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On the number of Euclidean ordinary points for
lines in the plane

Jonathan Lenchner? and Hervé Brönnimann??

Abstract. Given an arrangement of n not all coincident, not all parallel
lines in the (projective or) Euclidean plane we have earlier shown that
there must be at least (5n+6)/39 Euclidean ordinary points. We improve
this result to n/6.

1 Sylvester’s problem in the Euclidean plane

The classical Theorem of Sylvester and Gallai states that given a set
of n not all collinear points in the plane, there must be at least one
line which passes through exactly two of the points. The theorem has a
corresponding dual statement, namely that any collection of n lines in
the projective plane has at least one point where precisely two of the
lines intersect. We call such a point an ordinary point. The Theorem of
Sylvester and Gallai is known to follow from Euler’s formula for projective
arrangements. See Felsner’s excellent treatment of Sylvester problem [3]
for details.

Many proofs of the Sylvester-Gallai theorem are known, the first of
which was given by Gallai in 1944 [4]. Following the proof of the Sylvester-
Gallai theorem, attention turned to giving a lower bound on the number
of such ordinary points. In 1958 Kelly and Moser [5] proved that there
must be 3n/7 ordinary lines, and then in 1993 Csima and Sawyer [2]
proved that as long as n 6= 13, there must be at least 6n/13 ordinary
points.

Recently, Lenchner [6], [7] considered the following variant of the
Sylvester problem: In an arrangement of n lines in the Euclidean plane,
not all of which all of which are parallel and not of which pass through
a common point, must there be a (Euclidean) ordinary point? In [7] it
was pointed out that a positive answer to this question does not follow
from Euler’s formula, but that a bound of (5n + 6)/39 does follow as a
consequence of the Csima-Sawyer bound. In this paper, we improve the
(5n + 6)/39 bound to n/6 without using Csima-Sawyer.
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2 The (5n + 6)/39 Result

Theorem 1. In an arrangement of n not all collinear, not all coincident
lines in the Euclidean plane, there must be at least (5n+6)/39 Euclidean
ordinary points.

Proof. We consider the problem embedded in the real projective plane,
where the Csima-Sawyer Theorem [2] says that there must be at least
6n/13 ordinary points except when n = 7. The n = 7 case of the Theorem
is handled by Lemma 4 from [7] as a simple consequence of the theory of
wedges.

If our result were false then more than d6n
13 −

5n+6
39 e = dn

3 −
2
13e of

these ordinary points would have to lie on the line at infinity. In other
words there would have to be at least dn

3 −
2
13e pairs of parallel lines.

To this arrangement add the line at infinity. This “kills off” the at least
dn

3 −
2
13e ordinary points and creates at most bn − 2n

3 + 4
13c = bn

3 + 4
13c

new ordinary points.
By Csima-Sawyer applied to the new arrangement (as long as n 6= 6,

a case we cover at the end) we have at least d6(n+1)
13 e ordinary points.

But then there must have been at least d6(n+1)
13 − n

3 −
4
13e = d5n+6

39 e finite
ordinary points earlier, contradicting our initial assumption. The result
is thus proved.

If n = 6 the theorem claims that there is at least 1 finite ordinary. By
the Kelly-Moser Theorem we know that there are at least 3 total ordinary
points. If all such points were on the line at infinity the implication would
be that we have 3 pairs of parallel lines. Adding a seventh line at infinity
would yield a projective arrangement without ordinary points, a clear
impossibility. The theorem follows. ut

The algebra that allows one to arrive at the number (5n + 6)/39 is
described in [6].

3 Improving the bound to n/6

Definition 1. Say that an ordinary point p is attached to a line l, not
containing p, if l together with two lines crossing at p form a (possibly
infinite) triangular cell of the arrangement.

Figure 1 illustrates a line l and its attached points. In this article
we focus on finite attached points. Kelly and Moser [5] used the notion



of attached points together with a double counting argument to obtain
their 3n/7 bound. Csima and Sawyer [2] added an additional, though
highly non-obvious, observation about attached points to those of Kelly
and Moser to obtain their 6n/13 bound. The following simple lemma is
used in both papers:

Lemma 1. In any arrangement of lines, an ordinary point can have at
most 4 lines counting that point as an attachment.

Proof. An ordinary point is contained in 2 crossing lines, and hence a
vertex of 4 faces; it can therefore be attached to at most 4 lines. ut

Our central lemma is the following:

Lemma 2. Let A be a Euclidean arrangement of n lines, with not all
lines parallel and not all lines passing through a common point. Then if a
line l ∈ A does not contain an ordinary point, then it must have at least
one (Euclidean) ordinary point attached to it.

Proof. If all the Euclidean vertices are on a single line, then all but that
line must be parallel, and all vertices are ordinary. There is thus no line
without Euclidean ordinary points.

Thus let l ∈ A be a line without Euclidean ordinary points and let x
be the closest vertex to l, and rightmost if there are several such vertices.
We argue that x must be ordinary. In that case, the triangle defined by l
and the two lines through x must be a cell of the arrangement (possibly
infinite if one of those lines is parallel to l). Thus x is attached to l. If x is
not ordinary, then there are at least three lines through x, let us call them
l1, l2 and l3, with l3 possibly parallel to l, and l2 intersecting l between l1
and l3 (or to the right of l1 if l3 is parallel). Then the intersection y of l2
and l must be non-ordinary, yet any line through it must intersect l1 or
l3 in a point that is closer to l than x, or to the right of x on l3 if l3 is
parallel to l, in either case a contradiction. ut

Theorem 2. Let A be a Euclidean arrangement of n lines, with not all
lines parallel and not all lines passing through a common point. Then A
has at least n/6 (Euclidean) ordinary points.

Proof. Let ki denote the number of lines of A containing exactly i Eu-
clidean ordinary points, and suppose that there are fewer than n/6 Eu-
clidean ordinary points in total. Then we have∑

i≥1

iki <
n

3
(1)



since the sum on the left counts each ordinary point twice.

Also, ∑
i≥0

ki = n (2)

so that ∑
i≥0

ki >
∑
i≥1

3iki (3)

so
k0 >

∑
i≥1

(3i− 1)ki. (4)

But also there are at most 4 lines counting a given ordinary point
as an attachment (possibly via an infinite triangle), so that if 1 + ε0
denotes the average number of Euclidean attached points for lines with no
Euclidean ordinary points (Lemma 2), and εi denotes the average number
of Euclidean attached points for lines with i ≥ 1 Euclidean points, we
have, for εi ≥ 0, ∀i ≥ 0,

(1 + ε0)k0 +
∑
i≥1

εiki ≤ 2
∑
i≥1

iki (5)

i.e.
k0 ≤

∑
i≥1

2iki. (6)

But 3i− 1 ≥ 2i for i ≥ 1, so equations (4) and (6) cannot simultaneously
hold and the theorem follows. ut

In projective arrangements, since the choice of which is the line at
infinity is completely arbitrary, we have the following immediate corollary:

Corollary 1. Let A be a projective arrangement of n lines, not all of
which pass through a common point. Then there are at least n/6 ordinary
points off any line which is not part of the arrangement.

Slightly less obvious is the following:

Corollary 2. Let A be a projective arrangement of n lines, no n− 1 of
which pass through a common point. Then there are at least (n − 1)/6
ordinary points off any line in the arrangement.

Proof. Let l ∈ A and consider the arrangement with l removed. By the
assumption about no n− 1 of the lines passing through a common point,
we may apply the previous Corollary to conclude that there are at least
(n−1)/6 ordinary points off of l, points which are ordinary with or without
l. ut



4 Concluding Remarks

The big open conjecture in the classical Sylvester case, where we consider
projective lines and projective ordinary points is that except for n = 7, 13
that there must be at least n/2 ordinary points. If this conjecture were
true, then the methods of section 2 would immediately imply the n/6
bound obtained in section 3. Thus the n/6 result is in some sense stronger
than the Csima-Sawyer bound. A natural question is whether the n/6
bound can be used to strengthen Csima and Sawyer’s 6n/13 bound. We
think not, since the argument of section 2 involves a double application of
the Csima-Sawyer bound, and probably provides a lot of overkill. There
are arrangements with exactly n/2 ordinary points known for every even
n, however if n is odd and n 6= 7, 13 then the worst known cases have
3(n − 1)/4 ordinary points for n ≡ 1 (mod 4) and 3(n − 3)/4 ordinary
points for n ≡ 3 (mod 4) (arrangements due to Böröczky; see [1]). In the
double application of Csima-Sawyer we are applying the Csima-Sawyer
bound for consecutive values of n, hence once for odd n and once for even
n.

We thus anticipate that the n/6 bound can be improved using new
insights and perhaps such an improved bound could in turn lead to a
proof of the n/2 conjecture.
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Fig. 1. An example of a line l with four ordinary points attached. The lines l and k are
drawn to be parallel. The right-most attached point is attached via an infinite triangle.


