
RC23797 (W0511-090) November 11, 2005
Computer Science

IBM Research Report

Intentional MPI Programming in a Visual
Development Environment

Donald P. Pazel, Beth R. Tibbitts
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Intentional MPI Programming in a Visual Development Environment

Donald P. Pazel, Beth R. Tibbitts
IBM T.J. Watson Research Center

30 Sawmill River Road
Hawthorne, NY 10532

pazel@us.ibm.com, tibbitts@us.ibm.com

Abstract

BladeRunner is a research project that explores the

use of intentional and code generative approaches to
facilitate programming in MPI. The BladeRunner
development environment provides an interactive
visual approach based on diagrams with figures
representing higher level abstractions of MPI artifacts.
This, along with direct manipulation of visual
abstractions, allows the user to both view and express
coding intentions clearly and rapidly. As a
constructive programming paradigm, direct
manipulation of diagrams translates into coding
actions reflected into generated program code. Thus,
programming focus is higher level, on visual
representations for MPI programming concepts, and
evolution of program state reflected in diagrams,
instead of syntax or language structure details.

 We describe the vision for this work, and a
discussion of the BladeRunner prototype tool, built
upon the Eclipse open-source platform. This paper
specifically focuses on applicability of this tool to MPI
communicator construction. We discuss the
conceptual interface of this tool, along with design
issues regarding this intentional programming model
and visual infrastructure.

Keywords: parallel programming, intentional
programming, MPI, code generation, model-driven
programming, Eclipse, grid, cluster computing

1. Introduction

Grid and cluster technologies have driven and
attracted significant levels of interest in parallel,
concurrent, and distributed programming. These
technologies enable parallel and scale-out computing
architectures for applications, allowing them to
capitalize through concurrency-based performance

gains. High-performance programming, however,
remains a high-skill art. Practitioners in high-
performance middleware such as MPI[12],
OpenMP[1], or PVM[6] are difficult to find in
industry. Furthermore, programming tools that
facilitate programming with high performance
middleware are difficult if impossible to find.

To increase high-performance middleware
accessibility for the general programming community,
programming tools are essential. That being said, the
scope of tool coverage is admittedly wide, including
coding, debugging, testing, and monitoring. The
problem addressed in this paper concerns facilitating
parallel programming with conceptually difficult
parallel programming concepts, such as those found in
MPI. Therefore we argue that program construction
tools provide important first steps in helping the
programming community adjust to the current shift
towards parallel and distributed programming.

Towards a solution, this paper presents an
intentional approach [2] to effective and accurate
parallel and distributed programming, focused on MPI
programming. The intentional tool presented provides
a diagrammatic means to efficiently and effectively
assert coding intentions at a higher conceptual level.
The resultant diagrams translate into lower-level MPI
and programming language constructs. Our prototype
program development system, BladeRunner, is
presented with specific focus on specification and
generation of MPI communicators, which concisely
elucidate the approach and direction. BladeRunner is
implemented as a plug-in under the Eclipse [13] tools
platform, which includes other complementary
program development tools.

 This paper is organized as follows. After a review
of background and related work, a discussion of MPI
programming from an intentional programming
viewpoint is given. This is followed by a detailed
description of our tool’s front-end concepts and

 1

mailto:pazel@us.ibm.com
mailto:tibbitts@us.ibm.com

interface for deriving MPI communicators and code
generation. This is followed by a discussion of the
tool’s design. A concluding summary offers thoughts
on future work.

2. Background and Related Work

Programming tools’ research for high-performance
middleware has generally focused on distributed and
parallel monitoring and debugging tools. The
multiplicity of processes and hardware greatly
magnifies the amount of tracing, and the complexity of
sorting event interleaving is an important part of
isolating and solving deep programming problems.
Far less focus has been given to coding tools to help
with coding phases. However, a few instances can be
cited. VisualMPI[5] is a knowledge-based code
generation tool with expert systems to assist in the
design of process topologies. Net-Console[9] is
described as a comprehensive MPI development suite
using an MPI-aware editor for code development.

Related to this, usage of sophisticated static analysis
techniques on MPI programming has been studied
[11]. PARSE-DAT[8], while not an MPI tool,
provides a sophisticated graphical process
specification editor, using the pi-calculus for design
and verification.

The approach to coding tools described here
follows closely to that found in intentional [2] and
model-driven programming schemes [14]. Our tool
vision focuses on providing visual means for
describing concurrent programming at a conceptual
level, with the tool generating low-level coding details.
We do not strive to provide a complete visual language
covering all aspects of programming, but instead focus
on concurrency aspects. The parallel programming
model behind our work is MPI [12]. This work
follows onto the state-based constructive themes found
in [10] and [3].

Generally-available programming tools for parallel
development and runtime monitoring on the Eclipse
framework are beginning to emerge, specifically in
PTP (Eclipse Parallel Tools Platform) [4], and
integration with these tools is possible.

3. Intentional MPI Programming

The attraction of applying intentional techniques to

MPI programming draws from the unique functionality
and complexity that MPI offers. MPI, amongst the
dominant middleware for high-performance
computing, has the following significant features:

• Dynamic process clustering (communicators)

• Peer-to-peer messaging
• 1-N and M-N process message broadcast
• Data distribution (data typing)

That being said, MPI’s programming model has the
following complexities:

• An assumed SIMD process model (Single
Instruction, Multiple Data) executed on MIMD
(Multiple Instructions, Multiple Data)
hardware.

• Byte-format and size parameter specification
with overlay data typing

• Strong synchronization at the MPI
communicator (process group) level

The spirit of intentional programming as found in
[10] and [3] strives for clarity of coding intentions in
complex programming, using visual techniques or
other means. Restated, the underlying motivation is
clarity in presenting and manipulating program
semantic state. By program semantic state, we mean,
for a given point in a program, its statically derivable
state defined in terms of program elements (variables,
fields, etc) and any assertions concerning state or
values, e.g. x>=0, b==true, c points to d. Constructive
program development involves first considering an
initial program semantic state consisting of a subset of
program elements and their relationships, and
manipulating the program elements to form a new
semantic state. The manipulation followed by the
consequent state transition is de facto programming,
which could be expressed as generated code regarding
the manipulated elements. This is the essence of
constructive programming: abstract program state
visualization along with code generative program state
manipulation.

The vision of BladeRunner is to elucidate MPI-
related data and their relationships through
visualizations, and by manipulating those
visualizations, generate MPI code. At this level, MPI
itself becomes something of a higher level abstraction,
whose manipulation results in programmatic details
left to code generation.

(i(i

(i

Figure 1 - Matrix broadcast on a
process array

 2

As a demonstration of what we envision for this
tool, consider Figure 1, depicting an intentional
specification of the distribution of two matrices (on the
left) among the process members of a communicator
(on the right) configured similarly as a matrix, by a
master process. In MPI, a communicator represents, in
the simplest sense, a group of mutually-aware
processes than can communicate. The matrices are
partitioned into equal parts as indicated by the
adjoining partitioning boxes. The broad arrows
indicate that each matrix partition is “sent” to a process
in the communicator, which moves the data to local
matrices (the two dots on the far right). With this
drawing, sufficient MPI coding could be generated to
fulfill the intentions of the diagram.

The spirit of intentional programming, however, is
to use higher levels of abstraction than that defined by
MPI; instead using domain-specific abstractions which
would translate to MPI. For example, visual semantic
assists for finite-element methods, Fourier transforms,
and other advanced domain-specific technologies
would be accessible at their own conceptual terms, and
not at the level of MPI or other low-level protocol, per
se. The programmer would work at that conceptual
level over the lower-level. This speaks to future goals
of this work.

4. A Visual Tool for Constructing MPI
Communicators

BladeRunner provides a visual editor for MPI
communicator creation, allowing a user to create and
make choices on how to partition an MPI process
space into “derived” sub-communicators. Visual
representations of communicators and related artifacts
form a medium not only for assisting the programmer
in making partitioning choices, but also in clarifying
what has already been done. This is especially helpful
in illustrating how one communicator is derived from
another. Visualizations help elucidate the relationships
amongst communicators. Visual editing also enables
derivation “experimentation”, speeding the formulating
of different process partitioning scenarios to see which
works best for one’s needs.

We now present a number of examples of
communicator derivation using BladeRunner. By way
of illustration, these introduce our visual construction
artifacts and techniques, and convey the semantic
power of this tool in practical usage.

4.1. Communicator Derivation

A communicator represents a set of processes of
unspecified size and membership. It is visually
represented as follows:

The above figure represents an abstract linearly

ordered group of processes, with the first and last
process designated by the large circles, and with
ellipsis indicating that the number of processes is
unspecified.

The derivation process involves constructing a new
communicator from a given communicator, using
membership qualifications to determine the new
members based on the members of the given
communicator. Qualifications are made through SIN
expressions (Simple Index Notation, described more
fully later), through segmentation, or through a
combination of both.

In the following example, a SIN expression is used
to derive from an existing communicator, a
communicator comprised of the even-numbered
processes, ala MPI rank. An expression indicates the
set of even-numbered (rank) processes: {@i:

i%2==0}. This expression representing the process
subset is inserted into the communicator’s visual body
for later use. This is represented like this:

The new communicator based on that subset is

derived interactively. The user initiates the derivation
of a new communicator through a context menu
option. This produces the new communicator from the
original one, visually shown as:

Multiple derivations can be made using different

subset expressions on the same communicator. For
example, the complementary communicator containing
the odd-numbered processes, through an odd-
membership SIN expression is equally simply derived.

When deriving communicators from large numbers
of processes, it may be more practical to work with the

 3

process space partitioned into a coarser set of sub-
groups of processes. We introduce the concept of
segmentation to facilitate partitioning a process space
into process sub-groups, segments, of roughly equal
size. Segmentation is an operator that defines a
partitioning on a set of objects. In the case of a
communicator, it partitions the set of processes; in the
case of a segmentation, it partitions the set of
segments. Visually, segmentation is represented as a
block with a set of sub-blocks, representing an
unspecified number of segments of unspecified sizes.
Visually, it is displayed:

The number of segments and element membership

per segment is determined by two numbers. One is the
element population of the target. The other is either
the number of segments desired, or the number of
elements for each segment. These latter parameters are
called the dimension of the segmentation, and at least
one of those numbers must be identified using a SIN
expression (a single SIN expression, described below).

A segmentation can be qualified as either even
balanced, meaning that the number of elements in each
block is as close as possible, or as odd balanced,
meaning that all blocks have the same number of
elements, except the last one.
 In the following diagram, given a segmentation
applied to a communicator, and a SIN expression
selecting a subset of segments from the segmentation,
along with the dimension of the segmentation, a
communicator is derived whose process population
comprises the union of the segments expressed by the
set expression. Note that the dimension is given by a
variant SIN expression type, a single expression,
representing a single value, expressed with brackets []
instead of braces {}, e.g. [5], [a+5].

The derive action is performed on the

segmentation’s expression, which by association is
from the segmented communicator. The figure shows
a new communicator, comm3a_derived, derived
from the segmented communicator, comm3a.

Communicator derivations may cascade – meaning
that further derivations can be built upon existing
derivations. In the following example, two
communicators are derived from MPI_COMM_WORLD,
both via expressions that describe a bounded range
(from a to b, and from b to c) of process ranks.

 The communicator commd_1 is derived using the first
expression. The second derived communicator
commd_2 is derived from the second expression.
commd_2_derived is derived from commd_2
using the expression {@i: i<a+b}. An array
communicator, commd_2_array, is derived from
commd_2. Being a default 2-dimensional array, it
uses the MPI default dimensioning protocol to
determine the dimensions. These can be overridden
using the Eclipse properties page relevant to this array
communicator [not shown here]. Arrays are derived
through a visual array operator accessible near the
drawing canvas.

4.2. Simple Index Notation

An expression language called Simple Index
Notation (SIN) was developed for concise designation
of process or segment sets. SIN expressions denote
sets of integers identifying processes by rank in a
communicator, or segment indices in a list of
segments. Set expressions are principally used to
derive new communicators whose process collection is
a subset of a source communicator.

There are two basic types of SIN Expressions. A
Single expression signifies an integer or boolean
value. Single expressions use square brackets [] and
take the form [a+b] or [true]. A boolean single
expression may also be defined through a relational
expression such as [!(a+b>c+d)] (where !
indicates "not")

 4

Examples:
• [5]
• [true]
• [false]
• [!(a+b>c+d)]

A set expression designates a collection of

ordinals. Its members are integer typed with values
>=0. Set expressions use curly braces {} and are of
two basic forms:

• abstract collections: These contain the
universal qualifier “for all/each”, and have the
form {@i, @j : i<=j+3} , which reads
“the set of all i and all j such that i<=j+3”,
(equals is ==).

• discrete collections: These contain an
explicit ordinal membership, and have the
form
{1, 3, a+c}, which reads “the set
containing 1, 3, and a+c”, where a and c are
defined ordinal/integer symbols. Two
reserved symbols may be used in discrete
collections, first and last, where first
designates the first element of a process set,
and last designates the last element. For
example, we have {2,4,last} or
{first+a,5,last-3} as discrete
collections from a communicator or segment
list.

Examples:
• {1} - this expression indicates the second (0

being first) of a set of processes or entities
from a set.

• {@i: i%2==0}

• {@i, @j : i<=last-(j+3)}

• {1, 3, a+c}

• { 2, 4, last-3}

• {first+a, 5}

• {@i: i%5==3}\/({@i:i+3==d}/\{a,b,c}) –
allowing unions \/ and intersections /\

4.3. Code Generation

At any point in visually editing communicator

derivations, the MPI code for producing them may be
generated. The resulting code is effectively one or
more routines whose invocations generate all the
communicators, and a set of variables or access
methods for each of the communicators. A sample of
some of the generated code follows:

int routine testCES_DeriveSECD_1(MPI_Comm comm3a)
{
 //

 // Get group information
 //
 MPI_Group group0 = 0;
 int gsize1 = 0;
 MPI_Comm_Group(comm3a, group0);
 MPI_Group_Size(group0, &gsize1);

 Segmentation seg0 = new Segmentation();
 // Given population of gsize1, split into
columns each of depth 1
 seg0.partitionBySegmentSize(1, gsize1);
 BitVector exprV = null;

 { // generate the process list from the
expression: {@i: i%2==0}
 BitVector set0 = null;
 // generate the process list from the
expression: {@var0:var0%2==0}
 {
 BitVector v = new BitVector();
 for(int var0=0; var0 < gsize1; var0++) {
 if (var0%2==0)
 v.add(var0);
 }
 set0=v;
 }
 exprV=set0;
 } // end of expression eval

 // Given exprV indicating the columns in segment
domain, map to columns in range
 exprV = seg0.mapToTarget(exprV);
 int [] pList = exprV.toList();
 MPI_Group newGroup2 = null;
 MPI_Group_Incl(group0,
 pList.size(),
 pList,
 &newGroup2);
 MPI_Comm_Create(group0,
 newGroup2,
 &comm3a_derived);

 return comm3a_derived;
}

4.4. Eclipse Interface

A figure of the complete Eclipse workbench with the
described features is show below.

Figure 2 - Eclipse with BladeRunner

 5

The upper-left corner shows the navigator view with
file names from the projects. The upper-right shows
the GEF-based visual editor. The lower-left is an
outline view of all the components show visually, and
the lower right is the properties view which shows
detailed attributes of the selected component.

5. Architecture and Design

We describe the development infrastructure of
BladeRunner, highlighting its differentiating features.
An important goal in visual tool design is to maintain
flexibility and extensibility in visual representations
and interactions. In that regard, our design objectives
employ a relatively concrete model for MPI
communicators and derivations, and a relatively fluid
model for visualization.

5.1. Tool Structure

The principal components of BladeRunner are
shown in Figure 3. BladeRunner is built as an Eclipse
extension, a set of plug-ins which extends basic
Eclipse platform functionality and builds upon other
available features. Eclipse and its extensions provide
many tool-centric capabilities, such as editors, other
source-related views, and in particular provide the
graphical editor used by the BladeRunner visual
editing environment.

Our extensions include the following components:
• A model for MPI communicator derivation
• A visual editor for defining and deriving

communicators
• A language for process and segment

collections called the “Simple Index
Notation” (SIN)

• A code generation facility

The above components are created using Eclipse
plug-in development frameworks, including:

• CDT – C/C++ Development Tools: For
language-specific editor, parser, outlines,
building tools, etc.

• GEF - Graphical Editing Framework:
Provides MVC (Model-View-Controller) type
framework for visual manipulation and
interaction among visual objects.

• JET (Java Emitter Template): Provides
template-based code generation capabilities,
which is part of the EMF (Eclipse Modeling
Framework) feature.

ModelObject

SessionObject

Derivation DerivationInput

ExprDerivation ExprSegDerivation SINExpressionSegmentable

Communicator Segmentation

Eclipse

BladeRunner Eclipse Plug-in

SIN Code
Generation

Visual modelDerivation Model

Figure 4 - Model Hierarchy

Figure 3 - Design overview 5.2. Modeling Communicator Derivation

The model for MPI communicator derivation is
based on recursive communicator derivation using sub-
setting or segmentation operations on communicator
process spaces. More precisely, given an initial global
communicator, representing all processes in the MPI
application, further communicators are derived based
on process subsets of that process space, then subsets
of those subsets, and so on. Communicator derivation
is modeled through an inheritable structure that can be
specialized to different varieties of derivation, typically
with input objects specifying the source communicator
and qualifications for the derivation, and with a single
output object, the new communicator. For example,
referring to the BladeRunner design model chart in
Figure 4, ExprDerivation is a derivation based on a
specified subset of processes from an existing
communicator, using a SIN expression to qualify the
process subset. ExprSegDerivation uses a SIN

 6

expression qualifying a set of segments of processes in
the derivation.

Several conceptual entities were added to the
derivation model to assist in qualifying the input
objects for a derivation, particularly segmentation and
specification of sets of processes via SIN expressions.
While these are not MPI concepts, they are generally
useful concepts which facilitate the specification of
process sets, and provide leverage in specifying
process partitions. Segmentation is a particularly
strong abstraction, not only in that it can be applied to
segmenting a communicator process group, but also
that it could also be applied recursively with other
segmentations, i.e. segmentations of segmentations.

 The model structure shown in Figure 4 shows how
we abstracted these concepts into the model design.
By introducing the abstract concepts
DerivationInputObject and SegmentableObject, we
provide a fairly general inheritable means for
specifying different kinds of input for a derivation.

The model also includes a notification framework
used for broadcasting model changes both to objects
within the model and to visual objects.

 7

5.3. Visual Interaction and Reflection

The model-visual interaction, based on MVC
(Model-View-Controller) architecture [7] is an
interaction-notification scheme in which visual objects
(View) directly invoke model objects (Model) based
on constructive demands (Controller), and visuals
respond to notifications reflecting updates to a model.
Each model object reflects an edit-state for the object.
This state is updated with changes to the model, and
reflected back to the visual entities as notifications.
Event notifications are central to the communication

infrastructure of the Eclipse plug-in hierarchy.
Relevant detail pertaining to state is reflected in the
visuals: for example, error states when elements have
been deleted that were engaged in a derivation. The
Eclipse GEF (Graphical Editor Framework), in which
this is implemented, provides the MVC basis
architecture for BladeRunner.

5.4. Derivation Graph and Code Generation

Code generation is based on the order dependency
of communicator creation/derivation. Since
communicators can only be derived from
communicators that already exist, the derivations take
the form of dependency relations, with some
derivations necessarily occurring before others. The
dependency relationships impose a directed acyclic
graph (DAG) structure, which we call a derivation
graph. An example is shown in figure 5. The nodes
of the graph are derivations, with directed arrows
indicating order precedence of derivations. Other
nodes are represented showing other kinds of input,
and output from each derivation. Join nodes can
result, for example, from union operations on derived
communicators. This graph is produced though a
topological sort over the model representations of
existing derivations.

Derive

Derive

Derive
Derive

Derive

C

C C

C

C

C

C

S

S

E

C – Communicator
E -- Expression
S -- Segmentation

Code generation is achieved though a simple order
traversal of the DAG. Based on the type of each
derivation node encountered, a specific code
generation template is invoked to encode the
derivation in a specific target language. Parameters
such as source communicator, SIN expressions, and
segmentations are use as input to the templates.
Presently, we generate a C-style output using the Java
Emitter Template (JET) template technology found in
Eclipse EMF (Eclipse Modeling Facility). JET
provides a format for expressing direct code generative
expressions, using variable substitution in combination
with embedded language coding. While we presently
are focused on C, it would be relatively easy to
produce code generation templates for different target
languages, such as Fortran.

Figure 5 - Derivation Graph

6. Summary and Further Work

The BladeRunner tool is presented with a focus on
the intentional specification of MPI communicators.
We use graphical depictions of communicators
representing sets of MPI processes, and derive other
communicators from them for application specific
tasks. After derivations are made, program code is
generated that implements the runtime derivation of

the MPI communicators used in the main tasks. The
user can then insert specific code for solving tasks
using the communicators.

For the broad vision for the tool, the following
directions are of interest:

• Message programming: Visual specification of

1-N and M-N messaging within a
communicator, such as send/receive,
scatter/gather, broadcast, etc.

• Data typing: Visual specification of MPI data
types, and visual manipulation of these into
visual message programming

• Data partitioning: Visual means to indicate how
application data is to be partitioned amongst a
set of processes for scatter messaging

• Shared memory: Visual specification of shared
memory and its manipulation

• Templates for code generation in other
languages, such as FORTRAN, another
common vehicle for MPI programming.

We are also interested in semantic tools for MPI

coding, such as tools to assist in viewing and
structuring existing MPI code, using code analysis and
transformation techniques.

6. References

 [1] Chandra, R., Menon, R., Dagum, L., Khor, D., Maydan,
D., McDonald, J., Parallel Programming in OpenMP,
Morgan Kaufmann, 2000.
[2] Czarnecki, K., and Eisenecker, U.W., Generative
Programming, Addison-Wesley, 2000.

[3] H. Derby, R.M. Fuhrer, D.P. Pazel, “MindFrames: A
Visual Environment for Semantically-Oriented Program
Construction”, IBM RC22739, 2002.
[4] http://eclipse.org/ptp
[5] D. Ferenc, J. Nabrzyski, M. Stroinski, P. Wierzejewski,
“VisualMPI—A Knowledge-Based System for Writing
Efficient MPI Applications”, PVM/MPI’99, Springer-Verlag,
1999.
[6] Geist, A., Bequelin, A., Dongarra, J., Juang, W.,
Manchek, R., Sunderam, V.S., PVM: Parallel Virtual
Machine: A Users’ Guide and Tutorial for Network Parallel
Computing, The MIT Press, 1994.
[7] G.E. Krasner, S.T. Pope, “A Description of the Model-
View-Controller User Interface Paradigm in the Smalltalk-80
System”, ParcPlace Systems, 1988.
[8] A. Liu, I. Gorton, “PARSE-DAT: An Integrated
Environment for the Design and Analysis of Dynamic
Software Architectures”, International Symposium on
Software Engineering for Parallel and Distributed Systems,
Kyoto, 1998.
[9] A. Papagapiou, P. Evripidou, G. Samaras, “Net-Console:
A Web-Based Development Environment for MPI
Programs”, PVM/MPI’99, Springer-Verlag, 1999.
[10] D.P. Pazel, “The Effigy Project – Moving Programming
Concepts to a Visual Paradigm”, Visual End User Workshop
at VL2000, Seattle, 2000.
[11] D. Shires, L. Pollock, S. Sprenkle, “Program Flow
Graph Construction for Static Analysis of MPI Programs”,
PDPTA, Las Vegas, 1999.
[12] Snir, M., Otto, S., Huss-Lederman, S., Walker, D.,
Dongarra, J., MPI—The Complete Reference, Vol I & II,
The MIT Press, 1998.
[13] http://www.eclipse.org
[14] http://www.omg.org/mda/

 8

http://eclipse.org/ptp
http://www.eclipse.org/
http://www.omg.org/mda/

	1. Introduction
	2. Background and Related Work
	3. Intentional MPI Programming
	4. A Visual Tool for Constructing MPI Communicators
	4.1. Communicator Derivation
	4.2. Simple Index Notation
	4.3. Code Generation
	4.4. Eclipse Interface

	5. Architecture and Design
	5.1. Tool Structure
	5.2. Modeling Communicator Derivation
	5.3. Visual Interaction and Reflection
	5.4. Derivation Graph and Code Generation

	6. Summary and Further Work
	6. References

