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Abstract 
 
The storage service time distribution at the 
host is introduced as a new metric for 
storage performance. Uses include problem 
determination and application performance 
diagnostics. This metric has considerable 
advantage over tradition storage system 
benchmarks, especially in shared storage 
environments. The utility and limitations of 
the IOWait operating statistic are also 
explored. A methodology to quantify the 
relation between application and storage 
system performance based on symmetric 
treatment of system resources is proposed. 

1 Introduction 
 
Performance of the I/O subsystem can be a 
key component of application and system 
performance. System administrators would 
like to know how application response time 
or throughput is affected by the storage 
subsystem. Can the storage subsystem be 
reconfigured to achieve better application 
performance? Another area of interest is 
how application performance scales with 
increasing load. Is the application scaling 
limited by processor utilization or storage 
system performance? Is it more effective to 
add processing power, or should 
expenditures be directed at the storage tier? 
It is difficult to answer these questions using 
benchmarks of storage components because 

of the variability and complexity of 
application access patterns to storage. 
Furthermore, applications and operating 
systems have adopted sophisticated 
strategies to minimize the effect of the large 
response time differential between memory 
caches and hard disks. 
 
Migration from direct attached storage 
(DAS) devices to storage area networks 
(SAN) adds further complexity to 
understanding the relation between 
application and storage performance. A 
storage area network (SAN) environment 
introduces new degrees of freedom to the 
interaction between hosts and storage. SANs 
add resources such as caches, high end 
storage devices, and increase the 
concurrency of data access. These resources 
potentially improve overall performance 
over DAS. Read and write hits in a SAN 
cache provide an order of magnitude 
improvement in response time for individual 
storage requests that missed the local cache. 
But the overall benefit to an application of 
SAN cache hits depends on many factors. 
These include the application level of 
concurrency of I/O and CPU tasks, read-
ahead and write-back strategies, and the 
relative amount of CPU and storage I/O 
activity. Additionally, SAN resources are 
shared with multiple hosts and response 
times can be degraded by contention for the 
fabric, storage caches, and disk controllers.  
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Traditionally, system administrators address 
these issues by reviewing and analyzing 
cumulative experience to generate ‘best 
practices’ for DAS or SAN device and 
fabric configuration, as well as data 
placement for an application such as a 
database or web server.  
 
The approach taken in this paper is to 
consider host level metrics that contribute to 
understanding how application performance 
is affected by storage. A large number of 
application related performance metrics are 
available at the host. This work is restricted 
to metrics that they do not require 
application instrumentation and have not 
been widely explored in the literature. Two 
that in particular meet these criteria are;  
 

• Service time distribution for storage 
access. This is measured at the Host 
Bus Adapter (HBA). 

 
• IOWait, particularly how IOWait 

scales with application load. 
 
Section 2 is a brief overview of the flow of 
storage requests from a host application to 
SAN storage provider. This helps in 
understanding some of data and analysis. 
Section 3 describes the host metrics studied 
in this paper and how they relate to 
application performance.  Section 3 
describes how each metric addresses some 
of the application and storage performance 
issues in the introductory paragraph of this 
section. The section explains how host level 
service time distributions are used to extract 
key performance features of the backend 
storage boxes. This is a general feature of 
host side measurements. By aggregating 
suitable host metrics it is often possible to 
obtain a quantitative analysis of the 
performance of SAN elements. As noted 
above, the converse is very difficult.  
 

Section 4 explores a quantitative 
understanding of the relation between 
system throughput and response time when 
concurrent jobs use both the processor and 
storage resources. We explore whether these 
very different types of service centers (or 
resources) can be treated equivalently and 
symmetrically when quantifying the effect 
of their performance on overall system 
throughput and response time. 
 
Disclaimer: This paper includes data from 
commercial host platforms, SAN fabric, and 
storage devices executing benchmark 
programs as well as production software. 
The results are not certified in any way and 
should not be used to infer capabilities of the 
platforms; they are for illustrative purposes 
only. 

2 Flow of I/O Requests in a 
SAN 

Figure 1 shows the key elements of a SAN 
that impact the performance of a SAN data 
request. An application I/O request proceeds 
either through the local file system or an 
application specific cache. The latter is 
common for commercial databases which 
allocate a configurable amount of system 
memory for a dedicated cache. 
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Figure 1. Overview of storage request flows in a 
SAN 

 
When the request misses the local cache it is 
queued for handling at the HBA by the 
block device management code in the OS. 
The request may be subdivided or coalesced 
with adjacent blocks during this process. 
The HBA is then responsible for initiating 
the request to the appropriate SAN device 
for servicing. From a performance 
perspective the requests sent to the HBA and 
SAN represent the cache miss penalty 
associated with the application.  
 
The host volume may be directly attached to 
the backend storage host in the logical sense 
(i.e. no intermediary SAN virtualization 
device as the left arrow in the figure), or 
remapped through a storage virtualization 
device (SVD). In the former case the request 
is served out of the storage device cache or 
the backend RAID array for a miss. In the 
latter case of a SAN virtualized volume the 
request is served in the SVD cache or 
redirected to a backend volume.   
 
 

3 Metrics for quantifying 
application and system 
dependence on storage 

 
In practice, it is preferable to find metrics 
that do not require application 
instrumentation or reporting. These can be 
correlated to application specific metrics in 
offline experiments to demonstrate their 
usefulness. We define several metrics that 
can be obtained from the OS and correlated 
with application response times.  
 
Section 3.1 shows that the service time 
distribution is much more valuable than the 
summary response time statistics reported 

by operating systems. Efficient mechanisms 
to collect and store the distribution are the 
subject of Section 4. 
 
The OS statistic IOWait is a potentially 
valuable metric quantifying the relation 
between application and storage 
performance. It is a widely applied for 
troubleshooting system performance, 
typically as a rule of thumb or best practice 
indication that storage is a bottleneck if, for 
example,  it exceeds a threshold such as 
30%. However, it is difficult to interpret the 
relation between this metric and application 
performance when there is significant 
concurrency of software tasks. Tasks that 
use the CPU while others are waiting on IO 
reduce the system IOWait. This masks the 
effect of IO on overall total response time. 
Section 3.2  develops a methodology based 
on IOWait as a function of concurrency that 
enhances the value of IOWait as a 
performance statistic.  
 
Subsection provides some new perspectives 
on more familiar metrics. In particular, the 
significance of concurrency in servicing 
storage requests, especially for a SAN. 

3.1 Service Time Distribution at 
Host Bus Adapter 

Most operating systems report average, min, 
max, and standard deviation of service time 
for reads and writes at each drive. These 
summary statistics of the frequency 
distribution provide a general indication of 
storage performance. However, they are of 
limited value as indications of a storage 
performance problem, or finding a root 
cause, or suggesting a solution. The average 
read response time is sensitive to the cache 
hit ratio (CHR) in the SAN. However, 
temporal variation of the CHR in the SAN is 
expected in normal operating conditions 
because of changing workload from the host 
and its application. Furthermore, SAN 
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caches are shared among hosts leading to 
variability in the CHR seen at a particular 
host.  For these reasons, the traditional drive 
response time statistics are not necessarily 
useful in diagnosing a storage performance 
problem with remote storage.  
 
Storage I/O requests are queued for service 
at the HBA. In the case of multiple HBAs, 
multi-path driver technology is used to load-
balance the requests among the HBAs. The 
service time at the HBA is the time interval 
from when a request is initiated in the SAN 
until an acknowledgement of request 
completion, and data in the case of reads, is 
received back at the HBA. The service time 
distribution is the frequency distribution of 
these response times. Figure 2 shows the 
read response time distribution for four host 
volumes mapped to three exported SAN 
storage volumes, and a local IDE drive. The 
horizontal axis is the response time seen at 
the host. Data are for 4K reads requests on a 
2Gb SAN fabric so the transfer time is small 
( a few microseconds) compared to the 
latency. 
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Figure 2. Service time distribution for several 
SAN devices.  

 
The distributions are typically bimodal. The 
concentration of events with response times 
less than approximately 2ms corresponds to 

cache hits.  The cache hit peak exhibits fine 
structure. This is caused by the presence of 
multiple caches in a SAN. The curve in 
Figure 2 labeled SVC is data from a backend 
RAID storage controller (Engenio FAStT 
700) accessed through an intermediary SVD 
(see Figure 1). The SVC has a large cache 
that produces the fastest response times. 
Requests that miss the SVD cache proceed 
via the SAN fabric to the FAStT. A fraction 
of these requests are serviced from the 
controller cache. This leads to a second 
cache hit peak of the figure.  
 
The peak at longer response times is the 
result of physical disk accesses. Although 
most accesses are serviced in a well defined 
time, an extended tail is present for several 
devices. The tail is indicative of the request 
scheduling and reordering algorithms in the 
SVD and backend storage controllers. 
 
Inclusion of the originating process ID in the 
IO event timing information allows the 
distribution of Figure 2 to be aggregated in a 
number of useful ways. For example by: 
reads, writes, application process, or class of 
process when workload management 
software is available. Instrumentation issues 
are described in section 4. 
 
The service time distribution is a valuable 
source of metrics that quantify how SAN 
performance is reflected at the host. One of 
the most important is the dynamic measure 
of the effective CHR seen at the host. The 
CHR is the ratio of events under the two 
peaks in the service time distribution. For 
example, this allows dynamic measurement 
of the CHR at many levels of aggregation.  
 
There are performance differences between 
local and SAN cache hits. A cache hit in the 
SAN incurs significant overhead relative to 
a hit in the local host. This is caused by the 
fabric protocol time and is about 0.1ms for a 
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2Gb/s fibre channel SAN using the SCSI 
fibre channel protocol (FCP). This exceeds a 
local host cache response time by about a 
factor of 100. However, 0.1ms still 
represents a typical gain of 10 to 100 over a 
physical disk access. (This is one reason 
why host summary stats are not illuminating 
for SAN storage. The average response time 
can vary greatly with a small change in hit 
ratio of remote caches.) Another distinction 
is that a local cache hit does not cause the 
requesting thread to yield the processor, 
while a remote request does. One might 
expect yielding to limit the performance 
benefit of an IO bound process competing 
with a CPU intensive process on a single 
processor machine. However, we found that 
this is not the case. Dispatchers and 
schedulers for major operating systems 
prevent IO thread starvation by providing a 
boost to the process waiting on IO (Linux, 
Windows, AIX, zOS). 
 
The effective SAN CHR can be used in 
several ways to understand and optimize 
application performance. The SAN CHR is 
especially important from a performance 
perspective because it reduces the miss 
penalty of the local host cache. A history of 
SAN CHR can be co-analyzed with similar 
logs of host or application utilization and 
performance. This data establishes baseline 
performance, and measures correlations 
between the application and CHR metrics. 
The general discussion of the relation 
between application performance and the 
metrics such as SAN CHR is delayed until 
section 3.2 because the IOWait metric plays 
a significant role in the analysis.  
 
For applications that do benefit from 
increased cache, many practical 
considerations enter in to the decision of 
whether to place the cache on the hosts or in 
the SAN. These include whether the host OS 
has memory limits, and the cost/gain of 

adding cache to many hosts against a 
centralized SAN cache. When a SAN cache 
offers the best solution, the dynamic SAN 
CHR can be used to optimize this cache. 
Although not available in current SAN 
protocols, many methods of dynamically 
passing information from hosts to SAN 
cache have been proposed (e.g. [1-3]). Host 
based dynamic CHR measurements offer an 
intelligent basis for driving optimizations 
such as hints to SAN caches to dynamically 
prioritize or partition cache space for certain 
hosts or applications.  
 
We briefly comment on other uses of the 
service time distribution. The position and 
width of the peaks can be combined with the 
historic minimum to infer the amount and 
root cause of SAN congestion. A broadening 
and shift of the cache hit peak indicates 
congestion in the fabric or at the cache itself. 
A similar change in the physical disk peak 
indicates contention at the disk controller in 
the backend storage device. This contention 
analysis is presented in detail elsewhere [4]. 
 
The introduction commented that acquisition 
of key storage performance metrics at the 
host provides a more general solution than 
obtaining the statistic from SAN elements. 
The dynamic host CHR metric is an 
example. For a host volume mapped directly 
to an exported RAID device, the statistic can 
be obtained by direct query of the cache 
controller on the backend storage server. 
However, introduction of client based 
logical mapping such as striping or SAN 
based virtualization devices increases the 
difficulty of a non host solution. A 
performance manager would have to 
maintain explicit knowledge of the mapping, 
and perform and aggregate queries of the 
relevant cache controllers.  
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3.2 IOWait 
System IOWait is the fraction of time the 
processor is idle and at least one thread is 
blocked on storage I/O. Figure 3 illustrates 
IOWait for a uniprocessor executing two 
threads. The vertical axis indicates the state 
of each thread as time increases along the 
horizontal axis. Each thread from a pool 
services a request from an input queue. The 
request represents a fixed amount of work, 
for example, building a web page or 
accessing an email. Each request requires 
the CPU, a storage system access, and 
concludes on the CPU. The vertical arrows 
indicate the thread finished the request and 
waits for the next piece of work to enter the 
system. IOWait is accumulated when neither 
thread is executing and IO is pending. On a 
multi-processor the OS reports the average 
over all processors. 

Thread State

Executing

Runnable

IO Pending

Thread 2

Thread 1

IOWait

 
Figure 3.Thread state 

  
IOWait is a function of many factors. A 
change in the frequency or service time of 
storage access reduces IOWait. This can be 
achieved by many well known optimizations 
such as increasing local or remote cache, or 
changing the storage configuration or RAID 
level. Concurrency of access to the storage 
system is an important factor in IOWait. 
Performance degrades when thread 2’s IO 
waits for thread 1’s IO to complete. This is 
especially important for a SAN both at the 

host, and at the storage controller where 
requests from multiple hosts may be forced 
to queue.  
 
IOWait is also reduced by increasing the 
concurrency of workload. Servicing more 
requests in parallel allows the CPU to be 
active while other requests are waiting for 
IO service.  
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Figure 4. Throughput of TPC-C benchmark 

 
Figure 4 shows the throughput of the TPC-C 
benchmark as a function of decreasing 
IOWait. IOWait was varied by using faster 
storage and increasing concurrency 
(multiple TPC clients).  In both the single 
and multi-client data sets storage 
performance is modified by cache 
optimizations. As expected, the single client 
performance scales linearly with IOWait as 
processor utilization increases, with IOWait 
tending to zero with very fast (100% cache 
hit) storage.  
 
Concurrency reduces IOWait as in Figure 3. 
But throughput reaches a plateau because 
the CPU overhead per transaction increases 
with the number of concurrent requests 
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managed by the TPC-C and OS code. 
Concurrency has exposed the nonlinear 
scaling of the TPC application. In this case, 
storage performance degrades the response 
time of requests, but the throughput is CPU 
limited. It is not possible to quantify the 
relation between response time and storage 
performance from the data of the figure, 
illustrating a weakness of the IOWait 
statistic.  
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Figure 5. Scaling of IOWait with concurrency for 
TPC-C 

 
Figure 5 isolates the effect of concurrency 
on IOWait. IOWait decreases as processes 
consume CPU while others are serviced in 
the IO system. At a concurrency of 4 clients, 
access to the storage system appears to 
become serialized. This prevents the system 
from becoming CPU limited.  
 
In general, three types of scaling behavior of 
IOWait with concurrency (n) are possible, as 
indicated in Figure 6, which we now 
explain. The path taken by the system 
depends on the relative scaling of CPU(n) 
and IOWait(n). CPU(n) is the amount of 
processor time required to complete a unit of 
work when ‘n’ threads are concurrently 
servicing work. CPU(n) increases with n 
because both application and kernel 
operations require more cycles to manage 

data structures and scheduling. Similarly, 
IOWait(n) increases as requests queue 
awaiting access to the storage system.  
 
In the storage limited pattern IOWait(n) is 
growing faster than CPU(n). Additional 
work uses some of the CPU cycles available 
during IOWait, but causes the IO delay for 
all jobs to increase. Thus IOWait reaches a 
point where it fails to decrease. The storage 
limited pattern occurs when the storage 
system cannot concurrently service the 
increased number of IO requests. Request 
queuing mitigates the potential gain in CPU 
utilization and application throughput. The 
bottleneck can occur as a software lock (e.g. 
database table), at the HBA or the backend 
storage controller. Commercial HBA cards 
are often specified as having the capability 
to handle 256 outstanding FCP requests. 
However, we have observed that the drivers 
saturate at 32 requests. HBA concurrency is 
improved by adding FCP adapter cards and 
a multi-path driver which supports dynamic 
load balancing between the cards. Queuing 
at the backend controller is reduced by 
distributing requests across controllers. Best 
practices emphasize the importance of data 
striping across large numbers of disks and 
controllers [5]. 
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Figure 6. IOWait as function of concurrency 
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In the CPU limited condition, CPU(n) grows 
faster than IO(n). The extra CPU cycles 
quickly fill in the processor idle time during 
IOWait as concurrency is increased. CPU 
utilization approaches 100%. This situation 
typically occurs when CPU utilization and 
concurrency are high. The balanced state is a 
subset of the CPU limited condition in 
which CPU utilization is scaling linearly 
with increasing clients.  
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Figure 7. CPU and IOWait 

Another perspective on the relation between 
IOWait, CPU, and concurrency is provided 
in Figure 7. The data are taken from a 
production Domino Version 6 mail server 
running on an AIX partition and present a 
scatter plot of IOWait and CPU samples 
taken over the prime shift. During this time 
the number of concurrent user sessions 
varies from approximately 180 to 1000. 
Figure 8 shows the CPU utilization for the 
data of Figure 7 as a function of the number 
of concurrent user sessions. User sessions 
have long term persistence and include user 
think time so they do not directly translate to 
number of concurrent requests active on the 
server. However, as indicated by the 
linearity of the CPU utilization data, the 
session count is a reasonable proxy for 
concurrent work load.  
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Figure 8. CPU utilization  

The storage system distributes mail files 
across 72 hard disks attached by a serial 
SSA bus in order to distribute load 
 
This system demonstrates an interesting 
behavior of IOWait with the number of 
concurrent session. After an initial increase, 
IOWait plateaus at about 30%, even as 
average CPU utilization increases. The 
plateau occurs because the Domino server 
has an admission policy that limits the 
amount of work in the system to N jobs. As 
the sessions increase, requests are queued 
‘externally’ i.e. not admitted to the processor 
center when they exceed N. As the sessions 
increase more overall time is spent handling 
jobs so CPU increases at the expense of idle 
time. However, because the number being 
concurrently serviced in the processor or 
storage can never exceed N the IOWait 
doesn’t decrease. This case illustrates the 
difficulty of interpreting the IOWait statistic. 
 
It would be much more useful to have a 
metric that directly agrees with our intuition 
of what storage utilization would be. This 
metric would allow a fully symmetric 
treatment of the processor and storage 
resources. This subject is pursued in section 
4. 
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3.3 Concurrent I/Os 
Most adapters report utilization, commonly 
defined as the fraction of elapsed time that 
an I/O request is pending on the adapter. 
This definition is usually deficient because 
adapters and protocols are often capable of 
supporting multiple concurrent requests. A 
high reported utilization does not mean the 
adapter or SAN channel is a bottleneck. 
Thus, it is useful to measure the distribution 
of outstanding requests at the adapter. For 
SCSI over FCP we have observed that 
current cards (e.g. QLogic 2300) support up 
to 32 outstanding requests. When the 
average number of outstanding requests is at 
the HBA limit the host can benefit from an 
additional adapter and parallel connection to 
the SAN. A significant benefit of SAN 
storage over direct attached is the 
concurrency of request service. 
 

4 Relating storage 
performance to 
application performance 

 
The primary metrics at the application level 
are throughput and response time. These 
depend on the programming model, 
processor, and storage performance. Some 
of the central questions we would like to 
address from system metrics are:  

 
• How do application performance 

metrics respond to changes in 
processing power, storage response 
time, or the programming model? 

 
• If application demand grows how 

will response time scale and what is 
the bottleneck resource? 

 
• When storage is the bottleneck, what 

area of the system or storage 
infrastructure can be improved to 

provide the greatest application level 
benefit?  

 
• What is the most cost effective way 

to improve application performance 
metrics? 

 
Furthermore, we would like to express the 
answers in terms of metrics and analysis that 
is familiar and readily comprehended by 
system administrators. In general, these 
questions cannot be answered without 
detailed knowledge of the application 
resource demand and possibly the 
introduction of new OS level metrics.  
 
We now explore the impediments to a 
general solution to gain insight on the 
metrics and analysis required to provide 
direct answers. 
 
One difficulty is the asymmetry in the 
typical treatment of CPU and storage 
utilization. CPU utilization is the fraction of 
time the processor is occupied. This statistic 
is generally accepted considered to be a 
linear measure of the amount of work done 
in the CPU. The comparable definition (the 
fraction of time that one or more requests 
are outstanding at a disk controller) does not 
apply to a storage system. A disk has many 
optimizations such as cache, read-ahead, and 
request reordering. The effect of these on 
service time for different request workloads 
(defined by locality of reference) is highly 
variable. Thus storage utilization should be 
treated within the context of a flow 
dependent service center i.e. the throughput 
is a function of the number of jobs in the 
service center [6]. 
 
In fact, closer examination of the processor 
utilization metric shows similar difficulties. 
CPU utilization does not always represent a 
proportional measure of progress. The 
processor is subject to workload dependent 
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variables such as efficiency of hyper-
threading architectures, memory stalls, and 
load dependent cache effects, especially in a 
multiprocessor environment.  
 

 
Figure 9. Symmetric view of CPU and IO 
utilization 

A symmetric treatment of resource 
utilization is presented in Figure 9. The area 
of the box represents a utilization of unity. 
The size of each set represents the 
corresponding resource utilization of the 
CPU and IO subsystems. The shape is not 
important here. Joint utilization is 
proportional to the overlap, and IOWait is 
the fraction of storage utilization when CPU 
is idle. Figure 9 shows how the archetypical 
behaviors discussed in the context of Figure 
6 are represented when resource utilizations 
are treated uniformly. The lines are the paths 
taken in utilization space as the load 
increases. 
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behavior with load. 

 
Knowledge of the utilizations and how they 
scale with load allows determination of the 
limiting resource and the maximum 
achievable throughput. It also provides a 
means to quantify the value of performance 
improvements to either the processor or 
storage systems. Joint utilization is a useful 
indication of the concurrent resource access 
of the application programming model.  
 
The other important application metric, 
response time, is not readily inferred from 
this data. It requires approximate knowledge 
of the periods of time spent at the resource 

5 Conclusions 
This work explores the merits of host based 
metrics for storage performance, and how 
they relate to application performance, with 
particular emphasis on a shared storage 
environment such as a SAN.  The service 
time distribution at the host bus adapter 
provides a unique perspective on how 
storage accesses are perceived by an 
application program. It allows 
measurements of the dynamic cache hit 

CPU 
 IO 
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ratio, as well as indicates where 
performance bottlenecks occur.  
 
Accurately relating storage performance to 
quantitative application metrics such as 
throughput and response time is a difficult 
problem. The IOWait statistic is useful in 
certain circumstances as a measure of when 
storage utilization reaches 100%. This 
allows estimation of how the limiting 
throughput might change if the storage 
system is reconfigured. However, more 
information is required to predict how 
application throughput and service time 
respond to more general changes. The goal 
is a uniform methodology to measure 
utilization for all resources that the 
application consumes. This is a challenge 
because the maximum throughput of the 
storage system depends on workload, so 
new metrics are needed to represent this 
load dependent service center. 
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