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Abstract 
 
W3C’s Semantic Web provides a common framework that allows data to be shared and 
reused across application and enterprise. As the Semantic Web shapes the future of the Web, 
it becomes more and more important in software engineering and enterprise application 
development. While existing ontology engineering tools provide a stack of ontology management 
support and are used successfully in certain domains, there still remains a gap between the 
ontology engineering tools and the traditional software engineering. For several decades, 
software engineering has been established on different modeling languages and 
methodologies such as Unified Modeling Language (UML). The differences in modeling 
languages and methodologies cause difficulties in enterprise application development 
involving the Semantic Web technologies. The existing ontology engineering tools provide 
only an ad hoc approach to bridging this gap with limited functionality and performance. 
The primary objective of our work is to bridge this gap between two different, but 
complementary engineering disciplines with a systematic approach. Our approach leverages 
Model-Driven Architecture (MDA) and Ontology Definition Metamodel (ODM), which enable model 
transformation. This approach allows seamlessly supporting existing models in UML and 
other languages in Semantic Web-based software development. In addition, it allows 
exploiting the availability and features of UML tools for creation of vocabularies and 
ontologies. Furthermore, MDA enables code generation and facilitates software tool 
development. This paper presents an MDA-based system for ontology engineering. In 
addition, it presents the entire stack of individual components of the developed ontology 
engineering tool.  
 
Keywords: Semantic Web, ontology engineering, model-driven architecture 
 
 
1. Introduction 
 
W3C’s Semantic Web [1] provides a common framework that allows data to be shared and 
reused across application and enterprise. It is based on the Resource Description Framework 
(RDF), which describes various resources using XML for syntax and URIs for naming [9], 
and Web Ontology Language (OWL), which provides modeling constructs for specifying 
and inferring about knowledge [15]. As the Semantic Web shapes the future of the Web, it 
becomes more and more important in software engineering and enterprise application 
development. To meet the needs, a number of tools and systems for ontology development 
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and management such as Protégé [26], Jena [4], Sesame [27], Pellet [24], KAON [14], RStar 
[13], and SnoBase [11], have been developed.  
 
While these ontology engineering tools provide a relatively complete stack of ontology 
management support and are used successfully in certain domains, there still remains a gap 
between the ontology engineering tools and the traditional software engineering. For more 
than a decade, software engineering has been established on different modeling languages 
and methodologies such as OMG’s Unified Modeling Language (UML). This difference in 
modeling languages and methodologies causes difficulties in large-scale enterprise application 
development involving the Semantic Web technologies. The existing ontology engineering 
tools provide only an ad hoc approach to bridging this gap with limited functionality and 
performance. The creation of ontologies and their use in software engineering projects is 
currently cumbersome and not seamless. The transformation of UML models to OWL 
ontologies and vice versa is conducted only in an ad hoc and incomplete way. Therefore, it is 
difficult to utilize the vast investment of enterprises in software engineering models, which 
are often accumulated over a decade, in ontology engineering. For the Semantic Web to have 
impact on enterprises and their business, and also to be widely accepted as a value-adding 
technology, bridging this gap in software and ontology engineering is critical. 
 
The primary objective of our work is to bridge this gap between two different, but 
complementary engineering disciplines with a systematic approach. We leverage OMG’s 
Model-Driven Architecture (MDA) [3] and Ontology Definition Metamodel (ODM) [23] to 
provide model transformation. This approach allows seamlessly supporting existing models 
in UML and other languages in Semantic Web-based software development. In addition, it 
allows exploiting the availability and features of UML tools for creation of vocabularies and 
ontologies. Furthermore, MDA enables code generation and facilitates tool development. 
This paper presents an MDA-based approach to ontology engineering. It describes the 
architecture of the ontology engineering system, and mappings between UML and OWL for 
model transformation. In addition, it presents the entire stack of individual components of 
the developed ontology engineering tool.  
 
The rest of this paper is structured as follows: In Section 2, we describe a number of existing 
software tools for ontology development and management. It discusses a gap between these 
ontology engineering tools and the traditional software engineering tools. Sections 3 and 4 
summarize technical background information on the Model-Driven Architecture and 
Ontology Definition Metamodel, respectively. In Section 5, we explain how EMF-based 
technologies for MDA and ODM are used to realize the proposed system for ontology 
engineering. Section 6 presents an implementation of the proposed system with the entire 
stack of components. Section 7 presents use scenarios illustrating how the features of the 
developed ontology engineering tool can be utilized in real-world applications. In Section 8, 
conclusions are drawn and future work is outlined. 
 
2. Traditional Ontology Management Systems  
 
In recent years, there has been a surge of interest in using ontological information for 
communicating knowledge among software systems. As a result, an increasing range of 
software systems engage in a variety of ontology management tasks, including the creation, 
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storage, search, query, reuse, maintenance, and integration of ontologies. Recently, there 
have been efforts to externalize such ontology management burden from individual software 
systems and put them together in middleware known as an ontology management system. 
An ontology management system provides a mechanism to deal with ontological 
information at an appropriate level of abstraction. By using programming interfaces and 
query languages the ontology management system provides, application programs can 
manipulate and query ontologies without the need to know their details or to re-implement 
the semantics of standard ontology languages. Examples of such ontology management 
systems include Protégé [26], Jena [4], Sesame [27], Pellet [24], KAON [14], Jastor [21], 
D2RQ [18], RStar [13], and SnoBase [11].  
 
Table 1 summarizes a few ontology management systems. It is important to note that these 
systems mainly focus on the manipulation of ontologies. The interoperability with other 
modeling languages and development tools comes as a secondary feature for these systems. 
That is, they assume separate workspaces for ontology management and software 
development, and fail to provide a tightly integrated environment for software and ontology 
engineering.  
 

Table 1: Traditional Ontology Management Systems  
Name 

 
Functionalities Standards Interoperability 

Jena A program development 
framework for ontology 
manipulation and query 

RDF, 
RDFS, 
OWL, 
SPARQL 

N/A 

Sesame An RDF database allowing 
ontology manipulation and 
query 

RDF, 
RDFS, 
OWL 

N/A 

Protégé A graphical ontology editor and 
knowledge base framework for 
ontology manipulation and 
query 

RDF, 
RDFS, 
OWL 

Through plugins (with 
limited capability); 
UML  OWL ontology 

KOAN A suite of ontology 
management tools including 
ontology creation, ontology 
manipulation, and inference and 
query 

RDF, 
RDFS, 
OWL 

RDB schema   
RDFS ontology  

Jastor A java code generator for 
creating Java beans from OWL 
ontologies 

RDF, 
RDFS, 
OWL 

OWL ontology   
Java Beans 

D2RQ A language and a tool for 
specifying mappings between 
relational database schema and 
OWL ontologies 

RDF, 
RDFS, 
OWL 

RDB schema   
OWL ontology 

 
While these ontology engineering tools provide a stack of ontology management support, 
they also show certain limitations in supporting large-scale software engineering projects. 
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Participating in a number of enterprise application development projects by using the 
SnoBase and RStar Ontology Management System, we learned firsthand that it is critical to 
provide a comprehensive development environment including supporting tools and facilities 
for the application developers. A pick-and-choose approach to the best of the breed tools 
from different environments does not always work well for the majority of the developers 
and often results in a longer learning curve for the developers. A comprehensive ontology 
development environment often means a tight integration of tools for software and ontology 
engineering, and model import and transformation, among others.  
 
Semantic markup languages such as W3C’s RDF and OWL are based on the work in the 
logic and Artificial Intelligence communities, such as Description Logic and Knowledge 
Representation. The syntax of these languages is less intuitive to those trained for object-
oriented programming and simple XML-based languages. The lack of a tightly integrated 
development environment for software and ontology engineering makes the job of subject 
matter experts and software engineers difficult, and often affects negatively to the adoption 
of the semantic technology in industry. An effective ontology application development 
environment should bridge this gap between software engineering and ontology engineering 
by providing a seamlessly integrated environment. 
 
Another consideration for industry adoption of the semantic Web technology is the 
interoperability of the semantic markup languages with the well-established and widely-
accepted industry standard modeling languages and methodologies such as Entity-Relation 
(ER) diagrams and Unified Modeling Language (UML). Enterprises developed software 
models in these languages for more than a decade and invested significantly in building 
systems around them. Despite all the theoretical advantages the semantic technology brings 
in, in practice, it is highly unlikely that the enterprises abandon the legacy systems and 
develop new systems around the semantic Web technology. Instead, users in industry would 
be interested in the interoperability of the modeling languages, and the reuse of the existing 
models and data with the semantic Web technology. The traditional ontology management 
systems currently provide only ad hoc and incomplete methods for the model 
interoperability. To address the practical requirements of industry, this paper introduces a 
novel approach to ontology engineering based on the Model Driven Architecture (MDA), 
which enables software engineers and users to design, build, integrate and manage ontologies 
and software applications in an integrated development environment. 
 
3. Model-Driven Architecture 
 
Before proposing the MDA-based system for ontology engineering, we summarize the 
Object Management Group’s Model Driven Architecture, which is one of the two pillars of 
the system’s architecture, along with Ontology Definition Metamodel.  
 
In the history of software engineering, there has been a notable increase of the use of models 
and the level of abstraction in the models. Modeling has become separated from underlying 
development and deployment platforms, making them more reusable and easier to create 
and modify by domain experts, and requiring less knowledge of specific deployment systems. 
This trend places software modeling closer to knowledge engineering. The current stage in 
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this evolution is the Model Driven Architecture, which grew out of the standards work 
conducted in the 1990s for the Unified Modeling Language (UML).  
 
The basic idea of MDA is that the system functionality is defined as a platform-independent 
model, using an appropriate specification language and then translated to one or more 
platform-specific models for the actual implementation. To accomplish this goal, the MDA 
defines an architecture that provides a set of guidelines for structuring specifications 
expressed as models. The translation between platform-independent model and platform-
specific models is normally performed using automated tools. Specifically, MDA defines 
three levels of abstraction: Computation Independent Model (CIM), Platform Independent Model 
(PIM) and Platform Specific Model (PSM). CIM is a view of a system that does not show the 
details of a system structure. In software engineering, it is also known as a domain model, 
which is concerned by domain experts. It is similar to the concept of ontology. PIM is a 
model that is computation dependent, but it is not aware of specific computer platform 
details. In other words, it is targeted for a technology-neutral virtual machine. Specification 
of complete system is completed with PSM. The goal is to move human work from PSM to 
CIM and PIM, and let the detail implementation for a specific platform be generated as 
much as possible by automated tools which perform the transformation from PIM to PSM.  
 
MDA comprises of a four-layer metamodeling architecture: meta-metamodel (M3) layer, 
metamodel (M2) layer, model (M1) layer, and instance (M0) layer. Also, it utilizes several 
complementary standards from OMG including Meta-Object Facility (MOF), Unified Modeling 
Language (UML) and XML Metadata Interchange (XMI). On the top of the MDA architecture 
is the meta-metamodel, i.e., MOF. It defines an abstract language and framework for 
specifying, constructing and managing technology neutral metamodels. It is the foundation 
for defining any modeling language such as UML or even MOF itself. MOF also defines a 
framework for implementing repositories that hold metadata (e.g., models) described by 
metamodels [22]. The main objective of having the four layers with a common meta-
metamodel is to support multiple metamodels and models and to enable their extensibility, 
integration and generic model and metamodel management.  
 
All metamodels, standard or custom, defined by MOF are positioned on the M2 layer. One 
of these is UML, a graphical modeling language for specifying, visualizing and documenting 
software systems. With UML profiles, basic UML concepts (e.g., class, association, etc.) can 
be extended with new concepts (stereotypes) and adapted to specific modeling needs. The 
models of the real world, represented by concepts defined in the corresponding metamodel 
at M2 layer (e.g., UML metamodel) are on M1 layer. Finally, at M0 layer, are things from the 
real world. Another related standard is XMI. It defines mapping from MOF-defined 
metamodels to XML documents and schemas. Because of versatile software tool availability 
for XML, XMI representations of models, metamodels and meta-metamodel facilitate their 
sharing in software application development.  
 
MOF tools use metamodels to generate code for managing models and metadata. The 
generated code includes access mechanisms, or application programming interfaces, to read 
and manipulate, serialize and transform, and abstract the details of various interfaces based 
on access patterns. Eclipse Modeling Framework (EMF) [20] provides a Java implementation of 
a core subset of the MOF API. EMF started out as an implementation of the MOF 
specification, and evolved into a generic modeling framework and code generation facility 
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for building tools and other applications based on a structured data model. The MOF-like 
core metamodel in EMF is called Ecore. From a model specification written in XMI, EMF 
generates tools and runtime support to produce a set of Java classes for the model, a set of 
adapter classes that enable viewing and command-based editing of the model, and a basic 
editor. Models can be specified using annotated Java, XML documents, or modeling tools 
like Rational Rose, then imported into EMF. It is important to note that EMF provides the 
foundation for interoperability with other EMF-based tools and applications. The proposed 
MDA-based system leverages EMF for implementing ontology management tools which run 
on the Eclipse environment, and utilizes its support for model interoperability. 
 
4. Ontology Definition Metamodel 
 
MDA and its four-layer architecture provide a solid basis for defining metamodels of any 
modeling language, and so provide a foundation for bringing together software engineering 
and methodologies such as UML with the semantic technology based on W3C’s RDF and 
OWL. Once a semantic markup language such as OWL is defined in MOF, its users can 
utilize MOF’s capabilities for modeling creation, model management, code generation, and 
interoperability with other MOF-defined metamodels.  
 
Another OMG standard, Ontology Definition Metamodel (ODM) [23] took this approach. 
To comprehend common ontology concepts, ODM used as a starting point OWL, which is 
the result of the evolution of existing ontology representation languages. ODM defined 
individual constructs of OWL in MOF, creating an ODM metamodel. To leverage graphical 
modeling capabilities of UML in dealing with OWL constructs, ODM also defined an 
ontology UML profile to support UML notation for ontology definition. This profile enables 
graphical editing of ontologies in OWL using UML diagrams as well as other benefits of 
using mature UML CASE tools. Finally, the following bi-directional mappings between 
metamodels complete the picture:  
 

1. mappings between OWL and ODM,  
2. mappings between ODM and the ontology UML profile, and  
3. mappings from the ontology UML profile to other UML profiles.  
 

 
Figure 1: Bi-directional mapping among metamodels 
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Figure 1 shows a simple example of the bi-directional mappings between metamodels. In 
practice, both UML and ODM models are serialized in XMI, and OWL model in XML, the 
two-way mappings can implement XSLT-based transformations. Our work utilized EMF-
based transformations, instead of XSLT, to leverage EMF’s generic modeling framework 
and code generation facility for building tools and other applications. We implemented 
EODM (EMF-based ODM), which is the underlying object model generated from ODM by 
using EMF, for model transformations between OWL and UML. More details will be given 
in the next section.  
 
Before moving to the main body of this paper, it is useful to briefly mention yet another 
related effort from W3C, namely, Ontology Driven Architecture (ODA) [16]. It combines MDA 
with the semantic technology differently from the ODM approach. It attempts to augment 
the MDA standards and methodology stack with the semantic technology to improve the 
discipline. It aims to enable unambiguous representation of domain terminology, distinct 
from the rules, enable automated consistency checking and validation of invariant rules, 
preconditions, and post-conditions, and support knowledge-based terminology mediation 
and transformation for increased scalability and composition of components. This effort still 
is in its infancy and at a draft stage. 
 
5. EMF-Based Ontology Engineering System  
 
For realizing an MDA-based system for ontology engineering, we utilized the Eclipse 
Modeling Framework, which is open source MDA infrastructure for integration of modeling 
tools [20]. A model specification described in various modeling languages including UML, 
XML Schema, and annotated Java source can be imported into EMF. Then EMF produces a 
set of Java classes for the model, a set of adapter classes that enable viewing and editing of 
the model, and a basic editor. In its current implementation, EMF does not provide formal 
semantics definitions, inference and the related model specifications. Our work adds this 
capability to EMF for providing a comprehensive ontology engineering environment and 
dynamic application integration.  
 
For adding the semantic model transformation capability to EMF, we leverage the 
specification of Ontology Definition Metamodel. By using EMF and ODM, we generated a 
foundational memory model, i.e., Java classes, for the constructs of OWL. This foundational 
memory model is referred to as EODM (EMF-based Ontology Definition Metamodel). By 
adding several necessary helper classes and methods to EODM, we can use it to create, edit, 
and navigate any models in OWL.  
 
Also, we added an OWL parser to EODM, which can load OWL files into EMF and 
generate OWL files from EMF, i.e., serialize EMF models to standard OWL files in XML. 
The parser utilizes an XMI adaptor which enables the transformation between the OWL 
models and EODM Ecore models. The transformation is made possible by the bi-
directional mapping between OWL and the Ecore metamodel. The transformation opens a 
way to interoperability between OWL models and other EMF supported models, which 
currently include ones defined in UML, XML Schema, and annotated Java classes. The 
support of other models such as Entity Relationship models in EMF will be provided in the 
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near future. By leveraging the OWL parser and the bi-directional transformation between the 
OWL models and the Ecore models, ontology application developers can develop 
ontologies using their favorite model building tools, import them into EMF, transform their 
models into OWL ontologies, enrich them with semantics, leverage their inference capability, 
and utilize the comprehensive development facility of Eclipse and EMF.  
 
To be more specific, the EODM Ecore model is the MOF core model that represents 
ontologies in memory. It is an intermediate model for imported and transformed legacy 
models, as well as the generated ontology, Java code, Java editor and Java edit. The 
development environment allows its users to manipulate EODM Ecore models, enrich it 
with semantic specification, and generate Java code. A default set of bi-directional mappings 
between metamodels of legacy models and OWL are developed in EMF. Eclipse plug-in 
developers can extend the mappings to handle other types of legacy models, or other 
elements in legacy models specifying semantics. In the generated Java code, a small foot-
print inference engine is shipped with the code and can be invoked by applications. The 
generated Java editor and Java edit provide ready-to-use visual tools to populate or 
manipulated instances of OWL models. The visual tools are actually copies of the standard 
methods of supporting application development in EMF. Figure 2 illustrates the operation 
of the EMF-based ontology engineering system. 

XML 
Schema

ER 
Model

I
M
P
O
R
T

EODM
Ecore
Model

Model transformation
and semantics enrichment

Java 
code

G E N E R A TE

Editors are enhanced to handle RDFS/OWL ontology

RDF/OWL 
Ontology

UML
Model

OWL 
Editor

Java 
Editor

 
Figure 2: EMF-based ontology engineering system  

 
6. Components of the EMF-Based Ontology Engineering System 
 
This section presents the entire stack of components of the developed, EMF-based ontology 
engineering system. We had two primary design objectives for this system: first, support for 
the entire lifecycle of ontology engineering, and, second, avoiding reinvention of tools and 
facilities that are already proven to work in software engineering. To achieve these objectives, 
we designed a software stack which consists of six interdependent layers.  
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At the core of this EMF-based ontology engineering system is the EODM model, which is 
derived from the Ontology Definition Metamodel and implemented in Eclipse Modeling 
Framework. The bottom layer, EODM core model, provides the basic Java programming 
model for OWL ontologies with all the necessary getter and setter functions. It is 
automatically generated by EMF from the Rational Rose model for OWL. To this generated 
core model implementation, certain utility classes and methods are added, to benefit Java 
programmers. On top of the EODM core model comes the OWL parser which parses OWL 
ontologies, translates them into EODM models, and serializes EODM models to standard 
RDF/XML files. The next layer is the inference engine. It takes an EODM model as input, and 
executes user queries, reasoning about instances and relationships among instances and 
classes. The next layer is the model transformation engine. It imports existing conceptual models 
represented in various modeling languages such as UML, ER diagrams, and Java interfaces. 
Then, it transforms the models into one or more EODM models. Finally, the OWL editor 
provides a graphical ontology authoring environment where OWL ontologies in graphic 
notations are serialized to OWL files in a standard XML format. Figure 3 shows the 
components of the EMF-based ontology engineering system. In the rest of this section, we 
describe each component in detail. 

EMF generated OWL interface and implementation

Utility classes and methods

OWL parser

OWL inference engine

Model transformation engine

OWL editor

 
Figure 3: EMF-based ontology engineering system architecture 

 
6.1. EODM Core Model 
 
The EMF-based ontology engineering system provides tightly integrated environment for 
software and ontology engineering, providing a stack of useful components. EODM 
provides the run-time library that allows applications to input and output OWL ontologies, 
manipulate them by using Java objects, invoke the inference engine and access result sets, 
and transform among ontologies and other legacy models.  
 
The EODM core model provides useful classes and methods to access OWL ontologies and 
their instances. Its metamodel is defined in the Ontology Definition Metamodel (ODM) 
specification [23]. It is an MOF2 compliant metamodel that allows users to define ontologies 
by using those constructs defined in RDF Schema and OWL. ODM comprises of two 
packages that define the metamodels of RDF and OWL, respectively. The OWL package 
inherits classes from the RDF package, and extends it. Figure 4 illustrates the class definition 
of the RDF package. The UML model of the packages is augmented by a number of bi-
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directional references to generate APIs that leverage notification and messaging mechanisms 
in EMF. Also, there are certain design patterns, such as Factory and Singleton, embedded in 
the code generation engine of EMF. Therefore, the EODM core model automatically 
complies with the design practices and benefit software engineers. 

RDFXMLLiteral
language : String

RDFSLiteral
lexicalForm : String

RDFSClass

0..*

0..*

+RDFSSubClassOf

0..*

+subClass
0..*

PlainLiteral
language : String

Namespace
name : Strin...
URI : String

RDFSResource
localName : String
/ URI : String

0..*+RDFType 0..*

0..*

+RDFSComment

0..*

0..*

+RDFSLabel

0..*

1

+namespace

1

RDFSDatatype

TypedLiteral

1
+datatype

1

 
Figure 4: Class definition in ODM 

 
6.2. OWL Parser 
 
The OWL parser analyzes the XML syntax of OWL files and generates EODM models and 
a set of RDF triple statements. Figure 5 shows the parser process. The parser utilizes XML 
SAX API to correctly parse each node and its attributes. Then, the RDF triple analyzer 
assembles the resulting nodes and attributes to generate RDF triples by maintaining a state 
stack for keeping node and property states. In RDF and OWL, knowledge is simply a 
collection of statements, each with a subject, verb and object, and nothing else [25]. The 
RDF triple statements can be directly used by applications. They can be asserted into a 
working memory of inference engine for reasoning. They also can be stored in a database for 
triple-based RDF graph retrieval. A model wrapper can envelop RDF triples into an EODM 
model. Therefore, the OWL parser can create both RDF triple statements and an object-
oriented memory model for further manipulation in applications. In addition, we also 
provide a tool for serializing EODM models into standard OWL files. 
 
The OWL parser is completely compliant with W3C’s XML syntax specification and passes 
all W3C’s positive and negative test cases [7]. It utilizes a streaming XML parser, i.e., SAX 
parser, and once an RDF statement is formed, the parser can immediately export the 
statement. This property allows the parser to require minimal amount of memory and thus 
to be scalable in handing large-scale models. Also, it is important to note that the OWL 
parser can be used independently of other components of the system.  
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OWL  

ontology files 

 
SAX parser RDF triple  

analyzer 

Model wrapper 
 

EODM model 

 
RDF triple statements 

Figure 5: OWL parser process 
 
6.3. Inference Engine 
 
The inference engine of the EMF-based ontology engineering system approaches the core 
inference problem of OWL by a structural subsumption algorithm. The present Description 
Logic classification algorithm is based on the tableau algorithm [8], which can provide sound 
and complete reasoning on a very expressive language by satisfaction test. However, this 
approach focuses on the tractability of a single subsumption test and the worst case 
computational complexity is NEXP-time [12]. In practical cases, however, an algorithm with 
high efficiency but less expressiveness would be more useful in supporting large-scale 
taxonomic classification problems. To achieve a balance between efficiency and expressive 
power, we leveraged the structural subsumption algorithm, which is known to be an efficient 
technique but also known to be limited due to its inability to provide complete reasoning for 
expressive languages. The concepts and axioms supported by this approach is defined as 
follows: 
 
Concepts: (Cyclic concept definitions are not supported) 

C, D   t  A (atomic concept), º (universal concept), Ω (bottom concept),  
C6D (intersection), C7D (union), ≥R.C (some value from restriction) 
≤R.C (all value from restriction), ≥R.{x}| (hasValue) 

Axioms: 
Axioms t CbD (concept inclusion), RbS (role inclusion) 

 
In ontologies without an acyclic definition, every defined concept is treated as a restriction 
on some properties, and an atom concept is treated as a “special” restriction. For example, C 
h A 6 B 6 ≤R.(≤S.C) is treated as a concept with restriction on RA, RB, R, where RA, RB is 
special restriction brought by atom concept A and B. To decide whether two concepts are 
subsumed by each other, we can recursively compare those restrictions by applying basic 
comparison rules captured in Table 1. Figure 6 illustrates a simple example of a structural 
subsumption test by using the comparison rules. 
 

Table 2: Comparison rules for structural subsumption tests 
Concept A Concept B  A b B Condition 
≥R.C ≥S.D Iff  R ] S and CbD 
≤R.C ≤S.D Iff  S ] R and CbD 
únR.C úmS.D Iff  R ] S and CbD and nñm 
ñnR.C ñmS.D Iff  S ] R and DbC and núm 
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EbG 

b 

b 

b

Given Ah≥R1.C6≥R2.(≤R4.D)6≤R3.E,  Bh≥R2.(≤R4.F) 6≤R3.G, DbF, EbG,
it can be concluded that AbB. 

≥R2.(≤R4.D) 

≤R3.E 

≥R2.(≤R4.F) 

≤R3.G 

≤R4.F 

≤R4.D 

≥R1.C 

A B

DbF

b 

Figure 6: A simple structural subsumption test example 
 
The main idea of the extended structural subsumption algorithm is to leverage the 
information of concept definitions by maintaining a classification tree to perform taxonomic 
classification. The algorithm starts with building the classification tree. Given an axiom CbD, 
the algorithm first recursively classifies C, D and all the sub constitutes until all of them have 
been correctly linked into the classification tree. Then, it adds the subsumption link between 
C and D, which will automatically remove all the outdated links. More details of the 
inference algorithm is a subject of another paper we are preparing. Figure 7 shows an 
example of classifying a TBox which contains the following definitions: 
 
       C h ≥R3.(A6B) 6 ≥R4.D 

F h ≥R1.A 6 ≥R2.B 
    D b E,  

≥R3.A b ≥R2.B 
≥R4.E b ≥R1.A 

1. Initial classification tree, D b E,
≥R3.A b ≥R2.B, ≥R4.E b ≥R1.A

º

≥R2.BA E B ≥R1.A

D ≥R3.A ≥R4.E

z

º

≥R2.BA E B ≥R1.A

D ≥R3.A ≥R4.E

2. Recursively classify C: Adding A6B

z

A6B

º

≥R2.BA E B ≥R1.A

D ≥R3.A ≥R4.E

3. Recursively classify C: Adding 
≥R3.(A6B), ≥R4.D and C

z

A6B

≥R3.(A6B) ≥R4.D

C

º

≥R2.BA E B ≥R1.A

D ≥R3.A ≥R4.E

z

A6B

≥R3.(A6B) ≥R4.D

C

F

4. Classify F

 
Figure 7: An example of classifying a TBox 
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6.4. Model Transformation 
 
This layer in the EMF-based ontology engineering system addresses the ontology acquisition 
and model interoperability issues, as we discussed earlier. Enterprises developed IT models 
in various modeling languages such as UML and ER diagrams for several decades and 
invested heavily in building systems around them. It is important for the enterprises to 
protect their investment in the legacy systems. Also, it is important to leverage domain 
knowledge captured in the existing IT models. Thus, users in industry are interested in the 
interoperability of the modeling languages and the reuse of the existing models with the 
semantic Web technology. The interoperability allows exploiting the availability and features 
of UML tools for creation of vocabularies and ontologies. In addition, it allows augmenting 
the legacy models with formal semantics, and enabling an inference capability with the 
models, which can return sound and complete query results.  
 
Figure 8 shows the Ecore metamodel structure. There already exist transformations defined 
between Ecore model and legacy modeling languages such as UML, XSD and Java interfaces. 
In EODM, we define a transformation between Ecore and OWL. Then, we utilize Ecore as 
the intermediate model to support model transformation between OWL and other modeling 
languages.  
 

 
Figure 8: Ecore metamodel structure 

 
Figure 9 depicts the bi-directional mappings defined between the Ecore metamodel and the 
EODM OWL metamodel. An OWL Ontology is transformed to an EPackage and vice 
versa; an OWL class to an EClass, etc. While the transformation from OWL to Ecore model 
looks straightforward, there are a few gaps. As in UML, Eclass is a first-class entity in the 
Ecore model. All other entities such as properties are subordinates to Eclass. In OWL, 
however, all entities in OWL are equal. Thus, different entities must have different names in 
OWL. For example, if two properties belonging to two different Eclasses have an identical 
name, a straightforward transformation will cause a name conflict problem. The EODM 
Transformation engine renames properties with an identical name to ensure a unique name 
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for every entity. Another gap comes from the difference in expressiveness from different 
modeling languages. OWL is a formal language which is based on Description Logic. OWL 
is more expressive than the Ecore model. There are several OWL constructs that the Ecore 
model does support, e.g., OWL property restrictions used for precise definition of concepts. 
Therefore, some semantics are lost inevitably when conducting transformation from OWL 
to Ecore. Also, The Ecore model does not support inference of OWL. Particularly, 
anonymous classes created by using OWL restrictions make the situation with inference 
even more difficult. To address these gaps, the EODM Model Transformation engine 
currently employs the following tactics: 
 
• It appends all unsupported OWL constructs as comments; 
• It utilizes the inference engine during transformation to capture all implicit subsumption 

relationships; 
• It only transforms named OWL classes, and discards all anonymous classes; and 
• It renames properties with an identical name to ensure a unique name for every entity. 
 

OWLClass

Ontology

SubClassOf

OWLObjectProperty

RDFSRange

Cardinality

inverseOf

RDFSRange

OWLDatatypeProperty

RDFSDataType

OneOf

RDFComment

Individual

EClass

EPackage

eSuperType

eReference

eReferenceType

Multiplicity

eOppsite

eAttriuteType

eAttribute

EDataType

EEnum

EAnnotation

eLiteral

ECore Model EODM OWL Model

 
Figure 9: Transformation between OWL and Ecore 

 
6.5. OWL Editor 
 
Finally, the OWL editor provides ontology authors with a GUI which enables them to 
visually create and update OWL ontologies. We utilized EMF to automatically generate a 
tree-based editor in Eclipse, and replaced the default XMI parser in the generated editor with 
the OWL parser of EODM. The editor framework in EMF follows the Model-Control-View 
pattern [6] and uses the adaptor pattern [6] to provide a generic content management 
capability. In addition to EMF, we utilized the Graphic Editing Framework (GEF) [19] in 
developing the OWL editor, to provide the foundation for graphic views of OWL ontologies. 
GEF also supports drag and drop operations and drawing functions. The OWL editor 
provides two hierarchical views; one for OWL classes and restrictions, and the other for 
OWL objects and datatype properties. The OWL editor provides multiple views of OWL 
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ontologies and support different development perspectives. Operations in different views 
are automatically synchronized in the Eclipse platform. Figure 10 gives a screenshot of the 
OWL editor in EODM. 
 
In the left hand side of the screen, there are two views of class and property hierarchy, which 
are constructed based on rdfs:subClassOf and rdfs:subPropertyOf. Users can also add 
classes and properties such as subClassOf and subPropertyOf in the two trees. In the right 
hand side, there are a palette, a graphical editor and a property view. Users can drag and 
drop elements in the palette to the editor. Detailed information about the ontology and its 
elements that are not showed in the limited space of the editor is viewed and edited in the 
property view.  

 

 
Figure 10: Screenshot of OWL editor 

7. Use Scenarios 
 
This section presents a use scenario illustrating how the features of the proposed EMF-
based ontology engineering tool can be utilized in real-world applications. Our example is 
the model-driven business transformation [10]. Business transformation employs business models 
such as component business models [17] to identify opportunities for reducing costs or improve 
business processes. The model-driven approach to business transformation requires a model 
representation of a variety of business entities such as business processes, components, 
competencies, activities, resources, metrics, KPIs (Key Performance Indicators), etc. and 
their relations. Semantic models or ontologies provide useful representation of business 
models because they can effectively represent different types of relations among business 
entities. Also, the automatic reasoning capability of semantic models provides an effective 
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method for analyzing business models for identifying cost-saving or process improvement 
opportunities.  
 
For example, business performance metrics are associated with business activities. By using 
the relations between business activities and metrics, and also the relations between business 
components and business activities represented in a semantic model, a business analyst can 
infer relations between business components and metrics. This type of analysis provides 
business insights into how the corporate can improve its performance metrics by addressing 
issues with the business components associated with the selected set of metrics. Then, by 
identifying, again in the semantic model, IT systems associated with the business 
components, the analyst may be able to suggest recommendations about IT system 
management to improve performance metrics. 
 
The first step in realizing this model-driven business analysis scenario is the construction of 
semantic models of various business entities including business processes, components, 
competencies, activities, resources, operational metrics, KPIs. In many cases in most 
enterprises, the classes and relations of these business entities are already captured in certain 
legacy modeling languages such as UML class diagrams, ER diagrams, relational data models, 
Java interfaces, spreadsheets, or text documents. Therefore, the task of semantic model 
construction simplifies to transforming the legacy models and merging them into OWL 
ontologies. The merged OWL ontologies can be enriched with certain semantics such as 
generalization and specification, and cardinality constraints to enhance the effects of 
business analysis queries. 
 
To summarize the model transformation process using the EMF-based ontology engineering 
system, it starts by capturing formal and informal semantics of legacy models. The model 
transformation engine transforms formal semantics of input legacy models into OWL models, 
by utilizing pre-defined mappings between OWL and the metamodels of the input models. 
The ontology engineering system allows an expert to look into annotations and code of 
legacy models, and represent the semantics in OWL models. Informal semantics are captured 
as additional axioms and added to the OWL models by using the OWL editor. Optional 
functions of the system, such as the source code analysis or natural language processing, 
facilitate automatically capturing of certain informal semantics and improve the productivity 
of human experts. The overall process of capturing of formal and informal semantics of 
legacy models and representing them in OWL models is referred to as semantics enrichment.  
 
We have implemented a non-trivial model transformation by using the EODM 
transformation engine. The source model is the Financial Business Object Model (FS-BOM) 
from IBM’s Information FrameWork (IFW). IFW permits many types of information 
models required by complex enterprise systems for storing and correlating classes in a 
consistent manner. FS-BOM is a component of the overall suite of IFW for Financial 
Services. It was written in UML and provides an enterprise-wide, generic and flexible model 
for financial services business. It is usually used as a starting point for analysis and design of 
business systems. Its rich content can be viewed from the fact that it has 582 classes and 
5878 attributes and associations. This complicated structure indicates that more knowledge 
may be buried deep in the FS-BOM. Therefore, an inference-enabled representation, for 
example, by using OWL, is desirable. This transformation was conducted by using the 
EODM transformation engine.  
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8. Concluding Remarks 
 
As the Semantic Web shapes the future of the Web, it becomes more and more important in 
software engineering and enterprise application development. However, the adoption of 
Semantic Web by industry has been slowed by a gap between ontology engineering tools and 
the traditional software engineering. Ontology engineering and software engineering have 
been established on different modeling languages and methodologies, which has caused 
difficulties in large-scale enterprise application development involving the Semantic Web 
technologies. Currently, transformation of UML models to OWL ontologies and vice versa 
is conducted only in an ad hoc and incomplete way. 
 
This paper presented a novel approach to bridging this gap between two different, but 
complementary engineering disciplines with a systematic approach. We leveraged OMG’s 
Model-Driven Architecture and Ontology Definition Metamodel to provide model 
transformation, utilizing underlying standards including MOF-based metamodels, XMI 
representation, UML extension with profiling, and EMF implementation of MOF. This 
approach allows seamlessly supporting legacy models in UML and other languages in 
Semantic Web-based software development. In addition, it allows exploiting the availability 
and features of UML tools for creation of vocabularies and ontologies. Furthermore, it 
supports code generation and facilitates tool development. This paper presented the 
methodology and architecture of the EMF-based ontology engineering system, and 
mappings between UML and OWL for model transformation. In addition, it presented the 
entire stack of the developed ontology engineering system. Finally, it presented use scenarios 
illustrating how the features of this system can be utilized in real-world applications. 
 
This MDA-based approach to ontology engineering is still in its infancy. For this approach 
to meet its promises and scale for industry applications, a number of technical challenges 
need to be addressed. Some directions for further investigation include:  
 
• A complete definition of bi-directional mappings between the Ecore metamodel and 

semantic metamodels to support sound and complete model transformation; 
• Support for more legacy modeling languages and methodologies in addition to UML, 

XSD and Java interfaces which we have addressed in the current system, e.g., relational 
data models and spreadsheets traditionally popular in the business environment;  

• Validation of the proposed advantage of utilizing features of visual UML tools for 
creating and editing ontologies in real-world applications;  

• Evaluation of EMF’s capability of code generation for facilitating tool development; 
• Augmenting the proposed model transformation method with capabilities for source 

code analysis and text mining to facilitate acquisition of certain informal semantics of 
legacy models; and 

• Maturation of the holistic EMF-based ontology engineering framework by applying and 
validating it in real-world business applications. 
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