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Abstract

For certain classes of quadratic systems having the invariant algebraic curve
ϕ = 0, we prove that all the limit cycles must be contained in ϕ = 0.
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1 Introduction and statement of the main results

We shall study polynomial vector fields in IR2 defined by systems

ẋ = p(x, y),
ẏ = q(x, y),

(1)

where p, q are coprime polynomials of degree 2, i.e.

p(x, y) =
2∑

i,j=0

pi,jx
iyj, q(x, y) =

2∑

i,j=0

qi,jx
iyj

We shall call these systems quadratic systems.
The object of our study will be the limit cycles of such systems, mainly the algebraic

ones, i.e. the limit cycles contained in the zero set of some polynomial

ϕ(x, y) =
n∑

i,j=0

= ϕi,jx
iyj.
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It is well–known that each limit cycle of a polynomial vector field must surround at
least one critical point, and for a quadratic system inside each limit cycle there must
be precisely one critical point of focus type, see [5].

The algebraic curve ϕ(x, y) = 0 is an invariant algebraic curve of system (1) if and
only if there exists a polynomial κ = κ(x, y) satisfying

p
∂ϕ

∂x
+ q

∂ϕ

∂y
− κϕ = 0. (2)

The polynomial κ is called a cofactor of the curve ϕ = 0. In case of quadratic systems
the degree of the cofactor can be at most 1. An invariant algebraic curve ϕ = 0 is
called irreducible if the polynomial ϕ is irreducible.

A trajectory γ of system (1) is a limit cycle if it is a periodic nonconstant trajectory,
and if there are no other periodic trajectories in some neighborhood of γ. The orbit
γ is an algebraic limit cycle of system (1) if it is a limit cycle and if it is contained
in some irreducible algebraic invariant curve ϕ = 0 of system (1). The degree of an
algebraic limit cycle γ is the degree of ϕ.

Until now only seven different families of algebraic limit cycles for quadratic systems
have been found: one of degree 2 in 1958 [12], and four of degree 4 (one of Yablonskii
[13] in 1966, one of Filiptsov [9] in 1973, and two in [1] in 2001). It is known that there
are no algebraic limit cycles of degree 3, see Evdokimenco [6, 7, 8] from 1970 to 1979,
or see Theorem 11 of [3] for a short proof. It has been proved in [2], that there are no
other algebraic limit cycles of degree 4. Recently, two new examples of algebraic limit
cycles of degrees 5 and 6 have been found, see [4]. For a classification of all quadratic
systems which can have an algebraic limit cycle see [10]. New, interesting examples of
invariant algebraic curves of degrees 5 and 6 have been recently found in [11].

Our first result shows the relation between the cofactor of an invariant algebraic
curve and limit cycles for a quadratic system.

Theorem 1 Assume that system (1), with an invariant algebraic curve ϕ = 0 with
cofactor κ, has a limit cycle γ. Then, κ is nonconstant and γ must intersect the line
κ = 0.

The next four theorema study the relationships between limit cycles and invariant
algebraic curves for quadratic systems.

Theorem 2 Let ϕ = 0 be an invariant algebraic curve for system (1) with cofactor
κ(x, y), deg ϕ > 1. If the straight line κ = 0 is an isocline of system (1), then all the
limit cycles of system (1) are contained in the set ϕ = 0.

Theorem 2 together with Lemma 9 are equivalent to Theorem 1 of [1]. Nevertheless,
the assumption of Theorem 2 is easier to verify and our proof is easier.

Theorem 3 Let ϕ = 0 be an invariant algebraic curve for system (1) with cofactor
κ(x, y), deg ϕ > 1, and assume that there is at least one critical point on the line κ = 0.
Then, the system does not have limit cycles, or all the limit cycles of the system are
contained in the set ϕ = 0, or it can be transformed into the normal form

u̇ = u2 + v(au + θv + c),

v̇ = Q̃(u, v).
(3)

If θ ≥ 0, then all the limit cycles of system (1) are contained in the set ϕ = 0.

2



We do not know any nice geometrical interpretation of the quantity θ.

Theorem 4 Let ϕ = 0 be an invariant algebraic curve for system (1) with cofactor
κ(x, y), deg ϕ > 2. Assume that there is at least one critical point of the system on
the line κ = 0. Moreover, assume that the invariant algebraic curve ϕ = 0 intersects
the line at infinity at precisely one point, and that this point of intersection is a 2 : 1
resonant node having the smallest eigenvalue associate to the infinite direction. Then,
all the limit cycles of the system are contained in the set ϕ = 0.

Theorem 5 Let ϕ = 0 be an invariant algebraic curve for system (1) with cofactor
κ(x, y), deg ϕ > 2. Assume that there is at least one critical point of the system on a
line κ = 0. Moreover, assume that the invariant algebraic curve ϕ = 0 intersects the
line at infinity at precisely one point. Then, the system does not have limit cycles, or
all the limit cycles of the system are contained in the set ϕ = 0, or it can be transformed
into the normal form

ẋ = x + y + xy,
ẏ = Cx + Dy + dx2 + exy + fy2,

(4)

If (f − 2)(f − 2 + d− e−C) ≥ 0, then all the limit cycles of the system are contained
in the set ϕ = 0.

Theorem 4 is a particular case of Theorem 5. We state Theorem 4 as a separate
result because its assumptions are easier to verify then the assumptions of Theorem 5,
because they do not require the transformation of a system to the normal form (4).

All known examples of quadratic systems with algebraic limit cycles satisfy the
assumptions of one of the above theorema. Namely, Yablonskii system satisfies the
assumptions of Theorem 4, Filiptsov system satisfies the assumptions of Theorem 5.
The remaining systems of degrees 4 and the unique system of degree 2 with algebraic
limit cycles satisfy the assumptions of Theorem 2. Finally, the systems with algebraic
limit cycles degrees 5 and 6 also satisfy the assumptions of Theorem 4.

The above results together with all the known results about algebraic limit cycles
of quadratic systems motivate the following conjecture:

Conjecture If a quadratic system has an algebraic limit cycle, then this is the
unique limit cycle of the system.

The rest of the paper is devoted to proofs of Theorema 1, 2, 3, 4 and 5.

2 Preliminaries.

We shall call the point (x, y) a critical point of the system (1) if and only if p(x, y) =
q(x, y) = 0. We shall call the point (x, y) a critical point of a function ϕ if and only if
∂ϕ
∂x

(x, y) = ∂ϕ
∂y

(x, y) = 0.
Now immediately from the definitions it follows

Proposition 6 All the critical points of system (1) and all the critical points of ϕ are
contained in the union of sets {κ = 0} ∪ {ϕ = 0}.
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Using that we obtain

Proposition 7 Let γ be a limit cycle of the quadratic system (1) contained in the
invariant algebraic curve ϕ = 0. Then γ must intersect the line κ = 0.

Proof: Let D denote the compact region having γ as the boundary. D is a compact set,
so there exist points X,Y ∈ D at which ϕ has a minimum and maximum respectively.
Now either ϕ(X) = ϕ(Y ) = 0, and ϕ|D ≡ 0 and the assertion is trivially satisfied, or
we may assume that ϕ2(X) + ϕ2(Y ) 6= 0. We consider ϕ(X) 6= 0, if ϕ(X) = 0 then we
can treat the case ϕ(Y ) 6= 0 in a similar way. In that case X is contained in the set
D \ γ. By standard facts from analysis X must be a critical point of ϕ, and of course
it is located in the interior of D. As ϕ(X) 6= 0, by Proposition 6 κ(X) = 0. The curve
γ is a Jordan closed curve, so the line κ = 0 must intersect it.

Proposition 8 Suppose that system (1) has an invariant algebraic curve ϕ = 0 and a
smooth nonconstant function H defined in the complement of the set ϕ = 0 satisfying
either

(i) Ḣ has a fixed sign except for a finite set of points, or

(ii) Ḣ ≡ 0.

Then all the limit cycles of (1) are contained in the set ϕ = 0.

Proof: Let γ be a limit cycle of system (1) not contained in ϕ = 0. The curve ϕ = 0
is invariant, so γ is disjoint with ϕ = 0, and the function H is well–defined in the
neighborhood of γ. Let (x(t), y(t)), t ∈ [0, T ] be a parametrization of γ. We have:

0 =

T∫

0

Ḣ(x(t), y(t))dt,

but if (i) holds Ḣ is either negative, or positive almost everywhere, which leads to a
contradiction. In case (ii) H is a first integral defined in the neighborhood of γ, so γ
cannot be a limit cycle.

3 Isoclines

Curve γ is an isocline of system (1) if and only if there exist constants ζ, ξ not simul-
taneously equal to zero for which the equality holds

(ξp(x, y) + ζq(x, y)) γ ≡ 0.

We consider our system as a system on a complex projective space ICP 2.

P (X,Y, Z)
∂

∂X
+ Q(X, Y, Z)

∂

∂Y
(5)

where

P (X, Y, Z) = Z2p(
X

Z
,
Y

Z
) Q(X, Y, Z) = Z2q(

X

Z
,
Y

Z
)

We define the real part of a line K in ICP 2 as κ = {K ∩ [X : Y : 1], X, Y ∈ IR }.
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Lemma 9 Let K be a projective line. Then the straight line κ = 0 is an isocline
of system (1) if and only if there exist two points A1, A2 on K such that P (A1) =
Q(A1) = P (A2) = Q(A2) = 0.

Proof: We may assume that the line κ has the equation y = 0. We define

g1(x) = p(x, 0), g2(x) = q(x, 0).

The polynomials P , Q restricted to the line K become P (X, 0, Z) = Z2g1(X/Z),
Q(X, 0, Z) = Z2g2(X/Z). In case one or both of them vanish identically the assumption
and the assertion of the lemma are satisfied trivially. Therefore, from now on we
shall assume that none of the functions g1 and g2 are identically zero, so P (X, 0, Z),
Q(X, 0, Z) are homogenous of degree 2. The line κ is an isocline if and only if there
holds ξg1 + ζg2 ≡ 0 which may take place if and only if deg g1 = deg g2 = d and all the
roots of g1 and g2 coincide. Therefore we have three easy cases to consider

d = 2: We take A1 = [x1 : 0 : 1], A2 = [x2 : 0 : 1], where x1, x2 are two (not necessarily
distinct) common roots of g1, g2.

d = 1: We take A1 = [x0 : 0 : 1], A2 = [1 : 0 : 0] , where x0 is equal to a common root of
g1, g2 on a real line [X : 0 : 1], X ∈ IR.

d = 0: We take A1 = A2 = [1 : 0 : 0]–a double common root of P , Q on the projective
line at infinity [X : Y : 0].

The condition of Lemma 9 means the existence of two critical points of system (5)
on the line K, actually some of the points can be at infinity. We do not assume that
A1 6= A2, but we count the points with their multiplicities as zeroes of P , Q.

4 Proofs of theorema

Proof (of Theorem 1): We already know, that all the limit cycles contained in the set
ϕ = 0 must intersect the line κ = 0 (Proposition 7). It remains to prove, that it is so
for the ones not contained in ϕ = 0. We define H(x, y) = ln |ϕ|. Now Ḣ = κ. In case κ
is constant the assumptions of Proposition 8 are satisfied, so there are no limit cycles
apart from the ones contained in the set ϕ = 0. Now suppose that κ is nonconstant
and that γ is a limit cycle not intersecting κ = 0. Then Ḣ|γ has a fixed sign and we
have a contradiction using the arguments from the proof of Proposition 8.

Proof (of Theorem 2): After a suitable linear change of variables (translation and a
rotation) we may assume that κ(x, y) = y. The assumptions of the theorem mean now,
that the system takes in these coordinates the form:

ẋ = ζg̃(x) + y(ãx + b̃y + c̃),

ẏ = ξg̃(x) + y(d̃x + ẽy + f̃),

where g̃ is a quadratic polynomial. In case ξ = 0 the the line y = 0 is invariant and by
Theorem 1 the system cannot have limit cycles.
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If ξ 6= 0 we apply a change of coordinates u = ξx − ζy, v = y, and the system
becomes

u̇ = v(au + bv + c),
v̇ = ξg(u) + v(du + ev + f).

Let ψ(u, v) = ϕ(x(u, v), y(u, v)). Of course ψ̇ = vψ. Now, if a 6= 0 we define H(u, v) =

(u +
c

a
)ψ−a(u, v) outside ψ(U, v)) = 0. The condition degϕ > 1 implies that H is

nonconstant. We have

Ḣ = [v(au + bv + c)− av
(
u− c

a

)
]ψ−a = bv2ψ−a.

So, either Ḣ has a fixed sign (for b 6= 0), or H is a first integral (for b = 0).
In case a = 0 we put H(u, v) = u − c ln ψ and Ḣ = bv2. The theorem follows now

from Proposition 8.

Proof (of Theorem 3): We once again put κ(x, y) = y and we move the critical point
to the origin, obtaining:

ẋ = x(ζx− x1) + yα(x, y),
ẏ = x(ξx− x2) + yβ(x, y),

where α, β are some linear functions in (x, y), and x1, x2 are constant. If ξx1 = ζx2,
then the line κ = 0 is an isocline and by Theorem 2 all the limit cycles of the system
are contained in the set ϕ = 0. We therefore assume ξx1 6= ζx2 and apply a change
of coordinates u = x2x − x1y, v = y. We may assume that x2 6= 0. Otherwise, either
y = 0 is an invariant line if ξ = 0, or ξ 6= 0 and ẏ|y=0 = ξx2 is always nonnegative or
nonpositive, so the limit cycle cannot intersect y = 0, and Theorem 1 guarantees us,
that the system cannot have any limit cycles.

After a convenient re-scaling the system in the new coordinates (u, v) becomes

u̇ = u2 + v(au + θv + c),

v̇ = Q̃(u, v).

As before we define ψ(u, v) = ϕ(x(u, v), y(u, v)) and consequently ψ̇ = vψ. Now in
case a 6= 0 we take H(u, v) = (u− θ

a
)ψ−a and we obtain

Ḣ = [u2 + v(au + θv + c)− av
(
u− c

a

)
]ψ−a = [u2 + θv2]ψ−a

does not change sign in the complement of ψ = 0. In case a = 0 we take H(u, v) =
u− c ln ψ and Ḣ(u, v) = u2 + θv2. The theorem follows now from Proposition 8.

For the proof of remaining two theorema we shall need the following lemma.

Lemma 10 Let ϕ = 0 be an invariant algebraic curve for system (1) with cofactor
κ(x, y). Assume that there is at least one critical point of the system on κ = 0. Assume
moreover that the invariant algebraic curve ϕ = 0 intersects the line at infinity at
precisely one point, and that the line κ = 0 and the curve ϕ = 0 do not intersect at
infinity. Then the system can be transformed into the normal form

ẋ = Ax + By + xy,
ẏ = Cx + Dy + dx2 + exy + fy2,

with A,B ∈ {0, 1}, while the cofactor has the form κ(x, y) = ny. In these coordinates
ϕ(x, y) = xn + . . ., where . . . denote the terms of degree n− 1 and smaller.
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Proof: First we choose a linear change of coordinates which transforms κ into the form
κ(x, y) = ny, and that puts the critical point at the origin (recall, that we assume that
there is at least one finite critical point at the line κ(x, y) = 0). Let the (unique) point
of intersection of the line at infinity and the curve ϕ = 0 be [ζ : ξ : 0]. We apply the
change of coordinates x → x − ζ

ξ
y (by assumption κ = 0 and ϕ = 0 do not intersect

at infinity, so ξ 6= 0), so the point of intersection becomes [0 : 1 : 0]. Now ϕ = xn + . . .
and the system has the form

ẋ = Ax + By + ax2 + bxy,
ẏ = Cx + Dy + dx2 + exy + fy2.

We have ϕ̇− κϕ = nxn−1(ax2 + bxy)− nyxn + . . ., where . . . denote terms of degree at
most n, so there must hold a = 0, and b = 1, thus

ẋ = Ax + By + xy,
ẏ = Cx + Dy + dx2 + exy + fy2.

Finally, by scaling the variables x, y and the time we can put both A, B equal to 0 or
1, depending on if they are 0, or nonzero.

Proof (of Theorem 4): Obviously every point of intersection of ϕ = 0 and the infinity
must be a critical point of system (5). If the line κ = 0 and the curve ϕ = 0 intersect
at infinity, there must be one finite (by assumption) and one infinite critical point on
the line κ = 0, and the assertion follows from Lemma 9 and Theorem 2.

It remains to prove the theorem when κ = 0 and ϕ = 0 do not intersect at infinity.
Then the assumptions of Lemma 10 are satisfied, so we may assume that the system is
in the form (4) with κ(x, y) = ny, where n is the degree of ϕ. We deal with the trivial
cases first:

If A = 0 then (x + B)ϕ−
1
n is a first integral of (4) for all values of f .

If B = 0, the assertion of theorem is true for all values of f , because taking H =
x2ϕ−

2
n we have Ḣ = 2Aϕ−

2
n .

From now on we shall assume that A = B = 1. We define

H(x, y) =
(
(D − C)− 2Cx− (C + e)x2 + 2y

)
ϕ−

2
n .

We have Ḣ = 2 ((f − 2)y2 − (C + e− d)x2) ϕ−
2
n . The ratio of eigenvalues at [0 : 1 : 0]

is now equal to f/(f − 1) = 2, so f = 2 and therefore Ḣ either has a fixed sign in the
complement of ϕ = 0 for (C + e− d) 6= 0, or H is a first integral for (C + e− d) = 0.
H is nonconstant, because we have assumed that deg ϕ > 2.

In each of the cases the assumptions of Proposition 8 are satisfied and the theorem
follows.

Proof (of Theorem 5): From the discussion in the proof of Theorem 4 it follows that it
is sufficient to prove the theorem for the system

ẋ = x + y + xy,
ẏ = Cx + Dy + dx2 + exy + fy2,

(6)

with κ(x, y) = ny, where n is the degree of ϕ. We define

H(x, y) =
(
D − C − 2Cx + (2f − 4− C − e)x2 + 2y

)
ϕ−

2
n .
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We have Ḣ = 2 ((f − 2)y2 + 2(f − 2)xy + (2f − 4− 2C + d− e)x2) ϕ−
2
n . The condi-

tion for the quadratic form appearing in the above expression to be always nonnegative
or always nonpositive is

(f − 2)(f − 2 + d− e− C) ≥ 0,

and the theorem follows from Proposition 8.
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