
RC23802 (W0511-125) November 16, 2005
Computer Science

IBM Research Report

Model-Based and Model-Free Approaches to Autonomic
Resource Allocation

Rajarshi Das, Gerald Tesauro, William E. Walsh
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Model-Based and Model-Free Approaches to

Autonomic Resource Allocation

Rajarshi Das, Gerald Tesauro and William E. Walsh

IBM TJ Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532, USA

Abstract

A major goal of autonomic computing is to dynamically allocate computational re-

sources so as to continually optimize high-level policy objectives. A key challenge to

achieving this goal is to accurately estimate the impact of resource-level changes on ap-

plication performance with respect to a Service Level Ageement (SLA). We compare two

methodologies for accomplishing this: (i) developing a queuing-theoretic performance model

for an application, and fitting its parameters online based on current state; (ii) using model-

free reinforcement learning of resource valuation estimates based on trial-and-error learn-

ing. We describe these approaches in the context of a distributed architecture in which

servers are allocated amongst multiple applications with independent time-varying loads.

Each application has a local utility function, based on SLA payments as a function of rele-

vant performance metrics. The overall system goal is to maximize the sum of local utility

functions. Individual applications use one of the above methodologies to estimate resource

valuations, which are then used by a resource arbiter to compute optimal allocations. We

present empirical data illustrating the practicality and effectiveness of both methods in a

realistic data center prototype. We highlight important tradeoffs between the methods, and

point out potential benefits of a hybrid approach combining both methods.

1 Introduction

As today’s computing systems are rapidly increasing in size, complexity and decen-

tralization, there is now an urgent need to make many aspects of systems manage-

ment more automated and less reliant on human system administrators. As a result,

significant new research and development initiatives in system self-management,

somtimes referred to as “autonomic computing” [6], are now under way within

major IT vendors as well as academia [5]. The goals of such research include de-

veloping systems that can automatically configure themselves, detect and repair

hardware and software failures, protect themselves from external attack, and opti-

mize their performance in rapidly changing environments.

This paper addresses the important problem of dynamically allocating resources

in a distributed computing system responsible for handling many time-varying

workloads. Internet data centers, which often utilize hundreds of servers to service

dozens of high-volume web applications, provide a prime example where dynamic

resource allocation may be extremely valuable. High variability in load for typi-

cal web applications implies that, if they are statically provisioned to handle their

maximum possible load, the average utilization ends up being low, and resources

are used inefficiently. By dynamically reassigning servers to applications where

they are most valued, resource usage can be much more efficient. This problem has

been addressed in both research efforts [1, 10] and commercial software [15].

According to general principles of autonomic computing, resource allocation deci-

sions should be governed by a suitable high-level policy objective. In this paper, we

assume that there is a precisely defined local utility function for each application,

based on relevant local performance metrics, and that the overall system objective

is to maximize the sum of local utility functions. We outline the approach below; a

2

detailed rationale for it can be found in [16].

Our primary aim in this paper is to compare and contrast two radically different

methodologies for making server allocation decisions. The model-based approach

uses an appropriate queuing-theoretic performance model to estimate how changes

in allocated servers affect expected performance of an application. The model-free

approach uses reinforcement learning to directly learn how to estimate expected

utility of an application, given the application’s current state and number of servers

allocated. This approach, which does not require an explicit system performance

model, is original to our knowledge. The substantial differences between these

methods make for a number of interesting comparisons and tradeoffs, which we

examine in addition to a direct head-to-head comparison of how well each method

performs in optimizing systemwide utility.

The rest of this paper is organized as follows. Section 2 reviews our distributed

data center architecture and implemented prototype, comprising real servers and

realistic Web-based traffic, in which we implement and test our two approaches.

Section 3 describes the queuing model approach, while Section 4 describes the re-

inforcement learning approach. Section 5 presents a detailed comparison of the two

approaches in the data center prototype. Section 6 summarizes our contributions

and discusses ongoing and future extensions of the work presented here.

2 Data Center

2.1 Data Center Architecture

The data center architecture [16], illustrated in Figure 1, contains a number of logi-

cally separated Application Environments, each providing a distinct application ser-

3

vice using a dedicated, but dynamically allocated, pool of servers. Each Application

Environment has a service-level utility function specifying the value of providing a

given level of service to users of the Application Environment. The utility function

will typically reflect the payment/penalty terms of service-level agreements with

customers, but may also incorporate additional considerations such as the value

of maintaining the data center’s reputation for providing good service. We assume

each Application Environment’s utility function is independent of that of other Ap-

plication Environments, and that all utility functions share a common scale of val-

uation, such as money. The utility function for environment i is of the form Ui(Ti),

where Ti is a vector of attributes for i. While, in general, the argument Ti can in-

volve any number metrics of interest to the Application Environment users, in the

present work we assume in this work that Ti = Ti indicates a single metric for a

single service class, although that metric need not be the same for all Application

Environments.

Resource

Arbiter

Application Environment 1

Router ServersServersServers
ServersServersServers

U1(T2)
Application

Manager

V1(R) V2(R)

Application Environment 2

Router ServersServersServers
ServersServersServers

U2(T2)
Application

Manager

Fig. 1. Data center architecture.

The system goal is to optimize ∑iUi(Ti) on a continual basis to accommodate fluc-

tuations in demand. The global optimization task is distributed in a two-level struc-

ture. At the lower level, the detailed control within an Application Environment,

such as routing and control parameter tuning, is handled by an associated Appli-

cation Manager. At the higher level, a global Resource Arbiter allocates resources

4

across different Application Environments. The detailed state information of an

Application Environment is known only by its Application Manager, but not to the

Arbiter. Instead, when server reallocation is considered, an Application Manager

sends to the Arbiter a resource-level utility function Vi(Ri) that specifies the value

to the Application Environment of obtaining each possible number Ri of servers.

Given the current functions Vi(Ri) from the Application Managers, the Arbiter pe-

riodically recomputes the resource allocation R� that maximizes the global utility

∑iUi(Ti) = ∑iVi(Ri): R� = argmaxR ∑iVi(Ri) s.t. ∑i Ri = R̄; where R̄ indicates the

total number of servers available. Each server is allocated as a whole unit and can-

not be be shared among Application Environments.

2.2 Data Center Prototype Implementation

With our colleagues [2], we implemented a prototype of our data center in a gen-

eral software architecture for autonomic computing systems called Unity. It is im-

plemented on a cluster of identical IBM eServer xSeries 335 machines running

Redhat Enterprise Linux Advanced Server. We run two kinds of applications in

Unity, both of which run in separate Application Environments and are installed on

all servers. As such, there is negligible delay in switching servers between Appli-

cation Environments.

The “Trade3” application [4] is a realistic simulation of an electronic trading plat-

form, designed to benchmark web servers. This transactional workload runs on top

of IBM WebSphere and DB2. For the Trade3 utility function, Ti is average trans-

action response time. Demand in Trade3, measured in units of page requests per

second, is simulated using an open-loop Poisson HTTP request generator with an

adjustable mean arrival rate. To provide a realistic emulation of stochastic bursty

5

time-varying demand, a time series model of Web traffic developed by Squillante

et al. [12] is used to reset the mean arrival rate every 2.5 seconds. The transaction

requests to Trade3 are distributed round-robin among its servers.

The “Batch” application handles a long-running, parallelizable batch workload that

can be paused and restarted on separate servers as they are added and removed.

The service metric is throughput, but, since servers are homogeneous and there

is no notion of time-varying demand, we equivalently define utility directly as a

function of servers. That is, Vi(Ri) =Ui(Ti).

2.3 Computing Resource-level Utility Functions

The core challenge we address in this paper is for the Application Manager to dy-

namically compute Vi(Ri) for a transactional workload in response to changing de-

mand and relevant internal state. In a model-based approach, an Application Man-

ager i has a model Ti(Ri;Si) that indicates the performance its Application Environ-

ment can achieve in state Si if it has Ri number of servers. The relevant state may

be composed of any measurable quantities observed thus far, including demand,

queue length, response time, and utilization. The model may include predictions

about how any exogenous state components, such as demand, may evolve. With the

model, the Application Managers computes Vi(Ri) = U(Ti(Ri;Si)). In the model-

free approach, the Application Managers uses a learned value function Qi(Ri;Si) to

compute its resource-level utility function directly from the resources and Applica-

tion Environment state without an intervening model: Vi(Ri) = Qi(Ri;Si). Although

not modeled explicitly, the process for learning Qi(Ri;Si) is designed to reflect the

service-level utility that would be obtained with Ri, given the evidence provided in

the state. Note that, with both methods, the Application Managers reports Vi only

as a function of Ri because the Arbiter need not know Si. All computation involv-

6

ing the state is handled inside the Application Managers. We discuss two particular

instances of these general methods in greater detail in the following sections.

When designing and evaluating an approach to computing resource-level utility

functions, we focus primarily on three issues: 1) Performance. Typically, the mea-

sure of performance for a model-based approach is the accuracy of the model. For

the model-free approach the closest correspondence would be accuracy of the re-

sulting resource-level utility function. However, in both cases, the true values in a

dynamic, real system can be elusive. Nevertheless, what we ultimately care about

is not accuracy per se, but the level of global utility obtained in the system, hence

we use this as our measure of performance. 2) Design costs. Ultimately, the goal

of autonomic computing is to reduce the amount of administrative effort required

to configure, optimize, and maintain a system. Clearly then, we want to avoid the

need of Ph.D.-level expertise every time a system is set up, reconfigured, or us-

age requirements are changed. 3) Transient runtime costs. Some model-based and

model-free approaches may involve learning or other adaptation. It is important that

this does not incur unacceptably long transient periods of low performance.

3 Queuing Model Approach

There has been significant recent interest on efficient resource allocation in large

data centers in order to provide guarantees on resource availability and performance

for multiple enterprise applications. Most, if not all, of the published work in this

area use simple to sophisticated queuing models—based on the richness of state

information obtained through online measurements—to model the performance of

the computational resources in the data center [1, 3, 7, 8, 9, 10]. Except in [7], the

overall system goal in these works is to minimize the quality of service deviations

defined unilaterally by the data center. On the other hand, in a spirit similar to

7

our current work, the methodology in [7] attempts to maximize revenues that are

generated by satisfying quality of service guarantees derived from flexible service

level agreements between service providers and their clients. However, unlike our

work described here, the methodology for maximizing revenues is studied solely

via numerical simulations.

Here we discuss one specific approach for an Application Manager handling Trade3

to obtain a resource model and the corresponding resource-level utility function.

To account for the transient nature of the workload as well as the variance in the

performance of servers due to garbage collection and thread management in Java,

the estimated parameters of the model are updated at periodic intervals. In each

allocation period t, the Application Manager is cognizant of the following state

information: (i) the demand λt = Dt , denoting the mean arrival rate of requests

(assuming a single service class), (ii) τt , the mean end-to-end response time of the

completed requests, and (iii) Rt
> 0, the number of allocated server machines. Since

the arriving requests are allocated among the available servers, each with its own

queue managed by WebSphere in a round-robin fashion, we use Rt parallel M/M/1

queues to model the behavior of the resources at time interval t. Thus, the estimated

mean service rate of a single server, µt , is given by 1

µt =
1
τt +

λt

Rt : (1)

The above estimate of µt is sensitive to large fluctuations in server machine per-

formance. To damp corresponding potential short-term fluctuations in µt , we use

instead a smoothed quantity µ̂t , obtained by exponential smoothing of µt with pa-

rameter ω= 0:5 as follows: µ̂t = ω µ̂t�1 +(1�ω) µt .

Given µ̂t and the predicted demand λ̃t+1, the Application Manager can predict the

1 For convenience, we drop the index i for the Application Environment/Manager.

8

mean response time for a proposed new allocation of servers Rt+1 in the next pe-

riod t + 1. Given the slowly varying nature of the demand model, in our current

implementation we approximate λ̃t+1 �= λt , and thus, after simple rearrangement of

terms, we obtain

τ̂t+1 =
1

µ̂t
�

λt

Rt+1

: (2)

In allocation period t, the Application Manager uses Equation 2 to compute V (Rt)=

U(τt) for each possible number of servers Rt .

The queuing model employed in our work is relatively simple, yet works effectively

in our prototype system. However, large, deployed, industrial data centers are com-

plex, reconfigurable, multitiered systems with dozens of components and hundreds

of tunable parameters. More complex models may be required to obtain good per-

formance in such systems, but increased model complexity comes with a potential

cost. System administrators typically do not have the necessary expertise to formu-

late appropriate complex models. Alternate complex models could be made avail-

able in software packages, leaving administrators to make frequent critical choices

between models while simultaneously configuring the relevant parameters. Since

this runs counter to the autonomic computing goal of making computational sys-

tems less reliant on humans, there must be some tradeoff between the complexity

and accuracy of available models.

4 Reinforcement Learning Approach

Reinforcement Learning (RL) refers to a set of general trial-and-error methods

whereby an agent can learn to make good decisions in an environment through

a sequence of interactions. The basic interaction consists of observing the environ-

ment’s current state, selecting an allowable action in the state, and then receiving

9

an instantaneous “reward” (a scalar measure of value for performing the selected

action in the given state), followed by an observed transition to a new state. RL

methods have solid theoretical grounding for Markov Decision Problems (MDPs),

and in the last decade there have been many notable success stories in a variety of

real-world applications. An excellent general overview of RL is given in [13].

The particular RL rule we use here is an algorithm known as Sarsa(0), which learns

a value function Qπ(s;a) estimating the agent’s long-range expected value starting

in state s, taking initial action a and then using policy π to choose subsequent

actions [13]. (For simplicity we hereafter omit the π subscript.) The Sarsa rule has

the following form:

∆Q(st
;at) = α(t)[rt +γQ(st+1

;at+1)�Q(st
;at)] (3)

Here (st
;at) are the initial state and action at time t, rt is the immediate reward

at time t, (st+1
;at+1) denotes the next state and next action at time (t + 1), the

constant γ is a “discount parameter” between 0 and 1 expressing the present value

of expected future reward, and α(t) is a “learning rate” parameter, which decays to

zero asymptotically to ensure convergence. Note that when a lookup table is used to

represent the values of state-action pairs (which we do here), then each state-action

pair has to be sampled many times to accurately learn its value. This usually entails

some form of “exploration” rule ensuring visits to all state-action pairs, even those

thought by the RL agent to yield low expected value.

Equation 3 is guaranteed to converge for MDP environments, provided that the

policy for action selection is either stationary, or asymptotically “greedy,” i.e. it

chooses the action with highest Q-value in a given state. While our applications

may treated approximately as MDPs, the above policy conditions do not strictly

hold in our system. Taking s to be the application’s local state, and a to be the local

10

allocation decision of the arbiter, then the arbiter’s policy is neither stationary nor

locally greedy. Instead, the arbiter’s task may be described formally as a composite

MDP [11], and its policy of maximizing the sum of all value functions is neither

stationary nor greedy from a purely local perspective. The issue of whether local

RL converges in composite MDPs in general is an interesting open research topic

which we address here empirically, and which is discussed in more detail in [14].

Additional issues that we face is using RL in our system are detailed below.

4.1 Important Practical Issues for RL

The main issues for practical success with RL are generally: (i) avoiding exces-

sively long training times; (ii) avoiding excessive penalties for poor performance

(including penalties for exploring suboptimal actions) during training; (iii) dealing

with potentially non-Markovian system effects. We address each of these below.

One of the most crucial practical issues is the design of a good state-space repre-

sentation scheme. Potentially many different types of sensor readings (e.g. average

demand, response time, CPU and memory utilization, number of Java threads run-

ning, etc.) may be needed to accurately describe the system state. Additional histor-

ical information may need to be maintained if there are important history-dependent

effects (e.g. Java garbage collection). Encoding of the state description needs to be

appropriate to whatever value function approximation scheme is used and must be

sufficiently rich to capture the underlying function accurately yet sufficiently com-

pact if a lookup table is used (so that the table can be effectively explored in a

reasonable amount of time).

Another important issue arises from the physical time scales associated with live

training in a real system. These are often much slower than simulation time scales,

11

so that learning needs to be much faster (in terms of number of value function up-

dates) relative to training times that are often acceptable in simulation. This can be

addressed in part by using a sufficiently compact value function representation. We

also advocate, as described in more detail below, the use of heuristics or domain

knowledge to define good initial states for value function training; this can make

it much easier and faster for RL to find the asymptotic optimal value function. In

addition, we also advocate “hybrid” training methods in which an externally sup-

plied policy (coming from, for example, model-based methods) is used during the

early phases of learning. In our system hybrid training appears to hold the potential,

either alone or in conjunction with heuristic initialization, to speed up training by

an order of magnitude relative to standard techniques.

A final and perhaps paramount issue for live training is that one cares about not

only asymptotic performance, but also rewards obtained during learning. This may

be unacceptably low due to both exploration of alternative actions and a poor initial

policy. The latter factor can be addressed by clever initialization and hybrid training

as mentioned above. In addition, we expect that some form of safeguard mechanism

and/or intelligent exploration will be needed to limit penalties incurred during ex-

ploration. Perhaps surprisingly, this was unnecessary in our prototype system: a

simple rule of choosing a random action, rather than the action currently estimated

to be optimal, with a probability of 0.1 incurs negligible loss of expected utility.

Nevertheless, we expect that intelligent/safe exploration would eventually become

necessary as our system increases in complexity and realism.

4.2 RL Implementation Details

The operation of RL within the Trade3 application manager is shown in Figure 2.

The RL module learns a value function expressing the long-range expected value

12

Application Environment

App MgrU(T)

VD(R)

RL

Demand

Resource

Q(D, R)

Arbiter

Resp. Time

Server #3

DB2

WebSphere

Server #1

DB2

WebSphere

Server #2

DB2

WebSphere

Fig. 2. Operation of RL in the Application Manager.

associated with a given current state of the workload and current number of servers

assigned by the arbiter. (We stress that policy decisions are made externally and

are not controlled by the RL agent, unlike in normal usage of RL.) RL runs as

an independent process inside the Application Manager, and uses its own clock

to generate discrete time steps every 2.5 seconds. Thus the RL time steps are not

synchronized with the arbiter’s allocation decisions.

While there are many sensor readings that could be used in the workload state de-

scription, for simplicity we use only the average demand D in the most recent time

interval. Hence the value function Q(D;R) is a two-dimensional function, which is

represented as a two-dimensional grid. The continuous variable D has an observed

range � 0� 325 (in units of page requests per second), which is discretized into

� 130 grid points with an interval size of 2.5. The number of servers R is an in-

teger between 1 and 5 (by fiat we prohibit the arbiter from assigning zero servers

to Trade3), so the total size of the value function table is about 650. Note that our

RL implementation uses less state information than does the queuing model. This

yields a smaller grid for Q, which learns faster but is still effective for resource

allocation, as we describe in Section 5.

13

At each time step the RL module observes the demand D, the resource level R given

by the arbiter, and utility U (which, recall, is a function of average response time

T). It then updates its value table using Sarsa(0), with discount parameter γ= 0:5

and, for cell i, learning rate α(t) = 0:2c=(c+vi). The c=(c+vi) factor is a standard

decay of the learning rate, where vi is the number of visits to cell i and c = 80 is

constant.

It is important to note that the distribution of cell visits is highly nonuniform, due

to nonuniformity in both demand and resource allocations. To improve the valua-

tions of infrequently visited cells, and to allow generalization across different cells,

we use soft monotonicity constraints that encourage cell values to be monotone in-

creasing in R and monotone decreasing in D. Specifically, when RL updates a cell’s

value, if this update violates monotonicity with any other cells in its row or column,

the violation is partly repaired, with greater weight applied to the less-visited cell.

Monotonicity with respect to servers is a very reasonable assumption for this sys-

tem. Monotonicity in demand also seems to be reasonable in our system (although

for certain dynamical patterns of demand variation, it may not strictly hold). Both

constraints yield significantly faster and more accurate learning.

5 Results

This section presents typical results obtained using the queuing model and RL ap-

proaches in our system. We first briefly discuss empirical evidence for convergence

of RL to a stationary value function. We then present a head-to-head comparison of

the two approaches in terms of optimizing total system utility in a two-application

scenario. We then examine scalability of both approaches using a more complex

scenario with three applications.

14

In our experiments, the service-level utility for Trade3 is a decreasing function

of average response time over a five second interval. The equation is 200=(1+

e(x�40)=5)� 100, which is a sigmoid centered around 40ms. The Batch utility util-

ity function assigns values (�20;8;34;58;80;100) directly to zero through five

servers. The Arbiter requests resource utility curves from each Application Man-

ager every five seconds, and thereupon computes a new allocation.

5.1 Empirical Convergence of RL

(a) (b)

-100

-50

0

50

100

150

200

0 50 100 150 200 250 300

E
xp

ec
te

d
va

lu
e

Page requests per second

RL Value Table vs. Demand, 30000 Updates

1server
2servers
3servers
4servers
5servers

1init
2init
3init
4init
5init

-100

-50

0

50

100

150

200

0 50 100 150 200 250 300

E
xp

ec
te

d
va

lu
e

Page requests per second

RL Value Table vs. Demand, 60000 Updates

1server
2servers
3servers
4servers
5servers

Fig. 3. (a) Trade3 value function trained from heuristic initial condition, indicated by

straight dashed line. (b) Continuation of training from (a), with visit counts reset to zero.

Figure 3(a) shows RL results in an overnight run in our standard two-application

scenario (Trade3 + Batch) with five servers, using a simple but intelligently chosen

heuristic initial condition. The heuristic is based on the intuitive notion that the ex-

pected performance and hence value in an application should depend on the demand

per server, D=R, and should decrease as D=R increases. A simple guess is linear de-

pendence, and the five straight lines are the initial conditions Q0 = 200�1:2(D=R)

for R= 1 to 5. The overall performance during this entire run is high, even including

the 10% random arbiter exploration.

Figure 3(b) shows results when training is continued for an additional overnight

15

session with visits counts reset to zero so that the learning rates would again start

from maximal values. We see relatively little change in the learned value function,

suggesting that it may be close to the ideal solution. (One can’t be sure of this,

however, as the number of visits to non-greedy cells is quite small.) Notably, in a

comparable amount of training starting from random initial conditions, a solution is

found that is close to Figure 3(b), providing additional evidence of RL convergence,

as similar solutions were found starting from radically different initial conditions.

5.2 Performance Results

Figure 4 compares the performance of RL (specifically the run shown in Fig-

ure 3(a)) and queuing model approaches in the standard two-application scenario,

using identical demand generation in each run. Performance is measured over the

entire run in terms of average total system utility earned per arbiter allocation de-

cision. To establish a range of possible performance values, we also compare with

two inferior allocation strategies: “UniRand” consists of uniform random arbiter

allocations; and “Static” denotes the best static allocation (three servers to Trade3

and two to Batch). Also shown is a dashed line indicating an analytical upper bound

on the best possible performance that can be obtained in this system using the ob-

servable information.

The analytic upper bound of the best possible performance was determined through

expected utility analysis. Using the experimentally derived mean service rate of

0 < R� R̄ servers and the probability distribution of the demand, we find the joint

probability distribution over the demand and the number of allocated servers that

results in maximum mean expected system utility.

Note that the RL performance includes all learning and exploration penalties, which

16

0

25

50

75

100

125

150

UniRand Static QuModel RL

A
vg

. u
til

. p
er

 a
llo

c.
 d

ec
is

io
n

Two Applications: Average Utility

Trade3
Batch
Total

Bound

Fig. 4. Performance of various strategies in scenario with two applications.

are not incurred in the other approaches. Both the model-based and model-free ap-

proaches are substantially better than static or random allocations, and they are

also reasonably close to the maximum performance bound, which is a bit gener-

ous and most likely can be tightened to lie below the 150 level. We also find it

surprising that, despite their radically different natures, the performance figures for

RL-based and queuing-model-based allocations are virtually identical. In fact, if

one examines the individual allocation decisions at a given demand level, we find

that they are usually identical. The only slight difference we can detect is that the

queuing-model-based allocator tends to be a bit more conservative, preferring to

assign larger number of servers to Trade3, whereas RL is a bit more aggressively

optimistic that Trade3 can obtain high utility with slightly fewer servers.

5.3 Scaling to Additional Applications

We have also compared our approaches in a more complex scenario containing

three applications: one Batch plus two separate Trade3 environments, each with an

independent demand model, shown in Figure 5(a). While this should have no ef-

fect on the performance of individual queuing models, from an RL perspective this

scenario is more challenging in that there are now multiple interacting RL mod-

17

(a) (b)

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ag

e
re

qu
es

ts
 p

er
 s

ec
on

d

Arbiter allocation decisions

Trade3 Demand vs. Time

lambda0
lambda1

0

50

100

150

200

250

UniRand Static QuModel RL

A
vg

. u
til

. p
er

 a
llo

c.
 d

ec
is

io
n

Three Applications: Average Utility

Trade3a
Trade3b

Batch
Total

Bound

Fig. 5. (a) Independent time-varying demand models in two Trade3 environments used

in scenario with three applications. (b) Performance of various strategies in scenario with

three applications.

ules, each of which induces non-stationarity in the other’s environment. However,

using the same heuristic demand per server initialization as before, we observe no

qualitative difference in RL training times, apparent convergence, or quality of pol-

icy compared to previous results. Performance results in this scenario are plotted

in Figure 5(b). Once again, RL performance is comparable to the queuing model

approach (about 1% better, in fact, although we cannot claim this difference is sig-

nificant), and both are quite close to the maximum possible performance. (That

performance is closer to the upper bound than with two applications could be at-

tributable to a tighter upper bound, better performance, or both.) Once again RL and

the queuing model are almost always in agreement on specific allocation decisions.

While this does not establish scalability to an arbitrary number of applications,

the results are encouraging regarding our general methodology. They also suggest

that RL may well be a viable alternative to model-based approaches for real-world

problems of this type.

18

6 Conclusions

We have presented and demonstrated effectiveness of two substantially different

approaches to estimating resource valuation within an overall framework for online

allocation of computational resources amongst multiple applications with indepen-

dent time-varying need for resource.

The more established queuing-theoretic model-based approach has a venerable

record of success in capacity planning based on offline estimation of queuing model

parameters. More recently there have also been several success stories using these

models more dynamically via online parameter estimation. A common rule of

thumb amongst practitioners is that queuing models can predict system behavior

to within 20%, which is often more than adequate for many practical purposes.

The novel model-free reinforcement learning approach has no prior track record in

systems management, but could have a bright future in store. Based on experience

in other domains, we initially expected that in real computing systems, RL might

well require exorbitant training times, complex state descriptions and nonlinear

function approximation techniques, and suffer from extremely poor performance

during training. However, the experience with RL in our prototype system has

turned out better than expected in all of these respects. We find that with extremely

simple state descriptions (average demand only), value function representations (a

uniform grid), exploration schemes (10% random allocations), and initialization

schemes (linear in demand per server), we achieve performance comparable to our

best efforts within the model-based framework. Moreover, these results were ob-

tained in an eminently feasible amount of training time.

Whether such success with RL will continue as we examine progressively more

complex systems is of course an interesting open research question. We fully expect

19

that nonlinear function approximators, such as neural networks or support vector

machines, will eventually be required to represent RL value functions. This will

open up a range of new challenges that we have not faced in current work. We

also expect to need explicit techniques for obtaining acceptable performance levels

during training, and for intelligent exploration of non-greedy actions. A promis-

ing candidate for this is Boltzmann exploration, in which the probability of action

selection is based on current valuation estimates. Another particularly promising

technique, which we have mentioned previously, is hybrid training, in which the

policy decisions in the initial phases of learning are model-based. This can provide

not only a strong initial policy, but can also provide safety bounds on exploration, if

one can establish that exploring actions close to the model-based recommendation

will yield performance close to the model-based performance.

Apart from raw performance comparisons, we identify at least two additional im-

portant aspects for future practical comparisons of model-based and model-free

methods. One is the amount of systems knowledge required for success with each

method. RL appears to have the initial edge in this regard, and it will be interesting

to see if this persists in subsequent work. Secondly, there is the issue of brittle-

ness of performance models and learned value functions under various forms of

environmental or system changes. Certainly some forms of system change, such

as changing the service-level utility function, will not require any queuing model

changes, whereas RL might need to be retrained from scratch. On the other hand,

certain changes in user behavior may lead to gradual “model drift” in which the

queuing model progressively becomes less accurate. If this drift is slow, RL might

be able to continually adapt the value estimates so that they maintain their accuracy

as conditions change.

In ongoing and future work, we will address effects arising when there are sig-

20

nificant delays in reassigning servers to different workloads. These are negligible

in the current system. This appears to require innovation within the model-based

framework. However, as RL is intrinsically designed to handle situations involving

delayed reward, we expect it to continue to perform well without significant modi-

fications. We also plan to investigate allocation of different types of computational

resources, such as storage devices or database access. Finally, we aim to further

develop our server allocation techniques to the point where they are demonstrably

deployable within commercial server management systems.

References

[1] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for shared data

centers using online measurements. In Proceedings of ACM/IEEE Intl Workshop on

Quality of Service (IWQoS), Monterey, CA, pages 381–400, 2003.

[2] D. Chess, A. Segal, I. Whalley, and S. White. Unity: Experiences with a prototype

autonomic computing system. In 1st IEEE International Conference on Autonomic

Computing, pages 140–147, 2004.

[3] R. Doyle, J. Chase, O. Asad, W. Jen, and A. Vahdat. Model-based resource provi-

sioning in a web service utility. In USENIX Symposium on Internet Technologies and

Systems, 2003.

[4] IBM. Websphere benchmark sample. http://www-306.ibm.com/software/

webservers/appserv/benchmark3.html, 2004.

[5] ICAC. Proceedings of the First International Conference on Autonomic Computing.

IEEE Computer Society, Los Alamitos, CA, 2004.

[6] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,

36(1):41–52, 2003.

[7] Z. Liu, M. Squillante, and J. L. Wolf. On maximizing Service-Level-Agreements

profits. In Proceedings of Electronic Commerce Conference. ACM, 2001.

[8] D. Menasce, V. Almedia, and L. Dowdy. Performance by design: Computer Capacity

21

Planning by Example. Prentice Hall, Upper Saddle River, NJ, 2004.

[9] D. Menasce, D. Barbara, and R. Dodge. Preserving QoS of e-commerce sites through

self-tuning, a performance model approach. In Proceedings of Electronic Commerce

Conference. ACM, 2001.

[10] S. Ranjan, J. Rolia, E. Knightly, and H. Fu. QoS-driven server migration for inter-

net data centers. In Proceedings of ACM/IEEE Intl Workshop on Quality of Service

(IWQoS), 2002.

[11] S. Singh and D. Cohn. How to dynamically merge Markov Decision Processes. In

M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information

Processing Systems, volume 10. MIT Press, 1998.

[12] M. S. Squillante, D. D. Yao, and L. Zhang. Internet traffic: Periodicity, tail behavior

and performance implications. In E. Gelenbe, editor, System Performance Evaluation:

Methodologies and Applications. CRC Press, 1999.

[13] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, 1998.

[14] G. Tesauro. Decompositional reinforcement learning and workload management.

Submitted for publication, 2005.

[15] TIO. Tivoli Intelligent Orchestrator product overview. http://www.ibm.com/

software/tivoli/products/intell-orch, 2005.

[16] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility functions in autonomic

systems. In 1st IEEE International Conference on Autonomic Computing, pages 70–

77, 2004.

22

