
RC23800 (W0511-110) November 14, 2005
Computer Science

IBM Research Report

An Evaluation of Using Programming by Demonstration and
Guided Walkthrough Techniques for Authoring 

and Utilizing Deocumentation

Vittorio Castelli, Madhu Prabaker*, Lawrence Bergman
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

*Carnegie Mellon University

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



1

An Evaluation of Using Programming by Demonstration
and Guided Walkthrough Techniques for Authoring and

Utilizing Documentation

ABSTRACT
Much existing documentation is informal, and serves to
communicate “how-to” knowledge among restricted
working groups.  Using current practices, such
documentation is both difficult to maintain, and difficult to
use properly.

In this paper, we propose a documentation system, called
DocWizards, that uses programming by demonstration to
support low-cost authoring, and guided walkthrough
techniques to improve document usability.

We report a comparative study between the use of
DocWizards and of traditional techniques for authoring and
following documentation.  The study participants showed
significant gains in efficiency and reduction in error rates
when using DocWizards. In addition, they expressed a clear
preference for using the DocWizards tool both for authoring
and for following documentation.

Author Keywords
Programming-by-demonstration, Guided-walkthrough,
Documentation authoring

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. – Training, help, and documentation

INTRODUCTION
Today’s computer users are frequently confronted with
navigating complex applications to perform tasks.
Examples range from configuring connectivity settings to
accommodate a new ISP, to performing a complicated
formatting task within a word processor, to installing multi-

application software systems, to setting up software
environments for specific projects.  Guidance in performing
such tasks is obtained through application-specific help
documents, on-line tutorials or FAQs, or through seeking
help from experienced users.

Certain tasks may also be peculiar to particular work
groups, with no single individual charged with documenting
procedures; “best practices” may simply reside in the minds
of experienced individuals or in informally authored text
documents or web pages.  Even where expert-authored
documentation does exist, it is often not up-to-date, because
it is difficult for documentation authors to keep pace with
the bureaucratic, organizational, personnel, and software
changes that are constant in most mid-to-large companies.

An alternative to documenting procedures is to automate
them.  Complex, but frequently performed tasks, such as
installation of individual software packages on a single
machine, are particularly well-suited to the use of scripts or
wizards for automation.  However, we note that there are
situations where documentation is more practical than
automation.  For example, the task may not be preformed
sufficiently often to amortize the cost of producing an
automation module.  Also, some tasks need monitoring by a
human, to evaluate complex conditions and make high-
value, non-automatable decisions, or to permit the human to
learn a process which will need to be specialized in the
future.  Thus, documentation will continue to play an
important role, even as better and more sophisticated
automation tools become available.

Communities of users from whom detailed task-specific
documentation is high-value include systems
administrators, computer consultants, and software
developers.  In this paper, we will focus on the last group,
as representative of the types of users who need to quickly
develop documentation to communicate workgroup-specific
procedures.  Tasks for software developers include setting
up development environments, configuring workspaces,
and aligning project parameters between team members.
The need for communicating such “how-to” information
has become essential due to growth in the number of



distributed teams who coordinate their project efforts
through virtual meetings and shared online repositories.

Developers face a number of hurdles both in producing and
in consuming how-to documentation, including the lack of
adequate tool support. Currently, the tool most commonly
used by developers for generating documentation is a

standard word processor, such as Microsoft® Word [6, 15].
Using these non-specialized tools, creation of
documentation is time consuming, and maintenance
throughout the lifetime of a project difficult. Indeed,
because of the high costs of creating documentation, it is
likely that many procedures are communicated through
ephemeral and non-sharable methods such as phone
conversations and instant messaging sessions.

Documentation, once produced, can also be difficult to
follow accurately.  Users may struggle to locate GUI
elements in the application interface based on textual (or
graphical) descriptions in the document. In addition, users
may have difficulty keeping track of their current position
in the documentation. This is especially evident in digital
documents where placeholders and other marking
techniques are often absent. Finally, due to the lack of
interactivity, users may have difficulty navigating through
long and complex documents, particularly when there is a
need to evaluate and traverse the correct branch in
conditional statements [11].

We have developed a system, DocWizards, that enables
document generation through the use of programming-by-
demonstration (PBD) techniques.  Through automatic
capture of user interactions with an application GUI,
documentation can be created simply by demonstrating the
procedure. Once the procedure has been captured, semantic
content can be added through operations such as inserting
comments, grouping steps into semantically related sub-
procedures, and parameterizing steps to generalize inputs.
Addtionally, by demonstrating different action sequences to
be performed when the application is in different states, the
author can create structure, such as conditional statements,
in the procedure.

The output from these demonstrations is a new class of
documentation that we call follow-me documentation.
Follow-me documentation is a form of guided walkthrough
that helps users keep their place in the task both by
highlighting in the documentation the next step to be
performed, as well as the associated GUI elements in the
actual application. Furthermore, conditional statements in
the documentation are automatically evaluated and the user
is directed along the correct conditional branch [1].

This paper details a study of these techniques for improving
documentation practices. The study addresses two main
questions: “Can PBD techniques facilitate the process of
creating how-to documentation?” and “Can follow-me
documentation facilitate the process of using documentation
to perform tasks?”

In this paper, we describe related efforts in this field, then
outline the PBD and guided walkthrough technologies
utilized by DocWizards. This is followed by a description
of an evaluation in which we compare use of DocWizards
by developers against current documentation practices for
creating and using documentation. We conclude with a
discussion of the study’s results and present ideas for
further work in this area.

RELATED WORK
Our work is primarily related to two areas of research:
programming-by-demonstration and guided-walkthrough
systems. We are not aware of work that combines both
these approaches in an effort to enhance documentation.

Programming-by-demonstrations (PBD) is a well
established field, and we refer the interested reader to the
classic references [3, 13]. Much of the work this PBD has
focused on reducing the overhead of performing repetitive
tasks, typically for restricted applications, such as
HyperCard [3] or text editors [12]. PBD has also been used
as the main tool to create simple applications [14]. More
related to our work are uses of PBD for gathering collective
procedural knowledge from multiple demonstrations and
distributing it as executable procedure models, as in the
Sheepdog system [11]. Sheepdog, however, is not suitable
for documentation generation because it relies on a complex
statistical model of the task that cannot realistically be
converted to a human-readable format.

The idea of creating scaffolding or training-wheels has long
been used to assist new users in learning a procedure or
application. Recently, approaches have been developed that
use subtle guidance, so that a user’s attention is directed to
relevant areas within an interface, while limiting extraneous
interactions with non-relevant UI elements [4, 9]. Even less
intrusive forms of scaffolding appears in systems that direct
the user, but ultimately leave the user free to deviate from
the system direction at will [8, 17, 20].

Traditional systems generally present information in a
window separate from the application [7]. As a result, users
tend to miss steps while switching back and forth between
documentation and application, and have difficulty in
locating the application GUI components described in the
documentation [10].

There are some examples of systems that use recording
techniques (but not PBD) to create tutorials. For example,
RWD’s Info Pak Simulator creates tutorials and
documentation from recordings of user interactions with an
application interface. The tutorials, however, only work in
simulated environments, and not within live applications
[18].

Finally, many systems that achieve desirable results in
providing in-context application guidance, offer little to
enable end-users to participate as authors of this content [2,
9]. Usually system and application experts must create the



3

content, which limits widespread adoption of the
technology.

DEVELOPER INTERVIEWS
In order to better understand the creation and use of
internal, developer documentation, we conducted seven
interviews with software developers within our organization
who routinely collaborate with two or more developers on
the same project. We were able to distill these interviews
into the following five findings:

1. Modern developers operate in collaborative and
geographically dispersed environments
The developers we interviewed collaborated regularly with
an average of six and no less than three other developers.
Those collaborators were often geographically dispersed.
We found that, on average, developers collaborated with
others in three different locations, with only one developer
working solely with on-site team members.

2. There is a lack of standard ways of documenting and
sharing knowledge
Developers reported using multiple formats of instructional
content that included standard, word processor-authored
documentation and online team repositories, but also
included more informal formats such as instant messaging
and email. We also found that most documentation was not
placed in a group accessible location, but rather transferred
directly from one developer to another.

3. Much documentation is either unavailable or out of date
Developers reported that even when documentation existed,
it was likely not maintained through the development cycle
and quickly become outdated. Most developers worked on
projects that had undergone at least one major platform or
development tool shift. These types of changes typically
rendered the existing documentation obsolete. As a result,
many interviewees resort to searching for external
documentation online, because it is typically more current.

4. Developers are also documenters
All the developers interviewed or their colleagues authored
documentation that was meant for group or customer
consumption. The created documentation typically
consisted of installation or configuration guides, but also
included walkthroughs and instructional guides for new
members of the development team.

5. There is a lack of specialized documentation tools for
developers
Conspicuously absent was the mention of any specialized
documentation tools. Developers reported using Microsoft
Word when creating more formal documentation, but also
relied on ASCII text files.

SYSTEM DESIGN AND FEATURES
To facilitate creation and utilization of documentation, we
have created an instantiation of follow-me documentation
that we call DocWizards. The DocWizards system is

currently instrumented to work with the Eclipse Integrated
Development Environment [5]. It relies on a novel learning
algorithm called Augmentation-Based Learning (ABL) that
supports documentation creation via a combination of
demonstrations and user edits [16]. The main interface and
features of DocWizards is shown in Figure 1.

Documenting Creation from Application Demonstration
DocWizards supports the automatic, incremental creation of
documentation using multiple demonstrations.  When used
in “recording mode” DocWizards observes a user
performing actions on the application’s GUI, and captures
the changes in the GUI resulting from these interactions.
ABL uses these observations to incrementally update a
model of the task, which is displayed in human-readable
form in the DocWizards user interface.

When multiple demonstrations are provided, the ABL
identifies differences between the demonstrations and
introduces control structures, such as if-then-else
statements, to explain them.   The script-like representation
of the document supports limited editing operations, such as
moving, copying, and deleting steps. Additional recording
features available to an author include support for inserting
steps at a specified location, and for accepting recording of
partial procedures.

Annotation of Captured Procedure
DocWizards automatically produces a textual description of
the demonstrated task that serves as starting point for the
final document.  This automatically generated description
contains step-by-step instructions, but no semantic
information such as subtasks or expected results.

 DocWizards provides means for an author to add semantic
information to the document.   The first feature is the ability
to edit the text of each step. The author can also add
comments to individual steps; these appear in the document
just before the step, and add information to be displayed on
the GUI. Finally, the author can hierarchically group steps
into semantically meaningful units, and provide a
description for each group. These groups are presented
within a tree structure, and each can be dynamically hidden
or exposed by clicking with the mouse. Finally, the author
is able to parameterize particular steps. This allows her to
convert specific recorded information (for example, a
password string), into a request for a general parameter
when the procedure is replayed.



Figure 1. The DocWizards system (right) running in playback mode through previously developer-authored
documentation. The standard Eclipse environment (left) can be seen with a red circle annotation over the GUI widget
associated with the currently selected document step, which has been indicated in the DocWizards document by a yellow
highlight. Within the documentation, automatically captured action steps and script logic are displayed in black, authored-
supplied annotations in green, and author-supplied hierarchical groupings in blue.

Next Step Highlighting
DocWizards provides guidance to the user by suggesting
the next step to be performed throughout the course of the
task. This is indicated by highlighting both the next step in
the document text as well as the widgets associated with
that step on the GUI of the application on which the task is
being performed. In Figure 1, the step `Supply item
“[removed for anonymity]” for Combo Box “Host”’ is
highlighted in yellow in the document, and the
corresponding widget, the entry field called “Host” is
circled in red.

METHODS
In order to evaluate how the DocWizards approach
compared with standard methods of developer-authored,
internal documentation, we segmented the study into three
phases: documentation authoring, quality assessment, and
documentation utilization.

The documentation authoring phase looked at the ability of
developers to create documents using DocWizards’
programming-by-demonstration approach relative to a
traditional word processor. We selected a word processor as

the standard tool for creating documentation because our
interviews showed that it is currently the mostly common
tool used by developers for creating internal
documentation; previous literature has validated this
observance [6].

Since the documentation produced by DocWizards is
qualitatively different from traditional documentation, we
generated static output from DocWizards (i.e., printed
documents) to enable a relative quality assessment between
the documents authored using this tool, and those authored
using a word processor.

Finally, we conducted an evaluation of the user experience
when employing the follow-me features of DocWizards as
opposed to traditional documentation in the documentation
utilization phase of the study

Documentation Authoring Study

Participants
Eight professional software developers in our organization
participated in the authoring study. All of the participants
are members of project teams that collaborate on software
development. None of these developers had any previous



5

experience using DocWizards to create documentation nor
had they previously documented the specific procedure we
used. Seven of the eight participants rate themselves as
Eclipse experienced (either ‘familiar’, ‘experienced’, or
‘expert’); the other participant rates herself as a ‘beginner’.
All users except the Eclipse beginner have been using
Eclipse regularly for at least 1 year. All participants are
experienced code developers (mean of 10.6 years). Finally,
six of the eight users have previous experience in authoring
documentation as a developer.

Preparation of Study Material
We devised a procedure by slightly altering a real and
representative Eclipse task, collected from a developer
during the interviews. The task consisted of performing the
following steps within Eclipse: creating a CVS Repository
connection; checking-out a project, modifying and
committing a CVS controlled file; and configuring the
Eclipse preferences required to build the project. The total
procedure contained 87 distinct steps, and included a
conditional that required the user to perform different
actions based on the existence or absence of a file in the
environment. In addition, the procedure required that users
properly parameterize certain steps that captured actual
login and password strings.

We recorded a screen-grab video of the procedure being
performed on the Eclipe UI with a voice-over, which
provides step-by-step instruction.

Procedure
Each participant was involved in two individual study
sessions, held at least one day apart. The DocWizards
session lasted one and a half hours and the word processor
session lasted one hour (extra time was required during the
DocWizards session to allow for the participant to learn
how to author with DocWizards). During the DocWizards
authoring session, participants were first given an
introduction and demonstration on how to use DocWizards’
authoring functionality. In order to test for comprehension,
they were asked to perform six null-tasks which accounted
for all of DocWizards’ authoring features (this was not
necessary with Word since all participants were sufficiently
experienced). During each session, participants were asked
to view the procedure video in its entirely, after which they
could ask questions on anything that was unclear about the
procedure they were to document. They were then asked to
document the procedure in the video with the tool they were
given (Word or DocWizards depending on the session),
supplying groupings and annotations when appropriate.
Since we were employing a within-subjects methodology,
we balanced the order of use of the two tools to account for
procedure learning effects. Users were asked to think out
loud during the study. We ended each authoring session
when the participant claimed to have completed the
documentation.

Evaluation Metrics
We recorded the time to completion for each authoring
session. In addition, we also administered a post-session
questionnaire to gain insight into participants’ subjective
impressions of each tool and a post-study questionnaire to
gauge participants’ overall tool preference. We also
recorded any critical incidents that took place during each
session, paying particular attention to any difficulties users
were having with authoring using DocWizards.

Quality Assessment

Participants
Three software developers participated as judges to assess
the quality of the documentation produced during the first
phase of the study. These participants all are experienced
with software documentation with the Eclipse IDE, and
with the procedure that was being documented in the study.

Preparation of Study Material
Each judge was presented with an on-paper evaluation
packet containing a judging instruction sheet, eight word
processor documents, eight DocWizards documents, and 16
quality evaluation forms. We printed out the word
processor documents in their existing form. The
DocWizards procedures were outputted to a static html

1. Structure: The document employs an appropriate and
logical structure.

• Does the document have appropriately
segmented subtasks?

• Does the document’s format make it easy for a
user to quickly navigate the procedure to a
specific step?

2. Clarity: The document is clearly written in a way that
supports comprehension.

• Is the language used appropriate for the
intended audience?

• Does the phrasing of the steps make performing
each step intuitive?

• Is the overall purpose of each subsection or step
communicated?

• How understandable is the document, in whole?

• Is the terminology used throughout the
document consistent?

3. Accuracy: The document accurately and
unambiguously describes the correct procedure.

• Use the type and frequency of errors occurring
in each document to score this section. The
documents will already have this information in
red ink annotations.

Table 1. Judging criteria used to evaluate the authored
document quality during the Quality Assessment portion
of the study.



representation and then printed. Any errors were marked on
the printed sheets by the study proctors in order to ensure
that the judges noticed them. The judges did not know the
factors involved in the experiment design, including the fact
that the documents were generated with two different tools.

Procedure
Each judge was presented with the evaluation packet and
asked to review all the documents before assessing their
quality. They were asked to evaluate the quality of each
document according to the documents clarity, structure,
and accuracy. The criteria clarity and structure were
assessed according to criteria listed on the evaluation sheet
(see Table 1), however, accuracy was to be evaluated based
on the frequency and severity of errors in each document,
as annotated by the study proctor. Their degree of
agreement to the main statements in Table 1 (using the sub-
bullets as guidance) were recorded on a 5-point Likert-scale
that ranged from “Strongly Disagree” (1) to “Strongly
Agree” (5); a total score of each document was created by
adding the three individual scores, producing a total out of a
maximum of 15 points. Later, the individual scores from
each judge were combined to create an aggregate score,
which had a possible total of 45 points. The judges were
given three days to finish the quality assessment and
allowed to work at their own pace.

Documentation Utilization Study

Participants
Eight software developers in our organization participated
in the documentation utilization portion of the study. Five
of the eight participants rate themselves as Eclipse
inexperienced (either ‘beginner’ or ‘novice’) and have less
than three months experience using Eclipse.  The other
three users rate themselves as Eclipse experienced (either
‘familiar’ or ‘experienced’), and have between 1-3 years
(13-36 months) experience in using Eclipse.

Preparation of Study Material
We selected the highest-scoring documents from each study
group (DocWizards and word processor), based on the
evaluation in the quality assessment portion of the study.
The DocWizards document scored slightly lower (36/45)
than the word processor document (41/45) in the aggregate
structure, clarity, and accuracy  metrics. Since both
documents contained a few minor errors and possible
ambiguities, we manually corrected them to ensure that
differences in using the documents could be attributed to
their presentation and not content. The word processor
document was printed out and stapled. The DocWizards
procedure was pre-loaded into the DocWizards application.

Procedure
Each subject participated in two separate study sessions,
one using the DocWizards document, the other with the
word processor document. During the DocWizards session,
users were first introduced to DocWizards and given

instruction on how to use it to follow a procedure. During
each session, the participants were given the documentation
and asked to begin when ready and to notify us when they
felt they had completed the task. We were using a within-
subjects methodology, so the order of DocWizards and
paper documentation sessions was balanced between the
participants. In addition, to prevent participants from
following the procedure from memory during the second
session, we told them that the second procedure was similar
in character, but different than the first; we found that this
instruction was sufficient to encourage participants to
perform each step from the currently presented
documentation. Users were asked to think out loud while
following the documentation.

Evaluation Metrics
We recoded time to completion for each documentation use
session. In addition, we administered a post-session
questionnaire to gain insight into participants’ subjective
impressions of each tool used and a post-study
questionnaire to gauge participants’ overall tool preference.
We also recorded any critical incidents that took place
during the study including errors made and corrected.

Results
We have analyzed the data using two tests: the one-sided
paired t-test (parametric), and the Wilcoxon Signed Rank
test (non-parametric) [19].  These tests are appropriate for
the case of two related groups when each subject belongs to
both groups. The paired t-test assumes that, under the null
hypothesis, the differences between the values measured for
each pair are independent and identically normally
distributed.  The Wilcoxon test assumes that, under the null
hypothesis, the differences between the values are
independent and identically distributed; therefore, it is more
generally applicable than the t-test, and it is only slightly
less powerful when the differences are, in fact, identically
normally distributed.

In the documentation authoring study, we found that while
authoring documentation using DocWizards (29:49min
average authoring time) was completed more quickly than
using a word processor (34:39min average authoring time),
this difference was not found to be statistically significant
(t-test: p=0.229, wilcoxon: p=0.273) However, analysis of
the number of errors committed showed some important
differences between the tools. The DocWizards group
committed a total of 20 non-critical errors (errors that did
not cause the resulting procedure to fail to accomplish its
goal), and 10 critical errors (errors that significantly
changed the resulting procedure). The word processor
group committed 19 non-critical errors and 20 critical
errors. While these differences in critical errors are not
statistically significant at the 0.05 significance level (t-test:
p=0.064, wilcoxon: p=0.094), their borderline p-values
suggest that DocWizards might enable participants to create
more accurate documentation.



7

Users were very positive about using DocWizards as a
documentation-authoring tool. Seven of the eight
participants “preferred” using DocWizards to a word
processor with two “strongly preferring” it (one user had
“no preference”). Also, most users found DocWizards easy
to learn and to use. Six participants said DocWizards was
“easy” to learn, but two users found it “difficult”. When
asked to explain why they found it difficult, both users
found the recording/annotating modal interface initially
difficult to grasp. Similarly, six users found DocWizards
“easy” to use, with one finding it “difficult” and one
claiming it was “neither easy nor difficult”.

The quality assessment portion of the study showed that
there was also no significant difference in the quality of the
resulting procedures created with the two tools. We
performed our analysis by separately totaling the scored
from the three judges for each document for each of the
three quality metrics (structure, clarity, and accuracy). The
DocWizards group scored 71/100 in structure, 68/100 in
clarity, and 76/100 in accuracy. The word processor group
scored 83/100 in structure, 82/100 in clarity, and 80/100 in
accuracy. Although the word processor group scored higher
in all three quality metrics, testing at the 0.05 significance
level failed to reject the hypothesis of no difference among
the two groups in any of the three metrics (See in Table 2),
although the results for clarity are not conclusive.

The documentation utilizing study shows faster completion
of the task when using DocWizards than when using
standard paper documentation. Statistical analysis shows
that the difference between the time it took to follow
documentation is statistically significantly faster (t-test:
p=0.0017, wilcoxon: p=0.016) when using DocWizards
(8:20min average) over a word processor (12:32min
average). In addition, we noticed that DocWizards users
committed fewer critical errors when using documentation
and recovered from any errors committed more often than
users using paper documentation (DocWizards users
committed 4 critical errors but corrected them all, while
traditional documentation users committed 6 critical errors
and only corrected half of them).

Users seemed very enthusiastic about using DocWizards as
a documentation tool. Six users “preferred” using
DocWizards to traditional paper documentation with half of
those “strongly preferring” it (one user “preferred” paper
and one had “no preference”). It is interesting to note that
the only user who preferred paper documentation actually
completed the task faster and with less errors when using
DocWizards; he felt that while DocWizards worked well
for the current procedure, it may not work for all types of
procedures. We also asked participants how easy the
documentation made the task and how confident they were
that they had completed the task correctly. Users found that
DocWizards enabled them to complete the task more easily
than paper documentation (DocWizards: 7 – Very Easy, 1 –
Easy / Paper documentation: 1 – Very Easy, 6 – Easy, 1 –
Very Difficult). Similarly, users felt more confident that

they performed the task correctly when using DocWizards
over paper documentation (DocWizards: 8 – Strongly
Agree / Paper documentation: 4 – Strongly Agree, 2 –
Neither Agree or Disagree, 2 – Disagree).

DISCUSSION
Through its use of programming-by-demonstration and
guided walkthrough techniques, DocWizards facilitates the
authoring and use of documentation. It also provided
benefits in reducing errors while authoring and following
documentation. Lastly, users had a strong preference for
using DocWizards to create and follow documentation over
traditional methods.

Although our data showed that using DocWizards enabled
only slightly faster creation of documentation, we feel that
this would change significantly with increased user
experience. Despite the training and null tasks, it was clear
that users were not as experienced in using DocWizards as
they were with using standard word processor tools.
Anecdotally, we observed expert DocWizards users, not
participating in the study, completing the authoring task in
less than 15 minutes (as compared with 29:49 for
DocWizard users and 34:39 for word processor users).
Therefore, we feel that with additional DocWizards
experience, users would be able to perform an authoring
task significantly faster than using a word processor.

We also found that when authoring documentation with
DocWizards, users committed half the number of critical
errors as they did when authoring with a word processor.
This is mostly attributable to a substantial reduction in
spelling and syntax errors due to automated capture of
widget name and type information by DocWizards.

Although not statistically significant, we did observe a
difference between the two document sets in the structure
and particularly the clarity metrics. The judge’s comments
made it clear that structure often scored lower for
DocWizards documents due to superficial choices that we
made in how DocWizards formats html output (for
example, unnecessary spaces between lines which made
hierarchical structures much more difficult to understand).
Clarity suffered somewhat in the DocWizards documents
due to low human-readability of automatically captured

t-test p-values Wilcoxon p-values

Structure 0.183 0.188

Clarity 0.084 0.063

Accuracy 0.341 0.449

Total 0.154 0.094

Table 2. P-values for difference in quality assessment
scores for structure, clarity, accuracy, and the total
between DocWizards and word processor-generated
documentation.



widget names and types. This problem can be readily
corrected with an enhanced naming scheme.

Much of the gain in using documentation seemed to stem
from the huge improvement in navigation time when using
DocWizards’ guided walkthrough highlighting. Most users
were observed navigating purely through the on-application
highlights, which relieved them from the need to map
between textual descriptions of widgets and their location
on the application. Furthermore, depending on the type of
widget that needed to be manipulated, the on-application
highlights were sometimes sufficient to guide users without
having to refer to the document; for example, circling a
radio button or checkbox is sufficient to indicate both the
widget and the action that needs to be performed.

Another interesting finding was the reduction of errors that
users committed while using DocWizards to complete a
procedure. Users were more likely to notice performing an
incorrect action or skipping a crucial step, than with
traditional documentation. We feel this benefit is largely a
side-effect of the next-step highlighting. Because the
highlighted step in the DocWizards window would not
advance until the step had been performed correctly, users
often noticed and recovered from accidental actions that
deviated from the procedure proscribed in the document. In
contrast, word processor users were not given any
analogous feedback on improperly performed steps. In
essence, the next-step and on-application highlights
provided the application some semantic awareness, which
could inform the user of syntactically valid, but erroneous
inputs.

Finally, we noted an even split between two different styles
of using annotation and editing features. Some users (we
call them immediate annotators) preferred to perform
actions such as adding comments, parameterizing steps, and
creating hierarchical groupings, immediately after recording
the relevant steps. Other users (we call them delayed
annotators) delayed these annotations activities even when
the desired annotation required only one button-press; these
users seemed to prefer to stay in-mode (recording vs.
annotating) for discreet chunks of time instead of switching
between the two continuously. Interestingly, we noted
several instances where a delayed annotator made vocal
mention of needing to perform an annotation, delayed that
action, and ultimately forgot to complete it upon reaching
the end of the procedure.

Lessons Learned for Programming By Demonstration
Systems
Our evaluation of DocWizards has provided valuable
insight into how programming-by-demonstration techniques
can be better employed to reduce the costs of creating and
maintaining documentation.

Easy conditional creation through multiple demonstrations
We found that even novice users were able to use multiple
demonstrations to create conditional statements within

documentation. Not only were they able to reset the
demonstration start point within the DocWizards script, but
were also able to correctly make the changes to their
environment required to record the additional branch path
(for example, removing an existing file to create the
condition “if a file exist…”). Based on this experience,
multiple demonstrations may provide a viable and powerful
alternative to the explicit specification techniques used in
many PBD systems.

Supporting varied annotation styles
Differences in annotation styles indicates that there is
benefit to supporting both annotation and editing during the
recording process, as well as post-recording.  Special care
should be taken to enable delayed annotators the ability to
perform more easily forgettable annotations, such as
parameterization, during initial capture while minimizing
interruptions.

Importance of immediate feedback
By exposing the user to the underlying structure of the
recorded presentation and formatting it for human-
consumption, users were able to observe and reflect upon
performed steps in real time. This enabled novice users to
keep track of the steps they had performed which is a
crucial functionality in systems that allow multiple
demonstrations and partial recordings. These two
operations require that users be able to quickly locate the
exact step that they are supplementing, and also the context
around that step. We also observed that this immediate
feedback provided new users with early confidence in the
system and allowed them to concentrate on demonstrating
the task, obviating the need to repeatedly check the
recorded documentation throughout the authoring session.

Lessons Learned for Guided Walkthough Systems
Through employing multiple forms of guidance
DocWizards was able to improve users ability to locate UI
elements, and recognize and recover from errors.

Multiple types of guidance
DocWizards uses multiple forms of guidance that provide
aligned, but distinct benefits to the user. Highlighting the
next step to be performed within the DocWizards document
view enabled users to see their current place within the
documentation and also understand the context (previous
steps, following step, semantic groupings) around the step
they were performing. After using DocWizards, while
performing a series of steps during the word processor
session, one user mentioned, “this part is hardest, because I
have to remember which steps I’ve already done”. The on-
application highlighting (red circles) vastly improved a
user’s ability to locate relevant UI objects within the
application; one user commented, “I’m not sure I would
have known where the ‘Add CVS Repository [button] was
without the guide”. This type of location problem was
evident when participants used the paper documentation;
we often heard users say, “where do I put that” or noticed



9

them systematically searching the interface for a button. In
addition, this type of highlighting served to disambiguate
similarly-named UI control items and lessened the burden
of context-switching between the documentation and the
application.

Don’t fix problems, merely shows users where they exist
We also found that by having the system track the position
within the procedure and display it unobtrusively, users
were better able to perform every step necessary and
recover from errors. In a guided walkthrough system, this
type of peripheral information is remarkably effective
because it plays a dual role in reassuring users that they are
performing the task correctly and prevents advancing in the
document if the user has performed a step incorrectly. This
subtle guidance seems to enable users to drive the
interaction effectively and recover from their errors.

Difference between guiding and teaching
Lastly, we noticed that the benefits of employing a guided
walkthrough approach to using documentation might inhibit
the acquisition of procedure knowledge. Many users
commented that they were simply following the on-
application highlights, for example one user commented,
“I’m not reading labels, I’m just doing what the system
says”. Here, users were not referring to the DocWizards
document unless they came to a step in which the on-
application highlight was ambiguous. This approach
effectively renders the author-added step groupings and
commenting ineffective. Since these two abilities play a
significant role in adding semantic structure and causal
explanation to the individual step, the tradeoff to faster
completion of the procedure may be a reduction in learning
the specific procedure. It is worth noting that this finding is
distinct from learning an application interface and
interactions, for which we believe our approach can be
beneficial.

CONCLUSION
We have presented the DocWizards system, a
documentation authoring and playback tool that employs
programming-by-demonstration and guided walkthrough
techniques.

In a study of software developers, we have shown that a
user guide for a substantial task can be authored using
DocWizards with production time comparable to that using
traditional documentation tools.  The documentation
produced was of comparable quality but with lower error
rates.  With additional user training, we anticipate
DocWizards authoring will be substantially faster.

While executing the documented task under the guidance of
DocWizards, users completed the task substantially faster
than when using traditional documentation.  Additionally,
the error rate using DocWizards was lower.  Users clearly
preferred DocWizards both for authoring and playback.

These results are strongly suggestive of the utility of both
programming-by-demonstration and guided walkthough
techniques in an “application how-to” documentation
system.  Additional studies of how these techniques can
facilitate document maintenance are warranted.

FUTURE WORK
While our work with DocWizards is encouraging, there are
still questions that further studies will need to address.

From personal experience, we believe that expert users of
DocWizards would be substantially more efficient at
producing documentation than the novice authors that
participated in the user study. Gains in efficiency should be
achieved both from experience and from obtaining access to
a variety of authoring features that, in the interests of
simplicity, were not exposed during the study. Additional
studies are needed to characterize both the learning curve
and the benefits of exposing the disabled features.

An important question is whether PBD technology
produces documentation that is more readily maintainable
than using traditional techniques. The central question is
whether partial recording techniques can be readily used to
update or replace sections of a procedure that have changed
while the user is performing the procedure. The fact that
participants in this study found it easy to user partial
recording in creating a conditional, leads us to believe that
this may be a powerful features for document maintenance.
An additional lab study that looks at the ability of users to
maintain a document during simulated procedure evolution
should be combined with field studies to address this
question.

In the study, playback users were instructed to perform the
task correctly and efficiently. These users commented that
they were merely following the on-application highlighting,
rather than trying to understand each step in its larger
semantic context; this indicates that, to use DocWizards as
a teaching tool rather than a documentation/intelligent help
agent, we might need a different interaction paradigm. On
the other hand, our study indicates that our subtle-guidance
approach may provide the appropriate scaffolding for users
to more quickly understand a novel interface. Since the user
study did not have any specific metrics to measure
procedure retention or application understanding additional
work is needed to quantify the effects of the DocWizards
approach to knowledge transfer.

ACKNOWLEDGMENTS
[Removed to preserve anonymity]

REFERENCES
1.  Bergman, L., Castelli, V., Lau, T., and Oblinger, D.

DocWizards: A System for Authoring Follow-me
Documentation.

2. Carroll, J.M, and Kay, D.S. (1988). Prompting, feedback
and error correction in the design of the scenario



machine. International Journal of Man-Machine Studies,
28:11-27.

3. Allen Cypher, ed., Watch What I Do:  Programming by
Demonstration, The MIT Press, Cambridge,
Massachusetts, 1993.

4 .  D e s i g n i n g  Coachmarks .
http://www.developer.apple.com/techpubs/mac/AppleG
uide/AppleGuide-24.html

5. Eclipse IDE® website: http://www.eclipse.org

6.  Forward, A. and Lethbridge, T.C. The Relevence of
Software Documentation, Tools, and Technology: A
Survey. DocEng 2002, McLean, Virginia. p 26-33

7.  Goodall, S. Online Help in the Real World. In Proc.
SIGDOC 1991, ACM Press (1991) 1-44.

8. Jackson, K., Krajcik, J. and Soloway, E. The Design of
Guided Learner-Adaptable Scaffolding in Interactive
Learning Environments. In Proc CHI 1998, ACM Press
(1998), 187-194

9 .  Kelleher, C. and Pausch, R. 2005. Stencils-based
tutorials: design and evaluation. In Proc. of  SIGCHI
Conf.  on Human Factors in Computing Systems
(Portland, Oregon, USA, April 02 - 07, 2005). CHI '05.
ACM Press, New York, NY, 541-550.

10. Knabe, K. Apple Guide: A Case Study in User-Aided
Design of Online Help. In Proc CHI 1995, ACM Press
(1995), 286-287

11. [Removed to preserve anonymity]

12. Tessa Lau, Steven Wolfman, Pedro Domingos, and
Daniel S. Weld, Learning Repetitive Text-editing
Procedures with SMARTedit, in Lieberman, ed., Your
Wish is My Command: Giving Users the Power to
Instruct their Software, Morgan Kaufmann, 2001.

13. Henry Lieberman, ed., Your Wish is My Command:
Programming By Example, Morgan Kauffman, 2001.

14. Richard G. McDaniel , Brad A. Myers, Building
applications using only demonstration, Proceedings of
the 3rd international conference on Intelligent user
interfaces, p.109-116, January 06-09, 1998, San
Francisco, California, United States

15.  Microsoft Word® website: http://office.microsoft.com

16.  [Removed to preserve anonymity]

17.  Quintana, C., Eng, J., Carra, A. et al. Symphony: A
Case Study in Extending Learner-Centered Design
through Process Space Analysis. In Proc of CHI 1999,
ACM Press (1999), 473-480

18.  RWD Technologies® website: http://www.rwd.org

19.  S. Siegel and N.J. Castellan, Jr., Nonparametric
statistics for the behavioral sciences, 2nd Edition, 1998,
McGraw-Hill, New York, 399 pp.

20.  Wallace, R., Soloway, E.,  Krajcik, J. et al. ARTEMIS:
Learner-Centered Design of an Information Seeking
Environment for K-12 Education. In Proc CHI 1998,
ACM Press (1998), 195-202



BENEFITS AND CONTRIBUTIONS

Describes and evaluates combining programming-by-demonstration and guided walkthrough techniques to create live
documentation.  Enables more efficient and accurate creation and consumption of documentation than traditional tools.




