
RC23812 (W0511-148) November 21, 2005
Computer Science

IBM Research Report

Host Metrics to Relate Application Performance to
Storage Performance

Norman Bobroff, Kirk A. Beaty, Andrzej Kochut
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Host Metrics to Relate Application
Performance to Storage Performance

Norman Bobroff, Kirk A. Beaty, Andrzej Kochut
IBM T.J. Watson Research Center
{bobroff, kirkbeaty, akochut}@us.ibm.com

Abstract

The storage service time distribution at the
host is introduced as a new metric for
storage performance. Uses include problem
determination and application performance
diagnostics. This metric has considerable
advantage over tradition storage system
benchmarks, especially in shared storage
environments. The utility and limitations of
the IOWait operating statistic are also
explored. A methodology to quantify the
relation between application and storage
system performance based on symmetric
treatment of system resources is proposed.

1 Introduction

Performance of the I/O subsystem can be a
key component of application and system
performance. System administrators would
like to know how application response time
or throughput is affected by the storage
subsystem. Can the storage subsystem be
reconfigured to achieve better application
performance? Another area of interest is
how application performance scales with
increasing load. Is the application scaling
limited by processor utilization or storage
system performance? Is it more effective to
add processing power, or should
expenditures be directed at the storage tier?
It is difficult to answer these questions using
benchmarks of storage components because

of the variability and complexity of
application access patterns to storage.
Furthermore, applications and operating
systems have adopted sophisticated
strategies to minimize the effect of the large
response time differential between memory
caches and hard disks.

Migration from direct attached storage
(DAS) devices to storage area networks
(SAN) adds further complexity to
understanding the relation between
application and storage performance. A
storage area network (SAN) environment
introduces new degrees of freedom to the
interaction between hosts and storage. SANs
add resources such as caches, high end
storage devices, and increase the
concurrency of data access. These resources
potentially improve overall performance
over DAS. Read and write hits in a SAN
cache provide an order of magnitude
improvement in response time for individual
storage requests that missed the local cache.
But the overall benefit to an application of
SAN cache hits depends on many factors.
These include the application level of
concurrency of I/O and CPU tasks, read-
ahead and write-back strategies, and the
relative amount of CPU and storage I/O
activity. Additionally, SAN resources are
shared with multiple hosts and response
times can be degraded by contention for the
fabric, storage caches, and disk controllers.

 2

Traditionally, system administrators address
these issues by reviewing and analyzing
cumulative experience to generate ‘best
practices’ for DAS or SAN device and
fabric configuration, as well as data
placement for an application such as a
database or web server.

The approach taken in this paper is to
consider host level metrics that contribute to
understanding how application performance
is affected by storage. A large number of
application related performance metrics are
available at the host. This work is restricted
to metrics that they do not require
application instrumentation and have not
been widely explored in the literature. Two
that in particular meet these criteria are;

• Service time distribution for storage
access. This is measured at the Host
Bus Adapter (HBA).

• IOWait, particularly how IOWait

scales with application load.

Section 2 is a brief overview of the flow of
storage requests from a host application to
SAN storage provider. This helps in
understanding some of data and analysis.
Section 3 describes the host metrics studied
in this paper and how they relate to
application performance. Section 3
describes how each metric addresses some
of the application and storage performance
issues in the introductory paragraph of this
section. The section explains how host level
service time distributions are used to extract
key performance features of the backend
storage boxes. This is a general feature of
host side measurements. By aggregating
suitable host metrics it is often possible to
obtain a quantitative analysis of the
performance of SAN elements. As noted
above, the converse is very difficult.

Section 4 explores a quantitative
understanding of the relation between
system throughput and response time when
concurrent jobs use both the processor and
storage resources. We explore whether these
very different types of service centers (or
resources) can be treated equivalently and
symmetrically when quantifying the effect
of their performance on overall system
throughput and response time.

Disclaimer: This paper includes data from
commercial host platforms, SAN fabric, and
storage devices executing benchmark
programs as well as production software.
The results are not certified in any way and
should not be used to infer capabilities of the
platforms; they are for illustrative purposes
only.

2 Flow of I/O Requests in a
SAN

Figure 1 shows the key elements of a SAN
that impact the performance of a SAN data
request. An application I/O request proceeds
either through the local file system or an
application specific cache. The latter is
common for commercial databases which
allocate a configurable amount of system
memory for a dedicated cache.

SCSI front end
LUN Block Cache

SCSI Back End
Redirection Layer

Application
File SystemApplication Cache

File System Cache

Host Bus Adapter
Block Device Layers (logical volumes, vdisks)

SCSI front end
Volume Block Cache

Hard Disks

SVD

Storage

Host

SCSI front end
Volume Block Cache

Hard Disks

 3

Figure 1. Overview of storage request flows in a
SAN

When the request misses the local cache it is
queued for handling at the HBA by the
block device management code in the OS.
The request may be subdivided or coalesced
with adjacent blocks during this process.
The HBA is then responsible for initiating
the request to the appropriate SAN device
for servicing. From a performance
perspective the requests sent to the HBA and
SAN represent the cache miss penalty
associated with the application.

The host volume may be directly attached to
the backend storage host in the logical sense
(i.e. no intermediary SAN virtualization
device as the left arrow in the figure), or
remapped through a storage virtualization
device (SVD). In the former case the request
is served out of the storage device cache or
the backend RAID array for a miss. In the
latter case of a SAN virtualized volume the
request is served in the SVD cache or
redirected to a backend volume.

3 Metrics for quantifying
application and system
dependence on storage

In practice, it is preferable to find metrics
that do not require application
instrumentation or reporting. These can be
correlated to application specific metrics in
offline experiments to demonstrate their
usefulness. We define several metrics that
can be obtained from the OS and correlated
with application response times.

Section 3.1 shows that the service time
distribution is much more valuable than the
summary response time statistics reported

by operating systems. Efficient mechanisms
to collect and store the distribution are the
subject of Section 4.

The OS statistic IOWait is a potentially
valuable metric quantifying the relation
between application and storage
performance. It is a widely applied for
troubleshooting system performance,
typically as a rule of thumb or best practice
indication that storage is a bottleneck if, for
example, it exceeds a threshold such as
30%. However, it is difficult to interpret the
relation between this metric and application
performance when there is significant
concurrency of software tasks. Tasks that
use the CPU while others are waiting on IO
reduce the system IOWait. This masks the
effect of IO on overall total response time.
Section 3.2 develops a methodology based
on IOWait as a function of concurrency that
enhances the value of IOWait as a
performance statistic.

Subsection provides some new perspectives
on more familiar metrics. In particular, the
significance of concurrency in servicing
storage requests, especially for a SAN.

3.1 Service Time Distribution at
Host Bus Adapter

Most operating systems report average, min,
max, and standard deviation of service time
for reads and writes at each drive. These
summary statistics of the frequency
distribution provide a general indication of
storage performance. However, they are of
limited value as indications of a storage
performance problem, or finding a root
cause, or suggesting a solution. The average
read response time is sensitive to the cache
hit ratio (CHR) in the SAN. However,
temporal variation of the CHR in the SAN is
expected in normal operating conditions
because of changing workload from the host
and its application. Furthermore, SAN

 4

caches are shared among hosts leading to
variability in the CHR seen at a particular
host. For these reasons, the traditional drive
response time statistics are not necessarily
useful in diagnosing a storage performance
problem with remote storage.

Storage I/O requests are queued for service
at the HBA. In the case of multiple HBAs,
multi-path driver technology is used to load-
balance the requests among the HBAs. The
service time at the HBA is the time interval
from when a request is initiated in the SAN
until an acknowledgement of request
completion, and data in the case of reads, is
received back at the HBA. The service time
distribution is the frequency distribution of
these response times. Figure 2 shows the
read response time distribution for four host
volumes mapped to three exported SAN
storage volumes, and a local IDE drive. The
horizontal axis is the response time seen at
the host. Data are for 4K reads requests on a
2Gb SAN fabric so the transfer time is small
(a few microseconds) compared to the
latency.

Service Time Distributions

0

5000

10000

15000

20000

25000

30000

0 0.4 0.8 1.2 1.6 2 10 18 26 34 42 50 58 66 74 82 90 98

ESS FAStT SVC IDE
Figure 2. Service time distribution for several
SAN devices.

The distributions are typically bimodal. The
concentration of events with response times
less than approximately 2ms corresponds to

cache hits. The cache hit peak exhibits fine
structure. This is caused by the presence of
multiple caches in a SAN. The curve in
Figure 2 labeled SVC is data from a backend
RAID storage controller (Engenio FAStT
700) accessed through an intermediary SVD
(see Figure 1). The SVC has a large cache
that produces the fastest response times.
Requests that miss the SVD cache proceed
via the SAN fabric to the FAStT. A fraction
of these requests are serviced from the
controller cache. This leads to a second
cache hit peak of the figure.

The peak at longer response times is the
result of physical disk accesses. Although
most accesses are serviced in a well defined
time, an extended tail is present for several
devices. The tail is indicative of the request
scheduling and reordering algorithms in the
SVD and backend storage controllers.

Inclusion of the originating process ID in the
IO event timing information allows the
distribution of Figure 2 to be aggregated in a
number of useful ways. For example by:
reads, writes, application process, or class of
process when workload management
software is available. Instrumentation issues
are described in section 4.

The service time distribution is a valuable
source of metrics that quantify how SAN
performance is reflected at the host. One of
the most important is the dynamic measure
of the effective CHR seen at the host. The
CHR is the ratio of events under the two
peaks in the service time distribution. For
example, this allows dynamic measurement
of the CHR at many levels of aggregation.

There are performance differences between
local and SAN cache hits. A cache hit in the
SAN incurs significant overhead relative to
a hit in the local host. This is caused by the
fabric protocol time and is about 0.1ms for a

 5

2Gb/s fibre channel SAN using the SCSI
fibre channel protocol (FCP). This exceeds a
local host cache response time by about a
factor of 100. However, 0.1ms still
represents a typical gain of 10 to 100 over a
physical disk access. (This is one reason
why host summary stats are not illuminating
for SAN storage. The average response time
can vary greatly with a small change in hit
ratio of remote caches.) Another distinction
is that a local cache hit does not cause the
requesting thread to yield the processor,
while a remote request does. One might
expect yielding to limit the performance
benefit of an IO bound process competing
with a CPU intensive process on a single
processor machine. However, we found that
this is not the case. Dispatchers and
schedulers for major operating systems
prevent IO thread starvation by providing a
boost to the process waiting on IO (Linux,
Windows, AIX, zOS).

The effective SAN CHR can be used in
several ways to understand and optimize
application performance. The SAN CHR is
especially important from a performance
perspective because it reduces the miss
penalty of the local host cache. A history of
SAN CHR can be co-analyzed with similar
logs of host or application utilization and
performance. This data establishes baseline
performance, and measures correlations
between the application and CHR metrics.
The general discussion of the relation
between application performance and the
metrics such as SAN CHR is delayed until
section 3.2 because the IOWait metric plays
a significant role in the analysis.

For applications that do benefit from
increased cache, many practical
considerations enter in to the decision of
whether to place the cache on the hosts or in
the SAN. These include whether the host OS
has memory limits, and the cost/gain of

adding cache to many hosts against a
centralized SAN cache. When a SAN cache
offers the best solution, the dynamic SAN
CHR can be used to optimize this cache.
Although not available in current SAN
protocols, many methods of dynamically
passing information from hosts to SAN
cache have been proposed (e.g. [1-3]). Host
based dynamic CHR measurements offer an
intelligent basis for driving optimizations
such as hints to SAN caches to dynamically
prioritize or partition cache space for certain
hosts or applications.

We briefly comment on other uses of the
service time distribution. The position and
width of the peaks can be combined with the
historic minimum to infer the amount and
root cause of SAN congestion. A broadening
and shift of the cache hit peak indicates
congestion in the fabric or at the cache itself.
A similar change in the physical disk peak
indicates contention at the disk controller in
the backend storage device. This contention
analysis is presented in detail elsewhere [4].

The introduction commented that acquisition
of key storage performance metrics at the
host provides a more general solution than
obtaining the statistic from SAN elements.
The dynamic host CHR metric is an
example. For a host volume mapped directly
to an exported RAID device, the statistic can
be obtained by direct query of the cache
controller on the backend storage server.
However, introduction of client based
logical mapping such as striping or SAN
based virtualization devices increases the
difficulty of a non host solution. A
performance manager would have to
maintain explicit knowledge of the mapping,
and perform and aggregate queries of the
relevant cache controllers.

 6

3.2 IOWait
System IOWait is the fraction of time the
processor is idle and at least one thread is
blocked on storage I/O. Figure 3 illustrates
IOWait for a uniprocessor executing two
threads. The vertical axis indicates the state
of each thread as time increases along the
horizontal axis. Each thread from a pool
services a request from an input queue. The
request represents a fixed amount of work,
for example, building a web page or
accessing an email. Each request requires
the CPU, a storage system access, and
concludes on the CPU. The vertical arrows
indicate the thread finished the request and
waits for the next piece of work to enter the
system. IOWait is accumulated when neither
thread is executing and IO is pending. On a
multi-processor the OS reports the average
over all processors.

Thread State

Executing

Runnable

IO Pending

Thread 2

Thread 1

IOWait

Figure 3.Thread state

IOWait is a function of many factors. A
change in the frequency or service time of
storage access reduces IOWait. This can be
achieved by many well known optimizations
such as increasing local or remote cache, or
changing the storage configuration or RAID
level. Concurrency of access to the storage
system is an important factor in IOWait.
Performance degrades when thread 2’s IO
waits for thread 1’s IO to complete. This is
especially important for a SAN both at the

host, and at the storage controller where
requests from multiple hosts may be forced
to queue.

IOWait is also reduced by increasing the
concurrency of workload. Servicing more
requests in parallel allows the CPU to be
active while other requests are waiting for
IO service.

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

0.0 50.0 100.0
IOWAIT Pct

TP
S

Single Client Multi Client

Figure 4. Throughput of TPC-C benchmark

Figure 4 shows the throughput of the TPC-C
benchmark as a function of decreasing
IOWait. IOWait was varied by using faster
storage and increasing concurrency
(multiple TPC clients). In both the single
and multi-client data sets storage
performance is modified by cache
optimizations. As expected, the single client
performance scales linearly with IOWait as
processor utilization increases, with IOWait
tending to zero with very fast (100% cache
hit) storage.

Concurrency reduces IOWait as in Figure 3.
But throughput reaches a plateau because
the CPU overhead per transaction increases
with the number of concurrent requests

 7

managed by the TPC-C and OS code.
Concurrency has exposed the nonlinear
scaling of the TPC application. In this case,
storage performance degrades the response
time of requests, but the throughput is CPU
limited. It is not possible to quantify the
relation between response time and storage
performance from the data of the figure,
illustrating a weakness of the IOWait
statistic.

0

20

40

60

80

100

0 5 10 15

Concurrent Clients

IO
W

ai
t

Figure 5. Scaling of IOWait with concurrency for
TPC-C

Figure 5 isolates the effect of concurrency
on IOWait. IOWait decreases as processes
consume CPU while others are serviced in
the IO system. At a concurrency of 4 clients,
access to the storage system appears to
become serialized. This prevents the system
from becoming CPU limited.

In general, three types of scaling behavior of
IOWait with concurrency (n) are possible, as
indicated in Figure 6, which we now
explain. The path taken by the system
depends on the relative scaling of CPU(n)
and IOWait(n). CPU(n) is the amount of
processor time required to complete a unit of
work when ‘n’ threads are concurrently
servicing work. CPU(n) increases with n
because both application and kernel
operations require more cycles to manage

data structures and scheduling. Similarly,
IOWait(n) increases as requests queue
awaiting access to the storage system.

In the storage limited pattern IOWait(n) is
growing faster than CPU(n). Additional
work uses some of the CPU cycles available
during IOWait, but causes the IO delay for
all jobs to increase. Thus IOWait reaches a
point where it fails to decrease. The storage
limited pattern occurs when the storage
system cannot concurrently service the
increased number of IO requests. Request
queuing mitigates the potential gain in CPU
utilization and application throughput. The
bottleneck can occur as a software lock (e.g.
database table), at the HBA or the backend
storage controller. Commercial HBA cards
are often specified as having the capability
to handle 256 outstanding FCP requests.
However, we have observed that the drivers
saturate at 32 requests. HBA concurrency is
improved by adding FCP adapter cards and
a multi-path driver which supports dynamic
load balancing between the cards. Queuing
at the backend controller is reduced by
distributing requests across controllers. Best
practices emphasize the importance of data
striping across large numbers of disks and
controllers [5].

0
10
20
30
40
50
60

0 20 40

Active Threads

IO
W

ai
t

Storage Limited
Balanced

CPU Limited

Figure 6. IOWait as function of concurrency

 8

In the CPU limited condition, CPU(n) grows
faster than IO(n). The extra CPU cycles
quickly fill in the processor idle time during
IOWait as concurrency is increased. CPU
utilization approaches 100%. This situation
typically occurs when CPU utilization and
concurrency are high. The balanced state is a
subset of the CPU limited condition in
which CPU utilization is scaling linearly
with increasing clients.

0%

10%

20%

30%

40%

50%

60%

0% 10% 20% 30% 40% 50% 60% 70%

CPU

IO
W

ai
t

Figure 7. CPU and IOWait

Another perspective on the relation between
IOWait, CPU, and concurrency is provided
in Figure 7. The data are taken from a
production Domino Version 6 mail server
running on an AIX partition and present a
scatter plot of IOWait and CPU samples
taken over the prime shift. During this time
the number of concurrent user sessions
varies from approximately 180 to 1000.
Figure 8 shows the CPU utilization for the
data of Figure 7 as a function of the number
of concurrent user sessions. User sessions
have long term persistence and include user
think time so they do not directly translate to
number of concurrent requests active on the
server. However, as indicated by the
linearity of the CPU utilization data, the
session count is a reasonable proxy for
concurrent work load.

0%

10%

20%

30%

40%

50%

60%

70%

0 200 400 600 800 1000 1200

Sessions

Pr
oc

es
so

r U
til

iz
at

io
n

Figure 8. CPU utilization

The storage system distributes mail files
across 72 hard disks attached by a serial
SSA bus in order to distribute load

This system demonstrates an interesting
behavior of IOWait with the number of
concurrent session. After an initial increase,
IOWait plateaus at about 30%, even as
average CPU utilization increases. The
plateau occurs because the Domino server
has an admission policy that limits the
amount of work in the system to N jobs. As
the sessions increase, requests are queued
‘externally’ i.e. not admitted to the processor
center when they exceed N. As the sessions
increase more overall time is spent handling
jobs so CPU increases at the expense of idle
time. However, because the number being
concurrently serviced in the processor or
storage can never exceed N the IOWait
doesn’t decrease. This case illustrates the
difficulty of interpreting the IOWait statistic.

It would be much more useful to have a
metric that directly agrees with our intuition
of what storage utilization would be. This
metric would allow a fully symmetric
treatment of the processor and storage
resources. This subject is pursued in section
4.

 9

3.3 Concurrent I/Os
Most adapters report utilization, commonly
defined as the fraction of elapsed time that
an I/O request is pending on the adapter.
This definition is usually deficient because
adapters and protocols are often capable of
supporting multiple concurrent requests. A
high reported utilization does not mean the
adapter or SAN channel is a bottleneck.
Thus, it is useful to measure the distribution
of outstanding requests at the adapter. For
SCSI over FCP we have observed that
current cards (e.g. QLogic 2300) support up
to 32 outstanding requests. When the
average number of outstanding requests is at
the HBA limit the host can benefit from an
additional adapter and parallel connection to
the SAN. A significant benefit of SAN
storage over direct attached is the
concurrency of request service.

4 Relating storage
performance to
application performance

The primary metrics at the application level
are throughput and response time. These
depend on the programming model,
processor, and storage performance. Some
of the central questions we would like to
address from system metrics are:

• How do application performance

metrics respond to changes in
processing power, storage response
time, or the programming model?

• If application demand grows how

will response time scale and what is
the bottleneck resource?

• When storage is the bottleneck, what

area of the system or storage
infrastructure can be improved to

provide the greatest application level
benefit?

• What is the most cost effective way

to improve application performance
metrics?

Furthermore, we would like to express the
answers in terms of metrics and analysis that
is familiar and readily comprehended by
system administrators. In general, these
questions cannot be answered without
detailed knowledge of the application
resource demand and possibly the
introduction of new OS level metrics.

We now explore the impediments to a
general solution to gain insight on the
metrics and analysis required to provide
direct answers.

One difficulty is the asymmetry in the
typical treatment of CPU and storage
utilization. CPU utilization is the fraction of
time the processor is occupied. This statistic
is generally accepted considered to be a
linear measure of the amount of work done
in the CPU. The comparable definition (the
fraction of time that one or more requests
are outstanding at a disk controller) does not
apply to a storage system. A disk has many
optimizations such as cache, read-ahead, and
request reordering. The effect of these on
service time for different request workloads
(defined by locality of reference) is highly
variable. Thus storage utilization should be
treated within the context of a flow
dependent service center i.e. the throughput
is a function of the number of jobs in the
service center [6].

In fact, closer examination of the processor
utilization metric shows similar difficulties.
CPU utilization does not always represent a
proportional measure of progress. The
processor is subject to workload dependent

 10

variables such as efficiency of hyper-
threading architectures, memory stalls, and
load dependent cache effects, especially in a
multiprocessor environment.

Figure 9. Symmetric view of CPU and IO
utilization

A symmetric treatment of resource
utilization is presented in Figure 9. The area
of the box represents a utilization of unity.
The size of each set represents the
corresponding resource utilization of the
CPU and IO subsystems. The shape is not
important here. Joint utilization is
proportional to the overlap, and IOWait is
the fraction of storage utilization when CPU
is idle. Figure 9 shows how the archetypical
behaviors discussed in the context of Figure
6 are represented when resource utilizations
are treated uniformly. The lines are the paths
taken in utilization space as the load
increases.

0

0.5

1

0 0.5 1

CPU Util

St
or

ag
e

U
til

balanced
CPU
Storage

Figure 10. CPU and storage utilization archetype
behavior with load.

Knowledge of the utilizations and how they
scale with load allows determination of the
limiting resource and the maximum
achievable throughput. It also provides a
means to quantify the value of performance
improvements to either the processor or
storage systems. Joint utilization is a useful
indication of the concurrent resource access
of the application programming model.

The other important application metric,
response time, is not readily inferred from
this data. It requires approximate knowledge
of the periods of time spent at the resource

5 Conclusions
This work explores the merits of host based
metrics for storage performance, and how
they relate to application performance, with
particular emphasis on a shared storage
environment such as a SAN. The service
time distribution at the host bus adapter
provides a unique perspective on how
storage accesses are perceived by an
application program. It allows
measurements of the dynamic cache hit

CPU
 IO

 11

ratio, as well as indicates where
performance bottlenecks occur.

Accurately relating storage performance to
quantitative application metrics such as
throughput and response time is a difficult
problem. The IOWait statistic is useful in
certain circumstances as a measure of when
storage utilization reaches 100%. This
allows estimation of how the limiting
throughput might change if the storage
system is reconfigured. However, more
information is required to predict how
application throughput and service time
respond to more general changes. The goal
is a uniform methodology to measure
utilization for all resources that the
application consumes. This is a challenge
because the maximum throughput of the
storage system depends on workload, so
new metrics are needed to represent this
load dependent service center.

6 Acknowledgements

We want to thank Varada Manavalan and
Brian Lynch for helping us to obtain data
key to our experimentation from IBM GNA
production servers.

References

[1] Lakshmi N. Bairavasundaram, Muthian
Sivathanu, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau. X-RAY: A Non-
Invasive Exclusive Caching Mechanism for
RAIDs. In Proceedings of the 31st Annual
International Symposium on Computer Architecture
(ISCA '04) , Munich, Germany, June 2004.

[2] Zhifeng Chen, Yuanyuan Zhou and Kai
Li. Eviction-based Placement for Storage
Caches. The Proceedings of the USENIX

Technical Conference (USENIX'03), June
2003

[3] Theodore M. Wong, John Wilkes. My
cache of yours? Making storage more
exclusive. USENIX Annual Technical
Conference (USENIX 2002), pp 161-175
(Monterey, CA, June 2002).

[4] A. Kochut, N. Bobroff, K. Beaty, G. Kar.
Management Issues in Storage Area
Networks: Detection and Isolation of
Performance Problems. In proceedings
NOMS 2004 VX, (Seoul)

[5] Bob Larson. Wide Thin Disk Striping.
Sun blueprints online, October 2000,
http://www.sun.com/blueprints

[6] Edward D. Lazowska, John Zahorjan, G.
Scott Graham, Kenneth C. Sevolk.
Quantitative System Performance, Prentice-
Hall 1984, ISBN 0-13-746975-6

http://www.cs.wisc.edu/%7Elaksh/
http://www.cs.wisc.edu/%7Emuthian/
http://www.cs.wisc.edu/%7Emuthian/
http://www.cs.wisc.edu/%7Edusseau/
http://www.cs.wisc.edu/%7Eremzi/
http://www-faculty.cs.uiuc.edu/%7Eyyzhou/paper/USENIX03.pdf
http://www-faculty.cs.uiuc.edu/%7Eyyzhou/paper/USENIX03.pdf
http://www.sun.com/blueprints

	Introduction
	Flow of I/O Requests in a SAN
	Metrics for quantifying application and system dependence on storage
	Service Time Distribution at Host Bus Adapter
	IOWait
	Concurrent I/Os

	Relating storage performance to application performance
	Conclusions
	Acknowledgements
	References

