
RC23795 (W0511-088) November 11, 2005
Computer Science

IBM Research Report

An MDA-Based System for Ontology Engineering

Yue Pan, Guotong Xie, Li Ma, Yang Yang, ZhaoMing Qiu
IBM Research Division

China Research Laboratory
HaoHai Building, No. 7, 5th Street

ShangDi, Beijing 100085
China

Juhnyoung Lee
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An MDA-Based System for Ontology Engineering

Yue Pan, Guotong Xie, Li Ma,
Yang Yang, ZhaoMing Qiu

IBM China Research Lab

Beijing, China
{panyue, xieguot, malli, yangyy,

qiuzhaom}@cn.ibm.com

Juhnyoung Lee

IBM Watson Research Center
Hawthorne, New York

jyl@us.ibm.com

Abstract

W3C’s Semantic Web provides a common framework that allows data to be shared and
reused across application and enterprise. As the Semantic Web shapes the future of the Web,
it becomes more and more important in software engineering and enterprise application
development. While existing ontology engineering tools provide a stack of ontology management
support and are used successfully in certain domains, there still remains a gap between the
ontology engineering tools and the traditional software engineering. For several decades,
software engineering has been established on different modeling languages and
methodologies such as Unified Modeling Language (UML). The differences in modeling
languages and methodologies cause difficulties in enterprise application development
involving the Semantic Web technologies. The existing ontology engineering tools provide
only an ad hoc approach to bridging this gap with limited functionality and performance.
The primary objective of our work is to bridge this gap between two different, but
complementary engineering disciplines with a systematic approach. Our approach leverages
Model-Driven Architecture (MDA) and Ontology Definition Metamodel (ODM), which enable model
transformation. This approach allows seamlessly supporting existing models in UML and
other languages in Semantic Web-based software development. In addition, it allows
exploiting the availability and features of UML tools for creation of vocabularies and
ontologies. Furthermore, MDA enables code generation and facilitates software tool
development. This paper presents an MDA-based system for ontology engineering. In
addition, it presents the entire stack of individual components of the developed ontology
engineering tool.

Keywords: Semantic Web, ontology engineering, model-driven architecture

1. Introduction

W3C’s Semantic Web [1] provides a common framework that allows data to be shared and
reused across application and enterprise. It is based on the Resource Description Framework
(RDF), which describes various resources using XML for syntax and URIs for naming [9],
and Web Ontology Language (OWL), which provides modeling constructs for specifying
and inferring about knowledge [15]. As the Semantic Web shapes the future of the Web, it
becomes more and more important in software engineering and enterprise application
development. To meet the needs, a number of tools and systems for ontology development

 1

and management such as Protégé [26], Jena [4], Sesame [27], Pellet [24], KAON [14], RStar
[13], and SnoBase [11], have been developed.

While these ontology engineering tools provide a relatively complete stack of ontology
management support and are used successfully in certain domains, there still remains a gap
between the ontology engineering tools and the traditional software engineering. For more
than a decade, software engineering has been established on different modeling languages
and methodologies such as OMG’s Unified Modeling Language (UML). This difference in
modeling languages and methodologies causes difficulties in large-scale enterprise application
development involving the Semantic Web technologies. The existing ontology engineering
tools provide only an ad hoc approach to bridging this gap with limited functionality and
performance. The creation of ontologies and their use in software engineering projects is
currently cumbersome and not seamless. The transformation of UML models to OWL
ontologies and vice versa is conducted only in an ad hoc and incomplete way. Therefore, it is
difficult to utilize the vast investment of enterprises in software engineering models, which
are often accumulated over a decade, in ontology engineering. For the Semantic Web to have
impact on enterprises and their business, and also to be widely accepted as a value-adding
technology, bridging this gap in software and ontology engineering is critical.

The primary objective of our work is to bridge this gap between two different, but
complementary engineering disciplines with a systematic approach. We leverage OMG’s
Model-Driven Architecture (MDA) [3] and Ontology Definition Metamodel (ODM) [23] to
provide model transformation. This approach allows seamlessly supporting existing models
in UML and other languages in Semantic Web-based software development. In addition, it
allows exploiting the availability and features of UML tools for creation of vocabularies and
ontologies. Furthermore, MDA enables code generation and facilitates tool development.
This paper presents an MDA-based approach to ontology engineering. It describes the
architecture of the ontology engineering system, and mappings between UML and OWL for
model transformation. In addition, it presents the entire stack of individual components of
the developed ontology engineering tool.

The rest of this paper is structured as follows: In Section 2, we describe a number of existing
software tools for ontology development and management. It discusses a gap between these
ontology engineering tools and the traditional software engineering tools. Sections 3 and 4
summarize technical background information on the Model-Driven Architecture and
Ontology Definition Metamodel, respectively. In Section 5, we explain how EMF-based
technologies for MDA and ODM are used to realize the proposed system for ontology
engineering. Section 6 presents an implementation of the proposed system with the entire
stack of components. Section 7 presents use scenarios illustrating how the features of the
developed ontology engineering tool can be utilized in real-world applications. In Section 8,
conclusions are drawn and future work is outlined.

2. Traditional Ontology Management Systems

In recent years, there has been a surge of interest in using ontological information for
communicating knowledge among software systems. As a result, an increasing range of
software systems engage in a variety of ontology management tasks, including the creation,

 2

storage, search, query, reuse, maintenance, and integration of ontologies. Recently, there
have been efforts to externalize such ontology management burden from individual software
systems and put them together in middleware known as an ontology management system.
An ontology management system provides a mechanism to deal with ontological
information at an appropriate level of abstraction. By using programming interfaces and
query languages the ontology management system provides, application programs can
manipulate and query ontologies without the need to know their details or to re-implement
the semantics of standard ontology languages. Examples of such ontology management
systems include Protégé [26], Jena [4], Sesame [27], Pellet [24], KAON [14], Jastor [21],
D2RQ [18], RStar [13], and SnoBase [11].

Table 1 summarizes a few ontology management systems. It is important to note that these
systems mainly focus on the manipulation of ontologies. The interoperability with other
modeling languages and development tools comes as a secondary feature for these systems.
That is, they assume separate workspaces for ontology management and software
development, and fail to provide a tightly integrated environment for software and ontology
engineering.

Table 1: Traditional Ontology Management Systems
Name

Functionalities Standards Interoperability

Jena A program development
framework for ontology
manipulation and query

RDF,
RDFS,
OWL,
SPARQL

N/A

Sesame An RDF database allowing
ontology manipulation and
query

RDF,
RDFS,
OWL

N/A

Protégé A graphical ontology editor and
knowledge base framework for
ontology manipulation and
query

RDF,
RDFS,
OWL

Through plugins (with
limited capability);
UML OWL ontology

KOAN A suite of ontology
management tools including
ontology creation, ontology
manipulation, and inference and
query

RDF,
RDFS,
OWL

RDB schema
RDFS ontology

Jastor A java code generator for
creating Java beans from OWL
ontologies

RDF,
RDFS,
OWL

OWL ontology
Java Beans

D2RQ A language and a tool for
specifying mappings between
relational database schema and
OWL ontologies

RDF,
RDFS,
OWL

RDB schema
OWL ontology

While these ontology engineering tools provide a stack of ontology management support,
they also show certain limitations in supporting large-scale software engineering projects.

 3

http://www.w3.org/2004/OWL/

Participating in a number of enterprise application development projects by using the
SnoBase and RStar Ontology Management System, we learned firsthand that it is critical to
provide a comprehensive development environment including supporting tools and facilities
for the application developers. A pick-and-choose approach to the best of the breed tools
from different environments does not always work well for the majority of the developers
and often results in a longer learning curve for the developers. A comprehensive ontology
development environment often means a tight integration of tools for software and ontology
engineering, and model import and transformation, among others.

Semantic markup languages such as W3C’s RDF and OWL are based on the work in the
logic and Artificial Intelligence communities, such as Description Logic and Knowledge
Representation. The syntax of these languages is less intuitive to those trained for object-
oriented programming and simple XML-based languages. The lack of a tightly integrated
development environment for software and ontology engineering makes the job of subject
matter experts and software engineers difficult, and often affects negatively to the adoption
of the semantic technology in industry. An effective ontology application development
environment should bridge this gap between software engineering and ontology engineering
by providing a seamlessly integrated environment.

Another consideration for industry adoption of the semantic Web technology is the
interoperability of the semantic markup languages with the well-established and widely-
accepted industry standard modeling languages and methodologies such as Entity-Relation
(ER) diagrams and Unified Modeling Language (UML). Enterprises developed software
models in these languages for more than a decade and invested significantly in building
systems around them. Despite all the theoretical advantages the semantic technology brings
in, in practice, it is highly unlikely that the enterprises abandon the legacy systems and
develop new systems around the semantic Web technology. Instead, users in industry would
be interested in the interoperability of the modeling languages, and the reuse of the existing
models and data with the semantic Web technology. The traditional ontology management
systems currently provide only ad hoc and incomplete methods for the model
interoperability. To address the practical requirements of industry, this paper introduces a
novel approach to ontology engineering based on the Model Driven Architecture (MDA),
which enables software engineers and users to design, build, integrate and manage ontologies
and software applications in an integrated development environment.

3. Model-Driven Architecture

Before proposing the MDA-based system for ontology engineering, we summarize the
Object Management Group’s Model Driven Architecture, which is one of the two pillars of
the system’s architecture, along with Ontology Definition Metamodel.

In the history of software engineering, there has been a notable increase of the use of models
and the level of abstraction in the models. Modeling has become separated from underlying
development and deployment platforms, making them more reusable and easier to create
and modify by domain experts, and requiring less knowledge of specific deployment systems.
This trend places software modeling closer to knowledge engineering. The current stage in

 4

this evolution is the Model Driven Architecture, which grew out of the standards work
conducted in the 1990s for the Unified Modeling Language (UML).

The basic idea of MDA is that the system functionality is defined as a platform-independent
model, using an appropriate specification language and then translated to one or more
platform-specific models for the actual implementation. To accomplish this goal, the MDA
defines an architecture that provides a set of guidelines for structuring specifications
expressed as models. The translation between platform-independent model and platform-
specific models is normally performed using automated tools. Specifically, MDA defines
three levels of abstraction: Computation Independent Model (CIM), Platform Independent Model
(PIM) and Platform Specific Model (PSM). CIM is a view of a system that does not show the
details of a system structure. In software engineering, it is also known as a domain model,
which is concerned by domain experts. It is similar to the concept of ontology. PIM is a
model that is computation dependent, but it is not aware of specific computer platform
details. In other words, it is targeted for a technology-neutral virtual machine. Specification
of complete system is completed with PSM. The goal is to move human work from PSM to
CIM and PIM, and let the detail implementation for a specific platform be generated as
much as possible by automated tools which perform the transformation from PIM to PSM.

MDA comprises of a four-layer metamodeling architecture: meta-metamodel (M3) layer,
metamodel (M2) layer, model (M1) layer, and instance (M0) layer. Also, it utilizes several
complementary standards from OMG including Meta-Object Facility (MOF), Unified Modeling
Language (UML) and XML Metadata Interchange (XMI). On the top of the MDA architecture
is the meta-metamodel, i.e., MOF. It defines an abstract language and framework for
specifying, constructing and managing technology neutral metamodels. It is the foundation
for defining any modeling language such as UML or even MOF itself. MOF also defines a
framework for implementing repositories that hold metadata (e.g., models) described by
metamodels [22]. The main objective of having the four layers with a common meta-
metamodel is to support multiple metamodels and models and to enable their extensibility,
integration and generic model and metamodel management.

All metamodels, standard or custom, defined by MOF are positioned on the M2 layer. One
of these is UML, a graphical modeling language for specifying, visualizing and documenting
software systems. With UML profiles, basic UML concepts (e.g., class, association, etc.) can
be extended with new concepts (stereotypes) and adapted to specific modeling needs. The
models of the real world, represented by concepts defined in the corresponding metamodel
at M2 layer (e.g., UML metamodel) are on M1 layer. Finally, at M0 layer, are things from the
real world. Another related standard is XMI. It defines mapping from MOF-defined
metamodels to XML documents and schemas. Because of versatile software tool availability
for XML, XMI representations of models, metamodels and meta-metamodel facilitate their
sharing in software application development.

MOF tools use metamodels to generate code for managing models and metadata. The
generated code includes access mechanisms, or application programming interfaces, to read
and manipulate, serialize and transform, and abstract the details of various interfaces based
on access patterns. Eclipse Modeling Framework (EMF) [20] provides a Java implementation of
a core subset of the MOF API. EMF started out as an implementation of the MOF
specification, and evolved into a generic modeling framework and code generation facility

 5

for building tools and other applications based on a structured data model. The MOF-like
core metamodel in EMF is called Ecore. From a model specification written in XMI, EMF
generates tools and runtime support to produce a set of Java classes for the model, a set of
adapter classes that enable viewing and command-based editing of the model, and a basic
editor. Models can be specified using annotated Java, XML documents, or modeling tools
like Rational Rose, then imported into EMF. It is important to note that EMF provides the
foundation for interoperability with other EMF-based tools and applications. The proposed
MDA-based system leverages EMF for implementing ontology management tools which run
on the Eclipse environment, and utilizes its support for model interoperability.

4. Ontology Definition Metamodel

MDA and its four-layer architecture provide a solid basis for defining metamodels of any
modeling language, and so provide a foundation for bringing together software engineering
and methodologies such as UML with the semantic technology based on W3C’s RDF and
OWL. Once a semantic markup language such as OWL is defined in MOF, its users can
utilize MOF’s capabilities for modeling creation, model management, code generation, and
interoperability with other MOF-defined metamodels.

Another OMG standard, Ontology Definition Metamodel (ODM) [23] took this approach.
To comprehend common ontology concepts, ODM used as a starting point OWL, which is
the result of the evolution of existing ontology representation languages. ODM defined
individual constructs of OWL in MOF, creating an ODM metamodel. To leverage graphical
modeling capabilities of UML in dealing with OWL constructs, ODM also defined an
ontology UML profile to support UML notation for ontology definition. This profile enables
graphical editing of ontologies in OWL using UML diagrams as well as other benefits of
using mature UML CASE tools. Finally, the following bi-directional mappings between
metamodels complete the picture:

1. mappings between OWL and ODM,
2. mappings between ODM and the ontology UML profile, and
3. mappings from the ontology UML profile to other UML profiles.

Figure 1: Bi-directional mapping among metamodels

 6

Figure 1 shows a simple example of the bi-directional mappings between metamodels. In
practice, both UML and ODM models are serialized in XMI, and OWL model in XML, the
two-way mappings can implement XSLT-based transformations. Our work utilized EMF-
based transformations, instead of XSLT, to leverage EMF’s generic modeling framework
and code generation facility for building tools and other applications. We implemented
EODM (EMF-based ODM), which is the underlying object model generated from ODM by
using EMF, for model transformations between OWL and UML. More details will be given
in the next section.

Before moving to the main body of this paper, it is useful to briefly mention yet another
related effort from W3C, namely, Ontology Driven Architecture (ODA) [16]. It combines MDA
with the semantic technology differently from the ODM approach. It attempts to augment
the MDA standards and methodology stack with the semantic technology to improve the
discipline. It aims to enable unambiguous representation of domain terminology, distinct
from the rules, enable automated consistency checking and validation of invariant rules,
preconditions, and post-conditions, and support knowledge-based terminology mediation
and transformation for increased scalability and composition of components. This effort still
is in its infancy and at a draft stage.

5. EMF-Based Ontology Engineering System

For realizing an MDA-based system for ontology engineering, we utilized the Eclipse
Modeling Framework, which is open source MDA infrastructure for integration of modeling
tools [20]. A model specification described in various modeling languages including UML,
XML Schema, and annotated Java source can be imported into EMF. Then EMF produces a
set of Java classes for the model, a set of adapter classes that enable viewing and editing of
the model, and a basic editor. In its current implementation, EMF does not provide formal
semantics definitions, inference and the related model specifications. Our work adds this
capability to EMF for providing a comprehensive ontology engineering environment and
dynamic application integration.

For adding the semantic model transformation capability to EMF, we leverage the
specification of Ontology Definition Metamodel. By using EMF and ODM, we generated a
foundational memory model, i.e., Java classes, for the constructs of OWL. This foundational
memory model is referred to as EODM (EMF-based Ontology Definition Metamodel). By
adding several necessary helper classes and methods to EODM, we can use it to create, edit,
and navigate any models in OWL.

Also, we added an OWL parser to EODM, which can load OWL files into EMF and
generate OWL files from EMF, i.e., serialize EMF models to standard OWL files in XML.
The parser utilizes an XMI adaptor which enables the transformation between the OWL
models and EODM Ecore models. The transformation is made possible by the bi-
directional mapping between OWL and the Ecore metamodel. The transformation opens a
way to interoperability between OWL models and other EMF supported models, which
currently include ones defined in UML, XML Schema, and annotated Java classes. The
support of other models such as Entity Relationship models in EMF will be provided in the

 7

near future. By leveraging the OWL parser and the bi-directional transformation between the
OWL models and the Ecore models, ontology application developers can develop
ontologies using their favorite model building tools, import them into EMF, transform their
models into OWL ontologies, enrich them with semantics, leverage their inference capability,
and utilize the comprehensive development facility of Eclipse and EMF.

To be more specific, the EODM Ecore model is the MOF core model that represents
ontologies in memory. It is an intermediate model for imported and transformed legacy
models, as well as the generated ontology, Java code, Java editor and Java edit. The
development environment allows its users to manipulate EODM Ecore models, enrich it
with semantic specification, and generate Java code. A default set of bi-directional mappings
between metamodels of legacy models and OWL are developed in EMF. Eclipse plug-in
developers can extend the mappings to handle other types of legacy models, or other
elements in legacy models specifying semantics. In the generated Java code, a small foot-
print inference engine is shipped with the code and can be invoked by applications. The
generated Java editor and Java edit provide ready-to-use visual tools to populate or
manipulated instances of OWL models. The visual tools are actually copies of the standard
methods of supporting application development in EMF. Figure 2 illustrates the operation
of the EMF-based ontology engineering system.

XML
Schema

ER
Model

I
M
P
O
R
T

EODM
Ecore
Model

Model transformation
and semantics enrichment

Java
code

G E N E R A TE

Editors are enhanced to handle RDFS/OWL ontology

RDF/OWL
Ontology

UML
Model

OWL
Editor

Java
Editor

Figure 2: EMF-based ontology engineering system

6. Components of the EMF-Based Ontology Engineering System

This section presents the entire stack of components of the developed, EMF-based ontology
engineering system. We had two primary design objectives for this system: first, support for
the entire lifecycle of ontology engineering, and, second, avoiding reinvention of tools and
facilities that are already proven to work in software engineering. To achieve these objectives,
we designed a software stack which consists of six interdependent layers.

 8

At the core of this EMF-based ontology engineering system is the EODM model, which is
derived from the Ontology Definition Metamodel and implemented in Eclipse Modeling
Framework. The bottom layer, EODM core model, provides the basic Java programming
model for OWL ontologies with all the necessary getter and setter functions. It is
automatically generated by EMF from the Rational Rose model for OWL. To this generated
core model implementation, certain utility classes and methods are added, to benefit Java
programmers. On top of the EODM core model comes the OWL parser which parses OWL
ontologies, translates them into EODM models, and serializes EODM models to standard
RDF/XML files. The next layer is the inference engine. It takes an EODM model as input, and
executes user queries, reasoning about instances and relationships among instances and
classes. The next layer is the model transformation engine. It imports existing conceptual models
represented in various modeling languages such as UML, ER diagrams, and Java interfaces.
Then, it transforms the models into one or more EODM models. Finally, the OWL editor
provides a graphical ontology authoring environment where OWL ontologies in graphic
notations are serialized to OWL files in a standard XML format. Figure 3 shows the
components of the EMF-based ontology engineering system. In the rest of this section, we
describe each component in detail.

EMF generated OWL interface and implementation

Utility classes and methods

OWL parser

OWL inference engine

Model transformation engine

OWL editor

Figure 3: EMF-based ontology engineering system architecture

6.1. EODM Core Model

The EMF-based ontology engineering system provides tightly integrated environment for
software and ontology engineering, providing a stack of useful components. EODM
provides the run-time library that allows applications to input and output OWL ontologies,
manipulate them by using Java objects, invoke the inference engine and access result sets,
and transform among ontologies and other legacy models.

The EODM core model provides useful classes and methods to access OWL ontologies and
their instances. Its metamodel is defined in the Ontology Definition Metamodel (ODM)
specification [23]. It is an MOF2 compliant metamodel that allows users to define ontologies
by using those constructs defined in RDF Schema and OWL. ODM comprises of two
packages that define the metamodels of RDF and OWL, respectively. The OWL package
inherits classes from the RDF package, and extends it. Figure 4 illustrates the class definition
of the RDF package. The UML model of the packages is augmented by a number of bi-

 9

directional references to generate APIs that leverage notification and messaging mechanisms
in EMF. Also, there are certain design patterns, such as Factory and Singleton, embedded in
the code generation engine of EMF. Therefore, the EODM core model automatically
complies with the design practices and benefit software engineers.

RDFXMLLiteral
language : String

RDFSLiteral
lexicalForm : String

RDFSClass

0..*

0..*

+RDFSSubClassOf

0..*

+subClass
0..*

PlainLiteral
language : String

Namespace
name : Strin...
URI : String

RDFSResource
localName : String
/ URI : String

0..*+RDFType 0..*

0..*

+RDFSComment

0..*

0..*

+RDFSLabel

0..*

1

+namespace

1

RDFSDatatype

TypedLiteral

1
+datatype

1

Figure 4: Class definition in ODM

6.2. OWL Parser

The OWL parser analyzes the XML syntax of OWL files and generates EODM models and
a set of RDF triple statements. Figure 5 shows the parser process. The parser utilizes XML
SAX API to correctly parse each node and its attributes. Then, the RDF triple analyzer
assembles the resulting nodes and attributes to generate RDF triples by maintaining a state
stack for keeping node and property states. In RDF and OWL, knowledge is simply a
collection of statements, each with a subject, verb and object, and nothing else [25]. The
RDF triple statements can be directly used by applications. They can be asserted into a
working memory of inference engine for reasoning. They also can be stored in a database for
triple-based RDF graph retrieval. A model wrapper can envelop RDF triples into an EODM
model. Therefore, the OWL parser can create both RDF triple statements and an object-
oriented memory model for further manipulation in applications. In addition, we also
provide a tool for serializing EODM models into standard OWL files.

The OWL parser is completely compliant with W3C’s XML syntax specification and passes
all W3C’s positive and negative test cases [7]. It utilizes a streaming XML parser, i.e., SAX
parser, and once an RDF statement is formed, the parser can immediately export the
statement. This property allows the parser to require minimal amount of memory and thus
to be scalable in handing large-scale models. Also, it is important to note that the OWL
parser can be used independently of other components of the system.

 10

OWL

ontology files

SAX parser RDF triple

analyzer

Model wrapper

EODM model

RDF triple statements

Figure 5: OWL parser process

6.3. Inference Engine

The inference engine of the EMF-based ontology engineering system approaches the core
inference problem of OWL by a structural subsumption algorithm. The present Description
Logic classification algorithm is based on the tableau algorithm [8], which can provide sound
and complete reasoning on a very expressive language by satisfaction test. However, this
approach focuses on the tractability of a single subsumption test and the worst case
computational complexity is NEXP-time [12]. In practical cases, however, an algorithm with
high efficiency but less expressiveness would be more useful in supporting large-scale
taxonomic classification problems. To achieve a balance between efficiency and expressive
power, we leveraged the structural subsumption algorithm, which is known to be an efficient
technique but also known to be limited due to its inability to provide complete reasoning for
expressive languages. The concepts and axioms supported by this approach is defined as
follows:

Concepts: (Cyclic concept definitions are not supported)

C, D t A (atomic concept), º (universal concept), Ω (bottom concept),
C6D (intersection), C7D (union), ≥R.C (some value from restriction)
≤R.C (all value from restriction), ≥R.{x}| (hasValue)

Axioms:
Axioms t CbD (concept inclusion), RbS (role inclusion)

In ontologies without an acyclic definition, every defined concept is treated as a restriction
on some properties, and an atom concept is treated as a “special” restriction. For example, C
h A 6 B 6 ≤R.(≤S.C) is treated as a concept with restriction on RA, RB, R, where RA, RB is
special restriction brought by atom concept A and B. To decide whether two concepts are
subsumed by each other, we can recursively compare those restrictions by applying basic
comparison rules captured in Table 1. Figure 6 illustrates a simple example of a structural
subsumption test by using the comparison rules.

Table 2: Comparison rules for structural subsumption tests
Concept A Concept B A b B Condition
≥R.C ≥S.D Iff R] S and CbD
≤R.C ≤S.D Iff S] R and CbD
únR.C úmS.D Iff R] S and CbD and nñm
ñnR.C ñmS.D Iff S] R and DbC and núm

 11

EbG

b

b

b

Given Ah≥R1.C6≥R2.(≤R4.D)6≤R3.E, Bh≥R2.(≤R4.F) 6≤R3.G, DbF, EbG,
it can be concluded that AbB.

≥R2.(≤R4.D)

≤R3.E

≥R2.(≤R4.F)

≤R3.G

≤R4.F

≤R4.D

≥R1.C

A B

DbF

b

Figure 6: A simple structural subsumption test example

The main idea of the extended structural subsumption algorithm is to leverage the
information of concept definitions by maintaining a classification tree to perform taxonomic
classification. The algorithm starts with building the classification tree. Given an axiom CbD,
the algorithm first recursively classifies C, D and all the sub constitutes until all of them have
been correctly linked into the classification tree. Then, it adds the subsumption link between
C and D, which will automatically remove all the outdated links. More details of the
inference algorithm is a subject of another paper we are preparing. Figure 7 shows an
example of classifying a TBox which contains the following definitions:

 C h ≥R3.(A6B) 6 ≥R4.D

F h ≥R1.A 6 ≥R2.B
 D b E,

≥R3.A b ≥R2.B
≥R4.E b ≥R1.A

1. Initial classification tree, D b E,
≥R3.A b ≥R2.B, ≥R4.E b ≥R1.A

º

≥R2.BA E B ≥R1.A

D ≥R3.A ≥R4.E

z

º

≥R2.BA E B ≥R1.A

D ≥R3.A ≥R4.E

2. Recursively classify C: Adding A6B

z

A6B

º

≥R2.BA E B ≥R1.A

D ≥R3.A ≥R4.E

3. Recursively classify C: Adding
≥R3.(A6B), ≥R4.D and C

z

A6B

≥R3.(A6B) ≥R4.D

C

º

≥R2.BA E B ≥R1.A

D ≥R3.A ≥R4.E

z

A6B

≥R3.(A6B) ≥R4.D

C

F

4. Classify F

Figure 7: An example of classifying a TBox

 12

6.4. Model Transformation

This layer in the EMF-based ontology engineering system addresses the ontology acquisition
and model interoperability issues, as we discussed earlier. Enterprises developed IT models
in various modeling languages such as UML and ER diagrams for several decades and
invested heavily in building systems around them. It is important for the enterprises to
protect their investment in the legacy systems. Also, it is important to leverage domain
knowledge captured in the existing IT models. Thus, users in industry are interested in the
interoperability of the modeling languages and the reuse of the existing models with the
semantic Web technology. The interoperability allows exploiting the availability and features
of UML tools for creation of vocabularies and ontologies. In addition, it allows augmenting
the legacy models with formal semantics, and enabling an inference capability with the
models, which can return sound and complete query results.

Figure 8 shows the Ecore metamodel structure. There already exist transformations defined
between Ecore model and legacy modeling languages such as UML, XSD and Java interfaces.
In EODM, we define a transformation between Ecore and OWL. Then, we utilize Ecore as
the intermediate model to support model transformation between OWL and other modeling
languages.

Figure 8: Ecore metamodel structure

Figure 9 depicts the bi-directional mappings defined between the Ecore metamodel and the
EODM OWL metamodel. An OWL Ontology is transformed to an EPackage and vice
versa; an OWL class to an EClass, etc. While the transformation from OWL to Ecore model
looks straightforward, there are a few gaps. As in UML, Eclass is a first-class entity in the
Ecore model. All other entities such as properties are subordinates to Eclass. In OWL,
however, all entities in OWL are equal. Thus, different entities must have different names in
OWL. For example, if two properties belonging to two different Eclasses have an identical
name, a straightforward transformation will cause a name conflict problem. The EODM
Transformation engine renames properties with an identical name to ensure a unique name

 13

for every entity. Another gap comes from the difference in expressiveness from different
modeling languages. OWL is a formal language which is based on Description Logic. OWL
is more expressive than the Ecore model. There are several OWL constructs that the Ecore
model does support, e.g., OWL property restrictions used for precise definition of concepts.
Therefore, some semantics are lost inevitably when conducting transformation from OWL
to Ecore. Also, The Ecore model does not support inference of OWL. Particularly,
anonymous classes created by using OWL restrictions make the situation with inference
even more difficult. To address these gaps, the EODM Model Transformation engine
currently employs the following tactics:

• It appends all unsupported OWL constructs as comments;
• It utilizes the inference engine during transformation to capture all implicit subsumption

relationships;
• It only transforms named OWL classes, and discards all anonymous classes; and
• It renames properties with an identical name to ensure a unique name for every entity.

OWLClass

Ontology

SubClassOf

OWLObjectProperty

RDFSRange

Cardinality

inverseOf

RDFSRange

OWLDatatypeProperty

RDFSDataType

OneOf

RDFComment

Individual

EClass

EPackage

eSuperType

eReference

eReferenceType

Multiplicity

eOppsite

eAttriuteType

eAttribute

EDataType

EEnum

EAnnotation

eLiteral

ECore Model EODM OWL Model

Figure 9: Transformation between OWL and Ecore

6.5. OWL Editor

Finally, the OWL editor provides ontology authors with a GUI which enables them to
visually create and update OWL ontologies. We utilized EMF to automatically generate a
tree-based editor in Eclipse, and replaced the default XMI parser in the generated editor with
the OWL parser of EODM. The editor framework in EMF follows the Model-Control-View
pattern [6] and uses the adaptor pattern [6] to provide a generic content management
capability. In addition to EMF, we utilized the Graphic Editing Framework (GEF) [19] in
developing the OWL editor, to provide the foundation for graphic views of OWL ontologies.
GEF also supports drag and drop operations and drawing functions. The OWL editor
provides two hierarchical views; one for OWL classes and restrictions, and the other for
OWL objects and datatype properties. The OWL editor provides multiple views of OWL

 14

ontologies and support different development perspectives. Operations in different views
are automatically synchronized in the Eclipse platform. Figure 10 gives a screenshot of the
OWL editor in EODM.

In the left hand side of the screen, there are two views of class and property hierarchy, which
are constructed based on rdfs:subClassOf and rdfs:subPropertyOf. Users can also add
classes and properties such as subClassOf and subPropertyOf in the two trees. In the right
hand side, there are a palette, a graphical editor and a property view. Users can drag and
drop elements in the palette to the editor. Detailed information about the ontology and its
elements that are not showed in the limited space of the editor is viewed and edited in the
property view.

Figure 10: Screenshot of OWL editor

7. Use Scenarios

This section presents a use scenario illustrating how the features of the proposed EMF-
based ontology engineering tool can be utilized in real-world applications. Our example is
the model-driven business transformation [10]. Business transformation employs business models
such as component business models [17] to identify opportunities for reducing costs or improve
business processes. The model-driven approach to business transformation requires a model
representation of a variety of business entities such as business processes, components,
competencies, activities, resources, metrics, KPIs (Key Performance Indicators), etc. and
their relations. Semantic models or ontologies provide useful representation of business
models because they can effectively represent different types of relations among business
entities. Also, the automatic reasoning capability of semantic models provides an effective

 15

method for analyzing business models for identifying cost-saving or process improvement
opportunities.

For example, business performance metrics are associated with business activities. By using
the relations between business activities and metrics, and also the relations between business
components and business activities represented in a semantic model, a business analyst can
infer relations between business components and metrics. This type of analysis provides
business insights into how the corporate can improve its performance metrics by addressing
issues with the business components associated with the selected set of metrics. Then, by
identifying, again in the semantic model, IT systems associated with the business
components, the analyst may be able to suggest recommendations about IT system
management to improve performance metrics.

The first step in realizing this model-driven business analysis scenario is the construction of
semantic models of various business entities including business processes, components,
competencies, activities, resources, operational metrics, KPIs. In many cases in most
enterprises, the classes and relations of these business entities are already captured in certain
legacy modeling languages such as UML class diagrams, ER diagrams, relational data models,
Java interfaces, spreadsheets, or text documents. Therefore, the task of semantic model
construction simplifies to transforming the legacy models and merging them into OWL
ontologies. The merged OWL ontologies can be enriched with certain semantics such as
generalization and specification, and cardinality constraints to enhance the effects of
business analysis queries.

To summarize the model transformation process using the EMF-based ontology engineering
system, it starts by capturing formal and informal semantics of legacy models. The model
transformation engine transforms formal semantics of input legacy models into OWL models,
by utilizing pre-defined mappings between OWL and the metamodels of the input models.
The ontology engineering system allows an expert to look into annotations and code of
legacy models, and represent the semantics in OWL models. Informal semantics are captured
as additional axioms and added to the OWL models by using the OWL editor. Optional
functions of the system, such as the source code analysis or natural language processing,
facilitate automatically capturing of certain informal semantics and improve the productivity
of human experts. The overall process of capturing of formal and informal semantics of
legacy models and representing them in OWL models is referred to as semantics enrichment.

We have implemented a non-trivial model transformation by using the EODM
transformation engine. The source model is the Financial Business Object Model (FS-BOM)
from IBM’s Information FrameWork (IFW). IFW permits many types of information
models required by complex enterprise systems for storing and correlating classes in a
consistent manner. FS-BOM is a component of the overall suite of IFW for Financial
Services. It was written in UML and provides an enterprise-wide, generic and flexible model
for financial services business. It is usually used as a starting point for analysis and design of
business systems. Its rich content can be viewed from the fact that it has 582 classes and
5878 attributes and associations. This complicated structure indicates that more knowledge
may be buried deep in the FS-BOM. Therefore, an inference-enabled representation, for
example, by using OWL, is desirable. This transformation was conducted by using the
EODM transformation engine.

 16

8. Concluding Remarks

As the Semantic Web shapes the future of the Web, it becomes more and more important in
software engineering and enterprise application development. However, the adoption of
Semantic Web by industry has been slowed by a gap between ontology engineering tools and
the traditional software engineering. Ontology engineering and software engineering have
been established on different modeling languages and methodologies, which has caused
difficulties in large-scale enterprise application development involving the Semantic Web
technologies. Currently, transformation of UML models to OWL ontologies and vice versa
is conducted only in an ad hoc and incomplete way.

This paper presented a novel approach to bridging this gap between two different, but
complementary engineering disciplines with a systematic approach. We leveraged OMG’s
Model-Driven Architecture and Ontology Definition Metamodel to provide model
transformation, utilizing underlying standards including MOF-based metamodels, XMI
representation, UML extension with profiling, and EMF implementation of MOF. This
approach allows seamlessly supporting legacy models in UML and other languages in
Semantic Web-based software development. In addition, it allows exploiting the availability
and features of UML tools for creation of vocabularies and ontologies. Furthermore, it
supports code generation and facilitates tool development. This paper presented the
methodology and architecture of the EMF-based ontology engineering system, and
mappings between UML and OWL for model transformation. In addition, it presented the
entire stack of the developed ontology engineering system. Finally, it presented use scenarios
illustrating how the features of this system can be utilized in real-world applications.

This MDA-based approach to ontology engineering is still in its infancy. For this approach
to meet its promises and scale for industry applications, a number of technical challenges
need to be addressed. Some directions for further investigation include:

• A complete definition of bi-directional mappings between the Ecore metamodel and

semantic metamodels to support sound and complete model transformation;
• Support for more legacy modeling languages and methodologies in addition to UML,

XSD and Java interfaces which we have addressed in the current system, e.g., relational
data models and spreadsheets traditionally popular in the business environment;

• Validation of the proposed advantage of utilizing features of visual UML tools for
creating and editing ontologies in real-world applications;

• Evaluation of EMF’s capability of code generation for facilitating tool development;
• Augmenting the proposed model transformation method with capabilities for source

code analysis and text mining to facilitate acquisition of certain informal semantics of
legacy models; and

• Maturation of the holistic EMF-based ontology engineering framework by applying and
validating it in real-world business applications.

 17

References

[1] T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic WEB,” Scientific American,

2001.
[2] D. Brickley and R. Guha, “RDF Vocabulary Description Language 1.0: RDF Schema,”

W3C Recommendation, http://www.w3.org/TR/rdf-schema/, 2004.
[3] A. Brown, “An introduction to Model Driven Architecture – Part I: MDA and today’s

systems”, http://www-106.ibm.com/developerworks/rational/library/3100.html, 2004.
[4] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K. Wilkinson, “Jena:

Implementing the Semantic Web Recommendations”, Proc. of WWW 2004.
[5] D. Djuric, D. Gaševic, and V. Devedžic, “Ontology Modeling and MDA,” Journal of

Object technology, Vol. 4, No. 1, 2005.
[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable

Object-Oriented Software,” Addison-Wesley Professional; 1st edition, January 15, 1995.
[7] J. Grant and D. Beckett, “RDF Test Cases,” http://www.w3.org/TR/rdf-testcases/,

10 Feb. 2004.
[8] J. Hladik, “Implementation and Optimisation of a Tableau Algorithm for the Guarded

Fragment,” Lecture Notes In Computer Science; Vol. 2381 archive, Proceedings of the
International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, Pages: 145 - 159, 2002.

[9] G. Klyne and J. Carroll, “Resource Description Framework (RDF): Concepts and
Abstract Syntax,” W3C Recommendation, http://www.w3.org/TR/rdf-concepts/,
2004.

[10] J. Lee, “Model-Driven Business Transformation and Semantic Web,” The
Communications of the ACM, Special Issue on Semantic eBusiness Vision, December
2005.

[11] J. Lee and R. Goodwin, “Ontology Management for Large-Scale E-Commerce
Applications,” International Workshop on Data Engineering Issues in E-Commerce,
Tokyo, Japan, April 9, 2005.

[12] C. Lutz, “NEXP TIME-Complete Description Logics with Concrete Domains,” ACM
Transactions on Computational Logic (TOCL) archive, Volume 5, Issue 4, October
2004.

[13] L. Ma, Z. Su, Y. Pan, L. Zhang, T. Liu, “RStar: An RDF Storage and Query System for
Enterprise Resource Management”, Proc. of ACM CIKM, pp. 484-491, 2004.

[14] D. Oberle, R. Volz, B. Motik, S. Staab, “An Extensible Ontology Software
Environment,” In Steffen Staab and Rudi Studer, Handbook on Ontologies, chapter
III, pp. 311-333. Springer, 2004.

[15] M. K. Smith, C. Welty, and D. L. McGuinness, “OWL Web Ontology language
Guide,” http://www.w3.org/TR/owl-guide/, 2004.

[16] P. Tetlow, et al., “Ontology Driven Architectures and Potential Uses of the Semantic
Web in Systems and Software Engineering,”
http://www.w3.org/2001/sw/BestPractices/SE/ODA/, 2005.

[17] CBM: Component Business Modeling, http://www-306.ibm.com/e-
business/ondemand/us/innovation/cbm/cbm_b.shtml.

[18] D2RQ V0.4: Treating Non-RDF Databases as Virtual RDF Graphs,
http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rq/.

[19] GEF (Graphical Editing Framework), http://www.eclipse.org/gef, 2004.

 18

[20] EMF (Eclipse Modeling Framework), http://www.eclipse.org/emf, 2004.
[21] Jastor, http://jastor.sourceforge.net/.
[22] MOF: Meta-Object Facility, Version 1.4,

http://www.omg.org/technology/documents/formal/mof.htm.
[23] ODM: Ontology Definition Metamodel, http://www.omg.org/docs/ontology/04-08-

01.pdf, 2004.
[24] Pellet: an Open-Source Java Based OWL DL Reasoner,

http://www.mindswap.org/2003/pellet/index.shtml.
[25] Primer: Getting into RDF & Semantic Web using N3,

http://www.w3.org/2000/10/swap Primer.html.
[26] Protégé, http://protege.stanford.edu/index.html, 2004.
[27] Sesame, an Open Source RDF Database with Support for RDF Schema Inferencing

and Querying,” http://www.openrdf.org/, 2002.

 19

