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Abstract- We consider a class of algorithms related to Lempel-Ziv that incorporate 
restrictions on the manner in which the data can be parsed with the goal of introducing 
new tradeoffs between implementation complexity and data compression ratios. Our 
main motivation lies within the field of compressed memory computer systems.  Here 
requirements include extremely fast decompression and compression speeds, adequate 
compression performance on small data block lengths, and minimal hardware area and 
energy requirements. We describe the approach and provide experimental data 
concerning its compression performance with respect to known alternatives. We show 
that for a variety of data sets stored in a typical main memory, this direction yields results 
close to those of earlier techniques, but with significantly lower energy consumption at 
comparable or better area requirements.  The technique thus may be of eventual interest 
for a number of applications requiring high compression bandwidths and efficient 
hardware implementation.1 
 

I. INTRODUCTION 
 
Most work on compression has concentrated on algorithms well suited to obtaining 
compression ratios ultimately targeted to the entropy of the data. Examples include 
arithmetic coding with adaptive context modeling [8], Lempel-Ziv coding algorithms 
[15], the Burrows-Wheeler transform [1], grammar based codes [7], etc. There are 
however applications where the constraints require compressors to operate on data blocks 
which are quite small by traditional measure, and where such compression needs to be 
done at extremely high bandwidths. 
 
Prime examples of such an applications are to computer systems incorporating 
compressed main memory, such as for example in IBM’s Memory Extension Technology 
or MXT (see [13][3][4] and references within).  Here cache lines or small collections of 
cache lines may be compressed/decompressed on storeback/retrieval events. The larger 
the unit of data compression, the longer the access time and the larger the overhead.  In 
practice, this means that such units may not exceed 1KB, the compression unit employed 
in MXT. The bandwidth requirements in current systems are in the GB/sec range, and 
require hardware implementations. 
 
Compressors for such applications cannot do much learning on the data and must also be 
relatively simple. The problem of the design and implementation of fast hardware 
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compression algorithms was considered as early as the work of Gonzalez-Smith and 
Storer [5] (see also the subsequent publication of Storer and Reif [11]). The schemes 
considered in this work are more closely related to LZ-like algorithms and their 
extensions [15][10] which also admit practical hardware implementations. Examples 
include ALDC [6] (IBM’s implementation of LZ’77), and that used in MXT [4]. The 
latter is a parallel generalization of LZ’77 where the data is partitioned into N separate 
streams for N compressors, which however share a common dictionary.  Both ALDC and 
MXT are implemented using content addressable memories (CAMs), which are memory 
units that are accessed by content instead of address [14].   
 
CAMs offer the capability of immediate lookup of symbols, and their composition into 
phrases.  For example, all locations holding a symbol i can be located in one cycle.  In 
the following cycle, subset of locations immediately following those holding i can be 
located, and so on. Thus CAMs are convenient for implementing LZ-like techniques. 
However, the CAM approach has the following shortcomings: (1) limited pattern 
capacity due to the functional and design complexity, resulting in poor scalability; (2) 
slow access time and high power dissipation because of concurrent loopkups; (3) low 
storage density and high implementation cost per storage bit. All these factors make 
CAM-based designs unsuited for very fast data compression with the requirements of a 
small silicon budget and low energy consumption. 
 
A key motivation for this investigation was to obtain a class of compressors which relied 
less heavily on CAMs. For example, SRAM, the other type of memory generally found 
on chips, has better density and power properties. Use of SRAM in particular suggests a 
compressor based on tables and entry hashing.  Note that SRAM may be designed with 
multiporting, so that multiple retrievals may be done simultaneously. Complexity 
considerations lead to the idea of limiting the number of different phrase lengths used in 
the parsing, a scheme that falls in the general category of what we term restricted 
parsings. In principle, it could be possible to hash phrases of more than one length into 
the same table.  However, this was not the approach adopted, which relies on a distinct 
table or set of tables for each of the chosen phrase lengths.  The compressor then operates 
essentially by entering a subset of the phrases encountered into hash tables, which are 
then used as dictionaries in the restricted parsing.  The contents of the hash tables are 
aged out in a manner analogous to the treatment of lines in a standard cache.   
 
Restricting the set of parsings substantially simplifies the operation of the compressor.  
However, we are also interested in obtaining potentially several phrases in parallel.  This 
we do by considering one fixed-length subblock at a time.  This subblock is then 
represented by a set of phrases and literals, which are obtained at a rate of one subblock  
per cycle. In an implementation appropriate for present computer systems, the length 
chosen for the subblock was 8 bytes, with phrases restricted to lengths of 2, 4 and 8 
bytes, aligned on respective boundaries.  
 
The following is a synopsis of the paper.  Section II discusses the format for parsing the 
data to be compressed. Section III describes the structure and operation of the encoder. 
Section IV considers a generalized version of the dictionary contents and section V 
describes an adaptive compression strategy.  Section VI presents experimental results, 
which includes both compression ratio results on real data as well as a discussion on the 
hardware implementation cost. A comparison with LZ’77 indicates the approach 



 

described yields compression ratios which are within reasonable distance with significant 
gains both in hardware area and energy consumption. 
 

II. RESTRICTED PARSINGS 
 
We start with some definitions. 
 
Defn.  A literal is an as-is representation of a symbol.   
 
Defn. The unit of data to be compressed and/decompressed is termed a block.  In the 
following, a block will generally consist of 512 bytes (512B). 
 
Defn. A subblock is a fixed fraction of a block, which is then parsed into disjoint phrases.  
 
Our goal is to parse the sequence using substantial parallelism.  In the MXT algorithm 
[4], this was done by first partitioning the block to be compressed into several subblocks, 
which were then fed to separate parsers, which however shared their dictionaries.  Here 
we proceed rather differently:  as in MXT, we partition the sequence into subblocks, then 
each subblock is parsed into a restricted number of phrase lengths. The different 
components are then matched with a set of previously encountered phrase lengths stored 
in separate dictionaries.  Unlike MXT, however, one subblock is parsed at a time at a 
throughput of one subblock per machine cycle. Once the subblock (say 8B as done here) 
is parsed, it is described by a combination of phrase length descriptors, pointers, and 
literals. This too can be done in one cycle. Note that these requirements imply that our 
subblocks are significantly smaller than those in MXT. 
 
One property of this approach is that the encoding of the source symbols by the 
compressor proceeds at a fixed rate, which is advantageous from a system aspect.  This is 
a property shared with the MXT algorithm.  However, in the decoding stage of our new 
method the first (say) 8*N bytes of the original data are produced in N cycles, unlike the 
case in MXT, where each cycle produced results for every subblock, and the decoding of 
any given subblock is not finished until the entire block was decoded. This has some 
advantages in the retrieval of data in the compressed computer memory context, as with 
the new technique whole lines are available before the entire block decoding finishes.  
 
The practicality of this method is dependent on finding a subblock size and restricted set 
of phrase lengths which combine good compression performance with simple hardware 
implementation. Here we took advantage of a particular property of the typical contents 
of computer memory, namely that data tends to reside on aligned boundaries; extensions 
of the basic algorithm to more general data sources are also discussed in this paper. 
Further, the blocks of data to be compressed are small, so that (except for long runs of 
identical subblocks), the candidate phrases were likely to be short.  Thus our subblock 
length was set at 8B.  This also ensured that our parsing and generation of output for each 
such phrase could be done in one cycle. The next question was that of choosing candidate 
phrase lengths. Possible candidates were of course all integers no larger than 8.  An 
exception is runs of identical subblocks, which are treated separately. 
 
Defn.  In the following, a literal is equivalent to a phrase of length 1. 
 
Defn.  A parsing i is said to be better than another parsing j if has fewer phrases. We 
denote this as i<j.  We say that i=j if the two have the same number of phrases.  
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Figure 1. A family of parsings (enclosed in the box) and operation of the encoder
 
Defn.  A parsing i is optimal if for every parsing j in the allowed class, i<=j. 
 
Defn.  A set of parsings has a unique optimum if there are no two optimal parsings of a 
given subblock, 
 
Defn.  A feasible phrase is one which conforms to the restrictions of parsings within a 
subblock. 
 
Note that our definitions assume that a parsing with fewer phrases has a smaller 
description cost than a parsing with more phrases. This assumption holds for a large class 
of settings including our target application. In the following, we shall denote a phrase of 
length n as Pn, and a literal as L. 
 
Restricting the parsings to have a unique optimum has several advantages.  These include 
a) the description of the parsings is more compact, so for example one does not need 
descriptors for both say (P4,P2,P2) and (P2,P4,P2), and b) no logic is required to make 
the choice between the competing solutions. For example, if both (P4,P2,P2) and 
(P2,P4,P2) are feasible optimal parsings for a particular subblock, this means that in this 
case one needs to distinguish between the two, at some cost in representation as well as 
logic to implement the choice.  
 
Defn.  A set of parsings is nested if any two distinct parsings of a subblock require that 
either each phrase in one is the same as the other, or that two or more comprise a phrase 
of the other.    
 



 

Observation. A sufficient condition for a set of parsings to have a unique optimal is that 
they be nested. 
 
A set of parsings with the above properties is illustrated in Figure 1, in the drawing 
enclosed by a box. For this example, the allowed phrase lengths are 8B, 4B, 2B and 1B. 
The latter are identified as literals, this is, they will be encoded as raw data instead of 
using pointers to past symbols. Examples of allowed parsings are (P8), (P4,P2,P2), 
(P2,LL,P4), (LL,LL,LL,LL), (P4,P4), etc. Not every concatenation of allowed phrase 
lengths is permitted. In general, assuming that the subblock length is M symbols, for this 
nested class of parsing constraints, the number of possible phrase lengths is log2M, and 
M-1 phrases of length 2 or greater need to be examined in parallel if all feasible phrases 
are to be considered simultaneously.  
 

III. ENCODER STRUCTURE 
The general operation of the encoder can be found in Figure 1. Each successive subblock 
of M symbols is first partitioned into all M-1 feasible phrases of length two or greater 
that might be included in the parsing. Let #(M) denote the number of different parsings of 
the block of length M; it is easy to see that 
 
 #(M) = 1 + #(M/2)2  (1) 

 
with starting count #(2)=2. For the parsing class of Figure 1, we obtain #(8)=26. Note 
that phrases of lengths 4 can only be used at edges of the subblock due to the nesting 
property. In addition to the 26 possible states enumerated so far, it proves advantageous 
to incorporate additional states to encode other events such as runs of identical 
subblocks.   
Each feasible phrase is examined for a possible match in past encoded data. Instead of 

ote one may implement similarly a close approximation to the standard Lempel-Ziv 

n some instances the data being encoded has sequences of two or more subblocks which 

using an associative memory to find this match, the encoder employs tables with pointers 
to past data that are looked up using hash functions tailored to each of the log2 M phrase 
lengths. These hash functions accept a phrase of the appropriate length and return an 
index onto a dictionary row. After the retrieval of these pointers, a common buffer 
containing past encoded data is used for obtaining the actual phrases; this technique 
results in less storage redundancies when compared to an alternative which stores the 
phrases in the tables along with the associated pointers. The results are then combined to 
form a representation, which consists of the identity of the optimal parsing, pointers to 
previous occurrences, plus any literals.  For our experimental section, the hash functions 
employed are simply a contiguous subset of the bits comprising the phrase of appropriate 
length. 
 
N
parsing if we include dictionaries for every possible phrase length, up to a certain 
threshold. Nevertheless this is associated with significant dictionary area and encoding 
complexity. 
 
I
are identical; we can capitalize on these patterns easily using run length coding. Our runs 
have a minimum granularity of a subblock; to encode them in addition to performing the 
matching described above we also compare the current subblock with the previously 
encoded subblock and increment a run length counter in case of a match. We continue the 
above until we find a non-matching subblock, and then simply encode a information 
about the existence of a run using a special state (in addition to the #(M) other necessary 
states), and also encode the run length.  
 
Additionally, if the most recent encoding of a subblock is a full M symbol match we also 
compare both the current subblock and the subblock following this M symbol match. If 



 

this succeeds we continue comparing subsequent subblocks until a mismatch occurs. The 
encoding is treated similarly as in the case of run lengths.  
 
Decoding is done as in LZ’77, simply by replacing pointers to previous phrase 
occurrences by the actual phrases, as found in the already decoded data. The encoder 
outputs a representation of M symbols every cycle. Similarly the decoder outputs M 
symbols of decoded data on every cycle. 
 
After the lookup, the encoding mechanism enters the feasible encountered phrases into 
the hash tables or dictionaries together with the associated pointer on every cycle. In a 
simple example we may define the encountered phrases as those that were looked up 
previously (this we term restricted dictionaries), but as we shall see, other useful 
possibilities exist. If there is a collision, the phrase currently occupying that location is 
replaced.  It is thus important that the hash function yield good performance, making 
good use of the available table space by avoiding unnecessary collisions.  We discuss this 
in greater detail below. 
  

IV. RESTRICTED PARSINGS WITH UNRESTRICTED DICTIONARIES 
 
The initial insight for the idea of restricted parsings was the observation, as mentioned 
above, that data in computer memory is often stored on aligned boundaries as a 
consequence of the lengths of the fundamental data types.  This led to the approach 
described in the previous section, where all phrases examined are aligned.  However, for 
short block lengths, this constraint may be overly constrictive. 
 
It is important to note that the fact that the encoding in this scheme is restricted does not 
imply that the phrases stored in the dictionaries need to come from restricted locations. 
For example, one may incorporate in the dictionaries all phrases of a given length 
regardless of their starting point; in this case we say that each of the dictionaries is 
unrestricted. Although physically such dictionaries must be capable handling insertions 
at a correspondingly increased rate, the encoder operation is similar to that outlined 
above.   
This observation becomes particularly valuable when the data being compressed does not 

ICTED PARSINGS WITH ADAPTIVE MODE SELECTION
 

gain which is favored when the correct mode is chosen early.  

conform to the assumptions concerning alignment in data structures. Note that when our 
encoder operates with unrestricted dictionaries it becomes necessary for the pointers to 
consist of enough bits so as to address any location within the decoded data. This is in 
contrast with restricted dictionaries, where the pointers need only point to locations in the 
data that are aligned with the associated phrase length.  
 
Further, unrestricted dictionaries could tax the capacity of the hash tables.  That is, if the 
alignment assumptions are correct, the tables (if of limited size) could fill with irrelevant 
phrases. Thus one may expect that in some cases, the use of unrestricted dictionaries 
could degrade compression performance. In the following we discuss a class of 
algorithms that address these concerns. 
 

V. RESTR  

We assume that any given block either contains aligned data (such as data structures), 
suitable for encoding with restricted dictionaries or general data (such as text), which 
would in principle be benefited by the use of unrestricted dictionaries. As discussed, our 
practical block lengths are very small (512B), so that the data may be expected to be 
homogeneous within a block. Blocks are assumed to be randomly accessed and thus 
decisions of mode selection are made separately for each individual block. An interesting 
aspect of this problem is the tradeoff between the quality of the statistics measured by the 
adaptive encoder, which improves as more data is processed, and the overall compression 



 

  
We present one heuristic solution to this problem. Initially we use unrestricted 

ctionaries and switch to restricted ones if enough evidence supports this decision. Thus 

ionary D, the policy of restricted parsings with unrestricted dictionaries (as 
escribed above) lasts for a specific number N  of phrases of length L (called the training 

the mode selection decision is made for the dictionary D. 
 basic assumption is that after parsing N  phrases the encoder can accurately predict the 

di
initially all possible phrases (of the restricted lengths) are candidates to be incorporated 
in the dictionaries. Nevertheless, we bias the phrases to be associated with aligned 
(restricted) positions via the policy of disallowing the replacement of a phrase if the 
potential victim has an aligned pointer. This way we ensure that the phrases found 
through unrestricted dictionaries are a superset of those phrases found through restricted 
dictionaries. 
 
For each dict
d T
phase), which may be different for varied dictionaries. During the training phase, we 
count (1) the phrases encoded using aligned pointers Mali and (2) the phrases encoded 
using misaligned pointers Mmis. 
 
At the end of the training phase, 
A T
total number of new phrases that would be encoded with unrestricted dictionaries as 
 

NMM ×+ )(   
TLN

ainder of the block in sy
the policy of restricted dictionaries would result in the efficient encoding of
w mbols. Similarly, we assume that 

misali (2) 

here N is the length of the rem
 

 
NM ×   

TLN
he encodings 

tion of what the 
n on either strategy can be estimated by 

ali (3) 

ew phrases. The bit savings due to t
making a reasonable assump average pointer length would be for the 

he strategy that is expected to yield the greatest bit 
vings, which in the case a symbol is equal to a byte are  

Lmisali

unrestricted dictionaries for the remainder of the block (a restricted dictionary pointer 
will always use log2 L lesser bits than its unrestricted counterpart). For such assumption, 
one may average all pointer lengths that could potentially be encountered during the 
encoding; let PL denote the estimate. 
 
The task of the encoder is to choose t
sa
 

)8()( PLMMK −×+×     and    MK × )log8( 2 LPL Lali −−×  (4) 
r the un

l there may be changes in the 

fo tegies res enotes the restricted and restricted stra pectively. The symbol K d
common multiplicative factor in (2) and (3) which is irrelevant for purposes of the 
decision. Since one of the product terms is always independent of the data being encoded 
then the hardware implementation of this scheme is simple. 
 

hen there is a switch of strategies in a dictionary in generaW
statistics tracked for dictionaries of lesser block lengths. For example, if one stops the use 
of unrestricted dictionaries for the 8 byte dictionary, then the frequency of phrases 
encoded using 4 byte and 2 byte dictionaries may increase as a result. This suggests that 
assigning identical training phrases to all dictionaries may not be sensible, and instead 
one should try to allow for new training phases when a change in strategies occurs. On 
the other hand, a late decision to switch a strategy will have lesser effect on the overall 
performance, and thus a sensible balance must be made. For space reasons we do not 
present our full policy; it suffices to state that it follows the model set by the description 
above. 
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Figure 2. Normalized compression ratios of several benchmarks. The absolute compression ratio of 
LZ'77 is also reported at the top of the plot. 

 

V. EXPERIMENTAL EVALUATION 
We present experiments contrasting the new compression algorithm to a standard LZ’77 
implementation with window size 512B and a symbol size of one byte (so that the length 
of all phrases is an integer multiple of a byte). Note that we do not compare to the MXT 
algorithm, which in general has a negligible performance degradation with respect to 
standard LZ’77 due to the parallel parsing. For the restricted parsings algorithm the 
number of entries in each of the three dictionaries is 758 (chosen so that the total storage 
budget is equal to 3KB). 
 
Figure 2 shows the compression ratios of the restricted parsings algorithm with respect to 
different benchmarks and policies. Here, Res, UnRes and Dyn denote restricted 
dictionaries, unrestricted dictionaries and dynamic mode selection, respectively. In order 
to investigate the prediction accuracy of dynamic mode selection, we also show the 
results of restricted parsings with ideal mode selection, which tries both schemes and 
always chooses the best one for the entire block (shown as Oracle). All these results are 
normalized to the compression ratios of an implementation of the LZ’77 algorithm. The 
types of data considered for this experiment are: data resident in webservers (web), 
images of database application data structures (bin), english text from the Calgary corpus 
(txt) and general memory images (mem). From this data it can be seen that the restricted 
dictionaries method does not achieve the compression ratios of LZ’77, with losses (for 
the dynamic switching mode) in the order of 10%-17%. The data shows that restricted 
dictionaries are sometimes the simplest and best strategy among the ones considered (see 
the data for bin), but there are instances in which their performance suffers noticeably 
(web, txt). Similarly, unrestricted dictionaries are desirable for some benchmarks but not 
for bin. Finally, the dynamic switching data shows that it is possible to have a single 



 

strategy that operates within a reasonable distance of an Oracle that can only be 
implemented by encoding the data twice.  
 
An interesting question is to assess the performance degradation of our technique when a 
more stringent hardware budget is imposed. The following table illustrates the 
performance of our compressor when the budget is 1KB, which includes a 512B common 
data buffer and pointer dictionaries with approximately 150 entries each. The results are 
the relative compression ratios to those with 3KB hardware budget. It can be concluded 
that the method is robust to further limitations on hardware resources. 
 

Web-1 Web-2 Bin-1 Bin-2 Bin-3 Txt-1 Txt-2 Mem-1 Mem-2 Mem-3 
0.93 0.93 0.95 0.95 0.95 0.92 0.94 0.96 0.96 0.96 

 
We now give a coarse estimate of the energy usage of an ALDC-type implementation of 
LZ’77 [6] and compare it to our method. The comparison accounts for the energy 
consumed after processing the entire 512 bytes. In ALDC, each byte is matched with the 
previously processed data, which in average across the block is approximately 256 bytes 
resulting in a total average of 1024K 1-bit CAM cell accesses/block (1K = 1024). For this 
SRAM-based approach, the processing of 8 bytes includes looking up pointers in 
dictionaries (seven 9-bit accesses), updating the dictionaries (same count for restricted 
dictionaries or 8 times this for unrestricted ones), and retrieving phrases from the 
common buffer (3*8*8=192 SRAM bit accesses). We shall account for the energy 
consumption of the various comparisons in our algorithm by doubling the latter. The total 
is approximately 32K 1-bit SRAM cell accesses/block for restricted dictionaries and 60K 
for unrestricted ones. An efficient implementation of a CAM cell includes an SRAM cell 
as a building block [14] and thus consumes at least as much power as this cell. Therefore 
it is safe to conclude that the energy consumption of a full LZ implementations is an 
order of magnitude higher of that of this method. 
 
The hardware cost can be estimated in terms of layout area. Regarding this SRAM-based 
approach, the hardware cost primarily comes from the storage arrays of three dictionaries 
and the common buffer. Concurrent 8 reads/writes (writes always after reads) are 
expected for the case of unrestricted dictionary as well as dynamic mode selection. In 
order to reduce the hardware cost required for concurrent operations, banked SRAM is 
used for the storage implementation (instead of multi-ported SRAM cells). According to 
[16] a banked SRAM (with 1-read/write port) to simulate a register file with 8 read and 4 
write ports only incurs ~25% speed loss (due to conflicts) while the layout area is 
reduced to 25-30%. For a SRAM cell with 8 read/write ports, the layout area is around 4 
times of a baseline SRAM cell with 1 read/write port [14]. Thus, the layout area of the 
banked SRAM arrays (to simulate 8 concurrent reads/writes) is around 120% of that of 
baseline SRAM arrays. As to ALDC, a typical implementation (MXT [4]) uses 512-entry 
1-byte CAM arrays with 4 read/write ports so that the processing speed is 4B(Byte)/cycle 
[6]. A baseline CAM cell (with 1 read/write port) is generally twice the area of a baseline 
SRAM cell, and a 4-port CAM cell can be six times the area of a baseline SRAM cell 
[14]. If the restricted parsing (with unrestricted dictionary) uses 3KB banked SRAM, the 
layout area is around 1.1~1.2 times of that of MXT. According to the previous table, the 
silicon cost (layout area) of our approach can be further reduced without significant 
compression loss. For instance, only 40% of MXT layout area is required if 1KB SRAM 
is used while the compression loss is only 6%. Note that these estimations are actually 
pessimistic to our approach, as the processing speeds of two approaches are different: the 
banked SRAM in our approach can achieve maximum processing speed of 8B/cycle (as 
long as there is no conflict) and the average speed of 6-7B/cycle (compared with 
4B/cycle for MXT). 



 

CONCLUSIONS 
Motivated by the problem implfementation efficient, high-bandwidth data compression, 
we have introduced the idea of restricted parsings. This paper addresses the basic 
properties of these parsings and the question of whether they can have compression 
performance close to that of standard techniques such as LZ’77; this question is answered 
in the affirmative through the use of a combination of restricted parsings and various 
dictionary content management policies. Our method can be implemented with SRAM 
arrays. Compared with traditional CAM-based implementations, this approach results in 
comparable compression ratios, comparable silicon cost, lower design complexity, high 
processing speed as well as significantly less energy consumption.  
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