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Abstract 

 
BladeRunner is a research project that explores the 

use of intentional and code generative approaches to 
facilitate programming in MPI.  The BladeRunner 
development environment provides an interactive 
visual approach based on diagrams with figures 
representing higher level abstractions of MPI artifacts.  
This, along with direct manipulation of visual 
abstractions, allows the user to both view and express 
coding intentions clearly and rapidly.  As a 
constructive programming paradigm, direct 
manipulation of diagrams translates into coding 
actions reflected into generated program code. Thus, 
programming focus is higher level, on visual 
representations for MPI programming concepts, and 
evolution of program state reflected in diagrams, 
instead of syntax or language structure details. 

 We describe the vision for this work, and a 
discussion of the BladeRunner prototype tool, built 
upon the Eclipse open-source platform.  This paper 
specifically focuses on applicability of this tool to MPI 
communicator construction.  We discuss the 
conceptual interface of this tool, along with design 
issues regarding this intentional programming model 
and visual infrastructure. 

 
Keywords: parallel programming, intentional 
programming, MPI, code generation, model-driven 
programming, Eclipse, grid, cluster computing 
 
1. Introduction 
 

Grid and cluster technologies have driven and 
attracted significant levels of interest in parallel, 
concurrent, and distributed programming.  These 
technologies enable parallel and scale-out computing 
architectures for applications, allowing them to 
capitalize through concurrency-based performance 

gains.  High-performance programming, however, 
remains a high-skill art.  Practitioners in high-
performance middleware such as MPI[12], 
OpenMP[1], or PVM[6] are difficult to find in 
industry.  Furthermore, programming tools that 
facilitate programming with high performance 
middleware are difficult if impossible to find. 

To increase high-performance middleware 
accessibility for the general programming community, 
programming tools are essential.  That being said, the 
scope of tool coverage is admittedly wide, including 
coding, debugging, testing, and monitoring.  The 
problem addressed in this paper concerns facilitating 
parallel programming with conceptually difficult 
parallel programming concepts, such as those found in 
MPI.  Therefore we argue that program construction 
tools provide important first steps in helping the 
programming community adjust to the current shift 
towards parallel and distributed programming. 

Towards a solution, this paper presents an 
intentional approach [2] to effective and accurate 
parallel and distributed programming, focused on MPI 
programming.  The intentional tool presented provides 
a diagrammatic means to efficiently and effectively 
assert coding intentions at a higher conceptual level.  
The resultant diagrams translate into lower-level MPI 
and programming language constructs.  Our prototype 
program development system, BladeRunner, is 
presented with specific focus on specification and 
generation of MPI communicators, which concisely 
elucidate the approach and direction.  BladeRunner is 
implemented as a plug-in under the Eclipse [13] tools 
platform, which includes other complementary 
program development tools. 

 This paper is organized as follows.  After a review 
of background and related work, a discussion of MPI 
programming from an intentional programming 
viewpoint is given.  This is followed by a detailed 
description of our tool’s front-end concepts and 
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interface for deriving MPI communicators and code 
generation.  This is followed by a discussion of the 
tool’s design.  A concluding summary offers thoughts 
on future work.    
 
2. Background and Related Work 
 

Programming tools’ research for high-performance 
middleware has generally focused on distributed and 
parallel monitoring and debugging tools. The 
multiplicity of processes and hardware greatly 
magnifies the amount of tracing, and the complexity of 
sorting event interleaving is an important part of 
isolating and solving deep programming problems.   
Far less focus has been given to coding tools to help 
with coding phases.  However, a few instances can be 
cited.  VisualMPI[5] is a knowledge-based code 
generation tool with expert systems to assist in the 
design of process topologies.  Net-Console[9] is 
described as a comprehensive MPI development suite 
using an MPI-aware editor for code development. 

Related to this, usage of sophisticated static analysis 
techniques on MPI programming has been studied 
[11].  PARSE-DAT[8], while not an MPI tool, 
provides a sophisticated graphical process 
specification editor, using the pi-calculus for design 
and verification.  

The approach to coding tools described here 
follows closely to that found in intentional [2] and 
model-driven programming schemes [14].  Our tool 
vision focuses on providing visual means for 
describing concurrent programming at a conceptual 
level, with the tool generating low-level coding details.  
We do not strive to provide a complete visual language 
covering all aspects of programming, but instead focus 
on concurrency aspects.  The parallel programming 
model behind our work is MPI [12].  This work 
follows onto the state-based constructive themes found 
in [10] and [3]. 

Generally-available programming tools for parallel 
development and runtime monitoring on the Eclipse 
framework are beginning to emerge, specifically in 
PTP (Eclipse Parallel Tools Platform) [4], and 
integration with these tools is possible. 

 
3. Intentional MPI Programming 

 
The attraction of applying intentional techniques to 

MPI programming draws from the unique functionality 
and complexity that MPI offers.  MPI, amongst the 
dominant middleware for high-performance 
computing, has the following significant features: 

• Dynamic process clustering (communicators) 

• Peer-to-peer messaging 
• 1-N and M-N process message broadcast 
• Data distribution (data typing) 

That being said, MPI’s programming model has the 
following complexities: 

• An assumed SIMD process model (Single 
Instruction, Multiple Data) executed on MIMD 
(Multiple Instructions, Multiple Data) 
hardware. 

• Byte-format and size parameter specification 
with overlay data typing 

• Strong synchronization at the MPI 
communicator (process group) level 

The spirit of intentional programming as found in 
[10] and [3] strives for clarity of coding intentions in 
complex programming, using visual techniques or 
other means.  Restated, the underlying motivation is 
clarity in presenting and manipulating program 
semantic state.  By program semantic state, we mean, 
for a given point in a program, its statically derivable 
state defined in terms of program elements (variables, 
fields, etc) and any assertions concerning state or 
values, e.g. x>=0, b==true, c points to d.  Constructive 
program development involves first considering an 
initial program semantic state consisting of a subset of 
program elements and their relationships, and 
manipulating the program elements to form a new 
semantic state.  The manipulation followed by the 
consequent state transition is de facto programming, 
which could be expressed as generated code regarding 
the manipulated elements.  This is the essence of 
constructive programming: abstract program state 
visualization along with code generative program state 
manipulation. 

The vision of BladeRunner is to elucidate MPI-
related data and their relationships through 
visualizations, and by manipulating those 
visualizations, generate MPI code.  At this level, MPI 
itself becomes something of a higher level abstraction, 
whose manipulation results in programmatic details 
left to code generation. 

(i(i

(i

Figure 1 - Matrix broadcast on a 
process array 
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As a demonstration of what we envision for this 
tool, consider Figure 1, depicting an intentional 
specification of the distribution of two matrices (on the 
left) among the process members of a communicator 
(on the right) configured similarly as a matrix, by a 
master process.  In MPI, a communicator represents, in 
the simplest sense, a group of mutually-aware 
processes than can communicate.  The matrices are 
partitioned into equal parts as indicated by the 
adjoining partitioning boxes.  The broad arrows 
indicate that each matrix partition is “sent” to a process 
in the communicator, which moves the data to local 
matrices (the two dots on the far right).  With this 
drawing, sufficient MPI coding could be generated to 
fulfill the intentions of the diagram. 

The spirit of intentional programming, however, is 
to use higher levels of abstraction than that defined by 
MPI; instead using domain-specific abstractions which 
would translate to MPI.  For example, visual semantic 
assists for finite-element methods, Fourier transforms, 
and other advanced domain-specific technologies 
would be accessible at their own conceptual terms, and 
not at the level of MPI or other low-level protocol, per 
se. The programmer would work at that conceptual 
level over the lower-level.  This speaks to future goals 
of this work. 

 
4. A Visual Tool for Constructing MPI 
Communicators 
 

BladeRunner provides a visual editor for MPI 
communicator creation, allowing a user to create and 
make choices on how to partition an MPI process 
space into “derived” sub-communicators.  Visual 
representations of communicators and related artifacts 
form a medium not only for assisting the programmer 
in making partitioning choices, but also in clarifying 
what has already been done.  This is especially helpful 
in illustrating how one communicator is derived from 
another.  Visualizations help elucidate the relationships 
amongst communicators.  Visual editing also enables 
derivation “experimentation”, speeding the formulating 
of different process partitioning scenarios to see which 
works best for one’s needs.  

We now present a number of examples of 
communicator derivation using BladeRunner.  By way 
of illustration, these introduce our visual construction 
artifacts and techniques, and convey the semantic 
power of this tool in practical usage.   

 
4.1. Communicator Derivation 

 
 

A communicator represents a set of processes of 
unspecified size and membership.  It is visually 
represented as follows:  

 
The above figure represents an abstract linearly 

ordered group of processes, with the first and last 
process designated by the large circles, and with 
ellipsis indicating that the number of processes is 
unspecified. 

The derivation process involves constructing a new 
communicator from a given communicator, using 
membership qualifications to determine the new 
members based on the members of the given 
communicator.  Qualifications are made through SIN 
expressions (Simple Index Notation, described more 
fully later), through segmentation, or through a 
combination of both. 

In the following example, a SIN expression is used 
to derive from an existing communicator, a 
communicator comprised of the even-numbered 
processes, ala MPI rank.   An expression indicates the 
set of even-numbered (rank) processes: {@i: 

i%2==0}.  This expression representing the process 
subset is inserted into the communicator’s visual body 
for later use.   This is represented like this: 

 
The new communicator based on that subset is 

derived interactively.  The user initiates the derivation 
of a new communicator through a context menu 
option.  This produces the new communicator from the 
original one, visually shown as:  

 
Multiple derivations can be made using different 

subset expressions on the same communicator.  For 
example, the complementary communicator containing 
the odd-numbered processes, through an odd-
membership SIN expression is equally simply derived. 

When deriving communicators from large numbers 
of processes, it may be more practical to work with the 
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process space partitioned into a coarser set of sub-
groups of processes.  We introduce the concept of 
segmentation to facilitate partitioning a process space 
into process sub-groups, segments, of roughly equal 
size. Segmentation is an operator that defines a 
partitioning on a set of objects.  In the case of a 
communicator, it partitions the set of processes; in the 
case of a segmentation, it partitions the set of 
segments.     Visually, segmentation is represented as a 
block with a set of sub-blocks, representing an 
unspecified number of segments of unspecified sizes.  
Visually, it is displayed:   

 
The number of segments and element membership 

per segment is determined by two numbers.  One is the 
element population of the target.  The other is either 
the number of segments desired, or the number of 
elements for each segment.  These latter parameters are 
called the dimension of the segmentation, and at least 
one of those numbers must be identified using a SIN 
expression (a single SIN expression, described below).  

A segmentation can be qualified as either even 
balanced, meaning that the number of elements in each 
block is as close as possible, or as odd balanced, 
meaning that all blocks have the same number of 
elements, except the last one. 
     In the following diagram, given a segmentation 
applied to a communicator, and a SIN expression 
selecting a subset of segments from the segmentation, 
along with the dimension of the segmentation, a 
communicator is derived whose process population 
comprises the union of the segments expressed by the 
set expression.    Note that the dimension is given by a 
variant SIN expression type, a single expression, 
representing a single value, expressed with brackets [] 
instead of braces {}, e.g. [5], [a+5]. 

 
The derive action is performed on the 

segmentation’s expression, which by association is 
from the segmented communicator.  The figure shows 
a new communicator, comm3a_derived, derived 
from the segmented communicator, comm3a.      

Communicator derivations may cascade – meaning 
that further derivations can be built upon existing 
derivations.  In the following example, two 
communicators are derived from MPI_COMM_WORLD, 
both via expressions that describe a bounded range 
(from a to b, and from b to c) of process ranks. 

 The communicator commd_1 is derived using the first 
expression.  The second derived communicator 
commd_2 is derived from the second expression.  
commd_2_derived is derived from commd_2 
using the expression {@i: i<a+b}.  An array 
communicator, commd_2_array, is derived from 
commd_2.  Being a default 2-dimensional array, it 
uses the MPI default dimensioning protocol to 
determine the dimensions.  These can be overridden 
using the Eclipse properties page relevant to this array 
communicator [not shown here].  Arrays are derived 
through a visual array operator accessible near the 
drawing canvas. 
 
4.2. Simple Index Notation 
 

An expression language called Simple Index 
Notation (SIN) was developed for concise designation 
of process or segment sets.  SIN expressions denote 
sets of integers identifying processes by rank in a 
communicator, or segment indices in a list of 
segments.  Set expressions are principally used to 
derive new communicators whose process collection is 
a subset of a source communicator.  

There are two basic types of SIN Expressions.  A 
Single expression signifies an integer or boolean 
value.  Single expressions use square brackets [] and 
take the form [a+b] or [true].  A boolean single 
expression may also be defined through a relational 
expression such as [!(a+b>c+d)] (where ! 
indicates "not")  
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Examples:  
• [5]  
• [true]  
• [false]  
• [!(a+b>c+d)]  

 
A set expression designates a collection of 

ordinals. Its members are integer typed with values 
>=0.  Set expressions use curly braces {} and are of 
two basic forms:  

• abstract collections: These contain the 
universal qualifier “for all/each”, and have the 
form {@i, @j : i<=j+3} , which reads 
“the set of all i and all j such that i<=j+3”, 
(equals is == ). 

• discrete collections: These contain an 
explicit ordinal membership, and have the 
form  
{1, 3, a+c}, which reads “the set 
containing 1, 3, and a+c”, where a and c are 
defined ordinal/integer symbols. Two 
reserved symbols may be used in discrete 
collections, first and last, where first 
designates the first element of a process set, 
and last designates the last element. For 
example, we have {2,4,last} or 
{first+a,5,last-3} as discrete 
collections from a communicator or segment 
list.  

Examples:  
• {1} - this expression indicates the second (0 

being first) of a set of processes or entities 
from a set. 

• {@i: i%2==0}  

• {@i, @j : i<=last-(j+3)}  

• {1, 3, a+c}  

• { 2, 4, last-3}  

• {first+a, 5}  

• {@i: i%5==3}\/({@i:i+3==d}/\{a,b,c}) – 
allowing unions \/ and intersections /\ 

 

4.3. Code Generation 
 
At any point in visually editing communicator 

derivations, the MPI code for producing them may be 
generated.  The resulting code is effectively one or 
more routines whose invocations generate all the 
communicators, and a set of variables or access 
methods for each of the communicators.  A sample of 
some of the generated code follows: 
 
int routine testCES_DeriveSECD_1(MPI_Comm comm3a) 
{                 
    // 

    // Get group information 
    // 
    MPI_Group group0 = 0; 
    int       gsize1 = 0; 
    MPI_Comm_Group(comm3a, group0); 
    MPI_Group_Size(group0, &gsize1); 
 
    Segmentation seg0 = new Segmentation();     
    //       Given population of gsize1, split into 
columns each of depth 1 
    seg0.partitionBySegmentSize(1, gsize1); 
    BitVector exprV = null; 
   
    {    // generate the process list from the 
expression: {@i: i%2==0}   
      BitVector set0 = null; 
      // generate the process list from the 
expression: {@var0:var0%2==0} 
      {       
        BitVector v = new BitVector();   
        for(int var0=0; var0 < gsize1; var0++)  {    
          if (var0%2==0) 
             v.add( var0 ); 
        }    
        set0=v;                         
      }               
      exprV=set0; 
    }     // end of expression eval  
        
    // Given exprV indicating the columns in segment 
domain, map to columns in range 
    exprV = seg0.mapToTarget(exprV);        
    int [] pList = exprV.toList(); 
    MPI_Group newGroup2 = null; 
    MPI_Group_Incl(group0,  
                   pList.size(), 
                   pList, 
                   &newGroup2); 
    MPI_Comm_Create(group0, 
                    newGroup2,    
                    &comm3a_derived);  
                                 
    return comm3a_derived;              
}            

 
4.4. Eclipse Interface 
 
A figure of the complete Eclipse workbench with the 
described features is show below.   
 

 
Figure 2 - Eclipse with BladeRunner 
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The upper-left corner shows the navigator view with 
file names from the projects.  The upper-right shows 
the GEF-based visual editor.  The lower-left is an 
outline view of all the components show visually, and 
the lower right is the properties view which shows 
detailed attributes of the selected component. 
 
5.  Architecture and Design 
 

We describe the development infrastructure of 
BladeRunner, highlighting its differentiating features.  
An important goal in visual tool design is to maintain 
flexibility and extensibility in visual representations 
and interactions.  In that regard, our design objectives 
employ a relatively concrete model for MPI 
communicators and derivations, and a relatively fluid 
model for visualization.  

5.1. Tool Structure 
 

The principal components of BladeRunner are 
shown in Figure 3.  BladeRunner is built as an Eclipse 
extension, a set of plug-ins which extends basic 
Eclipse platform functionality and builds upon other 
available features.  Eclipse and its extensions provide 
many tool-centric capabilities, such as editors, other 
source-related views, and in particular provide the 
graphical editor used by the BladeRunner visual 
editing environment. 

Our extensions include the following components: 
• A model for MPI communicator derivation 
• A visual editor for defining and deriving 

communicators 
• A language for process and segment 

collections called the “Simple Index 
Notation” (SIN) 

• A code generation facility 

The above components are created using Eclipse 
plug-in development frameworks, including:   

• CDT – C/C++ Development Tools: For 
language-specific editor, parser, outlines, 
building tools, etc. 

• GEF - Graphical Editing Framework: 
Provides MVC (Model-View-Controller) type 
framework for visual manipulation and 
interaction among visual objects.  

• JET (Java Emitter Template): Provides 
template-based code generation capabilities, 
which is part of the EMF (Eclipse Modeling 
Framework) feature.  

 

ModelObject

SessionObject

Derivation DerivationInput

ExprDerivation ExprSegDerivation SINExpressionSegmentable

Communicator Segmentation

Eclipse 

BladeRunner Eclipse Plug-in

SIN Code
Generation

Visual modelDerivation Model

Figure 4 - Model Hierarchy 

Figure 3 - Design overview 5.2. Modeling Communicator Derivation 
 

The model for MPI communicator derivation is 
based on recursive communicator derivation using sub-
setting or segmentation operations on communicator 
process spaces.  More precisely, given an initial global 
communicator, representing all processes in the MPI 
application, further communicators are derived based 
on process subsets of that process space, then subsets 
of those subsets, and so on.  Communicator derivation 
is modeled through an inheritable structure that can be 
specialized to different varieties of derivation, typically 
with input objects specifying the source communicator 
and qualifications for the derivation, and with a single 
output object, the new communicator.  For example, 
referring to the BladeRunner design model chart in 
Figure 4, ExprDerivation is a derivation based on a 
specified subset of processes from an existing 
communicator, using a SIN expression to qualify the 
process subset.  ExprSegDerivation uses a SIN 
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expression qualifying a set of segments of processes in 
the derivation.   

Several conceptual entities were added to the 
derivation model to assist in qualifying the input 
objects for a derivation, particularly segmentation and 
specification of sets of processes via SIN expressions.  
While these are not MPI concepts, they are generally 
useful concepts which facilitate the specification of 
process sets, and provide leverage in specifying 
process partitions.  Segmentation is a particularly 
strong abstraction, not only in that it can be applied to 
segmenting a communicator process group, but also 
that it could also be applied recursively with other 
segmentations, i.e. segmentations of segmentations.  

 The model structure shown in Figure 4 shows how 
we abstracted these concepts into the model design.  
By introducing the abstract concepts 
DerivationInputObject and SegmentableObject, we 
provide a fairly general inheritable means for 
specifying different kinds of input for a derivation.    

The model also includes a notification framework 
used for broadcasting model changes both to objects 
within the model and to visual objects. 
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5.3. Visual Interaction and Reflection 
 

The model-visual interaction, based on MVC 
(Model-View-Controller) architecture [7] is an 
interaction-notification scheme in which visual objects   
(View) directly invoke model objects (Model) based 
on constructive demands (Controller), and visuals 
respond to notifications reflecting updates to a model.  
Each model object reflects an edit-state for the object.   
This state is updated with changes to the model, and 
reflected back to the visual entities as notifications.  
Event notifications are central to the communication 

infrastructure of the Eclipse plug-in hierarchy.  
Relevant detail pertaining to state is reflected in the 
visuals: for example, error states when elements have 
been deleted that were engaged in a derivation. The 
Eclipse GEF (Graphical Editor Framework), in which 
this is implemented, provides the MVC basis 
architecture for BladeRunner. 
 
5.4. Derivation Graph and Code Generation 
 

Code generation is based on the order dependency 
of communicator creation/derivation.  Since 
communicators can only be derived from 
communicators that already exist, the derivations take 
the form of dependency relations, with some 
derivations necessarily occurring before others.  The 
dependency relationships impose a directed acyclic 
graph (DAG) structure, which we call a derivation 
graph.  An example is shown in figure 5.   The nodes 
of the graph are derivations, with directed arrows 
indicating order precedence of derivations.  Other 
nodes are represented showing other kinds of input, 
and output from each derivation.  Join nodes can 
result, for example, from union operations on derived 
communicators.  This graph is produced though a 
topological sort over the model representations of 
existing derivations. 

Derive

Derive

Derive
Derive

Derive

C

C C

C

C

C

C

S

S

E

C – Communicator
E -- Expression
S -- Segmentation

Code generation is achieved though a simple order 
traversal of the DAG.  Based on the type of each 
derivation node encountered, a specific code 
generation template is invoked to encode the 
derivation in a specific target language.  Parameters 
such as source communicator, SIN expressions, and 
segmentations are use as input to the templates. 
Presently, we generate a C-style output using the Java 
Emitter Template (JET) template technology found in 
Eclipse EMF (Eclipse Modeling Facility).  JET 
provides a format for expressing direct code generative 
expressions, using variable substitution in combination 
with embedded language coding.  While we presently 
are focused on C, it would be relatively easy to 
produce code generation templates for different target 
languages, such as Fortran.  

Figure 5 - Derivation Graph 

 
6. Summary and Further Work 
 

The BladeRunner tool is presented with a focus on 
the intentional specification of MPI communicators.  
We use graphical depictions of communicators 
representing sets of MPI processes, and derive other 
communicators from them for application specific 
tasks.  After derivations are made, program code is 
generated that implements the runtime derivation of 



the MPI communicators used in the main tasks.  The 
user can then insert specific code for solving tasks 
using the communicators.   

For the broad vision for the tool, the following 
directions are of interest: 

 
• Message programming: Visual specification of 

1-N and M-N messaging within a 
communicator, such as send/receive, 
scatter/gather, broadcast, etc. 

• Data typing: Visual specification of MPI data 
types, and visual manipulation of these into 
visual message programming 

• Data partitioning: Visual means to indicate how 
application data is to be partitioned amongst a 
set of processes for scatter messaging 

• Shared memory: Visual specification of shared 
memory and its manipulation 

• Templates for code generation in other 
languages, such as FORTRAN, another 
common vehicle for MPI programming. 

 
We are also interested in semantic tools for MPI 

coding, such as tools to assist in viewing and 
structuring existing MPI code, using code analysis and 
transformation techniques. 
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