation questions, our users pro-
vided positive feedback. On a scale of 1 (least) to 5 (best), our
users produced the average scores of 3.86 and 4.3 when asked to
rate RIA’s input and output capabilities, respectively. All users but
one answered that they were able to complete the tasks and obtain
satisfactory results. Table 1 summarizes the users’ most and least
liked RIA features.

5.3 Result Summary
From our above analysis, we conclude that RIA is highly valuable
to our users. Not only did all our users except two complete realis-
tic tasks, but also all of them provided very positive feedback.
More importantly, our analysis suggests that our technologies are
adequate for supporting real-world applications, such as the real-
estate application tested. We base this conclusion on the following

1 We did have several eager home buyers who wanted to be helped.
2 Whatever possible, they used combinations of multiple websites, includ-
ing realtor.com, realestate.yahoo.com, and houlihanlawrence.com.

3 Here we consider the constraints by type regardless of their values (e.g.,
both 3 bedroom and 4 bedroom are bedroom constraints).

Figure 9. RIA satisfaction rate vs. any online site for 5 types of
most commonly user-specified house hunting criteria.

0%

20%

40%

60%

80%

100%

RIA 100% 86% 100% 100% 100% 97.20%

Other 100% 4% 2% 100% 100% 60.80%

Bed/bath Loc School Garage Price/Yard Average

What do you like best about RIA
Integrated, incremental presentation of information (11 users)
Context-sensitive, natural language input (8)
Busy music (1)
What do you like least about RIA
Insufficient GUI interaction (e.g., editing accumulated criteria) (5)
Natural language understanding limitations (4)
System robustness (2)
Verbal and visual output coordination (2)
Verbal output (1)
Busy music (1)

Table 1. User most and least liked RIA features.

8

three observations. First, RIA supports diverse, truly “natural”
query expressions and revisions in context. In our above study,
RIA achieved 92% interpretation accuracy for about a total of 550
queries received. Second, RIA is able to automate the design and
generation of tailored visual and verbal responses for highly
dynamic interaction situations. For the 550 queries, RIA automati-

cally produces desired responses for 95% of the queries4. Third,
RIA greatly empowers “power users” who are familiar with RIA
and the application domain. As demonstrated in our study, RIA
helps power users to accomplish open-ended browsing tasks in real
world conditions, which are extremely difficult to achieve using
existing tools. Consequently, we expect that service providers,
such as real-estate and travel agents, could be trained to become
power users and use RIA to greatly help their customers.

Current RIA technologies also have their limitations. In our study,
we observed highly diverse user interaction patterns even for
deterministic target search. Despite the obvious advantages of sup-
porting flexible language inputs, it is also imperative to optimize
the use of other input modalities. Table 1 shows that 5 users prefer
to directly edit the RIA-confirmed search criteria currently shown
in plain text (see video). Supporting such interaction not only aids
users in their query revisions, but also reduces the burden on NLU.
Another limitation of RIA is its current focus on database queries.
Our study shows that it is desirable for RIA to handle various data
forms (e.g., supporting free text search for house amenities). More-
over, RIA currently presents the requested data as is and this may
not scale up for a domain where a large quantity of data is often
retrieved. Ideally, RIA should present better data summaries in
such cases to guide users in their further exploration.

6. CONCLUSIONS
A context-sensitive information system can understand user infor-
mation requests and present the requested information in context.
We have hypothesized and confirmed that such an interaction para-
digm can significantly improve users’ ability to perform informa-
tion seeking tasks. We have presented our work in three parts.
First, we used a Wizard-of-OZ study to demonstrate the effective-
ness of our hypothesized system and to identify additional require-
ments. Second, we described the development of RIA, a fully
automated context-sensitive information system based on the find-
ings from our study. Moreover, we highlighted two sets of core
RIA technologies, context-sensitive multimodal input interpreta-
tion and multimedia output generation, which work together to
enable robust and intelligent information seeking. Finally, we pre-
sented a formal study that evaluated the usability of RIA on realis-
tic information-seeking tasks. Our study shows that RIA does have
a great appeal for users. It also demonstrates the practicality of our
approaches for supporting real-world applications. Hopefully, our
success will inspire and help others to follow in our footsteps and
build more RIA-like systems in the future.

References

[1] C. Ahlberg and B. Shneiderman. Visual information seeking: Tight
coupling of dynamic query filters with starfield displays. In ACM
Proc. SIGCHI ’94, pages 313–317, 1994.

[2] J. Allen, G. Ferguson, and A. Stent. An architecture for more realistic
conversational systems. In IUI ’01, pages 14–17.

[3] E. Andre and T. Rist. Generating coherent presentations employing
textual and visual material. AI Review, 9:147–165, 1995.

[4] B. Bell and S. Feiner. Dynamic space management for user interfaces.
In Proc. UIST ’00, pages 239–248.

[5] J. Chai, P. Hong, and M. Zhou. A probabilistic approach to reference
resolution in multimodal user interfaces. In IUI’04, pages 70–77.

[6] J. Chai, S. Pan, M. Zhou, and K. Houck. Context-based multimodal
input understanding in conversation systems. In ICMI ’02, pages 87–
92.

[7] S. Feiner and K. McKeown. Automating the generation of coordinat-
ed multimedia. IEEE Computer, 24(10):33–41, October 1994.

[8] B. Grosz and C. Sidner. Attention, intention, and the structure of dis-
course. Journal of ACL, 2(3):175–204, 1986.

[9] H. Hosobe. A modular geometric constraint solver for user interface
applications. In Proc. UIST ’01, pages 91–100.

[10] K. Houck. Contextual revision in information-seeking conversation
systems. In Proc. ICSLP ’04, pages 201–204.

[11] M. Johnson, S. Bangalore, G. Vasireddy, A. Stent, P. Ehlen,
M. Walker, S. Whittaker, and P. Maloor. MATCH: An architecture
for multimodal dialogue systems. In ACL ’02, pages 376–383.

[12] M. Johnson, P. Cohen, D. McGee, S. Oviatt, J. Pittman, and I. Smith.
Unification-based multimodal integration. In ACL’97, pages 281–288.

[13] S. Kerpedjiev, G. Carenini, S. Roth, and J. Moore. Integrating plan-
ning and task-based design for multimedia presentation. In IUI’ 97,
pages 145–152.

[14] G. Marchionini. Information Seeking in Electronic Environments.
Cambridge University Press, 1995.

[15] M. Maybury. Planning multimedia explanations using communicative
acts. In M. Maybury, editor, Intelligent Multimedia Interfaces,
chapter 2, pages 60–74. AAAI Press/The MIT Press, 1993.

[16] M. Maybury and W. Wahlster, editors. Readings in Intelligent User
Interfaces. Morgan Kaufmann, 1998.

[17] M. McCord. Slot Grammar: A system for simpler construction of
practical natural language grammars. In R. Studer, editor, Natural
Language and Logic: Intl. Scientific Symposium, Lecture Notes in
Computer Science, pages 118–145. Springer Verlag, 1990.

[18] R. Morris. Toward a user-centered information service. J. of American
Society for Information Science, 45(1):20–30, 1994.

[19] J. Neal, C. Thielman, Z. Dobes, S. Haller, and S. Shapiro. Natural lan-
guage with integrated deictic and graphic gestures. In M. Maybury
and W. Wahlster, editors, Readings in Intelligent User Interfaces,
pages 38–51. 1998.

[20] S. Oviatt. Multimodal interactive maps: Designing for human perfor-
mance. Human-Computer Interaction, 12:93–129, 1997.

[21] S. Pan. A multi-layer conversation management approach for infor-
mation-seeking applications. In Proc. ICSLP ’04, pages 245–248.

[22] S. Pan and J. Shaw. SEGUE: A hybrid case-based natural language
generator. In Proc. INLG ’04, pages 130–140, 2004.

[23] S. Pan, S. Shen, M. Zhou, and K. Houck. Two-way adaptation for ro-
bust input interpretation in practical multimodal conversation sys-
tems. In IUI ’05, pages 25–32.

[24] A. Popescu, O. Etzioni, and H. Kautz. Towards a theory of natural
language interfaces to databases. In IUI ’03, pages 149–157.

[25] X. Shen, B. Tan, and C. Zhai. Context-sensitive information retrieval
with implicit feedback. In SIGIR ’05, pages 43–50.

[26] J. Teevan, C. Alvarado, M. Ackerman, and D. Karger. The perfect
search engine is not enough: A study of orienteering behavior in di-
rected search. In CHI’ 04, pages 415–422.

[27] J. Teevan, S. Dumais, and E. Horvitz. Personalizing search via auto-
mated analysis of interests and activities. In SIGIR’05, pages 449–456.

[28] Z. Wen, M. Zhou, and V. Aggarwal. An optimization-based approach
to dynamic visual context management. In InfoVis ’05. To appear.

[29] M. Zancanaro, O. Stock, and C. Strapparava. Multimodal interaction
for information access: Exploiting cohesion. Computational Intelli-
gence, 13(7):439–464, 1997.

[30] M. Zhou and V. Aggarwal. An optimization-based approach to dy-
namic data content selection in intelligent multimedia interfaces. In
Proc. UIST ’04, pages 227–236. ACM, 2004.

[31] M. Zhou and M. Chen. Automated generation of graphic sketches by
examples. In IJCAI ’03, pages 65–71.

[32] M. Zhou, Z. Wen, and V. Aggarwal. A graph matching approach to
dynamic media allocation in intelligent multimedia interfaces. In IUI
’05, pages 114–121.4 Output is considered correct if it matches the interpretation results.

