
RC23820 (W0512-007) December 1, 2005
Computer Science

IBM Research Report

Proceedings of the First International Workshop on
Service-Oriented Business Processes Integration (SOBPI'05)

Amsterdam, The Netherlands, December 12, 2005
Held in conjuction with the 3rd International Conference on Service Oriented Computing (ICSOC '05)

1Stéphane Gagnon, 2Heiko Ludwig, 3Marco Pistore, 4Wasim Sadiq (Eds.)

1New Jersey Instiute of Technology

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

3University of Trento, Italy

4SAP Research
Brisbane, Australia

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Preface

A widely recognized trend in business and markets is the push towards the idea of
companies and enterprises as networked organizations, which can gain profit from
collaborations in the net, improving their flexibility, and reducing operational
costs. This transformation requires the adoption of more collaborative working
practices based on the integration of business processes within a wide community
of business partners, suppliers, vendors, and public bodies.

In parallel to this trend, service oriented technologies are transforming the
web from an infrastructure for sharing information to a place where the net-
worked organizations can meet to integrate their business interests. Service Ori-
ented Computing (SOC) is currently the most promising technology supporting
the development and execution of business processes that are distributed among
the most disparate entities, both within an organization and across organiza-
tional borders.

However, a practical industry-wide adoption of web services, to support the
collaboration among networked organizations and the integration of their busi-
ness process, is still an open challenge. This challenge can be addressed only by
a tight integration of service-oriented development within new business models
and new ways of management that are able to exploit new technological so-
lutions. Moreover, web service technology is still emerging, and therefore their
industry-wide adoption requires to inject research results within real industry
practices, but, even more important, to drive research activities and roadmaps
according to industrial needs.

The aim of this workshop is to bring together researchers, practitioners, and
experts in business models and management and to promote cross-fertilization
among their competencies, focusing on the usage of service oriented technologies
to support the Business Processes Integration (BPI). The goal is to build bridges
and convergences among the complementary views of experts in IT and service
oriented technologies and experts in management, and the different approaches
of academy and industry, to the problem of business processes integration. The
emphasis of the workshop will be on the demonstration of the practical applica-
tion of research results, and on the description of industrial case studies.

December 2005 Stéphane Gagnon

Heiko Ludwig

Marco Pistore

Wasim Sadiq

SOBPI’05 chairs

Organization

Workshop Chairs

Stéphane Gagnon (New Jersey Institute of Technology, USA)
Heiko Ludwig (IBM Watson Research Center, USA)
Marco Pistore (Univeristy of Trento, Italy)
Wasim Sadiq (SAP Research Brisbane, Australia)

Program Committee

Morad Benyoucef (University of Ottawa, Canada)
Antonio Brogi (University of Pisa, Italy)
Jen-Yao Chung (IBM Watson Research Center, USA)
Marlon Dumas (Queensland University of Technology, Australia)
Schahram Dustdar (Vienna University of Technology, Austria)
Elena Ferrari (University of Insubria at Como, Italy)
Oleg Gusikhin (Ford Research & Advanced Engineering, USA)
Patrick Hung (University of Ontario Institute of Technology, Canada)
Anup Kumar (University of Louisville, USA)
Miguel Vargas Martin (University of Ontario Institute of Technology, Canada)
Angel Ortiz (Polytechnic University of Valencia, Spain)
Katia Passerini (New Jersey Institute of Technology, USA)
Pascal Pecquet (Université de Montpellier I, France)
Manfred Reichert (University of Twente, The Netherlands)
Colette Rolland (Université Paris 1 Panthéon Sorbonne, France)
Richard Soley (Object Management Group, USA)
Cheickna Sylla (New Jersey Institute of Technology, USA)
Yazhe Tang (University of Western Ontario, Canada)
Kerry Taylor (CSIRO, Australia)
Vladimir Tosic (Lakehead University, Canada)
Hannes Werthner (University of Innsbruck & EC3 Vienna, Austria)
Andreas Wombacher (University of Twente, The Netherlands)
Dan Zhang (University of Ontario Institute of Technology, Canada)
Jia Zhang (Northern Illinois University, USA)
Aoying Zhou (Fudan University, China)

Table of Contents

Technical papers

Information Exchange Among Collaborating Enterprises 1
David Levermore, Gilbert Babin, Cheng Hsu

Service-Oriented Modelling and Analysis: A Practical Case 15
Maria-Eugenia Iacob, Henk Jonkers, Marc M. Lankhorst, Maarten

W.A. Steen

Relational to Object-Oriented Database Wrapper Solution in the Data
Grid Architecture with Query Optimization Issues . 30
Jacek Wislicki, Kamil Kuliberda, Radoslaw Adamus, Kazimierz Subieta

Service Adaptation through Trace Inspection . 44
Antonio Brogi, Razvan Popescu

Complex Adaptive Services . 59
Jean-Fraņcois Mascari, Giuseppe A. Cavarretta

Towards the Autonomic Composition of Business Processes 70
Pierluigi Lucchese, Marco Pistore, Michele Trainotti, Paolo Traverso

A Development Methodology for Improving Cost Estimates in Process
Automation Projects . 84
Doug Tidwell

Author Index . 92

1

Information Exchange Among Collaborating

Enterprises

David Levermore1, Gilbert Babin2, and Cheng Hsu1

1 Rensselaer Polytechnic Institute,
Decision Sciences and Engineering Systems, Troy, NY, USA

leverd@rpi.edu, hsuc@rpi.edu
2 HEC Montréal, Information Technologies, Montréal, Québec, Canada

Gilbert.Babin@hec.ca

Abstract. On-demand business/service and other emerging models for
service enterprise integration all involve on-demand information exchan-
ge. The best practices in the field tend to rely on homogeneous semantics,
which is difficult to achieve for independent databases owned by indepen-
dent enterprises. Otherwise, the exchange tends to be limited at the level
of file transfers. To overcome these limits and achieve on-demand pull of
information resources at the global database query level, we develop a
new information exchange model to extend previous global query results
and cover independent databases. The new model provides a four-schema
architecture to allow enterprises to offer the information that they wish
to share with others (query for users), as well as request what they want
(query for data). A central element is information matching; which has to
unify the representation and processing of both offering and requesting
queries, and integrate them with traditional global database query re-
sults. We develop such a new information matching model in this paper.
It employs a unique “query database” approach, an “export database”
design, a “four-schema” architecture, and new matching algorithms that
promise computing efficiency to achieve the purpose. The new method
also allows for inclusion of constraints (rules) in the matching for infor-
mation exchange.

1 On-Demand Enterprise Collaboration

A challenging problem in service enterprise integration is to drill through sup-
ply chains to coordinate schedules on a real time and online basis. To do this,
trading partners need to go beyond the traditional “fixed” cooperation and de-
velop on-demand information exchange for flexible collaboration. An example
of fixed cooperation between partners is the effort that a retailer (e.g., Wal-
Mart) links its demand forecasting databases with its manufacturer’s produc-
tion scheduling systems (e.g., Warner-Lambert) to shorten the replenishment
cycle for certain products. This example is not new, but the collaboration still
faces daunting technical limits. First, the information exchange was hard-wired
rather than being on-demand; and second, the inter-operation mechanism was

2

not easy to extend to other likely participants in the supply chain. In princi-
ple, these two problems can be facilitated by global database query results such
as federated databases; however, these results run into problems, too, because
they require the participating companies to open up their databases for direct
inter-operation. Furthermore, the trading partners have a many-to-many rela-
tionship among them; therefore, even if the prime (e.g., Wal-Mart) could impose
a single authority on the entire supply chain, the members still have to reconcile
this particular Wal-Mart standard with their other primes or buyers (i.e., other
federations).

The above example shows that supply chain integration is on-demand col-

laboration in nature, characterized by independent databases that control when
and what information to offer and to whom, as well as issue queries for infor-
mation. These databases may also project different images/personalities onto
different global models in their inter-operation with other systems. There are
other examples of independent databases, such as the participants in Homeland
Security and industrial exchanges. The traditional global query assumptions do
not cover them.

In this context, business process integration must rely on flexible information
exchange mechanisms between systems. Then again, these exchange mechanisms
must be able to evolve as local processes change and collaboration requirements
increase. In this paper, we propose the Two-Stage Collaboration Model (TSCM)
as a framework that support such flexible and evolvable information exchange
mechanisms. The TSCM architecture and methods enable an enterprise to “of-
fer” information it is willing to share with partners or to “request” information
it needs to perform its internal processes. Information matching comes naturally
when we realize that the unique characteristics of independent databases are
actually their ability to make information offering bids to many potential users,
as well as issue information requesting bids (with or without a pricing mech-
anism). As such, the TSCM constitutes an information service infrastructure,
as it provides a matching service between offers of and requests for data. On-
demand information exchange at the database level, as described herein, is an
extension of the database query (SQL) capabilities that companies have come
to expect of all enterprise databases. Queries provide ad hoc information for
decision support, and hence complement the application level collaboration, and
enhance/support service level collaboration.

The TSCM integrates market-style information matching with research re-
sults on global query processing. In a general sense, research has shown that
market-style self-allocation of users/providers [4] is a promising solution ap-
proach that supports the collaborative paradigm of global database query. How-
ever, previous results of artificial markets (e.g., Covisint and CommerceOne [5,
6]) that support collaboration do not include global database query; and market
style global query [12] has not afforded on-demand offering. More to the point of
this paper, previous matching methods are focused on matching bids based on
price and product definition, rather than matching database queries and views
based on information semantics. While the matching on price could be academi-

3

cally intriguing [11], the basic matching on product is straightforward in practice
since product definition can be standardized for particular commercial practice.
Information semantics (including rules), on the other hand, is inherently more
difficult to match. To solve the matching problem, one needs a common repre-
sentation method to define the requests and offerings, to lodge the active infor-
mation bids, and to match them according to their rules and data semantics. In
this work, we employ a metadata representation method developed for multiple
databases integration [9] as the basis for developing these new results. The basic
logic is that both information requests and offerings are formulated as global
queries (metadata) against the collaborating community, using the method as
the query language. These queries are stored in a database (the query database)
whose structure is also based on the metadata representation method, and hence
is consistent with the language. The query database manifests the universe of
community collaboration at any given time. Each request or offer is both a run-
time database query against the query database and a persistent object to be
saved (updated) in the query database. Therefore, the matching is performed di-
rectly when newly created queries are processed as ordinary database operations
against the query database. Search algorithms determine the cases for complete
matches and various partial matches, and take into account the participants’
conditions.

The core of the paper is the new matching method: the metadata language,
the query database, and the search algorithms. However, to properly present
these results, we briefly review in Section 2 the context of the new matching
method: a complete solution approach to the global query problem under the
collaborative paradigm. The new results are briefly presented in Section 3. The
last section, Section 4, concludes the paper with a summary of the status of this
ongoing research.

2 The Information Architecture for the Collaboration

The overall information architecture of on-demand enterprise collaboration fea-
tures a four-schema concept shown in Figure 1. which supports the following
Two-Stage Collaboration Model. Local schemata (first schema) represent
enterprise data as stored in their local databases. Export databases are used to
store data that the enterprise wants to make available to partners. These ex-
port databases are described using a publication query, which acts as a schema
of the data made available (second schema). Subscriptions describe data that is
required by partners (third schema). All these are represented in the Blackboard
which extends the Metadatabase (fourth schema). The Two-Stage Collaboration
Model includes matching for collaborators and fetching of the required informa-
tion, for on-demand enterprise collaboration. The technical problem involved is
referred to as the participatory database query problem in [9]. The first stage
matches information offerings with requests in a market style, and establishes
optimal participation of databases for a search task. The second stage, then, ex-
ecutes the task in a traditional distributed database query manner. The model

4

Blackboard

Subscription

Local Schema

Export Database

Publication Publication

Enterprise

Database

Subscription

Metadatabase

Local Schema

Export Database

Publication Publication

Enterprise

Database

Fig. 1. Four-schema Architecture of the Two-Stage Collaboration Model

uses a global blackboard, but also distributes the blackboard to local sites as
mini-blackboards to allow for peer-to-peer implementation. Requirements to the
new model include that, at the first stage, it reconciles the different data seman-
tics at the participating databases to allow determination of the “right” matches,
and provides massively concurrent bidding, matching, and, if price is involved,
auction/negotiation that lead to self-allocation of databases for particular tasks.
The second stage needs to perform concurrent global queries for each task, ac-
cording to its conditions and constraints, and, if necessary, join partial results
from various sources.

The query database approach developed for matching integrates the usual
market functions of bidding, matching, and auction/negotiation with global
query processing. In this approach, the usually custom-designed blackboard

of a market that conducts these market functions becomes an ordinary database
management system, and can be implemented by using off-the-shelve DBMS
technology. To implement this concept, the query database requires an inte-
grated representation of data (information contents) and rules (task conditions
and constraints) since the queries involve both. This requirement goes beyond
traditional query processing. As a response, this research develops the dedicated
databases collaboration language that we call exMQL (extended Metadatabase
Query Language) to formulate the queries (and execute them). The semantics
and syntax of exMQL are rooted in the Metadatabase model [8], which readily
provides the schema for the query database — i.e., the queries are represented in
and stored as semantic constructs of the Metadatabase. The exMQL is a meta-
data language based on SQL; thus, exMQL expressions are processed by the
DBMS of the query database using the PL/SQL facility. The blackboard algo-
rithms are also constructed in PL/SQL. The use of the PL/SQL facility affords
the flexibility of adopting matching-negotiation-auction results from elsewhere.
Comparing to concepts adopted in the literature, the query serves the purpose
of a software agent on the market, and the query database satisfies the goals of
the previous agent community.

Alongside with the query database, a Metadatabase (a repository of meta-
data structured as a database) is created to include and integrate local data

5

models (for the export databases, or the views that participants publish) into
metadata tuples and tables, with the help of a registration process. As shown
in the literature [1–3, 8], metadata entries (data models) are added, deleted, up-
dated, and retrieved as ordinary database operations against the Metadatabase
without interrupting the continuous operation of the market. Since the Meta-
database is also implemented using a standard DBMS, it allows for high intensity
and concurrent updates. The Metadatabase facilitates the reconciliation of data
semantics for query processing (matching) at the query database. A formal reg-
istration process with varying degrees of central coordination is required of all
participants, through a CASE (computer-aided software engineering) tool. In
the maximum registration regime, the Metadatabase integrates all published lo-
cal views; while in a minimum regime, the Metadatabase contains only global
equivalence information. The local sites are responsible for maintaining a global
version of their respective database views in the minimum regime. In any case,
the participants could opt to register a large, stable data model within which
they publish their smaller, ad hoc offerings as often as they wish; or, they could
frequently register different, small local data models that represent their pub-
lished views and change them on the fly. The most demanding part of the regis-
tration is the establishment of a list of global data items across local sites, and
the maintenance of the data equivalence among them. This is not an easy task
and could easily become the bottleneck to any real-time, peer-to-peer collabo-
ration. We stress, however, that this is a common problem in the field and the
databases collaboration model does not add to the burden; if anything, the new
model could ease the problem because the participants are now committing their
proxies rather than production databases to a standard medium. We also wish
to point out that the Metadatabase method affords a list that is automatically
derived from all registrations, and can reveal any peer-to-peer correspondence
of local data items. In this sense, the Metadatabase serves as an open common
schema for the community.

The second stage, global query processing, is essentially an extension of the
traditional database query against the export databases. The differences reside
mainly in the ad hoc conditions and constraints under which the queries are pro-
cessed; since the information requests and offerings may include additional re-
quirements. The Two-Stage Collaboration model addresses this issue by extend-
ing established results from the Metadatabase research, including GQS (global
query systems) [3], ROPE (rule-based programming environment) [1], and rule-
base processing methods [2]. The new result becomes an integrated query pro-
cessing and management system for the blackboard. The exMQL-based queries
map into SQL expressions to be processed at the proxy servers of the local sites,
which may inter-operate with the local enterprise databases depending on the lo-
cal policies. Results are assembled at the blackboard according to the particular
cases of joint implied by the original tasks.

The local sites are connected to the global site and to each other through
a proxy server which is constructed and maintained according to a global
design but is otherwise administered by the local site at which it resides. In ad-

6

dition to the export databases, the proxy server also replicates the blackboard,
along with the capacity to maintain a query database and Metadatabase, into
its functions for any local site that requires peer-to-peer information exchange
capabilities. The proxy server, then, has the ability to initiate a virtual circle
of matching among peers and serve as the “global” site of the circle during
the life of the match. In this way, the global blackboard co-exists with many
concurrent, distributed local blackboards and their virtual sub-communities of
information exchange. This design promises to reduce the possible computing
bottlenecks in the community, enhance overall system reliability (against sys-
tem or network failures), and support maximum flexibility of the collaboration
regime. The proxy server may reduce its requirement on a full Metadatabase
when peer-to-peer metadata interfacing or interchanging is included. Similar to
the minimum regime of registration, a minimum set of metadata at proxy servers
includes only the list of global data equivalents. A partial Metadatabase ranges
between the minimum and maximum contents. A continuing challenge facing
this model is the maintenance of the distributed copies of global equivalents. It
represents an upper bound to the real-time performance of peer-to-peer collab-
oration.

3 The Information Matching Method

We briefly present below the new query database method developed in this
paper for the first stage, to provide the matching for information exchange. The
metadata language that defines queries for the matching also defines the queries
for final global query processing at the local sites. In a similar way, the query
processing algorithms that perform the matching also extend to include functions
pertaining to the second stage, the fetching of information for users.

3.1 The Query Language: exMQL

The Extended Metadatabase Query Language (exMQL) is designed to provide
a uniform query format for the various query operations that are required in the
Two-Stage Collaboration. The structure is derived from the original MQL spec-
ification in [3], which in turn is based on the TSER representation method [10]
and the GIRD metadata model [8]. However, it extends significantly from the
original MQL to support information publication and the inclusion of con-
straints/conditions in the queries. The full specification of exMQL is provided
in Figure 2. Each query operation is performed via the extended Metadatabase
Global Query System (exMGQS) and so the query specification described below
is provided for illustrative purposes only.

3.2 The Query Database Schema

The conceptual structure of the Blackboard in general is based on a derivative of
the GIRD, the integrated representation of the Metadatabase [8]. The require-
ments of the GIRD are relaxed for the purposes of the Blackboard, and so a

7

<QUERY> ::= <COMMAND> <ITEMS> [’DO’ <ACTIONS>]* [’FOR’ <CONDITIONS>]* ;

<ITEMS> ::= ITEM [, ITEM ...] ;
<COMMAND> ::= ’GET’ | ’PUT’ ;
<CONDITIONS> ::= <CONDITION> <conjoin> <CONDITION> ;

<conjoin> ::= ’AND’ | ’OR’ ;
<CONDITION> ::= <SC> | <JC> | <NC> ;

<SC> ::= ITEM <bound> VALUE ;
<JC> ::= ITEM <bound> ITEM ;
<NC> ::= ATTRIBUTE <bound> VALUE ;

<bound> ::= ’<>’ | ’=’ | ’<’ | ’>’ | ’< =’ | ’>=’ ;
<ACTIONS> ::= action [, action ...] ;

<DELETE QUERY> ::= ’DELETE’ query name [’CASCADE’] ;
<DELETE RULE> ::= ’DELETE’ rule name [, rule name ...] ’IN’ query name ;

<DELETE CONDITION> ::= ’DELETE’ condition name [, condition name ...] ’IN’ query name ;
<UPDATE QUERY> ::= ’UPDATE’ <ITEMS> [’DO’ <ACTIONS>]* [’FOR’ <CONDITIONS>]* ’IN’ query name ;

Fig. 2. The Syntax of exMQL

number of the elements of the GIRD are unused but are not removed in the in-
formation model. We will highlight the changed features in any discussion of the
Blackboard. The intent of the Blackboard is no different from the Metadatabase,
in that it is used for the management of metadata, specifically the schema of
the queries. The new structural model of the Blackboard is illustrated in Fig-
ure 3 using the TSER modeling methodology [10], and we discuss the conceptual
structure of the query database and rulebase in the sub-sections that follow.

The Structural Model of the Query Database. The addition of the SYSTEM,
QUERY, and VIEW meta-entities, which replace the APPLICATION, SUB-
JECT and ENTREL meta-entities, are the primary differences between the
structural model of the Blackboard and the GIRD. The remaining meta-entities,
and meta-relationships: Functional Relationships (FR), Mandatory Relation-
ships (MR) and Plural Relationships (PR) that connect them, retain their orig-
inal definitions as outlined in [2, 8]. We briefly illustrate the most relevant ele-
ments of the query database in the paragraphs below.

The SYSTEM meta-entity identifies the proxy database servers that are cur-
rently participating in global query, and so represents a dynamic view of the
Two-Stage Collaboration System. Each proxy database server is defined by a
unique identifier, which is determined at runtime. However, this is not provided
to the Blackboard unless a query has been submitted by the proxy database
server.

The QUERY meta-entity identifies the queries submitted by proxy database
servers. Every query is unique, and each proxy database server can submit more
than one query at any time. A timestamp attribute is generated automatically by
the Blackboard and associated with the query, to facilitate the measures utilized
during the query assignment process. The components meta-MR identifies the
queries that belong to each SYSTEM.

The VIEW meta-entity provides a mechanism to associate data items with
multiple queries, in various arrangements.

The ITEM meta-entity remains unchanged from its original definition, and
represents the data items specified in each query. The belongto meta-PR rep-

8

Fig. 3. Conceptual Structure of the Blackboard

9

resents the assignments of items to a specific VIEW. The describes meta-PR
specifies the data items that are aggregated into each QUERY.

The Structural Model of the Rulebase. The rulebase inherits the rule modeling
paradigm of the GIRD as illustrated in Figure 3. The RULE, CONDITION, and
ACTION meta-entities, and their associated meta-PR’s, meta-FR’s and meta-
MR’s. retain their original functionality, however they now must provide for
the management of data objects as opposed to metadata objects. Specifically,
rulebase facilitates the modeling of all constraints (conditions) and associated
actions.

3.3 Query Processing

Following the formulation of a query, the participant submits the query for pro-
cessing. This processing involves three distinct phases: (1) match, (2) assign, and
(3) execute.

Search for Matching Queries. In the match phase we identify queries (which we
denote as target queries) that contain any number of data items specified in the
submitted query (which we will denote as the source query). Note that either
type of query (source or target) can represent a information request or offer. The
search process for a given query (S) can produce four classes of results; (1) an
exact match, (2) a closest subset match, (3) a subset match, and (4) a closest
match. Exact match is not illustrated.

Definition 1. In an exact match, the number of data items, the syntax, and
the semantics of the data items (in other words, the items that match) in each
target query are equivalent to those in the source query.

Definition 2. A closest subset match indicates that the number of items mat-
ched is less than that specified in the source query but equivalent to those defined
in a target query.

Definition 3. A subset match indicates that the number of items matched is
equivalent to the number of items in the source query, but less than that the
number of items specified in the target query.

Definition 4. A closest match is the case where queries contain common items.
That is the number of items matched is less than the number of items specified
in both the source query and the target query.

As a first step, we take a source query as input and compare it with a
set of target queries. For each target query that has common items with the
source query, we count the number of data items that intersect and classify
these according to the aforementioned definitions. The result of this step is the
set of queries that match the source query.

10

Permute Queries to Identify a Feasible Solution. If we are unable to identify
target queries that contain all the data items in the source query, then we enter
into an additional step of processing. Here, we permute the results found (most
likely closest subset and closest) and evaluate each of the resulting permuted
queries to determine if they contain the data items found in the source query.
The resulting permuted queries are classified as, (1) permuted exact match, (2)
permuted closest subset match, (2) permuted subset match, and (4) permuted
closest match, where each, respectively, is the analogue of the four classes posited
above.

A permuted exact or permuted subset match does not indicate that a solution
for the source query has been found; rather, only that the disparate combined
queries contain data items common to the source query. For the permuted query
to be a feasible solution, the disparate queries that constitute the permuted
query must be logically connected. We illustrate this problem with the following
example:

Example 1

S = {item1, item2, item3, item4}
TA = {item1, item2, itemn, itemn+1}
TB = {item2, item3}
TC = {item4, itemm, itemm+1}

Let S, TA, TB , and TC correspond to the source query and target queries
illustrated in Example 1. Obviously, TA, TB, and TC match S on particular
data items. The union of TA, TB , and TC , which we denote as TABC is the
permuted query that contains all data items in the source query; however this is
not necessarily a feasible solution. If TABC is to be a feasible solution for S then
there must be logical relationships among TA, TB, and TC . The Metadatabase is
employed to evaluate the permuted queries. In this case, the Metadatabase will
reveal that TA contains the primary key item1. Accordingly, we find that there
exists a transitive dependency between TA and TB, as demonstrated below, but
this will only be true if item2 is the primary key for TB . Since, TA : item1 →
item2, itemn, itemn+1, and assuming TB : item2 → item3 then, by Armstrong’s
inference rules (transitivity), item1 → item3. Therefore, TA and TB are logically
connected. If item2 was not the primary key for TB then we could not postulate
this result.

By consulting the Metadatabase we find that the attributes of TC are de-
pendent on the primary key item0. Even if a logical relationship exists between
both TA and TB, we cannot determine TABC since item0 is not included in TC .
This leads us to the following definition that each permuted query must respect
to be considered a feasible solution for a source query.

Definition 5. To be considered a feasible solution, a permuted query must be
logically connected, and all logically connected data items must exist in the target
queries.

11

Example 2 illustrates the permutations of the three target queries, TA, TB ,
and TC . It is safe to ignore Round 1, since these correspond to the singular target
queries.

Example 2

Round Permutations

1 TA, TB , TC

2 TAB, TAC , TBC

3 TABC

The feasibility of a permuted query is determined by the Shortest Path al-
gorithm [3], which determines if the entities and relationships (which in the
Metadatabase are referred to as oe/pr, respectively) in a query are connected.
However, since permuted queries do not contain oe/pr’s, then these must be
determined as well. The result of this second step is the permuted query (or
queries) that contain the greatest number of data items common to a source
query.

Evaluation of Constraints. A successful match process is also contingent on the
agreement of preferences that have been associated with queries. Each query
can be optionally qualified with constraints that restrict or limit a query to
specific values, or restrict or limit the query in general to particular system-
defined variables. These constraints are manifested as rules, adhering to the
Event-Condition-Action paradigm [1] where each rule is processed subsequent
to an event occurring, which will execute an associated action if the evalua-
tion of the related condition returns true. In general, all events correspond to a
successful query match.

As a last step, we evaluate the rules associated with the query from the
steps above. If multiple target queries are determined, we retrieve all rules and
combine them into a single fact table. We then iterate through each condition in
the source query, and tests the associated facts with those of the target query (or
queries) in the fact table. If we identify a matching attribute in the fact table, we
evaluate the condition, i.e., comparing the values in the input condition with the
output condition. If a match is not found, we then mark the specified conditions
for additional processing. We repeat this process until all conditions in the source
query are exhausted and return the set of conditions that do not match.

Assign Queries. After a match (or matches) has been found, then we enter the
assignment phase where the source query is assigned for processing. The basic
task is to determine the proper space of query processing, i.e., what subscribers
and what publishers are to participate in this particular global query processing.
It is trivial if there is only one match (exact or joint) to be assigned for pro-
cessing; but it becomes complicated when multiple matches must be considered
together. There are a number of criteria by which these ties may be broken if the
“competing” queries are equivalent in every respect, i.e., they are of the same
class of match, and the conditions that match the source query are equivalent.

12

A basic, and default, criterion we consider in this research is to permit multiple
subscriptions of a single publication, and the single subscription of the multi-
ple publications. That is, we would execute all equivalent multiple matches and
present all the results for the users to interpret. We call this the maximum

collaboration principle, which makes sense for information exchange (but not
for merchandise trading) since information can be shared without loss by mul-
tiple users and fused freely from multiple sources. However, if this principle is
not true for whatever reasons, then either a round of auction/negotiation could
be conducted or the system could apply some automated decision rules. The
selection of these criteria is essentially a matter of system design.

The list below provides a few basic functions that facilitate the choice of
automatic tie breaking among multiple matches. The users could specify their
preference of any of these choices during query construction as actions of a query.
Note that multiple actions can be specified for a single query.

Simple heuristics – uses the system-defined timestamp of each query to select
a winner. The query with the oldest/latest timestamp, i.e., the query that has
been registered with the Blackboard for the greatest/least amount of time is
selected.

Network Performance – considers the geographical location of the associated
proxy database server and the load of the server, assuming that further distances
and loads contribute to performance latency, and chooses the match that is in
closer proximity to its location.

Participant History – the proxy database server that has reliably provided
solutions for many participants and received good ratings will be chosen over a
proxy database server that has not been similarly prolific.

User Preference – the winner will be chosen from a list of attributes of the
proxy database servers that have been specified during query construction, such
as the locality, organization, and other indicators of the site that the users prefer.

Execute. The execution of the query on the publication databases constitutes
the final phase of query processing. It is necessary however, to perform some
data conversion and translation on the queries before they can be processed
on the publication databases. Briefly, all data processing that exists beyond
the boundaries of the publication databases are defined in global terms, and
so queries must be converted to local values before they can be processed on
a proxy database server. Conversely, when the publication query is created the
parameters are converted to global values. In general, the subscription query is
always created in global values, since the exMGQS provide the interface of the
global information model for the construction of information requests.

The conversion algorithm employs the global equivalence functionality of the
Metadatabase to (1) identify equivalent data items in the query, and (2) convert
to the data items to the local/global value depending on the perspective. In
that event, a unit conversion is required, which the Metadatabase allows for; the
algorithm in concert with the Metadatabase will address this as necessary.

13

4 Beyond the new matching method

We might submit that the global database query capabilities are a key to achiev-
ing service enterprise integration under virtually all conditions. The problem is
only that how much results the field affords. We develop a new approach to
the problem and thereby extend the previous results to support independent
databases, which are a basic characteristic of on-demand enterprise collabora-
tion. A new enterprise integration architecture is developed for the approach,
which includes the two-stage collaboration model and the four-schema design,
as well as the new information matching method.

The query language and processing algorithms span both the matching (the
first) stage and the global query processing (the second) stage of databases col-
laboration, and hence provide the integration of the two for the final system.
The algorithms constitute a major part of the Blackboard. The new matching
method is currently being tested in a laboratory setting for the purpose of perfor-
mance evaluation as well as for the verification of the Two-Stage Collaboration
model. Beyond the matching method itself, and also beyond the technical veri-
fication of the complete solution, the ongoing research is seeking to improve the
registration methods and the maintenance of global equivalents, as a means to
enhance its efficiency in practice. In this direction, the research also investigates
novel ways of defining and managing global equivalents. The goal is to eventually
allow proxy servers to discover data equivalents from direct data or metadata
interfacing with peers (that certain data items from peers are in fact equivalent
to their own), on an on-the-fly basis. This way, local sites would be able to add
data items without having to update the global list — i.e., without much delay.
This field remains challenging and widely open to new ideas, despite the new
results obtained [7].

References

1. G. Babin and C. Hsu. Decomposition of knowledge for concurrent processing.
IEEE Transactions on Knowledge and Data Engineering, 8(5):758–772, 1996.

2. M. Bouziane and C. Hsu. A rulebase management system using conceptual mod-
eling. J. Artificial Intelligence Tools, 6(1):37–61, March 1997.

3. W. Cheung and C. Hsu. The model-assisted global query system for multiple
databases in distributed enterprises. ACM Transactions on Information Systems,
14(4):421–470, 1996.

4. S.H. Clearwater, editor. Market-Based Control : A Paradigm for Distributed Re-

source Allocation. World Scientific Publishing, River Edge, N.J., 1996.
5. Covisint. http//www.covisint.com.
6. R. Glushko, J. Tenenbaum, and B. Meltzer. An XML framework for agent-based

e-commerce. Communications of the ACM, 42(3):106–114, 1999.
7. A.Y. Halevy, Z.G. Ives, J. Madhavan, and P. Mork. The piazza peer data manage-

ment system. IEEE Transactions on Knowledge and Data Engineering, 16(7):787–
798, July 2004.

8. C. Hsu, M. Bouziane, L. Rattner, and L. Yee. Information resources management in
heterogeneous distributed environments: A metadatabase approach. IEEE Trans-

actions on Software Engineering, 17(6):604–625, 1991.

14

9. C. Hsu, C.D. Carothers, and D.M. Levermore. A market mechanism for participa-
tory database query: A first step of enterprise resources self-allocation. Information

Technology and Management, forthcoming.
10. C. Hsu, Y. Tao, M. Bouziane, and G. Babin. Paradigm translation in manufactur-

ing information using a meta-model: The TSER approach. Ingénierie des systèmes

d’information, 1(3):325–352, January 1993.
11. T. Sandholm. Making markets and democracy work: A story of incentives and

computing. In IJCAI-03, 2003. Computers and Thought Award Talk Abstract.
12. M. Stonebraker, P. Aoki, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu.

Mariposa: A wide area distributed database system. International Journal on

Very Large Databases, 5(1):48–63, 1996.

15

Service-Oriented Modelling and Analysis:
A Practical Case

Maria-Eugenia Iacob, Henk Jonkers, Marc M. Lankhorst, Maarten W.A. Steen

Telematica Instituut, PO Box 589, 7500 AN Enschede, The Netherlands
marc.lankhorst@telin.nl

Abstract. In order to validate the concepts and techniques for service-
oriented enterprise architecture modelling, developed in the ArchiMate pro-
ject (2005), we have conducted a number of case studies. This paper de-
scribes one of these case studies, conducted at the Dutch Tax and Customs
Administration. It shows how business processes, applications, and techni-
cal infrastructure can be modelled and related using the ‘service’ concept as
a bridge, and visualised by applying the ArchiMate viewpoints. It also
shows the usage of quantitative analysis techniques to compute the applica-
tion and infrastructural workloads imposed by the characteristics of the
business processes.

1 Introduction

The emergence of the service-oriented computing (SOC) paradigm and Web ser-
vices technology, in particular, has aroused enormous interest in service-oriented
architecture (SOA). Probably because such hype has been created around it, there
are a lot of misconceptions about what SOA really is. Numerous Web services
evangelists make us believe that if you could divide the world into service re-
questors, service providers and a service registry, you would have an SOA (e.g.,
Ferris and Farrell 2003). Others emphasise that SOA is a way to achieve interop-
erability between distributed and heterogeneous software components, a platform
for distributed computing (e.g., Stevens 2002).

Services are a much broader concept, however. In modern enterprise modelling,
for example, the service concept also plays a central role. We define a service as a
unit of functionality that some entity (e.g., a system, organisation, or department)
makes available to its environment, and which has some value for certain entities
in the environment (typically the ‘service users’). This general service concept is
widely applicable, in both business and IT contexts. Service orientation supports
current trends ranging from the service-based network economy to ICT integration
with Web services. These examples already show that services of a very different
nature and granularity can be discerned: they can be provided by organisations to
their customers, by applications to business processes, or by technological facili-

16

ties (e.g., communication networks) to applications.
Service orientation typically leads to a layered view of enterprise architecture

models, where the service concept is one of the main linking pins between the dif-
ferent layers. Service layers with services made available to higher layers are in-
terleaved with implementation layers that realise the services. Within a layer, there
may also be internal services, e.g., services of supporting applications that are
used by the end-user applications. This leads to a stack of service layers and im-
plementation layers.

Although, at an abstract level, the concepts that are used within each layer are
similar, we define more concrete concepts that are specific for a certain layer. In
this context, we distinguish three main layers:

1. The business layer offers products and services to external customers, which
are realised in the organisation by business processes (performed by business
actors or roles).

2. The application layer supports the business layer with application services
which are realised by (software) application components.

3. The technology layer offers infrastructural services (e.g., processing, storage,
and communication services) needed to run applications, realised by com-
puter and communication devices and system software.

In this paper we explain how the integration of the above-mentioned layers of an
enterprise architecture can be achieved trough service-oriented modelling. Fur-
thermore, we show that these models can form the basis for performance analysis.
These ideas are demonstrated in the context of a practical case we have conducted
at the Dutch Tax and Customs Administration, in which we have used the results
of the ArchiMate project (2005).

The paper is organised as follows. The following section sets the background
for our practical case by giving a brief description of the ArchiMate language and
its modelling concepts. The remainder of the paper is reserved for a description of
the main results produced during our case study. We provide an overview of how
the different architecture layers have been modelled and integrated and we give an
account on the application of our analysis method. Finally, we conclude by
summarising our results.

2 The ArchiMate language

Within many of the different domains of expertise that are present in an enterprise,
some sort of architectural practice exists, with varying degrees of maturity. All
kinds of frameworks try to map these domains, such as the well-known Zachman
framework (Zachman 1987), The Open Group Architecture Framework (TOGAF)
(The Open Group, 2003), and many more. However, due to the heterogeneity of
the methods and techniques used to document the architectures, it is very difficult
to determine how the different domains are interrelated. Still, it is clear that there
are strong dependencies between the domains. For example: the goal of the (pri-

17

mary) business processes of an organisation is to realise their products; software
applications support business processes, while the technical infrastructure is
needed to run the applications; information is used in the business processes and
processed by the applications. For optimal communication between domain archi-
tects, needed to align designs in the different domains, a clear picture of the do-
main interdependencies is indispensable.

With these observations in mind, we conclude that a language for modelling en-
terprise architectures should focus on inter-domain relations. With such a lan-
guage, we should be able to model:

− The global structure within each domain, showing the main elements and their
dependencies, in a way that is easy to understand for non-experts.

− The relations between the domains.

To this end, we have defined the ArchiMate language (Lankhorst et al., 2005), an
enterprise architecture modelling language that is gaining rapid acceptance in the
Netherlands and abroad. The core concepts of the language are given in Fig. 1. A
common abstract metamodel lies behind the concrete modelling concepts at all
three layers, comprising (abstract) concepts for structure, behaviour, and informa-
tion. The most important concrete modelling concepts are explained below. For a
more detailed description please refer to (Lankhorst et al., 2005).

B
usiness

A
pplication

Technology

Information Behaviour Structure
Fig. 1. Main concepts of the ArchiMate language.

The main structural concept at the business layer is the business actor, an entity
that performs behaviour such as business processes or functions. Business actors
may be individual persons (e.g. customers or employees), but also groups of peo-
ple and resources that have a permanent (or at least long-term) status within the
organisations. To each actor business roles can be assigned, which in turn signify
responsibility for one or more business processes, which may manipulate business

18

objects. The externally visible behaviour of a business process is modelled by the
concept organisational service, which represents a unit of functionality that is
meaningful from the point of view of the environment. Services are grouped to
form (financial or information) products, together with a contract that specifies
the characteristics, rights and requirements associated with the product.

The main structural concept for the application layer is the application compo-
nent. This concept is used to model any structural entity in the application layer:
not just (reusable) software components that can be part of one or more applica-
tions, but also complete software applications or information systems. Data ob-
jects are used in the same way as data objects (or object types) in well-known data
modelling approaches, most notably the ‘class’ concept in UML class diagrams. In
the purely structural sense, an application interface is the (logical) location where
the services of a component can be accessed. In a broader sense (as used in,
among others, the UML definition), an application interface also has some behav-
ioural characteristics: it defines the set of operations and events that are provided
by the component, or those that are required from the environment. Behaviour in
the application layer can be described in a way that is very similar to business
layer behaviour. We make a distinction between the externally visible behaviour
of application components in terms of application services, and the internal behav-
iour of these components to realise these services.

The main structural concept for the technology layer is the node. This concept
is used to model structural entities in the technology layer. Nodes come in two
flavours: device and system software, both inspired by UML 2.0 (the latter is
called execution environment in UML). A device models a physical computational
resource, on which artifacts may be deployed for execution. System software
represents the software environment for specific types of components and data ob-
jects. An infrastructure interface is the (logical) location where the infrastructural
services offered by a node can be accessed by other nodes or by application com-
ponents from the application layer. An artifact is a physical piece of information
that is used or produced in a software development process, or by deployment and
operation of a system. A network models a physical communication medium be-
tween two or more devices. In the technology layer, the central behavioural con-
cept is the infrastructure service. We do not model the internal behaviour of infra-
structure components such as routers or database servers; that would add a level of
detail that is not useful at the enterprise level of abstraction.

3 Case Description

The Dutch Tax and Customs Administration (abbreviated TCA in the sequel) has
a long history of continuously improving its organisation of process and ICT de-
velopment. As early as the beginning of the 1980s, the ICT department started
working with architecture. In the TCA architecture plays a prominent role, which
is also exemplified by a total staff of over 100 architects. The importance of archi-
tecture has also increased the need for an enterprise architecture language to con-

19

nect different architecture domains.
In recent years, the organisation of social security in the Netherlands has

changed dramatically. The goal is to arrive at a situation with a central contact
point for organisations and citizens, and with unique ‘authentic’ data sources.
Within this context, the collection of employees’ social security premiums is
transferred from UWV (the central social security organisation) to the TCA. This
joint project of TCA and UWV is called SUB (‘Samenwerking UWV–
Belastingdienst’).

A major challenge in this project is to handle enormous flows of data within
and among the different organisations. This concerns more than 600,000 payroll
tax returns each month, a large proportion of which arrive within a peak period of
a couple of days. Moreover, it is expected that a substantial proportion of these tax
returns need to be sent back for correction. Such requirements need to be ad-
dressed early on in the project.

These aspects of this case study made it an ideal testing ground for our service-
oriented and viewpoint-based approach to enterprise modelling and visualisation
(Lankhorst, 2005), and for the performance analysis techniques described in
(Iacob & Jonkers, 2005). In the following, we will show how the different aspects
of the business processes, applications, and infrastructure were modelled in a co-
herent and consistent way, and also show how the quantitative analysis techniques
were used in the capacity planning of the infrastructure.

4 Architectural Views

By means of a number of different views (IEEE Computer Society 2000), the SUB
information system architecture is presented from the perspective of the TCA. We
have chosen not to show a model of SUB as a whole; instead, we start with a
broad perspective and go into detail for a number of specific processes.

Subsequently, models are presented that describe the SUB business processes
(viewpoint Process cooperation), the SUB application support for these processes
(viewpoint Application usage), and the infrastructure support for the applications
(viewpoint Infrastructure support).1

4.1 Process Cooperation: Client-to-Client Processes

The process architecture, depicted in Fig. 2, shows the most important client-to-
client processes within the scope of SUB. Each process is initiated by a trigger.
These triggers fall in one the following categories:

− time triggers, indicating that a process is executed periodically;
− message triggers, indicating that an incoming message initiates a process;
− signal triggers, indicating that an incoming signal initiates a process.

1 The actual design of SUB further evolved after completion of the case study.

20

For each trigger, a frequency is specified, expressed in terms of the average num-
ber of ‘firings’ per month. Furthermore, the process architecture shows the most
important messages that flow between the processes.

Provide return/
payment forms

Process
payroll tax

return

Payment
processing

Process
signals and risks

Recalculate
nominative

part

Payroll tax
return msg.

Correction
request

rejection

Return
form

Correction
message

external
signal

Collections
administration

F=600 000/month

F=60 000/month

F=1/month

F=1/month

(F=360 000/month)

(F=60 000/month)

Payment
form

Fig. 2. Overview of the SUB Client-to-client processes.

Process payroll tax return

Chain “Process payroll tax return”
TCA

Chain “Process payroll tax return”
UWVPayroll tax

return

Correction
request

Receive tax
return

Collections
administration

Levyings
administration

Confirmation
Levy

Notification
rejection

Notification
error

Tax and Customs
Administration

Notify Process
corrections

Relations
information

Handle
received

rax returns

Policy
administration

Correction
requests

administration

UWV

F=660 000/month

Company/
Agent

Fig. 3. Client-to-client process ‘Payroll tax return’.

21

Obviously, each of the above-mentioned client-to-client processes can be de-
scribed in more detail by further specifying the subprocesses of which they con-
sist, the actors that are involved, the incoming and outgoing messages, and the da-
tabases that are being used. Next, we present a more detailed decomposition of the
process ‘Payroll tax return’ (Fig. 3) from the overall SUB process architecture.
The model shows, among others, which part of the process is executed by the
TCA and which by UWV.

4.2 Application Usage

Going one level of detail deeper, we now zoom in on the ‘Receive tax return’ sub-
process. The model of this subprocess and the corresponding application support
are shown in Fig. 4.

Receive tax

Receive electronic PTR msg.

Nominative
data

FOS

MOS

Temporary
storage file

DCS

FOL

convert

BvR

Receive paper PTR msg.

Receive
PTR

document

Receive
PTR small

Receive
PTR large

Receive
PTR web

large:
0,17 %

Scan
document

decode
small:

98,10%

web:
1,72 %

OB2000

Payroll tax
return msg.

Paper PTR

Electronic
PTR

Legal
archive

F = 22 000/month

F = 638 000/month

FOS
external

FOS
internal

Fig. 4. Application and business process architecture for ‘Receive tax return’ (par-
tial view).

22

A payroll tax return (PTR) can be submitted in two main formats: on paper or
electronically. The electronic tax returns have three possible formats: Web-based
messages, small messages sent via SMTP, and large messages sent via FTP. The
model shows the expected distribution of the total number of messages over these
different formats.

The first part of the ‘Receive tax return’ process transforms these formats into a
common, medium-independent format. We will refer to this phase of the process
as ‘Medium-specific processing’. The second phase of the ‘Receive tax return’
process, ‘Medium-independent processing’, processes all the payroll tax returns in
the same way, irrespective of their original format.

First, we detail the ‘Medium-independent processing’ phase. In the application
architecture, the behaviour of each application component is partitioned into one
or more application functions (denoting units of functionality used within the
business processes), which may deliver application services to their environment,
and application interactions to model communication between components, as
well as the data stores involved. Part of the resulting model is shown in Fig. 5.

Medium-independent processing

Message
Store

FOS Intern

AV

PTR pStructural conversion

convert receive and
check

PTR file

Receive
message

XML-
message

conversion
& splitting

Store
message Remove

message

Temporary
storage file

Collective
part

Nominative
part

Nominative
lines

Collective
lines

Medium
independent

PTR

PTR data

Fig. 5. Application support for ‘Medium-independent processing’ (partial view).

23

4.3 Infrastructure Usage

The next step is to take a closer look at the infrastructure support for the applica-
tion architecture. We first illustrate the modelling approach for the ‘Medium-
independent processing’. A layer of infrastructure services supports the various
application functions. We distinguish three types of infrastructural services:

− data storage and access services;
− processing services;
− communication services.

Receive small electronic PTR

MOS

MTA in P44 in
BAPI

unpack
MQ

dispatch

Security and decryption
Mail handling

Archive

Decode and
authorise

Receive
msg.

Header
and body

Process msg.

BAPI
out-buffer

BAPI
in-buffer

MTA
buffer

PTR
message

F=626 000/month

PTR data

OB2000 Sybase
access

Ch. MOS
->FOS

APMOSU7-MOS
production

Sybase
DBMS

BS

App.
hosting

Execution
environment

QM

APFOSU4-FOS
internal production

QM

FOS internal

Medium
independent

PTR

Message
switch

Discards
administration

P44
discards-
handling

MQ
messaging

Fig. 6. ‘Receiving small electronic payroll tax returns’ architecture.

24

Data storage and access services are realised by, for example, a database man-
agement system. Processing services are typically realised by an execution envi-
ronment or application server. Communication services support messaging be-
tween applications which is realised by, for instance, message queuing software.
In this case, WebSphere MQ technology is used, where message brokers and mes-
sage switches make use of functionality provided by queue managers. In MQ,
communication services are realised by so-called channels. A channel between
two devices is modelled as a communication path that represents a collaboration
of two QM system software components, one for the sender and one for the re-
ceiver.

As mentioned above, the first part of the ‘Return tax returns’ process, ‘Me-
dium-specific processing’, receives payroll tax returns from four information
sources. Following the same modelling guidelines as in the case of the ‘Medium-
specific processing’ part, we present in Fig. 6 the whole layered architecture (i.e.,
business process, application, and infrastructure architecture) of ‘Receiving small
electronic payroll tax returns’. The models for the other three sources of tax re-
turns will not be shown here, but they can be constructed in a similar way.

5 Performance Analysis

This section illustrates the quantitative analysis of the model presented in the
views in the previous sections, using the analysis approach described in (Iacob &
Jonkers 2005). The results can be used to get an indication of the capacity that is
required for the different resources in the infrastructure layer.

5.1 Viewpoints on performance

Architectures can be described from different viewpoints, which result in different
views on architectural models (IEEE, 2000). For the performance aspects of a sys-
tem, we can likewise discern a number of viewpoints, resulting in different (but
related) performance measures:

− User/customer view (stakeholders: customer; user of an application/system):
response time, the time between issuing a request and receiving the result; the
response time is the sum of the processing time and waiting times (synchronisa-
tion losses).

− Process view (stakeholders: process owner; operational manager): completion
time, the time required to complete one instance of a process (possibly involv-
ing multiple customers, orders, products etc., as opposed to the response time,
which is defined as the time to complete one request).

− Product view (stakeholders: product manager; operational manager): process-
ing time, the amount of time that actual work is performed on the realisation of
a certain product or result: the response time without waiting times. This can be
an order of magnitude lower than the response time.

25

− System view (stakeholders: system owner; system manager): throughput, the
number of transactions/requests that are completed per time unit.

− Resource view (stakeholder: resource manager; capacity planner): utilisation,
the percentage of the operational time that a resource is busy. On the one hand,
the utilisation is a measure for the effectiveness with which a resource is used.
On the other hand, a high utilisation can be an indication of the fact that the re-
source is a potential bottleneck.

This is a refinement of the views mentioned in, e.g., Herzog (2001), which only
discerns a user view and a system view.

5.2 Analysis Approach

For the given type of analysis, the following input data is required:

− For each trigger the arrival frequency (average and possibly also peaks).
− For each process, function, or service the average service time.
− For each actor, component, or device the capacity.

Given these inputs, we can estimate the following performance measures:

− For each concept in the model (service, process, function, and resource) the
throughput: the number of inputs/outputs that is to be processed per time unit.
This is the workload that is imposed by the processes.

− For each actor, component, and device its utilisation: the percentage of time
that it is active.

− For each process, function, and service the average processing time and re-
sponse time.

− For each client-to-client process the average completion time.

Technical infrastructure

Infrastructure services

Applications

Application services

Workload
(throughput)

Performance
measures

((utilisation
 response time)

,

Business processes

Fig. 7. Overview of the analysis approach.

The analysis approach is portrayed in Fig. 7. Starting with the arrival frequen-
cies on the business process level, the workload (throughput) for all model ele-
ments in the layers below is calculated (top-down analysis). Together with the
given service time of the infrastructure services, the utilisation of the resources,

26

and the processing and response times of the processes, functions, and services are
calculated (bottom-up analysis). In (Iacob & Jonkers 2005) there is a detailed de-
scription of the analysis algorithms.

Medium-independent processing
Structural conversion

convert rec

PTR file

Nominative
lines

Collective
lines

Medium
independent

PTR

F=660 000/mth 660 000/mth
660 000/mth 660

FOS Intern

XML-message
conversion & splitting

APFOSU4-FOS internal
production

Message
switch

QM QPQM

XIB

MQ
messaging

Message
Store

Store
message

MQ
messaging

DB
access

MB

Unix Server -
Message Store

Message
database

QM

Ch.
FOS->

Msg. store

Message
broker

Remove
message

Ch.
AVANTi ->
Msg. Store

MQ
messaging

Temp. storage

Collective
part

Nominative
part

660 000/mth

660 000/mth

660 000/mth
660 000/mth

66 000/mth
66 000/

660 000/mth

660 000/mth

66 000/mth

66 000/mth

1 320 00

1 320 000/mth660 000/mth

660 000/mth

726 000/mth

726 000/mth

1 452 000/mth

1 320 000/mth

3 498 000/mth

660 000/mth

660 000/mth

1 320 000/mth

1 980 000/mth

PTR data
660 000/mth

Ch. FOS ->
AVANTi

Fig. 8. Throughputs for the subprocess ‘Medium-independent processing’.

27

5.3 Workload Calculations (Top-Down)

Some of the results of the workload calculations are shown in Fig. 8 (in italics).
These figures reflect the workload of applications and infrastructure imposed by
the subprocess Medium independent processing, given an average monthly supply
of 660,000 payroll tax returns. This workload is the basis for further performance
analysis.

To obtain estimates of the total required infrastructure capacities, the same cal-
culations also have to be made for the different Medium-specific processing parts
of the Receive tax return process. The sum of the workloads from all the subproc-
esses results in a total workload for the SUB infrastructure, part of which is shown
in Fig. 9. Similar calculations could be carried out for peak situations.

626 000/mth22 000/mth

66 000/mth

10 915/mth 10 915/mth

10 915/mth

10 915/mth

MQ Gate cluster

OB2000

APMOS
produ

App.
hosting

Execution
environment

Ch. DCS
->FOS

Document
Conversion System

MQ
messaging

QM

BS

Message
switch

App.
hosting

Execution
environment

Ch. FOL
->FOS

FOL – Online
Forms (2 of 3)

MQ
messaging

QM

BS

Message
switch

App.
hosting

Web
Application

server

32 745/mth

22 000/mth

10 915/mth

10 915/mth

22 000/mth 22 000/mth

626 000/mth

626 000/mth

3 881 20

22 000/mth

22 000/mth

22 000/mth

66 000/mth

10 915/mth10 915/mth

Fig. 9. Total workload of the SUB infrastructure (partial view).

5.4 Performance Measure Calculations (Bottom-Up)

To calculate performance measures such as response times and utilisation, service
times are also needed as input data. These figures are often difficult to establish,
especially in a design phase of a project when systems are not yet operational.
Nevertheless, based on technical documentation and available historical informa-

28

tion (e.g., performance tests) of existing system components, and together with
experts on the matter, reasonable estimates of these numbers could be made.

The numerical results of the bottom-up analysis of the process ‘Receiving small
electronic payroll tax returns’ are given in Fig. 10. According to these figures the
utilisation of the resources for an average workload is already quite high; this
means that at peak loads the resources will almost certainly be overloaded. A solu-
tion to this problem may be to add additional resources or to increase the capacity
of the resources. Further analysis can help to determine by how much the capacity
needs to be increased.

MOS

MTA in P44 in BAPI unpack MQ dispatch

Archive

Decode and
authorise

Receive
msg. Process msg.

F=626 000/mth

APMOSU7-MOS production

MQ
messaging

send

App.
hosting

APFOSU4-FOS
internal production

Message
switch

X = 626 000/mth
T = 0,11 s
R = 0,27 s

X = 1 252 000/mth
T = 0,14 s
R = 0,35 s

X = 626 000/mth
T = 0,14 s
R = 0,35 s

X = 626 000/mth
T = 0,06 s
R = 0,15 s

X = 46 950/mth
T = 1,00 s
R = 1,58 s

X = 1 940 600/mth
T = 0,09 s
R = 0,14 s

X = 2 613 550/
mth X = 626 000/mth

F=626 000/mth

F=626 000/mth

F=626 000/mth

MQ
messaging

receive

X = 626 000/mth
T = 0,018 s
R = 0,018 s

U=60%

U=37% U=1,8%

n=1n=1n=0.1n=1n=1n=0,075

S = 0,018 sS = 0,018 sS = 0,09 sS = 1,0 s

X = 626 000/mth
T = 0,018 s
R = 0,028 s

T = 0,28 s T = 0,35 s

T = 0,35 s

T = 0,35 s

F=626 000/mth

F=626 000/mth

Fig. 10. Utilisation and response times for ‘Receive tax returns (small)’.

6 Conclusions

This case study shows that the ArchiMate language is suitable for modelling the
relevant aspects of the technical and application architectures, as well as relating
them to each other and the business processes they support. Quantitative analysis
offered a clear view of how activities at the business process level impose a work-
load on the application and infrastructure levels, thus providing a basis for capac-
ity planning of the infrastructure. Performing these quantitative analyses at an

29

early stage considerably helps the realisation of the desired performance character-
istics of the target system.

The case study clearly shows the feasibility and practical value of these results
in various real-life settings. Both the service-oriented modelling language and the
visualisation and analysis techniques have shown their merit in providing more in-
sight into complex, wide-ranging enterprise architectures.

Acknowledgment

This paper results from the ArchiMate project (http://archimate.telin.nl/), a re-
search initiative that provides concepts and techniques to support enterprise archi-
tects in the visualisation, communication and analysis of integrated architectures.
The ArchiMate consortium consists of ABN AMRO, Stichting Pensioenfonds
ABP, the Dutch Tax and Customs Administration, Ordina, Telematica Instituut,
Centrum voor Wiskunde en Informatica, Katholieke Universiteit Nijmegen, and
the Leiden Institute of Advanced Computer Science.

References

ArchiMate project (2005), http://www.archimate.com/, accessed: 30-9-2005.
Ferris C, Farrell J (2003), What are Web Services? Communications of the ACM, 46(6):31.
Iacob M-E, Jonkers H (2005), Quantitative Analysis of Enterprise Architectures, In: Pro-

ceedings of the First International Conference on Interoperability of Enterprise Soft-
ware and Applications (INTEROP-ESA'2005), Geneva, Switzerland, February 21 - 25.

Herzog, U (2001). Formal methods for performance evaluation, In Lectures on Formal
Methods and Performance Analysis: First EEF/Euro Summer School on Trends in Com-
puter Science (LNCS 2090), pp. 1–37. Springer, Berlin.

IEEE Computer Society (2000), IEEE Std 1471-2000: IEEE Recommended Practice for
Architecture description of Software-Intensive Systems. IEEE, New York.

Lankhorst, MM (2005), Enterprise Architecture at Work – Modelling, Communication, and
Analysis. Springer, 2005.

Stevens M (2002), Service-Oriented Architecture Introduction, Part 1.
www.developer.com/design/article.php/1010451, April.

The Open Group (2003), The Open Group Architectural Framework (TOGAF) Version 8.1
‘Enterprise Edition’. The Open Group, Reading, UK. http://www.opengroup.org/togaf/.

Zachman JA (1987), A Framework for Information Systems Architecture, IBM Systems
Journal, 26(3):276–292.

30

Relational to Object-Oriented Database Wrapper

Solution in the Data Grid Architecture with Query

Optimization Issues

Jacek Wislicki
1
, Kamil Kuliberda

1
, Radoslaw Adamus

1
, Kazimierz Subieta

1,2,3

1 Computer Engineering Department, Technical University of Lodz, Lodz, Poland
2Institute of Computer Science PAS, Warsaw, Poland

3Polish-Japanese Institute of Information Technology, Warsaw, Poland
[jacenty, kkulibe, radamus]@kis.p.lodz.pl, subieta@pjwstk.edu.pl

Abstract: The paper introduces a solution to the problem of integrating
relational databases with the data grid architecture and presenting their contents
as a purely object-oriented business model. Authors describe a dedicated
wrapper constructed with the stack-based approach (SBA) and updatable views
concepts. The proposed architecture sustains grid's transparency and allows a
grid user to operate in an object-oriented environment with SBQL – the stack-
based query language. The strength of the described wrapper is a possibility of
employment of native SQL optimizers. A query entering the front-end of the
wrapper (object-oriented business model) can be rewritten according to the
powerful SBQL optimization rules (within the wrapper) and then evaluated in
the relational resource environment where appropriate SQL optimizers apply.
The paper contains a description of the wrapper and its place in the grid
architecture with a query optimization procedure and an example of such a
process.

1 Introduction

The grid is a novel technology contemporarily being widely researched by many
academic and industrial institutions. Early grid concepts used to concern only
computational networks. However, the rapid evolution of the Internet, Internet-related
communities and the increase of a worldwide business information exchange have
issued further expectations and, simultaneously, opened new opportunities for data
and service integration. The new technologies are conceptually similar to the
computational grid experiences and solutions. A significant branch of the grid
researches is devoted to a concept of a distributed parallel database content
processing, where various data and service resources residing in separate locations
can be virtually available through their global representation. The technology is
recently referred to as a “data-intensive grid” or a ”data grid”. Such a global
representation (view) should abstracts its users from all the technical aspects of the
process of integration (location, heterogeneity, fragmentation, replication,
redundancy, etc.), which is referred to as the grid transparency. The effect of
transparency requires enveloping (wrapping) the grid resources with dedicated
programmatic structures – wrappers.

31

In this paper we deal with object-to-relational wrappers for distributed,
heterogeneous and redundant data resources that are to be virtually integrated into a
centralized, homogeneous and non-redundant whole. Our data grid term concerns
higher forms of distribution transparency plus some common infrastructures build on
top of the grid, including the trust infrastructure (security, privacy, licensing,
payments, etc.), web services, distributed transactions, workflow management, etc
[2].

Integration of dozens or hundreds servers participating in a grid requires different
design processes in comparison to the situation when, e.g. a single object-oriented
application has to be connected to a relational database. The common (canonical)
database schema is the result of many negotiations and tradeoffs between business
partners having incompatible (heterogeneous) data and services. The processes should
take into account data models of the resources, but first of all the global canonical
schema is influenced by the business model required by global applications (operating
on top of a grid).

This makes development of an object-relational wrapper much more constrained
than in a non-grid case. On one hand, the wrapper should deliver the data and services
according to the predefined object-oriented canonical schema. On the other hand, its
back-end should work on a given (preferably arbitrary) relational database.

The major problem with this architecture concerns how to utilize a native SQL
optimizer. In all known RDBMS-s the optimizer and its particular structures (e.g.
indices) are transparent to the SQL users. A naive implementation of a wrapper
causes generation of primitive SQL queries such as select * from R, and then,
processing the results of such queries by SQL cursors. Hence, the SQL optimizer has
no chances to work. Furthermore, amounts of data returned from a relational resource
by such form of queries are too huge to be effectively processed by a wrapper. Our
experience has shown that direct translation of object-oriented queries into SQL is
unfeasible for a sufficiently general case.

The solution to this problem presented in this paper is based on the object-oriented
query language SBQL, virtual object-oriented views defined in SBQL, query
modification methods [13], and an architecture that will be able to detect in a query
syntactic tree some patterns that can be directly translated to optimizable SQL
queries. The patterns match typical optimization methods that are used by the SQL
query optimizer, in particular, indices and fast joins. The partial query results returned
from a relational database are then evaluated in the whole query context (resulting
from the already SBQL-optimized query form).

The concept of the two-stage optimization (object-oriented and relational) is
original and innovatory and the whole presented approach is currently being
implemented within our object-oriented platform ODRA.

The rest of the paper is organized as follows. In Section 2 we present our previous
experiences, studies and researches concerning object-oriented wrappers built on top
of relational databases, including a brief state of art and the fundamental concepts of
the described solution: the stack-based approach with SBQL and updatable object-
oriented views. The section presents only basic ideas – the approach has already
resulted in extensive literature (e.g. [12]) and several implementations. Section 3
presents the data grid architecture. Section 4 discusses an object-relational wrapper
and presents a simple example showing how it works. Section 5 concludes.

32

2 The State of Art and the Fundamentals of the Solution

The art of object-oriented wrappers build on top of relational database systems has
been developed for years - first papers on the topic are dated to late 80-ties and were
devoted to federated databases. The motivation for the wrappers is reducing the
technical and cultural difference between traditional relational databases and novel
technologies based on object-oriented paradigms, including analysis and design
methodologies (e.g. based on UML), object-oriented programming languages (C++,
Java, C#, etc.), object-oriented middleware (e.g. based on CORBA), object-relational
databases and pure object-oriented databases. Recently, Web technologies based on
XML/RDF also require similar wrappers. Despite the big pressure on object-oriented
and XML-oriented technologies, people are accustomed and quite satisfied with
relational databases and there is a little probability that the market will massively
change soon to other data store paradigms.

Mapping between a relational database and a target global object-oriented database
should not involve materialization of objects on the global side, i.e. objects delivered
by such a wrapper should be virtual. Materialization is simple, but leads to many
problems, such as storage capacity, network traffic overhead, synchronization of
global objects after updates on local servers, and (for some applications)
synchronization of local servers after updates of global objects. Materialization can
also be forbidden by security and privacy regulations.

If global objects have to be virtual, they are to be processed by a query language
and the wrapper has to be generic, we are coming to concept of virtual object-oriented
database views that do the mapping from tables into objects. Till now, however,
sufficiently powerful object-oriented views are still a dream, despite a lot of papers
and some implementations. The ODMG standard does not even mention views

1
. The

SQL-99 standard deals a lot with views, but currently it is perceived as a huge set of
loose recommendations rather than as entirely implementable artifact. In our opinion,
the Stack-Based Approach and its query language SBQL offer the first and universal
solution to the problem of updateable object-oriented database views. In this paper we
show that the query language and its view capability can be efficiently used to build
optimized object-oriented wrappers on top of relational databases.

Current common development of exiting systems (languages and technologies)
includes a large combination of object-oriented options with relational systems and
applications where fundamental differences are based on models’ particular artifacts.
Focusing on wrappers, they can have different properties, in particular, can be
proprietary to applications or generic, can deal with updates or be read-only, can
materialize objects on the wrapper side or deliver purely virtual objects, can deal with
object-oriented query language or provide some iterative “one-object-in-a-time” API,
etc [1]. This causes an extremely huge number of various ideas and technologies. For
instance, Google reports more than 100 000 Web pages as a response to the query
“object relational wrapper”.

1 The define clause of OQL is claimed to be a view, but this is misunderstanding: it is a macro-

definition (a textual shorthand) on the client-side, while views are server-side entities.

33

2.2 Our Experiences and the Resulting Proposals

Our first experience with this kind of a wrapper was in 1993, when we built a gateway
from the DBPL system to Ingres and Oracle. The idea was that relational tables have
to be transparently and virtually mapped as DBPL persistent collections, and DBPL
queries (based on nested relational calculus) are to be automatically mapped to SQL
queries. In this way a DBPL programmer might forget that he/she works with a
relational database and used regular DBPL queries and programs instead of SQL. On
the back-end the DBPL queries, mapped to SQL, were optimized by the SQL
optimizer, thus the performance was quite good. Even such a simple wrapper
presented a conceptual and implementation challenge, see [8] for details.

Our second experience with this kind of wrappers was connected with the
European project ICONS (Intelligent COntent maNagement System), IST-2001-
32429, devoted to advanced Web applications. ICONS assumes a simplified object-
oriented model having virtual non-nested objects with repeated attributes and UML-
like association links used for navigation among objects. Both repeated attributes and
links were derived from the primary-foreign key dependencies in the relational
database by a parameterization utility. The ICONS repository was available as an API
to Java. However, because Java has no query capabilities, all the programming has to
be done through sequential scanning of collections of objects. Obviously, this gives
no chances to the SQL optimizer, hence initially the performance was extremely bad.
It was improved by some extensions, for instance, by special methods with conditions
as parameters that were mapped into SQL where clauses, but in general the
experience was disappointing. (We think this may concern all Java-oriented persistent
layers built on top of relational systems and using an own API instead of JDBC.)

Currently we are implementing (under .NET) an object-oriented platform named
ODRA for Web and grid applications, thus the problem of a wrapper on top of
relational databases comes again into the play. After previous experience we have
made the following conclusions:

− the system will be based on our own object-oriented query language SBQL, which
has many advantages over OQL, XQuery, SQL-99 and other languages. In
particular, it is much more powerful than OQL and XQuery and has a precise
formal semantics, which is a prerequisite for developing any automatic
transformations of queries into semantically equivalent forms. SBQL is already
implemented, including its typechecker and a query rewriting optimizer,

− the system will be equipped with a powerful mechanism of object-oriented virtual
updateable views based on SBQL. Our views have the power of algorithmic
programming languages, hence are much more powerful than, e.g. SQL views.
There are three basic applications of the views: (1) as integrators (mediators)
making up a global virtual data and service store on top of distributed,
heterogeneous and redundant resources; (2) as wrappers on top of particular local
resources; (3) as customization and security facility on top of the global virtual
store. A partial implementation of SBQL views is ready too [7].

The architecture assumes that a relational database will be seen as a simple object-
oriented database, where each tuple of a relation is mapped virtually to a primitive
object. Then, on such a database we define object-oriented views that convert such
primitive virtual objects into complex, hierarchical virtual objects conforming to the
global canonical schema, perhaps with complex repeated attributes and virtual links

34

among the objects. Because SBQL views are algorithmically complete, we are sure
that every such a mapping can be expressed. Moreover, because SBQL views can
possess a state, have side effects and be connected to classes, one would be able to
implement a behavior related to the objects on the SBQL side.

The major problem concerns how to utilize the SQL optimizer. After our previous
experience we have concluded that static (compile time) mapping of SBQL queries
into SQL is unfeasible. On the other hand, a naive implementation of the wrapper, as
presented above, leaves no chances to the SQL optimizer. Hence we must use
optimizable SQL queries on the back-end of the wrapper.

The solution of this problem is presented in this paper. It combines SBQL query
engine with the SQL query engine. There are a lot of various methods used by an
SQL optimizer, but we can focus on three major ones:

− rewriting, for instance, pushing selections before joins,

− indices, i.e. internal auxiliary structures for a fast access,

− fast joins, e.g. hash joins.

Concerning rewriting, our methods are perhaps as good as SQL ones, thus this kind of
optimization will be done on the SBQL side. Two next optimizations cannot be done
on the SBQL side. The idea is that an SBQL syntactic query tree is first modified by
views [13], thus we obtain a much larger tree, but addressing a primitive object
database that is 1:1 mapping of the corresponding relational databases. Then, in the
resulting tree we are looking for some patterns that can be mapped to SQL and which
enforce SQL to use its optimization method. For instance, if we know that the
relational database has an index for Names of Persons, we are looking in the tree the
sub-trees representing the SBQL query such as:

Person where Name = "Doe"

After finding such a pattern we substitute it by the dynamic SQL statement:
exec_immediately(select * from Person where Name = "Doe")

enforcing SQL to use the index. The result returned by the statement is converted to
the SBQL format. Similarly for other optimization cases. In effect, we do not require
that the entire SBQL query syntactic is to be translated to SQL. We interpret the tree
as usual by the SBQL engine, with except of some places, where instead of some
subtrees we issue SQL execute immediately statements.

2.2 The Stack-Based Approach, SBQL and Updatable Object Views

In the stack-based approach (SBA) a query language is considered a special kind of a
programming language. Thus, the semantics of queries is based on mechanisms well
known from programming languages like the environment stack (ES). SBA extends
this concept for the case of query operators, such as selection, projection/navigation,
join, quantifiers and others. Using SBA one is able to determine precisely the
operational semantics (abstract implementation) of query languages, including
relationships with object-oriented concepts, embedding queries into imperative
constructs, and embedding queries into programming abstractions: procedures,
functional procedures, views, methods, modules, etc.

SBA is defined for a general object store model. Because various object models
introduce a lot of incompatible notions, SBA assumes some family of object store
models which are enumerated M0, M1, M2 and M3. The simplest is M0, which

35

covers relational, nested-relational and XML-oriented databases. M0 assumes
hierarchical objects with no limitations concerning nesting of objects and collections.
M0 covers also binary links (relationships) between objects. Higher-level store
models introduce classes and static inheritance (M1), object roles and dynamic
inheritance (M2), and encapsulation (M3). For these models there have been defined
and implemented the query language SBQL, which is much more powerful than
ODMG OQL [10] and XML-oriented query languages such as XQuery [14]. SBQL,
together with imperative extensions and abstractions, has the computational power of
programming languages, similarly to Oracle PL/SQL or SQL-99.

SBA assumes the object relativism principle that makes no conceptual distinction
between objects of different kinds or stored on different object hierarchy levels.
Everything (e.g. a Person object, a salary attribute, a procedure returning the age of a
person, a view returning well-paid employees, etc.) is an object. SBQL respects the
naming-scoping-binding principle: each name occurring in a query is bound to the
appropriate run-time entity (an object, an attribute, a method, a parameter, etc.)
according to the scope of its name. The principle is supported by means of the
environment stack (ENVS). The concept of the stack is extended to cover database
collections and all typical query operators occurring, e.g. in SQL and OQL.

Due to the stack-based semantics, the full orthogonality and compositionality of
query operators have been achieved. The stack also supports recursion and
parameters: all functions, procedures, methods and views defined in SBQL can be
recursive by definition. Rigorous formal semantics implied by SBA creates a very
high potential for the query optimization. Several optimization methods have been
developed and implemented, in particular methods based on query rewriting, indices,
removing dead queries, and others [11].

SBQL is based on the principle of compositionality, i.e. semantics of a complex
query is recursively built from semantics of its components. In SBQL each binary
operator is either algebraic or non-algebraic. Examples of algebraic operators are
numerical and string operators and comparisons, aggregate functions, union, etc.
Examples of non-algebraic operators are selection (where), projection/navigation (the

dot), join, quantifiers (∃, ∀), and transitive closures. The semantics of non-algebraic
operators is based on a classical environmental stack, thus the name of the approach.

The idea of SBQL updatable views relies in augmenting the definition of a view
with the information on user intentions with respect to updating operations. The first
part of the definition of a view is the function, which maps stored objects onto virtual
objects (similarly to SQL), while the second part contains redefinitions of generic
operations on virtual objects. The definition of a view usually contains definitions of
subviews, which are defined by the same principle [4].

The first part of the definition of a view has the form of a functional procedure. It
returns entities called seeds that unambiguously identify virtual objects (usually seeds
are OIDs of stored objects). Seeds are then (implicitly) passed as parameters of
procedures that overload operations on virtual objects. These operations are
determined in the second part of the definition of the view. There are distinguished
several generic operations that can be performed on virtual objects:

− delete removes the given virtual object,

− retrieve (dereference) returns the value of the given virtual object,

− navigate navigates according to the given virtual pointer,

− update modifies the value of the given virtual object according to a parameter,

36

− etc.

All procedures, including the function supplying seeds of virtual objects are defined
in SBQL and can be arbitrarily complex [4].

3 Architecture of the Data Grid

Figure 1 shows the architecture of a data grid. The proposed solution provides a
simplification of the access to the distributed, heterogeneous and redundant data,
constituting an interface to the distributed data residing in any local resource provider
participating in a grid. The goals of the approach are to design a platform where all
clients and providers are able to access multiple distributed resources without any
complications concerning data maintenance and to build a global schema for the
accessible data and services. The main difficulty of the described concept is that
neither data nor services must be copied, replicated and maintained on the global
applications side (in the global schema), as they are supplied, stored, processed and
maintained on their autonomous sites [5, 6].

Fig. 1. The data grid architecture

We should describe the functionality range of the individual grid’s architecture
elements [5] shown in the above picture. The central part of a grid is a global virtual

store containing virtual objects and services. Its role is to store addresses of local
servers and to process queries sent from global client applications, as well as to
enable accessing the grid according to the trust infrastructure (including security,
privacy, licensing and non-repudiation issues). The global virtual store presents
business objects and services according to the global schema, which has to be defined

Contributory

schema

Contributory

schema

Global

client 1

Global infrastructures (trust, transactions,

indexing, workflow, enhanced web services)

Global schema

Integration

schema

Global

client 2

Global

client 3

Global virtual object and service store

(implemented through global views)

Wrapper +

Contributory

views

Local

schema
Local server 1

Wrapper +

Contributory

views

Local

schema
Local server 2

Grid

designer

Grid

designer

37

and agreed upon the organization that creates a grid. This principal mechanism
envelopes all the local resources into one global data structure. Physically, it is a
composition of the contribution schemas which can participate in the grid. The global
schema is responsible for managing grid contents through access permitions,
discovering data and resources, controlling location of resources, indexing whole grid
attributes. The global schema is also used by programmers to create global client
applications.
 As a grid integrates services and objects physically stored in the local servers,
administrator of local servers must define contributory schemata and corresponding
contributory views [3, 5], mapping local data and services to the global schema
demands. A contribution schema is created by the grid designer and represents
schema of the main data formalization rules for any local resource. Basing on this,
local resource providers create their own contribution schemata adapted to an unique
data structure present at their local sites. Resource formalization represented in such a
form becomes a part of the global schema. Contribution view is the query language
definition of mapping the local schema to contribution schema. A well defined
contribution view can become a part of the global view. The mapping process consists
of enclosing into the global schema particular contribution schemas residing in local
sites, created earlier by local participants – resource providers [3]. The integration

schemata contain additional information about dependencies between local servers
(replications, redundancies, etc.) [3, 6], showing a method for integration of
fragmented data into the grid, e.g. how to merge fragmented relational data structures
where some parts of them are placed in separated local servers (in other words,
fragmented). A grid designer must be aware of the structure fragmentation, which
knowledge is unnecessary for a local sites administrator. A grid developer represents
a person, a software development team or consortium which determine a primary
dependencies and attributes of a grid. Initially, they create a global schema which
later can be contributed during participation of clients and providers. Next, they
define a metabase structure with contribution and integration schemata, according to
the grid data structure intention. A local schema describes the data model of a local
resource and can be presented in original data structure (i.e. relational, XML, HTML)
and therefore it cannot be directly included in the global virtual store.
 The crucial element of the architecture is a wrapper which enables importing and
exporting data between two different data models, e.g. our object-oriented grid
solution at one side and a relational data structure on the other side. The detailed
description of wrapping mechanism is placed in next chapter of this paper.
 The realization challenge is a method (in fact a core of the wrapper mechanism)
of combining and enabling free bidirectional processing of contents of local clients
and resource providers participating in the global virtual store as parts of the global
schema. The presented architecture of a data grid is fully scalable, as growing and
reducing the grid contents is dependent on the state of global schema and views.

4 Architecture of the Object-Relational Wrapper and Examples

Figure 2 presents the architecture of the wrapper. The general assumptions are the
following:

38

− externally the data are designed according to the object-oriented model and the
business intention of the global schema. This part constitutes the front-end of the
wrapper and relies on SBQL,

− internally the relational structures are presented in the M0 model (excluding
pointers and nesting levels above 2) [12]. This part constitutes the back-end of the
wrapper and it also relies on SBQL,

− the mappings between front-end and back-end are defined with updatable object
views. They role is to map back-end onto front-end for querying and front-end onto
back-end for updating (virtual objects),

− for global queries, if some not very strict conditions are satisfied, the mapping
form front-end into back-end query trees is done through query modification, i.e
macro-substituting every view invocations in a query by the view body.

Fig. 2. The architecture of a generic wrapper for relational databases

4.1 Updates Through the Wrapper

The presented architecture assumes retrieval operations only, because the query
modification technique assumed in this architecture does not work for updates.
However, the situation is not hopeless (although more challenging). Because in SBQL
updates are parameterized by queries, the major optimizations concern just these
parameters, with the use of the query modification technique as well. Then, after the
optimization, we can develop algorithms that would recognize in the back-end query
tree all updating operations and then, would attempt to change them to dynamic SQL
update, delete and insert statements. There are technical problems with identification
of relational tuple within the SBQL engine (and further in SQL). Not all relational
systems support tuple identifiers (tids). If tids are not supported, the developers of a
wrappers must relay on combination (relation_name, primary_key_value(s)), which is

SBQL front-end query

Parser

front-end SBQL query tree

External wrapper (updatable

views + query modification)

back-end SBQL query tree

Rewriting query optimizer

Business model

(object oriented)

M0 representation

of relational model

Internal wrapper (convertion of

parts of the tree to SQL

exec_immediately)

Info on indices and fast joins

SBQL interpreter
Dynamic SQL

(ODBC, JDBC, ADO,...)

RDBMS Relational model

39

much more complicated in implementation. Tids (supported by SQL) simply and
completely solve the problem of any kind of updates.

In Figure 2 we have assumed that the internal wrapper utilizes information on
indices and fast joins (primary-foreign key dependencies) available in the given
RDBMS application. In cases of some RDBMS (e.g. MS SQL Server) this
information cannot be derived from the catalogs. If automatic derivation is
impossible, the developers are forced to write a special utility allowing the wrapper
designer to introduce this information manually.

4.2 Description of the Optimization Procedure

The query optimization procedure (looking from wrapper's front-end to back-end) for
the proposed solution can be divided into several steps:
1. Query modification is applied to all view invocations in a query. All the

invocations are macro-substituted by seed definitions of the views. If an
invocation is preceded by the dereference operator, instead of the seed definition
we have to use the corresponding on_retrieve function. (There are some
modifications for virtual pointers.) The effect is a monster SBQL query referring
to the M0 version of the relational model available at the back-end.

2. The query is rewritten according to static optimization methods defined for SBQL
[11] such as removing dead sub-queries, factoring out independent sub-queries,
pushing expensive operators (e.g. joins) down in the syntax tree, etc. The resulting
query is SBQL-optimized, but still no SQL optimization is applied.

3. According to the available information about the SQL optimizer, the back-end
wrapper's mechanisms analyze the SBQL query in order to recognize patterns
representing SQL-optimizable queries. Then, exec_immediately clauses are issued.

4. The results returned by exec_immediately are pushed onto the SBQL result stack
as collections of structures, which are then used for regular SBQL query
evaluation.

4.3 Optimization Example

Fig. 3. The example of a relational schema

As the optimization example consider a simple two-table relational database

containing information about doctors DocR and wards WardR, “R” stands for
“relational” to increase the clearness (fig. 3).

The relational schema is wrapped into an object schema shown in figure 4

according to the following view definitions. The DocR-WardR relationship is realized
with worksIn and manager virtual pointers:

create view DocDef {

 virtual_objects Doc {return DocR as d;}

Name

Specialization

ID (PK)

DocR

... ... WardID (FK)

...

Name

...

Manager

WardR

ID (PK)

40

 virtual_objects Doc(DocId) {return (DocR where ID == DocId) as d;}

 create view nameDef {

 virtual_objects name{return d.name as n;}

 on_retrieve {return n;}

 }

 create view specDef {

 virtual_objects spec {return d.specialization as s;}

 on_retrieve {return s;}

 }

 create view worksInDef {

 virtual_pointers worksIn {return d.wardID as wi;}

 on_navigate {return Ward(wi) as Ward;}

 }

}

create view WardDef {

 virtual_objects Ward {return WardR as w;}

 virtual_objects Ward(WardId) {return (WardR where ID == WardId) as

w;}

 create view nameDef {

 virtual_objects name {return w.name as n;}

 on_retrieve {return n;}

 }

 create view managerDef {

 virtual_pointers manager {return w.menagerID as b;}

 on_navigate {return Doc(b) as Doc;}

 }

}

Fig. 4. Object schema used in the optimization example (wrapper's front-end)

Consider a query appearing at the front-end (visible as a business database schema)
that aims to retrieve names of the doctors working in the “cardiac surgery” ward

having the specialization the same as Smith's specialization. The query can be
formulated as follows (we assume that there is only one employee with that name in
the store):
((Doc where worksIn.Ward.name = "cardiac surgery") where

 spec = (Doc where name = "Smith").spec).name;

The information about the local schema (relational model) available to the wrapper

that can be used during the query optimization is that name column is uniquely
indexed in either relation and there is a primary-foreign key integrity between WardId
column (DocR table) and ID column (WardR table).

The optimization procedure is performed in the following steps:

− Introduce implicit deref function
((Doc where worksIn.Ward.deref(name) = "cardiac surgery") where

deref(spec) = (Doc where deref(name) =

"Smith").deref(spec)).deref(name);

− Substitute deref with the invocation of on_retrieve function for virtual objects

and on_navigate for virtual pointers
((Doc where worksIn.(Ward(wi) as w).Ward.(name.n) = "cardiac

surgery") where (spec.s) = (Doc where (name.n) =

"Smith").(spec.s)).(name.n);

− Substitute all view invocations with the queries from sack definitions
(((DocR as d) where ((d.wardID as wi).(((WardR where ID == wi) as w)

Doc [1..*]
name

spec

...

Ward [1..*]
name

...

41

as Ward)).Ward.((w.name as n).n) = "cardiac surgery") where ((d.spec

as s).s) = ((DocR as d) where ((d.name as n).n) = "Smith").((d.spec

as s).s)).((d.name as n).n);

− Remove auxiliary names s and n
(((DocR as d) where ((d.wardID as wi).(((WardR where ID = wi) as w)

as Ward)).Ward.(w.name) = "cardiac surgery") where (d.spec) = ((DocR

as d) where (d.name) = "Smith").(d.spec)).(d.name);

− Remove auxiliary names d and w
((DocR where ((wardID as wi).((WardR where ID = wi) as

Ward)).Ward.name = "cardiac surgery") where spec = (DocR where name =

"Smith").spec).name;

− Remove auxiliary names wi and Ward
((DocR where (WardR where ID = wardID).name = "cardiac surgery")

where spec = (DocR where name = "Smith").spec).name;

− Now take common part before loop to prevent multiple evaluation of a query
calculating salary value for the doctor named Smith
((((DocR where name = "Smith").spec) group as s).(DocR where ((WardR

where ID == wardID).name = "cardiac surgery")) where spec = s).name;

− Connect where and navigation clause into one where connected with and operator
((((DocR where name = "Smith").spec) group as s).(DocR where (WardR

where (ID = wardID and name = "cardiac surgery")) where spec =

s).name;

− Because name column is uniquely indexed (in DocR), the sub-query (DocR where

name = "Smith") can be substituted with exec_ immediately clause
(((exec_immediately("SELECT specialization FROM DocR WHERE name =

'Smith'")) group as s).(DocR where (WardR where (ID = wardID and name

= "cardiac surgery")) where spec = s).name;

− Because the integrity constraint with DocR.WardId column and WardR.ID column is
available to the wrapper (together with information about the index on

WardR.Name), the pattern is detected and another exec_immediately substitution is
performed:
(((exec_immediately("SELECT specialization FROM DocR WHERE name =

'Smith'")) group as s).(exec_immediately("SELECT * FROM DocR d, WardR

w WHERE d.wardID = w.ID AND w.name = 'cardiac surgery'") where spec =

s).name;

Either of the SQL queries invoked by exec_immediately clause is executed in the
local relational resource and pends native optimization procedures (with application
of indices and fast join, respectively).

5. Conclusions

The presented approach to data grid concerning wrapping relational databases to
object-oriented business model with application of the stack-based approach and
updatable views is clear and implementable. As presented by the example, a front-end
SBQL query can be modified and optimized with application of SBA rules and
methods within the wrapper (updatable views) and then the native relational
optimizers for SQL language can be employed. Due to including in SQL queries
(invoked by execute immediately clause) appropriate conditions forcing a reduction of
retrieval only to the matching records, the amounts of data subsequently processed by

42

the wrapper are satisfactorily small. The same conditions allow native SQL
optimizers to act.

The described wrapper architecture enables building generic solutions allowing
presentation of data stored in various relational resources as object-oriented models
visible at the top level of the grid and accessing the data with object query language.
Furthermore, assuming possibility of appropriate rearranging the wrapper's back-end
(SBQL to a local query language mapping), the solution should be also applicable to
other types of resources, especially object-relational, XML and other purely object-
oriented DBMSs, with the local optimization mechanisms employment.

The described optimization process assumes correct relational-to-object model
transformation (with no loss of database logic) and accessibility of the relational
model optimization information such as indices and/or primary-foreign key relations
(which can be read directly from the relational metadata or manually entered in the
wrapper's schema if not available directly). The SQL optimization is out of the scope
of the wrapper action and is assumed to be efficient and reliable.

The method is currently being implemented as a part of our new project ODRA
devoted to Web and grid applications.

References

1. Bergamaschi, S., Garuti, A., Sartori, C., Venuta, A.: Object Wrapper: An Object-Oriented
Interface for Relational Databases. EUROMICRO 1997, pp.41-46

2. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Global Grid Forum, June 22,
2002

3. Kaczmarski, K., Habela, P., Subieta, K.: Metadata in a Data Grid Construction. Proc. of
13th IEEE International Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE-2004), Italy, June, 2004

4. Kozakiewicz, H., Leszczylowski, J., Plodzien, J., Subieta, K.: Updateable Object Views.
ICS PAS Reports 950, October 2002

5. Kozankiewicz, H., Stencel, K., Subieta, K.: Implementation of Federated Databases
through Updateable Views. Proc. EGC 2005 - European Grid Conference, Springer LNCS,
2005, to appear

6. Kozankiewicz, H., Stencel, K., Subieta, K.: Integration of Heterogeneous Resources
through Updatable Views. Workshop on Emerging Technologies for Next generation GRID
(ETNGRID-2004), 13th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises (WETICE-2004), University of Modena and
Reggio Emilia, Italy, June 14-16, 2004, Proceedings published by IEEE

7. Kozankiewicz, H., Subieta, K.: SBQL Views - Prototype of Updateable Views. ADBIS
(Local Proceedings) 2004

8. Matthes, F., Rudloff A., Schmidt, J.W., Subieta, K.: A Gateway from DBPL to Ingres.
Proc. of Intl. Conf. on Applications of Databases, Vadstena, Sweden, Springer LNCS 819,
pp.365-380, 1994

9. Moore, R., Merzky, A.: Persistent Archive Concepts. Global Grid Forum GFD-I.026.
December-2003

10. Object Data Management Group: The Object Database Standard ODMG, Release 3.0.
R.G.G.Cattel, D.K.Barry, Ed., Morgan Kaufmann, 2000

11. Plodzien, J.: Optimization Methods in Object Query Languages, PhD Thesis. IPIPAN,
Warsaw 2000

43

12. Subieta, K.: Theory and Construction of Object-Oriented Query Languages. Editors of the
Polish-Japanese Institute of Information Technology, 2004, 522 pages, currently only in
Polish

13. Subieta, K., Plodzien, J.: Object Views and Query Modification, (in) Databases and
Information Systems (eds. J. Barzdins, A. Caplinskas), Kluwer Academic Publishers, pp. 3-
14, 2001

14. W3C: XQuery 1.0: An XML Query Language. W3C Working Draft 12, November 2003,
http://www.w3.org/TR/xquery/

44

Service Adaptation through Trace Inspection

Antonio Brogi and Razvan Popescu

Computer Science Department, University of Pisa, Italy

Abstract. Service-oriented computing highly supports the development
of future distributed business applications through the use of (Web) ser-
vices. Due to the heterogeneous and evolving nature of business pro-
cesses, service adaptation is necessary in order to overcome mismatches
between the interacting parties. Our long term objective is to develop
a general methodology for service adaptation capable of suitably over-
coming semantic and behaviour mismatches in view of business process
integration within and across organisational boundaries. In this paper we
show how to adapt a service in order to fulfil a client query requesting a
service with certain inputs and outputs. The proposed technique relies
on inspecting service execution traces and it generates a service contract
tailored to the client needs. Service contracts include a description of
the service behaviour (expressed by a YAWL workflow) as well as an
(ontology-annotated) signature.

1 Introduction

Service-oriented computing [19] is emerging as a new promising computing para-
digm that centres on the notion of service as the fundamental element for de-
veloping future business applications. The platform-neutral nature of services
creates the opportunity for building composite business processes by integrat-
ing existing elementary or complex services, possibly offered by different service
providers [31]. In this scenario, two prominent issues involved in the develop-
ment of next generation heterogeneous distributed software applications can be
roughly synthesised as discovering available services that fulfil a given request,
and suitably adapting and aggregating such services to build a needed business
application.

Currently, WSDL [28] and UDDI [8] are the universally adopted standards
for Web service description and discovery, respectively. Providers publish (purely
syntactic) WSDL advertisements to UDDI registries (constructed in the style of
yellow pages) which in turn provide clients with keyword- or taxonomy-based ser-
vice discovery capabilities. On the one hand, WSDL descriptions do not include
any semantic information and hence they are not “self-described” in a machine-
interpretable way. This severely limits the quality of the discovery results as
the matched services may not necessarily offer the requested functionality, and
hence fully-automated service discovery becomes unfeasible. On the other hand,
WSDL descriptions lack behaviour information. A direct consequence of this is
that service compositions may lock during execution. Stated differently, without

45

any protocol information (e.g., order of messages sent/received) no guarantee on
the behaviour of service compositions can be ensured.

Various proposals have been put forward in order to enhance service descrip-
tions. WSDL-S [2], OWL-S [17], SWSO [21], WSMO [29], or METEOR-S [20]
annotate services with semantic information. BPEL [5], WSCDL [27], METEOR-
S [1], OWL-S [17], SWSO [21], or recently YAWL [24] add protocol information
to service descriptions. All the above proposals can be in principle exploited
for improving the accuracy of service matching, for extending the properties of
service compositions, as well as for automatising both processes.

On the other hand, adding semantics and/or behaviour information to ser-
vice descriptions leads to distinguishing more service descriptions, and hence to
matching less services or service compositions with a given query. In this per-
spective, due to the heterogeneous and evolving nature of business processes,
service adaptation is hence needed to overcome the (unavoidable) mismatches
between the interacting parties.

Our long-term objective is to develop a general methodology for service adap-
tation capable of suitably overcoming both semantic and behaviour mismatches.
In this paper we tackle the problem of discovering services that can be adapted
to fulfil a client request. We consider a registry R of service contracts where each
contract includes a description of the service behaviour (expressed by a YAWL
workflow [24]), as well as an (ontology-annotated) signature. We also consider a
query Q requesting a service with certain inputs and outputs.

The adaptation process roughly consists of:

1. matching a candidate service S in R by checking the compatibility of the
execution traces of S with respect to the given query Q, and

2. generating the contract of the service S adapted so as to fulfil the query Q.

The rest of the paper is organised as follows. We first introduce service
contracts (Subsection 2.1) and give an overview of the phases of the adapta-
tion methodology (Subsection 2.2), followed by a motivating example (Subsec-
tion 2.3). We then describe the service matching phase (Subsection 2.4) and then
the contract generation phase (Subsection 2.5). In Section 3 we briefly overview
related work. Finally, Section 4 presents some concluding remarks.

2 Service Adaptation

2.1 Service Contracts

We consider services that are described by contracts [16], and we argue that
contracts should in general include different types of information: (a) Ontology-
annotated signatures, (b) Behaviour, and (c) Extra-functional properties. Fol-
lowing [17], we argue that WSDL signatures should be enriched with ontological
information (e.g., expressed with OWL [15] or WSDL-S [2]) to describe the se-
mantics of services, necessary to automate the process of overcoming signature
mismatches as well as service discovery, adaptation, and composition. Still, the

46

information provided by ontology-annotated signatures is necessary but not suf-
ficient to ensure a correct inter-operation of services (e.g., absence of locks).
Following [16], we argue that contracts should also expose a (possibly partial)
description of the interaction protocols of services. We argue that YAWL [24]
(see below) is a good candidate to express service behaviour as it has a well-
defined formal semantics and it supports a number of workflow patterns. Finally,
we argue that service contracts should expose, besides annotated signatures and
behaviour, also so-called extra-functional properties, such as performance, reli-
ability, or security. (We will not however consider these properties in this work,
and leave their inclusion into the adaptation framework to future work.)

We intend to build an adaptation framework capable of translating the be-
haviour of a service described using existing process/workflow modelling lan-
guages (e.g., BPEL [5], OWL-S [17], etc.) into equivalent descriptions expressed
through an abstract language with a well-defined formal semantics, and vice-
versa. Two immediate advantages of using such an abstract language are the
possibility of developing formal analyses and transformations, independently of
the different languages used by providers to describe the behaviour of their ser-
vices. We consider that YAWL [24] is a promising candidate to be used as an
abstract workflow language for describing service behaviour. YAWL is a new pro-
posal of a workflow/business processing system, which supports a concise and
powerful workflow language and handles complex data, transformations and Web
service integration. YAWL defines twenty most used workflow patterns gathered
by a thorough analysis of a number of languages supported by workflow manage-
ment systems. These workflow patterns are divided in six groups (basic control-
flow, advanced branching and synchronisation, structural, multiple instances,
state-based, and cancellation).1 YAWL extends Petri Nets by introducing some
workflow patterns (for multiple instances, complex synchronisations, and can-
cellation) that are not easy to express using (high-level) Petri Nets. Being built
on Petri Nets, YAWL is an easy to understand and to use formalism. With
respect to process algebras, YAWL features an intuitive (graphical) representa-
tion of services through workflow patterns. Furthermore, as illustrated in [23],
it is likely that a simple workflow which is troublesome to model for instance
in π-calculus may be instead straightforwardly modelled with YAWL. A thor-
ough comparison of workflow modelling with Petri Nets vs. π-calculus may be
found in [23]. With respect to the other workflow languages (mainly proposed
by industry), YAWL relies on a well-defined formal semantics. Moreover, not
being a commercial language, YAWL supporting tools (editor, engine) are freely
available.

2.2 Bird’s-eye View of the Adaptation Methodology

The service adaptation methodology we propose consists of four main phases:

1 Space limitations do not allow us to illustrate these patterns. A detailed description
of them may be found in [25].

47

0. Service Translation. This preliminary phase deals with translating real-
world service descriptions (e.g., BPEL + semantics, or OWL-S, etc.) into
equivalent service contracts using YAWL as an abstract workflow language
for expressing behaviour, and OWL for example for expressing semantic
information. One may note that such a translation may be done off-line and
hence it is not a burden for the adaptation process. (A thorough analysis of
how to transform BPEL specifications into workflow patterns can be found
in [26].)

1. Service Matching. The first step of this phase – to be done off-line – derives
from each service workflow a trace table which associates each service process
with preconditions, inputs and outputs. The compatibility between the trace
table of the query and the trace table of each service is then checked, in order
to determine the services (if any) that can be adapted to fulfil the query. It
is worth noting that the trace compatibility check is ontology-aware in that
it copes with exact/plug-in/subsumes semantic matches [18].

2. Contract Generation. The workflow of a candidate service found by the
previous phase (if any) is then modified in order to generate the contract of
the service adapted to fulfil the client query. Informally, the service workflow
is modified so as to specify a refined behaviour of the initial service that
enforces the needed adaptation.

3. Service Deployment. Finally, the generated contract can be deployed as a
real-world Web service (i.e., described using OWL-S, or BPEL + semantics,
etc.). The client will hence view the requested functionality as a new Web
service that can now be discovered and further adapted to other requests.
This operation is intuitively the inverse of the operation done during the
Service Translation phase.

As mentioned in the Introduction, we will focus on phases (1) and (2) in the rest
of the paper.

2.3 Motivating Example

Due to the particular usage of YAWL to model Web services/business processes,
we shall use the term “process” to denote YAWL tasks as well as “service” to
denote a workflow specification.

Consider the example in Figure 1 which will be used as a basis for describing
the proposed methodology. As one may note, a service consists of processes
and control-flow links among them. There are two specific processes (which we
call start and end) corresponding to the YAWL input and output condition,
respectively. A process Q is to be executed after another process P if there is a
directed link from P to Q. Processes employ one join and one split construct. A
join or split control construct may be one of the following: AND, OR, XOR, or
EMPTY. Intuitively, the join specifies “how many” processes before P are to be
terminated in order to execute P , while the split construct specifies “how many”
processes after P are to be executed. The EMPTY-join (split) is used when only
one process execution precedes (follows, respectively) the execution of P . We

48

LEGEND

Choose
Item

Choose
Manufacturer

Choose
Shirt

Choose
Trousers

Delivery
Information

Finalise
Buy

clothingItem

manufacturer

shirtSize

shirtType

colour

trousersSize

trousersType

colour

deliveryAddress

estimatedDeliveryTime

receipt

clothingItem = 'trousers'

input

output

EMPTY join/split XOR-join / AND-splitAND-join / XOR-split

start end
predicate default predicateProcess implicit

control-ow link

OR-join / OR-split

cardNumber

clothingItem = 'shirt'

shippingCosts

Fig. 1. Clothing Shop service selling shirts and trousers.

graphically represent parameters as well. YAWL uses predicates in the form of
logical expressions to decide the control-flow in the case of XOR- and OR-splits.

Clothing Shop is a service that sells shirts and trousers. When invoked, the
service firstly executes the Choose Item process, for which the client has to
provide the item she is interested in (either “shirt” or “trousers”). The execution
continues with both Choose Manufacturer and Delivery Information the AND-
split of Choose Item. Choose Manufacturer inputs the desired designer and, based
on the item to be bought, it enables only one of the following two processes:
Choose Shirt if the requested item is a shirt, or Choose Trousers otherwise. Please
note its XOR-split as well as the predicates annotating the respective control-flow
links. Both processes input the type (e.g., “T-shirt” or “jeans”), size (e.g., “M”
or “33”) and colour (e.g., “black”) of the requested item. Delivery Information
is a process which inputs the address intended for delivery. Such information
may be submitted by the client at any moment of the purchase (after choosing
the item yet prior to the payment). Delivery Information outputs the shipping
costs as well as the estimated delivery time. Last but not least, Finalise Buy
employs an OR-join in order to wait for an item to be chosen as well as for
the delivery information to be available. It inputs a credit card number and it
generates the purchase receipt. Please note that the example is not supposed
to present a software masterpiece and in order to keep it manageable we omit

49

scenarios in which, for example, a desired item is not available, payment issues,
and so on.

Let us assume now that a client desires a service which sells trousers only.
She might search one by issuing the following query:

– requested inputs: {jeans, designer, address, size, dark-blue, cardNumber},
– requested outputs: {shippingCosts, receipt}.

For simplicity we shall assume that both query and services use the same param-
eter ontology and that there is an exact/plug-in/subsumes match [18] between
the following parameter pairs2: jeans and clothingItem, jeans and trousersType,
designer and manufacturer, address and deliveryAddress, size and trousersSize,
dark-blue and colour, cardNumber and cardNumber, shippingCosts and shipping-
Costs, and finally receipt and receipt.

It is easy to see that the service does not match the given query, since the
service requires more inputs than those specified in the query (viz., shirtSize and
shirtType). However, the Clothing Shop service could be in principle adapted so
as to inhibit its capability of selling shirts and convert it into a “trousers shop”
service.

In the rest of the paper we show how the proposed adaptation methodology
performs an ontology-aware matching at the level of sub-services (viz., processes)
and succeeds in adapting the initial service so as to fully satisfy the client query.

2.4 Service Matching

The objective of this phase is to determine whether there are services in the
registry that can be adapted to fully match the given query.

Deriving the Trace Table. Firstly, each service workflow is analysed in order
to generate a Trace Table (TT) which associates each service process with pre-
conditions, inputs and outputs. More precisely, each process P is associated with
a set of triples of the form <Preconditions, Needed Inputs, Generated Outputs>,
where Preconditions represents the set of data and control constraints that must
be satisfied to be able to execute P and the other processes executed so far (in
that execution trace). Needed Inputs is the set of inputs that are requested by P
together with the inputs of the other processes that have been executed so far.
Similarly, Generated Outputs is the set of outputs generated by P together with
the other processes executed so far.

We generate the TT for a service from its Reachability Graph (RG). The RG
of a service can be derived from its YAWL workflow augmented with explicit
conditions. An example of such workflow may be seen in Figure 2. It is worth
noting that YAWL conditions can be represented as (Petri net) places holding
tokens [24]. On the one hand, tokens are placed into places by firing processes
depending on their split constructs and on the YAWL predicates (if present).
2 The first parameter in a pair belongs to the query while the second to the service.

50

For processes with EMPTY- (AND-) splits, YAWL considers implicit conditions
and a token is generated for (all) the output place(s). In the case of XOR- or
OR-splits, YAWL uses predicates to determine which output places will receive
tokens. All predicates of such a split are ordered (by the workflow designer) and
one is chosen as default (with lowest priority). For a XOR-split, a token is sent
on the link corresponding to the predicate with the lowest order that evaluates
to true. For an OR-split, a token is sent along all links whose predicates evaluate
to true. For both splits, if all predicates are false then a token is sent along the
default link only. On the other hand, places are used to enable processes for
execution. If the process has an EMPTY-join then its input place has to contain
a token. For an AND-join, all input places have to contain tokens. In the case
of a XOR-join at least one input place has to have a token. Finally, according
to [24], if the process has an OR-join, it is enabled only when at least one of its
input places contains a token and no other tokens can be placed in its remaining
(empty) input places. For the example in Figure 2, Finalise Buy is enabled if
and only if C7 and either C5 or C6 contain tokens. Hence, it can not be enabled
when only C7 contains a token before a token will arrive at C5 or C6. One should
note that tokens can not be added to both C5 and C6 during a workflow instance
due to the XOR-split of the Choose Manufacturer process.

!i
!#$$%e
Item

!#$$%e
*an-.a/t-0e0

!#$$%e
1#i0t

!#$$%e
20$-%e0%

3eli5e06
In.$0mati$n

Finali%e
8-6 !$

/l$t#in9Item

man-.a/t-0e0

%#i0t1i:e

%#i0t26pe

/l-0

t0$-%e0%1i:e

t0$-%e0%26pe

/l-0

deli5e06=dd0e%%

e%timated3eli5e062ime

0e/eipt

/a0d>-m?e0

%#ippin9!$%t%

!@

!A !B

!C!l#thin(Item - ./hi0t.

!D

!E

!F

!l#
thin(Item - .t0#

1/e0/.

Fig. 2. Clothing Shop workflow with places/conditions.

Following [30] we derive a RG having markings as nodes and labelled arrows
as edges. A marking M consists of the set of all places containing tokens and it is
denoted as Ci+...+Cj . An arrow states that the workflow execution state evolves
from a marking M into a marking M ′ and it is labelled with the process that
fires and – in the case of OR- and XOR-splits – also with the places that receive
tokens. Figure 3 shows the RG corresponding to the Clothing Shop workflow in
Figure 2. For example, the arrow from the initial marking Ci to the marking
C1 + C2 is labelled as Choose Item. This is to be read as: “From the initial
marking containing a token in Ci only, the Choose Item process is enabled by
consuming the token in Ci and by firing it produces a token in C1 and another
in C2”. As one should note, in the markings circled in Figure 3 the Finalise Buy

51

process cannot fire as it expects one more token to be placed in one of its empty
input places.

RG is incrementally built by starting from the initial marking (that contains
Ci only) and by looking for processes which can be enabled. Labelled arrows
and new markings are successively added to the graph. One should note that
checking whether a process having an OR-join can be enabled is done using the
algorithm given in [30].

Ci C1 + C2ChIt

C2 + C3

C2 + C4

C1 + C7

ChMa, C3

ChMa, C4

DeIn

C3 + C7

C2 + C5

DeIn

ChSh

C4 + C7

C2 + C6

DeIn

ChTr

C5 + C7

ChSh

DeIn

C6 + C7

ChTr

DeIn

Co

FiBu

FiBu

ChMa, C3

ChMa, C4

ChIt := Choose Item ChMa := Choose Manufacturer DeIn := Delivery Information

ChSh := Choose Shirt ChTr := Choose Trousers FiBu := Finalise Buy

LEGEND

Fig. 3. RG for the Clothing Shop service.

For example, by considering the marking Ci, we generate and add to RG
the marking C1 + C2 and we label the arrow as Choose Item. Or, by assuming
that the markings C3 + C7 and C4 + C7 have already been generated, and
by considering the marking C1 + C7, we have that Choose Manufacturer can
fire and it can place a token either in C3 or in C4. Hence, we just add arrows
from the C1 + C7 to C3 + C7 and to C4 + C7 and we label them as “Choose
Manufacturer, C3” and “Choose Manufacturer, C4” respectively.

The process of generating the TT for a process P looks in the RG for all paths
(i.e., traces) p originating in the initial marking and ending with a marking hav-
ing an outgoing arrow labelled by P . The preconditions for the p execution of P
are expressed as the set of all conditions (viz., places) in the markings of p. The
set of needed inputs is obtained by taking the inputs of all processes labelling arcs
of path p, together with the inputs of P . Similarly, the set of generated outputs
consists of the outputs of all processes labelling arcs of path p, together with
the outputs of P . For example, if we consider the arrow labelled as “Choose
Manufacturer, C3” that originates in the marking C1 + C2, we have to add
to TT(Choose Manufacturer) the following entry: <{Ci, C1, C2}, {clothingItem,
manufacturer}, !>. If we consider the arrow labelled as Choose Shirt that orig-

52

Process Name:
<Preconditions, Needed Inputs, Generated Outputs>.

Ci:
<!, !, !>.

Choose Item:
<{Ci}, {clothingItem}, !>.

Choose Manufacturer:
<{Ci, C1, C2}, {clothingItem, manufacturer}, !>;
<{Ci, C1, C2, C7}, {clothingItem, manufacturer, deliveryAddress}, {shippingCosts,
estimatedDeliveryTime}>.

Delivery Information:
<{Ci, C1, C2}, {clothingItem, deliveryAddress}, {shippingCosts,
estimatedDeliveryTime}>;
<{Ci, C1, C2, C3}, {clothingItem, manufacturer, deliveryAddress}, {shippingCosts,
estimatedDeliveryTime}>;
<{Ci, C1, C2, C3, C5}, {clothingItem, manufacturer, deliveryAddress, shirtSize, shirt-
Type, colour}, {shippingCosts, estimatedDeliveryTime}>;
<{Ci, C1, C2, C4}, {clothingItem, manufacturer, deliveryAddress}, {shippingCosts,
estimatedDeliveryTime}>;
<{Ci, C1, C2, C4, C6}, {clothingItem, manufacturer, deliveryAddress, trousersSize,
trousersType, colour}, {shippingCosts, estimatedDeliveryTime}>.

Choose Shirt:
<{Ci, C1, C2, C3}, {clothingItem, manufacturer, shirtSize, shirtType, colour}, !>;
<{Ci, C1, C2, C3, C7}, {clothingItem, manufacturer, deliveryAddress, shirtSize, shirt-
Type, colour}, {shippingCosts, estimatedDeliveryTime}>.

Choose Trousers:
<{Ci, C1, C2, C4}, {clothingItem, manufacturer, trousersSize, trousersType, colour},
!>;
<{Ci, C1, C2, C4, C7}, {clothingItem, manufacturer, deliveryAddress, trousersSize,
trousersType, colour}, {shippingCosts, estimatedDeliveryTime}>.

Finalise Buy, Co:
<{Ci, C1, C2, C3, C5, C7}, {clothingItem, manufacturer, deliveryAddress, shirtSize,
shirtType, colour, cardNumber}, {shippingCosts, estimatedDeliveryTime, receipt}>;
<{Ci, C1, C2, C4, C6, C7}, {clothingItem, manufacturer, deliveryAddress, trousersSize,
trousersType, colour, cardNumber}, {shippingCosts, estimatedDeliveryTime, receipt}>.

Table 1. Trace Table of the Clothing Shop service.

inates in the marking C3 + C7 then we have to add to TT(Choose Shirt) the
following entry: <{Ci, C1, C2, C3, C7}, {clothingItem, manufacturer, deliveryAd-
dress, shirtSize, shirtType, colour}, {shippingCosts, estimatedDeliveryTime}>
which actually synthesises the two different traces leading to the marking C3 +
C7. The final TT obtained for our example is illustrated in Table 1.

Trace Table Compatibility Check. In order to match the requested query
with the TT of a given service, we firstly express the query as a simple service

53

contract whose workflow contains one process only (together with start and
end). The inputs and the outputs of the process are as requested by the query.
Figure 4 presents the workflow, the RG and the TT for the request described in
Subsection 2.3.

Query RG

Query Work!ow

QProcess

jeans

receiptshippingCosts

designer address size dark-blue cardNumber

Ci CoQProcess

Ci:
<!, !, !>.

QProcess, Co:
<{Ci}, {jeans, designer, address, size, dark-blue, cardNumber}, {shippingCosts,
receipt}>.

Fig. 4. Query workflow, RG and TT.

The compatibility check between the trace table of the query Q and the
trace table of a service S consists of looking for a process P of S such that
there exists a trace T in TT (P) for which: (1) the set of inputs needed by
T is included in the set of inputs of Q and, dually, (2) the set of outputs of
Q is included in the set of outputs generated by T . In other words, Q has to
provide all inputs needed by T , and T has to generate all outputs desired by Q.
One should note that the inclusion relation is ontology-aware. The query of our
example matches the service in Figure 1 as for the second trace (top to bottom)
in TT(Finalise Buy) (for example) we have: (1) { clothingItem, manufacturer,
deliveryAddress, trousersSize, trousersType, colour, cardNumber } ⊇ { jeans,
designer, address, size, dark-blue, cardNumber }, and (2) { shippingCosts, receipt
} ⊇ { shippingCosts, estimatedDeliveryTime, receipt }. One should note that the
preconditions set constraining T into fulfilling Q is {Ci, C1, C2, C4, C6, C7}.

In order to provide a more user-friendly answer to the query we construct a
logical expression from the set of preconditions of a trace. We can achieve this
by firstly assigning a logical expression to each place of the workflow and then by
taking the conjunction of all the conditions in the preconditions set of a trace.
For instance, the above preconditions set constraining T into fulfilling Q might
be expressed as “(clothingItem = ’trousers’) or (not clothingItem = ’shirt’)”.

Being inspired by the usage of YAWL predicates to enable processes [24],
we enhance the expressiveness of YAWL conditions by assigning them a logical
expression as follows. For Ci, Co or for an output place of a process having an
EMPTY- or an AND-split we consider an always “true” condition (e.g., C1, C2,
C7, and so on). In the case of a XOR-split, we consider an output condition
to be true provided “either the YAWL predicate for the corresponding link is

54

true as well as the other lower-order predicates are false, or the corresponding
predicate is the default one and all other predicates of the respective process are
false” [24]. For example, for C3 we consider the following expression “(clothin-
gItem = ’shirt’ and not clothingItem = ’trousers’) or (clothingItem = ’shirt’ is
default and not clothingItem = ’trousers’)”, or simply “(clothingItem = ’shirt’
and not clothingItem = ’trousers’)”. Similarly, for C4 we have “(clothingItem =
’trousers’) or (not clothingItem = ’shirt’)”. Hence, a token is placed into C4 even
if a client requests “shoes” as item. Last but not least, for a process having an
OR-split, we consider an output condition to be true if and only if “its corre-
sponding predicate is true, or the respective predicate is the default one and all
other predicates of the considered process are false” [24].

2.5 Contract Generation

Assume that the client wishes to have a deployment of a service that strictly
satisfies queries of the type she has issued. In other words, she wants a service,
say Trousers Boutique, that only sells dark-blue jeans made by a certain designer.
This phase of the methodology achieves that by modifying the contract of a
service so as to fulfil the query. This is done in two steps:

1. First, we choose one trace T (if any) from TT (Co) of a service that is com-
patible with the request. This is to ensure that we will not remove processes
(see below) needed for the successful termination of the service’s execution.
Then, we individuate the processes of the trace T as service processes having
as input places the preconditions set of T . For instance, the preconditions
set {Ci, C1, C2, C4, C6, C7} corresponds to the set of processes {Choose Item,
Choose Manufacturer, Delivery Information, Choose Trousers, Finalise Buy
}. We call redundant all other service processes (but start and end).

2. Then we copy the contract of the original service and modify it by cancelling
redundant processes (if any) and suitably redirecting the workflow links.
Workflow redirection is necessary to ensure that the workflow of the new
service is consistent with the trace satisfying the query. This is achieved by
adding to the workflow a process Absorb Tokens, and by directly connecting
it as output of the start process. Then, all initial control-flow links that point
at a redundant process are redirected to the XOR-join of Absorb Tokens.
Then all redundant processes together with their outgoing links are removed.
Finally, service outputs that are not requested by the query are hidden (see
below).

For instance, the adaptation scenario for our example yields the workflow pre-
sented in Figure 5.

Notice that a YAWL service is a workflow specification which consists of
one or more workflow nets [24] – one of which is the starting net. Variables
are defined at both workflow and task (i.e., process) levels and the data-flow
is specified by binding parameters of the workflow net and of its processes.
In Figure 5 one may see that the Trousers Boutique service is made of one

55

LEGEND

Choose
Item

Choose
Manufacturer

Absorb
Tokens

Choose
Trousers

Delivery
Information

Finalise
Buy

clothingItem

manufacturer

trousersSize

trousersType

colour

deliveryAddress

estimatedDeliveryTime

receipt

clothingItem = 'trousers'

cardNumber

shippingCosts

clothingItem = 'shirt'

jeans designer size colour cardNumberaddress

shippingCosts receipt

Workow net input

Workow net output

Parameter mapping

Trousers Boutique

estimatedDeliveryTime

Workflow net local variable
Cancellation region

Fig. 5. Workflow of the Trousers Boutique service.

workflow net which contains the original processes of the Clothing Shop service
except the redundant Choose Shirt process. As previously indicated, the process
Absorb Tokens has been added at the beginning of the workflow and the original
control-flow link leading at Choose Shirt has been redirected to Absorb Tokens.
The inner dashed portion of the workflow in Figure 5 delimits the cancellation
region [24] associated with the process Absorb Tokens. Informally, this means
that whenever Absorb Tokens is executed, all tokens enabling processes in its
cancellation region are removed.

If a client of the Trousers Boutique service requests a shirt, then Choose
Manufacturer will enable Absorb Tokens for execution and further Choose Item
which will ask the client for another input. Moreover, Absorb Tokens will clear
remaining tokens in the workflow so as to avoid (possibly) multiple executions
of the other processes in the workflow (e.g., Delivery Information). Outputs
that are not desired by the requester are hidden by mapping them to local net
variables.3 This is the case for the estimatedDeliveryTime output of the Delivery
Information process.

3 Related Work

Different approaches to service discovery have been proposed, ranging from
UDDI-based approaches to proposals which take into account semantics and/or

3 The reason why we do not remove them is, for example, that the respective process
may correspond to a YAWL task that invokes a WSDL service and then a mapping
between its parameters and the ones of the WSDL service is necessary.

56

behaviour information. Liang et al. [14] use UDDI registries and constraints
over services to semi-automatically discover (composed) services. Kawamura et
al. [11] enhance UDDI matching by extending WSDL service descriptions with
semantic information in the style of DAML-S profiles. Kifer et al. [13] employ
WSMO to define a logical framework for service discovery. Some proposals use
DAML-S/OWL-S and address service matching either at the service profile level
(e.g., [3,18]) or at the service model level (e.g., [4,7]).

Web service adaptation is in its early stages and current approaches fea-
ture only partial solutions to the issues of adaptation. Hau et al. [9] propose
a framework for semantic matchmaking and service adaptation, which deals
with signature mismatches yet not with behavioural ones. Syu [22] proposes an
OWL-S based approach to deal with only three cases of adaptation of input pa-
rameters (permutation, modification, and combination). Iyer et al. [10] employ
XML scripts and XSL to (manually) achieve the signature-level interoperability
of SOAP services. Kaykova et al. [12] show how to semantically adapt hetero-
geneous industrial resources. Yet their approach – as [9] – relies on black-box
views of services and on semantically annotated signatures. A methodology for
generating adapters to solve behavioural mismatches was presented in [6], yet
ensuring the availability of an adapter specification to be manually generated.

To the best of our knowledge, our service adaptation approach is the first to
take into account both semantics and behaviour information, and to feature a
fully automated generation of a service adapted to the client’s needs.

4 Concluding Remarks

Our long-term objective is to develop a general methodology for service adapta-
tion capable of suitably overcoming both semantic and behaviour mismatches.

The main features of our approach can be summarised as follows:

– it is a fully automatic approach capable of generating service contracts tai-
lored to client requests – given a registry of service contracts (containing
both semantics and behaviour information) and a query,

– it supports both service discovery and adaptation at the level of sub-services
(and not only of entire services),

– it is amenable to efficient implementations, as it relies on the inspection of
execution traces that can be generated off-line,

– it can be exploited to discover and adapt services written in different lan-
guages, and to generate multiple deployments of the adapted contract –
given that it relies on intermediate YAWL descriptions of the behaviour of
services.

In this paper we have illustrated how to automatically discover and adapt
a service so as to match a client query requesting a service with certain inputs
and outputs. We intend to devote our future work to extending the adaptation
methodology so as to cope with queries specifying (part of) the behaviour of the
desired service (i.e., not only its inputs and outputs), and to experimenting the
deployment of adapted services with BPEL and OWL-S.

57

References

1. R. Aggarwal, K. Verma, J. A. Miller, and W. Milnor. Constraint Driven Web
Service Composition in METEOR-S. In IEEE SCC, pages 23–30. IEEE Computer
Society, 2004.

2. R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt,
A. Sheth, and K. Verma. Web Service Semantics - WSDL-S Version 1.0.
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html.

3. L. Aversano, G. Canfora, and A. Ciampi. An algorithm for web service discovery
through their composition. In IEEE International Conference on Web Services,
pages 332–, 2004.

4. S. Bansal and J. Vidal. Matchmaking of Web Services Based on the DAML-S
Service Model. In T. Sandholm and M. Yokoo, editors, Second International Joint
Conference on Autonomous Agents (AAMAS’03), pages 926–927. ACM Press,
2003.

5. BPEL4WS Coalition. Business Process Execution Lan-
guage for Web Services (BPEL4WS) Version 1.1.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.

6. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing Web
Service Choreographies. In Proceedings of First International Work-
shop on Web Services and Formal Methods, 2004. Available from
http://www.lcc.uma.es/∼av/Publicaciones/04/ws-fm04.pdf.

7. A. Brogi, S. Corfini, and R. Popescu. Composition-oriented Service Discovery.
In F. Gschwind, U. Assmann, and O. Nierstrasz, editors, Proceedings of Software
Composition ’05, LNCS, vol. 3628, pages 15–30, 2005.

8. U. Coalition. The UDDI Technical White Paper. http://www.uddi.org/.
9. J. Hau, W. Lee, and S. Newhouse. The ICENI Semantic Service

Adaptation Framework. In UK e-Science All Hands Meeting, 2003.
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/017.pdf.

10. A. Iyer, G. Smith, P. Roe, and J. Pobar. An Exam-
ple of Web Service Adaptation to Support B2B Integration.
http://ausweb.scu.edu.au/aw02/papers/refereed/smith2/paper.html.

11. T. Kawamura, J. D. Blasio, T. Hasegawa, M. Paolucci, and K. Sycara. Public
Deployment of Semantic Service Matchmaker with UDDI Business Registry. In
S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, Proceedings of The
Semantic Web ISWC’04, LNCS, Volume 3298, pages 752–766, 2004.

12. O. Kaykova, O. Khriyenko, D. Kovtun, A. Naumenko, V. Terziyan, and A. Zharko.
An Approach to Semantic Adaptation of Heterogeneous Industrial Web Resources.
http://www.cs.jyu.fi/ai/papers/SJIS-2005.pdf.

13. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel.
A Logical Framework for Web Service Discovery. In ISWC 2004 Workshop on
Semantic Web Services: Preparing to Meet the World of Business Applications,
volume 119, Hiroshima, Japan, 2004. CEUR Workshop Proceedings.

14. Q. Liang, L. N. Chakarapani, S. Y. W. Su, R. N. Chikkamagalur, and H. Lam. A
Semi-Automatic Approach to Composite Web Services Discovery, Description and
Invocation. International Journal of Web Services Research, 1(4):64–89, 2004.

15. D. McGuiness and F. van Harmelen (Eds). OWL Web Ontology Language
Overview. Web guide, February 2004. http://www.w3.org/TR/owl-features.

16. L. Meredith and S. Bjorg. Contracts and Types. CACM, 46(10), 2003.

58

17. OWL-S Coalition. OWL-S: Semantic Markup for Web Services Version 1.1.
http://www.daml.org/services/owl-s/1.1/overview/.

18. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matchmaking
of Web Services Capabilities. In I. Horrocks and J. Hendler, editors, First In-
ternational Semantic Web Conference on The Semantic Web, LNCS 2342, pages
333–347. Springer-Verlag, 2002.

19. M. P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing. Commu-
nication of the ACM, 46(10):24–28, 2003.

20. P. Rajasekaran, J. A. Miller, K. Verma, and A. P. Sheth. Enhancing Web Services
Description and Discovery to Facilitate Composition. In J. Cardoso and A. P.
Sheth, editors, SWSWPC, volume 3387 of Lecture Notes in Computer Science,
pages 55–68. Springer, 2004.

21. SWSO Coalition. Semantic Web Services Ontology (SWSO) Version 1.0.
http://www.daml.org/services/swsf/1.0/swso/.

22. J.-Y. Syu. An Ontology-Based Approach to Automatic Adaptation of Web Ser-
vices. Department of Information Management National Taiwan University, 2004.
http://www.im.ntu.edu.tw/IM/Theses/r92/R91725051.pdf .

23. W. M. P. van der Aalst. Pi calculus versus Petri nets: Let us eat hum-
ble pie rather than further inflate the Pi hype, 2004. Available from
http://tmitwww.tm.tue.nl/staff/wvdaalst/pi-hype.pdf.

24. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow
Language. Inf. Syst., 30(4):245–275, 2005.

25. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

26. P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Analysis
of Web Services Composition Languages: The Case of BPEL4WS. In I.-Y. Song,
S. W. Liddle, T. W. Ling, and P. Scheuermann, editors, Proceedings of the 22nd
International Conference on Conceptual Modeling, volume 2813 of Lecture Notes
in Computer Science, pages 200–215. Springer, 2003.

27. WSCDL Coalition. Web Services Choreography Description Language Version 1.0.
http://www.w3.org/TR/ws-cdl-10/.

28. WSDL Coalition. Web Service Description Language (WSDL) version 1.1.
http://www.w3.org/TR/wsdl.

29. WSMO Coalition. Web Service Modeling Ontology (WSMO) D2v1.2.
http://www.wsmo.org/TR/d2/v1.2/ .

30. M. T. Wynn, D. Edmond, W. M. P. van der Aalst, and A. H. M. ter Hofstede.
Achieving a General, Formal and Decidable Approach to the OR-Join in Workflow
Using Reset Nets. In G. Ciardo and P. Darondeau, editors, ICATPN, volume 3536
of Lecture Notes in Computer Science, pages 423–443. Springer, 2005.

31. J. Yang. Web Service Componentization. Communications of the ACM, 46(10):35–
40, 2003.

59

Complex Adaptive Services

Jean-François Mascari
1 and Giuseppe A. Cavarretta2

1Istituto per le Applicazioni del Calcolo – (National Research Council) CNR

Viale del Policlinico 137, 00161 Rome, Italy,

mascari@iac.rm.cnr.it

2Servizi Sistemi Informativi – (National Research Council) CNR

Piazzale Aldo Moro 7, 00185 Rome, Italy,

giuseppealfredo.cavarretta@cnr.it

Abstract. The duality between service providers and services consumers is a

basic pattern of service oriented computing. A service oriented approach to

business processes and to adaptive interacting processes requires an additional

pattern based on the, possibly online, interaction between specification, execu-

tion and evaluation basic processes. These two patterns combine to composed

processes: the foundations of complex adaptive services. The management of

the dynamics of such services is then obtained by additional processes distrib-

uted over the network of interactions of the basic and composed processes. The

double triad architecture so obtained is inspired from quark-antiquark models of

particle physics.

1 Introduction

A new paradigm in various applications areas is emerging from the convergence of

Grid technologies, semiotics methodologies and knowledge applications. This conver-

gence is enabled by the duality between service providers and service consumers.

Essentially what is happening can be explained by three related phenomena.

- The logical phenomena realized by Grid computing consists in a “quantifier in-

version” process from a “for every data and processing request, there exists a specific

data and processing supply technology” to a “there exists a general data and process-

ing request – supply interaction Grid, for every data and processing request and sup-

ply”;

- The semiotics phenomena realized by Semantic Grid and implicit also in the data

Driven Dynamic Application Simulation (DDDAS) approach “for every node of the

60

semiotic triangle (concept-model, symbol-simulation, object-reality), there exists an

offline space-time of activation” to a “there exists an online space-time of activation,

for every node of the semiotic triangle”;

- The complexity science phenomena being realized by Knowledge Grid “for every

role in a Knowledge Grid played by interacting objects of a Semantic Grid, there

exists a local dynamics such that the global dynamics of the emerging Knowledge

Grid is obtained by composing such local dynamics” to a “there exists a global dy-

namics of a Knowledge Grid, for every role played at a local level by interacting ob-

jects of the underlying Semantic Grid such that the global dynamics could not be ob-

tained by the set of such local dynamics ”.

The impact of such a paradigm on business process integration and management

will require to reason in terms of "complex adaptive services" based on the negotia-

tion patterns between:

• Consumer objectives specification, realization and evaluation, and

• Providers’ constraints specification, satisfaction and evaluation.

 These patterns are captured by the proposed fractal double-triads modeling ap-

proach derived from [1], which has been inspired by the quark-antiquark model of

particle physics, is presented for the architectural design of complex adaptive services.

Usually an object oriented paradigm is used to represent organization and func-

tional rules, describing who makes what and how, using processes to reach the com-

pany objectives.

However a service oriented modelling can be used to represent a dynamics of an

organization independently of its specific organization model.

A service oriented approach is useful to a specification level and the object ori-

ented approach to an implementation level.

The negotiation patterns are based on the following processes:

• Consumer Objectives Specification: Request preparation,

• Consumer Objectives Realization: Request execution,

• Evaluation of Consumer Objectives Realization: Request evaluation,

• Providers Constraints Specification: Supply preparation,

• Providers Constraints Satisfaction: Supply execution,

• Evaluation of Providers Constraints Satisfaction: Supply evaluation.

Just an example from Italian National Research Council internal regulation about

planning, execution and evaluation of research activity:

1. The Board of Directors, following a President proposal, deliberates the

guide lines for a three-years research activity plan...

2. The director of the DEPARTMENT produces guide lines for the

DEPARTMENT, as proposal of contribution to the three-years plan…. in

particular, also through a negotiation among the DEPARTMENT

DIRECTORS…

61

3. The INSTITUTES, in coherence with the guide lines and based on the cur-

rent activities and the opportunities of development, they formulate proposals

of research activity to related DEPARTMENT and to other

DEPARTMENTS,. ...

4. A negotiation between each DEPARTMENT and related INSTITUTES pro-

duces research activity plan for each INSTITUTE….

In the drawing up of the regulations is pointed “who makes what” about docu-

ment or activities, “how it works” and “how monitoring and evaluations”.

In an object-based model all these phases are spread out, as we could see, and conse-

quently the dependency of the organization dynamics is strongly dependent to the

specific organization structure.

In a service-based model, on the contrary, these phases are semantically “typed”, i.e.

grouped together and consequently the organization dynamics is independent of the

specific organization structure.

Several organization units of the agency supply in a “recursive” way their elementary

contribution which is negotiated with the other units at different hierarchy levels.

Several organization units inside of the organization (Institutes, Departments, Council

Directors of Department, President, Board of Directors), play therefore a dual role.

They play Request roles when they make a CALL inside their competences, and Sup-

ply roles when they SUPPLY the result of their job to the higher hierarchical level.

Each interaction shows in a recurrent way the matching of the Request and the Supply

with respect to the preparation, the execution and the evaluation/monitoring for every

phase.

Aim of this model is to represent complex structures through decomposition in nested

patterns.

2 Services Consumers and Providers Duality

Services Consumer Basic Processes consist of:

• Consumer Objectives Specification,

• Consumer Objectives Realization and

• Evaluation of Consumer Objectives Realization.

Their interaction is summarized in the following

62

C.O.

Specification

C.O.

Realization

Evaluation of

C. O.

Realization

C.O.

Specification

C.O.

Realization

Evaluation of

C. O.

Realization

Fig. 1. Dynamics of Services Consumers Objectives

Services Provider Basic Processes consist of:

• Providers Constraints Specification,

• Providers Constraints Satisfaction and

• Evaluation of Providers Constraints Satisfaction.

Their interaction is summarized in the following

P. C.

Specification

P. C.

Satisfaction

Evaluation of

P. C.

Satisfaction

P. C.

Specification

P. C.

Satisfaction

Evaluation of

P. C.

Satisfaction

Fig. 2. Dynamics of Service Providers Constraints

We distinguish two types of adaptation processes between basic processes.

i) Adaptation Processes between Services Consumer Basic Processes summarized in

the following

63

C.O.

Specification

C.O.

Realization

Evaluation of

C. O.

Realization

C
.O

.

S
p
ecificatio

n-E
valu

atio
n

A
d
ap

tatio
n

C
.O

.

R
ea

liz
at

io
n-S

pe
ci

fi
ca

ti
on

A
da

pt
at

io
n

C.O.

Realization-Evaluation

Adaptation

C.O.

Specification

C.O.

Realization

Evaluation of

C. O.

Realization

C
.O

.

S
p
ecificatio

n-E
valu

atio
n

A
d
ap

tatio
n

C
.O

.

R
ea

liz
at

io
n-S

pe
ci

fi
ca

ti
on

A
da

pt
at

io
n

C.O.

Realization-Evaluation

Adaptation

Fig. 3. Adaptation of Service Consumers Objectives

ii) Adaptation Processes between Services Provider Basic Processes summarized in

the following

P. C.

Specification

P. C.

Satisfaction

Evaluation of

P. C.

Satisfaction

P
. C

.

S
p
ec

if
ic

at
io

n -E
va

lu
at

io
n

A
d
ap

ta
ti
o
nP

. C
.

S
atisfaction -S

p
ecification

A
d
ap

tation

P.C.

Satisfaction-Evaluation

Adaptation

P. C.

Specification

P. C.

Satisfaction

Evaluation of

P. C.

Satisfaction

P
. C

.

S
p
ec

if
ic

at
io

n -E
va

lu
at

io
n

A
d
ap

ta
ti
o
nP

. C
.

S
atisfaction -S

p
ecification

A
d
ap

tation

P.C.

Satisfaction-Evaluation

Adaptation

Fig. 4. Adaptation of Service Providers Constraints

A fractal double triad is obtained since at a local level each of the above six basic

processes (and the corresponding six adaptation processes) consist of a negotiation

between two dual roles:

- a provider of the basic process (of the adaptation process)

- consumer of the basic process (of the adaptation process)

as represented in the following

64

C.O. Spec

C. O. Real

Evaluation of

C.O. Real

C
. O

. R
ea

l-
Spec

A
dap

ta
ti

on

C: O. Real-Eval

Adaptation

C
. O

. S
p
ec

-E
val

A
d
ap

tatio
n

P. C. Sati-Eval

Adaptation

P. C. Spec

P. C
. Sat-Spec

A
daptation

P. C. Sat
Evaluation of

P. C. Sat

P. C
.S

pec

Eva
l

A
dap

ta
tio

n

C.O. Spec

C. O. Real

Evaluation of

C.O. Real

C
. O

. R
ea

l-
Spec

A
dap

ta
ti

on

C: O. Real-Eval

Adaptation

C
. O

. S
p
ec

-E
val

A
d
ap

tatio
n

C
. O

. S
p
ec

-E
val

A
d
ap

tatio
n

P. C. Sati-Eval

Adaptation

P. C. SpecP. C. Spec

P. C
. Sat-Spec

A
daptation

P. C
. Sat-Spec

A
daptation

P. C. SatP. C. Sat
Evaluation of

P. C. Sat

Evaluation of

P. C. Sat

P. C
.S

pec

Eva
l

A
dap

ta
tio

n

P. C
.S

pec

Eva
l

A
dap

ta
tio

n

Fig. 5. Consumers Objectives and Providers Constraints Adaptation

3 Composed Processes and Adaptation

We consider composed processes associated to Services Consumers and to Services

Providers interaction.

Composition of Services Consumer Basic Processes and Services Provider Basic

Processes consist of:

• Evaluation of Providers Constraints Satisfaction & Consumer Objectives

Specification,

• Consumer Objectives Specification & Providers Constraints Satisfaction,

• Providers Constraints Satisfaction & Consumer Objectives Realization,

• Consumer Objectives Realization & Providers Constraints Specification,

• Providers Constraints Specification & Evaluation of Consumer Objectives

Realization and

65

• Evaluation of Consumer Objectives Realization & Evaluation of Providers

Constraints Satisfaction.

Adaptation Processes between Composed Processes consisting of

• C.O. Eval ↔ P.C. Eval ↔ C.O. Spec,

• P.C. Eval ↔ C.O. Spec ↔ P.C. Sat,

• C.O. Spec ↔ P.C. Sat ↔ C.O. Real,

• P.C. Sat ↔ C.O. Real ↔ P.C. Spec,

• C.O. Real ↔ P.C. Spec ↔ C.O. Eval and

• P.C. Spec ↔ C.O. Eval ↔ P.C. Sat

are summarized in the following

C.O. Spec

C. O. Real

Evaluation

of

C.O. Real

C
. O

.
R

ea
l-

Sp
ec

A
da

pt
at

io
n

C: O.

Real-Eval

Adaptation

C
. O

.

S
pec

-E
val

A
daptation.

P. C.

Sati-Eval

Adaptatio

P. C. Spec

P.C
. Sat

-Spec

A
daptation

P. C. Sat
Evaluation of

P. C. Sat

P. C
.S

pec

Eva
l

Adap
ta

tio
n

P.C. Eval

C.O. Eval

P.C. Sat

C.O. Spec

P.C. Sat

C.O. Real

P.C. Spec

C.O. Eval

C.O. Real

P.C. Spec

P
.C

. S
pe

c

C
.O

.
E

va
l

P
.C

.
E

va
ll

C.O. Spec

P.C. Eval

P
.C

. Sat

C
.O

. R
eal

C
.O

. Specl

C
.O

. S
pec

P.C
. S

at

C
.O

.
R

ea
ll

C
.O

. Spec

P.C. Eval

C
.O

. Eval

C.O. Real

P.C. Spec

C.O. Eval

P.C. Eval

C.O. Spec

P.C. Sat

C.O. Spec

C. O. Real

Evaluation

of

C.O. Real

C
. O

.
R

ea
l-

Sp
ec

A
da

pt
at

io
n

C: O.

Real-Eval

Adaptation

C
. O

.

S
pec

-E
val

A
daptation.

C
. O

.

S
pec

-E
val

A
daptation.

P. C.

Sati-Eval

Adaptatio

P. C. SpecP. C. Spec

P.C
. Sat

-Spec

A
daptation

P.C
. Sat

-Spec

A
daptation

P. C. SatP. C. Sat
Evaluation of

P. C. Sat

Evaluation of

P. C. Sat

P. C
.S

pec

Eva
l

Adap
ta

tio
n

P. C
.S

pec

Eva
l

Adap
ta

tio
n

P.C. Eval

C.O. Eval

P.C. Sat

C.O. Spec

P.C. Sat

C.O. Real

P.C. Spec

C.O. Eval

C.O. Real

P.C. Spec

P
.C

. S
pe

c

C
.O

.
E

va
l

P
.C

.
E

va
ll

C.O. Spec

P.C. Eval

P
.C

. Sat

C
.O

. R
eal

C
.O

. Specl

C
.O

. S
pec

P.C
. S

at

C
.O

.
R

ea
ll

C
.O

. Spec

P.C. Eval

C
.O

. Eval

C.O. Real

P.C. Spec

C.O. Eval

P.C. Eval

C.O. Spec

P.C. Sat

Fig. 6. Dynamics of Composed Processes

66

4 Management Services, Adaptation and Basic Services

We consider management services supporting services consumers and service provid-

ers.

Management services for

- Services Consumers Basic Processes and

- Adaptation Processes between S.C. Basic Processes

consist of

• Consumer Objectives Specification � C.O. Spec-Real Adapt,

• C.O. Spec-Real Adapt �Consumer Objectives Realization,

• Consumer Objectives Realization � C.O. Real-Eval Adapt,

• C.O. Real-Eval Adapt) �Evaluation of Consumer Objectives Realization,

• Evaluation of Consumer Objectives Realization � C.O. Spec. Eval,

• C.O. Spec. Eval � Evaluation of Consumer Objectives Realization.

Management services for

- Services Providers Basic Processes and

- Adaptation Processes between S.P. Basic Processes

consist of

• Providers Constraints Specification � P.C. Spec-Sat Adapt,

• P.C. Spec-Sat Adapt � Providers Constraints Satisfaction,

• Providers Constraints Satisfaction � P.C. Sat-Eval Adapt,

• P.C. Sat-Eval Adapt � Evaluation of Providers Constraints Satisfaction,

• Evaluation of Providers Constraints Satisfaction � P.C. Spec-Eval,

• P.C. Spec-Eval � Providers Constraints Specification.

These management services are summarized in the following

67

C.O. Spec

C. O. Real

Evaluation of

C.O. Real

C
. O

. R
ea

l-
Sp

ec

A
da

pt
at

io
n

C: O. Real-Eval

Adaptation

C
. O

. S
p
ec

-E
val

A
d
ap

tatio
n

P. C. Sati-Eval

Adaptation

P. C. Spec

P
. C

. Sat-Spec

A
daptation

P. C. Sat
Evaluation of

P. C. Sat

P
. C

.S
pe

c

E
va

l A
da

pt
at

io
n

Services

Management

C.O. Spec

C. O. Real

Evaluation of

C.O. Real

C
. O

. R
ea

l-
Sp

ec

A
da

pt
at

io
n

C: O. Real-Eval

Adaptation

C
. O

. S
p
ec

-E
val

A
d
ap

tatio
n

C
. O

. S
p
ec

-E
val

A
d
ap

tatio
n

P. C. Sati-Eval

Adaptation

P. C. SpecP. C. Spec

P
. C

. Sat-Spec

A
daptation

P
. C

. Sat-Spec

A
daptation

P. C. SatP. C. Sat
Evaluation of

P. C. Sat

Evaluation of

P. C. Sat

P
. C

.S
pe

c

E
va

l A
da

pt
at

io
n

P
. C

.S
pe

c

E
va

l A
da

pt
at

io
n

Services

Management

Fig. 7. Management and Basic Processes

5 Management Services, Adaptation, Basic and Composed Services

Management services for

- Adaptation Processes between Basic Processes and

- Adaptation Processes between Composed Processes

consist of

• (C.O. Eval ↔ P.C. Eval) & (C.O. Eval ↔ P.C. Eval ↔ C.O. Spec)

• (C.O. Eval ↔ P.C. Eval ↔ C.O. Spec) & (C.O. Eval ↔ C.O. Spec)

• (P.C. Eval ↔ C.O. Spec) & (P.C. Eval ↔ C.O. Spec ↔ P.C. Sat)

• (P.C. Eval ↔ C.O. Spec ↔ P.C. Sat) & (C.O. Spec ↔ P.C. Sat)

• (C.O. Spec ↔ P.C. Sat) & (C.O. Spec ↔ P.C. Sat ↔ C.O. Real)

• (C.O. Spec ↔ P.C. Sat ↔ C.O. Real) & (P.C. Sat ↔ C.O. Real)

• (P.C. Sat ↔ C.O. Real) & (P.C. Sat ↔ C.O. Real ↔ P.C. Spec)

• (P.C. Sat ↔ C.O. Real ↔ P.C. Spec) & (C.O. Real ↔ P.C. Spec)

• (C.O. Real ↔ P.C. Spec) & (C.O. Real ↔ P.C. Spec ↔ C.O. Eval)

• (C.O. Real ↔ P.C. Spec ↔ C.O. Eval) & (P.C. Spec ↔ C.O. Eval)

• (P.C. Spec ↔ C.O. Eval) & (P.C. Spec ↔ C.O. Eval ↔ P.C. Sat)

• (P.C. Spec ↔ C.O. Eval ↔ P.C. Sat) & (C.O. Eval ↔ P.C. Sat)

68

and are summarized n the following

C.O. Spec

C. O. Real

Evaluation

of

C.O. Real

C
. O

.
R

ea
l-

Sp
ec

A
da

pt
at

io
n

C: O.

Real-Eval

Adaptation

C
. O

.

S
pec

-E
val

A
daptation.

P. C.

Sati-Eval

Adaptatio

P. C. Spec

P.C
. Sat-Spec

A
daptation

P. C. Sat
Evaluation of

P. C. Sat

P. C
.S

pec

Eva
l

A
dap

ta
tio

n

Services

Management
P.C. Eval

C.O. Eval

P.C. Sat

C.O. Spec

P.C. Sat

C.O. Real

P.C. Spec

C.O. Eval

C.O. Real

P.C. Spec

P
.C

. S
pe

c

C
.O

.
E

va
l

P
.C

.
E

va
ll

C.O. Spec

P.C. Eval

P
.C

. S
at

C
.O

. R
eal

C
.O

. S
pecl

C
.O

. S
pec

P.C
. S

at

C
.O

.
R

ea
ll

C
.O

. Spec

P.C
. Eval

C
.O

. Eval

C.O. Real

P.C. Spec

C.O. Eval

P.C. Eval

C.O. Spec

P.C. Sat

C.O. Spec

C. O. Real

Evaluation

of

C.O. Real

C
. O

.
R

ea
l-

Sp
ec

A
da

pt
at

io
n

C: O.

Real-Eval

Adaptation

C
. O

.

S
pec

-E
val

A
daptation.

C
. O

.

S
pec

-E
val

A
daptation.

P. C.

Sati-Eval

Adaptatio

P. C. SpecP. C. Spec

P.C
. Sat-Spec

A
daptation

P.C
. Sat-Spec

A
daptation

P. C. SatP. C. Sat
Evaluation of

P. C. Sat

Evaluation of

P. C. Sat

P. C
.S

pec

Eva
l

A
dap

ta
tio

n

P. C
.S

pec

Eva
l

A
dap

ta
tio

n

Services

Management
P.C. Eval

C.O. Eval

P.C. Sat

C.O. Spec

P.C. Sat

C.O. Real

P.C. Spec

C.O. Eval

C.O. Real

P.C. Spec

P
.C

. S
pe

c

C
.O

.
E

va
l

P
.C

.
E

va
ll

C.O. Spec

P.C. Eval

P
.C

. S
at

C
.O

. R
eal

C
.O

. S
pecl

C
.O

. S
pec

P.C
. S

at

C
.O

.
R

ea
ll

C
.O

. Spec

P.C
. Eval

C
.O

. Eval

C.O. Real

P.C. Spec

C.O. Eval

P.C. Eval

C.O. Spec

P.C. Sat

Fig. 8. Global Dynamics and Management

6 Conclusions

The proposed modeling approach to the integration and management of adaptive busi-

ness processes is being experimentally tested with respect to the organization frame-

work of the Italian National Research Council based on demand and supply interac-

tion mechanisms for planning, execution and evaluation of research activities.

References

1. Mascari, J.-F.: Complex Autonomic Knowledge Systems. 1rst International Conference on

Semantics, Knowledge and Grid (SKG2005) Beijing, China – (to appear)

69

2. Singh M. P. and Huhns M. N., Service Oriented Computing . John Wiley & Sons Ltd (2005)

3. Zhuge, H., The Knowledge Grid. World Scientific (2004)

Acknowledgment

Thanks to Barbara Dragoni, Paolo De Gasperis, Angelo Guerrini, Maurizio Lancia,

Raffaele Pelliccia, Alberto Salvati and Maurizio Vitale for their collaboration, support

and interest in the application of the proposed modeling method to the specification

and design of a service oriented architecture supporting the new CNR organization

framework.

70

Towards the Autonomic Composition

of Business Processes

Pierluigi Lucchese
1
, Marco Pistore

2
, Michele Trainotti

1
, and Paolo Traverso

1

1 ITC-irst, Via Sommarive 18, I-38050, Trento, Italy
2 Dept. of Information and Communication Technology, University of Trento

 Via Sommarive 14, I-38050, Trento, Italy
1{traverso, mtrainotti, lucchese}@itc.it

2 pistore@dit.unitn.it

Abstract. One of the main ideas of service oriented applications is to abstract

away the logic at the “business level” from its non-business related aspects,

which we call the application at the “system level”, e.g., the implementation of

transaction, security, and reliability policies. This abstraction should make eas-

ier and effective the composition of distributed business processes. However,

the provision of automated composition techniques, which make this potential

advantage real, is still an open problem. We address this challenge by proposing

the idea of Autonomic Composition of Distributed Business Processes that ex-

ploits the business and system level separation in service oriented development.

According to this view, composition at the business level poses the require-

ments and the boundaries for the automatic and autonomic composition at the

system level. While the former is supported by user-centered and highly inter-

active techniques, the latter is fully automated and hidden to the humans. Sys-

tem level compositions are generated automatically and autonomically moni-

tored and self-modified and adapted. In this paper we provide a first step

towards this vision. We describe an architecture for the execution of distributed

business processes that clearly separates the two levels, and envisage tech-

niques for the automated generation, the automated monitoring and self-

modification and adaptation of the system level. We describe the proposed ar-

chitecture and the devised autonomic composition techniques in the case of an

e-banking application, where both the business level as well as system level as-

pects, like transactions and security, are extremely important.

Introduction

One of the main ideas of service oriented applications is to abstract away the logic at

the “business level” from its “non-business related aspects”, what in this paper we

call the application at the “system level”, e.g., the implementation of transaction, se-

curity, and reliability policies. This abstraction and this two-level separation should

make easier and effective the composition of distributed business processes, thus ena-

bling the interoperability among business processes that are distributed within and

across organizational borders. The business level should define platform-independent

and system/architecture-independent business processes. It should consist, for in-

stance, of the definition of how a company interacts with clients and/or business part-

71

ners, the definition of the organization-dependent procedures and workflows that real-

ize its business needs and strategies. The system level should instead implement the

business processes taking into account requirements such as transaction, security,

presentation, and reliability policies. As an example, consider an e-banking applica-

tion that allows for an electronic payment of products available on-line. The business

level should define the flow of interactions between the client, the electronic store and

the bank. It should define when and how the billing in a bank account can be proc-

essed, the fact that the operation selling a product can be completed only if the bank-

ing operation charging money in the bank account has been completed too. The archi-

tectural level should instead implement, e.g., the transactional policy that is defined at

the business level and that allows us to commit and roll-back the selling process ac-

cording to the payment process. It should as well implement the security policies by

encrypting messages and using appropriate security key mechanisms.

The potential advantage of the “two-level view” of service oriented applications is

straightforward: an effective, easy, low cost, time-to-market development, manage-

ment and composition of distributed business processes that can cope with the dy-

namic evolution and required adaptation to changes in, e.g., business strategies and

markets, customers and providers relationships, etc. Service oriented infrastructures

and standards for the development of distributed business process provide the starting

point to face this challenge. A set of emerging standard languages and techniques is

available for the definition of the business level and of the system level, e.g., from

BPEL [1] to WS-Transaction [8] and WS-Security [6]. However, so far, an automated

composition of distributed business processes that actually exploits the two-level

separation between the business and the system level is still far from being achieved:

no support is provided that can allow for composing distributed processes at the busi-

ness level in an easy way, e.g., by releasing the developer from caring about the im-

plementation at the system level, e.g., the implementation of the transactional and se-

curity aspects. All of this still remains an open challenge.

We address this challenge by proposing the idea of the Autonomic Composition of

Distributed Business Processes. We envision a service-oriented development process

where composition itself is done at two different levels of abstractions:

• Business-level composition: The business level of the composed service is de-

cided by business analysts, who define the business logic that composes distributed

processes. We claim that this composition must be highly transparent and user

centered, i.e., it must be highly interactive and the human, the business analysts,

must be “in the loop”, since this is related with critical issues such as the com-

pany’s business needs and strategies, the company’s organizational assets, etc.. In

terms of the vision of “Autonomic Computing” [5], this is the part “outside” of the

autonomic functioning of the human nervous system, i.e., the part that corresponds

to a conscious control by the human brain.

• System level composition: the business level composition poses the requirements

and the constraints for the composition at the system level, which is instead per-

formed automatically, by hiding to and releasing the human from the implementa-

tion details that realize the electronic business process, e.g., the implementation of

transactions and security policies. According to the autonomic computing vision,

72

this is the autonomic non-conscious functioning of the composition, where the hu-

man is released from the effort and time consuming, as well as difficult interaction

with the computer.

According to this vision, the business level composition, which is highly transparent

and human centered, poses the boundaries, the requirements, and the constraints for

the autonomic composition at the system level, the boundaries for the human-opaque

and user-hidden self-composition, self management, self-adaptation, self-

optimization, etc. of distributed business processes.

In this paper, we provide a first step towards the vision of the Autonomic Composi-

tion of Distributed Business Process:

• We devise a service-oriented architecture for the execution of distributed processes

that clearly separates the business level from non-business related aspects, like the

implementation of transactional, security, presentation and reliability aspects. A

business process manager interacts with, e.g., a transaction and a security manager

that inject in the implementation layer the messages for managing the atomicity of

operations, their commit and rollback, as well as the encryption of messages.

• Given a set of available business processes and the business level of the composed

process, we devise techniques for the automatic generation of the system level

composed service. The business level constitute the composition requirements for

the non-business related composition.

• We provide techniques that support the monitoring of the composed business proc-

ess, including its business as well as non-business level. For instance, we can

monitor that process interactions actually run as expected, as well as that transac-

tions requirements are satisfied. Monitoring at the business level provides informa-

tion to business analysts, information that can reveal problems or changes in mar-

kets and business needs. Business analysts can use this information to re-define the

business process reflecting the market evolutions. The result of monitoring at the

system level can instead result in an autonomic automatic self-modification and

adaptation of the system level itself.

We describe the proposed architecture and the devised autonomic composition tech-

niques in the case of an e-banking application, where, beyond the business level, ar-

chitectural aspects such as transactions management and security issues are ex-

tremely critical and important, thus motivating the approach to autonomic

composition.

The paper is organized as follows. We first describe the e-banking application. We

then describe the model for the components and composed business processes at the

conceptual and architectural level. We finally provide an high level description of the

techniques for autonomic compositions.

73

Problem Scenario: the integration of bank and store processes

In this section we review the case of a real e-banking application we have been in-

volved in the adoption of the ideas proposed in this paper. In these kinds of applica-

tions, the regulatory pressure (e.g.: Basilea2 regulation), the need for transparency

towards customers as well as for security and privacy pose critical system level re-

quirements, which are as important as those at the business level. The result is that in

many applications we find that the code implementing the business logic is “mixed”

with system level implementation code.

The application under consideration is a service for on-line payment offered by a bank

for an electronic store. The e-store publishes its catalog and a customer can select

items from the catalog. When the customer decides to purchase the selected items,

he/she is connected with an e-bank service that verifies the identity and the credit of

the customer, charges the amount to his/her credit card or possibly to his/her account

(if he/she has one account with the bank) and then credits the value to the current ac-

count of the e-store (see Figure 1).

Fig. 1. High level interaction schema between customer, store and bank

The application must guarantee:

• The privacy of each actor involved in the process. The customer banking data –

e.g., its credit card number – should not be visible to the shop. Moreover, the item

purchased by the customer should not be visible to the bank. Finally, the data ex-

changed between the store and the bank should not be visible to the customer.

• The safety of the process: the bank is a kind of broker between the customer and

the shop. The shop is guaranteed by the bank about the customer identity and ac-

countability, the customer is guaranteed by the bank about the shop trustworthi-

ness.

74

The previous service oriented application for this case study, was developed as a

packaged solution, where the business process integration was technically achieved

with a set of java files and libraries that were installed and configured in the web ap-

plication server of the shop. A configuration module allowed for the connection with

the e-banking application, and a start-up module managed the operation of creation,

authentication and update of the security mechanism. A set of procedures had to de-

veloped by the store in its application server in order to integrate with the e-banking

process (see Figure 2).

Fig. 2. High level architecture of the existing system.

The store had to deploy in its environment an application server where the JSP pages

had to run with the java code that managed the process of payment between the cus-

tomer, the store and the bank. This java code contained also the code that managed

the “system level” of the application.

This kind of solution has some problems, since it is invasive (the shop has to adopt

the technology chosen by the bank), a development effort is required to the shop,

and finally the application is not flexible and easy adaptable to any change of the

process. Having hard-coded the logic of the process in a java program, it is not easy to

adapt the process to any possible evolution of the communication protocol between

the bank and the store. For instance, if the bank would like to extend the process to

deal with the possibility of subscribing an insurance related with the purchase, the ap-

plication must be re-written.

In order to address these problems, we propose a new architecture, based on the adop-

tion BPEL. As explained in detail in the rest of the paper, our solution implements the

idea of the separation between the business and the system level. The business logic

implementing the payment is executed by a BPEL engine that interacts with different

managers for the “non-business related aspects”.

75

Two level view of a service

The adoption of the new architecture described in this paper requires a modular de-

scription of each service involved in the composition. A central role in this modular

description is played by the Business Logic of the service, which describes how one

has to interact with the service in order to exploit it. This description is at the “busi-

ness level” in the sense that we describe only those interactions that are relevant for a

logical (or business) point of view, and we rule out the additional interactions that oc-

cur in the actual executions, but that are relevant only for managing “system level”

aspects such as security and reliability.

Fig. 3. The business logic of the bank

For instance, the business logic associated to the bank is represented in Figure 3. Ac-

cording to it, in order to execute a payment, the bank requires first to receive the

payment request, containing the amount and destination of the money transfer. The

bank has then to execute the internal checks in order to verify the validity of the re-

ceived payment data. If the request is valid, the bank sends an acknowledge message

and waits for the credit card data (or bank account coordinates) where to charge the

payment. Again the bank checks the credit card data validity and answer with an ac-

knowledge. Finally it needs to receive a confirmation message after which the bank

triggers the money transfer and notifies the operation result.

76

Among the different languages that can be used to express the business logic, we

adopted BPEL [1]. BPEL provides a core of process description concepts that allow

for the definition of business processes interactions. This core of concepts is used

both for defining the executable process implementing a given service and, what is

more relevant here, for describing and making available to potential partners the in-

teraction protocol. In particular, abstract BPEL specifications (i.e., BPEL specifica-

tion from which the details of the internal operations of the service are omitted) can

be used to describe protocols such as the one presented in Figure 3.

Fig. 4. Two level view of a service

The business logic of a service is complemented by the definition of a set of other

“logics”. These describe additional aspects that need to be addressed in order to ex-

ploit the service in a composition. Clearly, there are several of these additional as-

pects, and they may vary from domain to domain. In our e-banking domain, we iden-

tified four such logics that are necessary to complete the business logic of Figure 3:

the security logic, the reliability logic, the transaction logic, and the presentation

logic. In the following, we give a short description of these four logics (see also Fig-

ure 4).

The security logic describes the policy to provide quality of protection through mes-

sage integrity, message confidentiality, and single message authentication. The secu-

rity logic also provides a general-purpose mechanism for associating security tokens

with messages. Additionally, the security logic could describe how to encode security

tokens, e.g., it can specify to use the WS-Security standard and X.509 certificates.

77

The security logic can also specify some specific requirements on parts of messages

(e.g., the bank coordinates and the credit card numbers) that need to be encrypted in

every communication.

The transaction logic covers the aspects related to the transactionality of certain op-

erations. In the transaction logic, the bank describes standards (e.g., WS-Transaction

[8]), tools (e.g., Choreology [4]) and methods (e.g., two face commitment) that are

required or supported in the management of transactional activities.

Similarly to the security and the transaction logic, the reliability logic defines the pol-

icy and standards (e.g., WS-Addressing) used in order to make the message delivery

reliable.

The presentation logic describes how the back should appear to the end-user interact-

ing with it through the web or through other channels. Elements defining the visual

identity of the bank (colours, logos,…), as well as active web objects that are used in

the definition of the web pages prepared for the user who interacts with the bank are

defined here.

Composition of business processes

The modular definition of the business processes described in the previous section is

exploited when several such business processes are composed in applications such as

the on-line payment of an e-store described in Figure 1. This composition is done in

two steps, first of all at the “business level”, and then at the “system level”.

The business level composition has the objective of defining the shared, composed

business logic of the distributed business process. Several approaches, also from our

group [9], propose to make this composition fully automatic. However, in several

domains, such as our e-banking domain, an automated composition is not realistic: the

business level composition has to be performed by system analysts, in many cases

through a negotiation process, since it is related with critical issues such as the com-

pany’s business needs and strategies, the company’s organizational assets, etc.. Tools

can offer support to the analysts, but we claim that this support will be effective only

if it is highly transparent and user centered, the analysts will be able to control the

composition process and to analyze and modify the outcome.

The most important outcome of the business level composition is a choreography de-

fining, at the business level, how the different partners are supposed to interact in or-

der to carry out the distributed business process. In the case of our e-banking domain,

such choreography is defined in Figure 5. According to it, the user starts the interac-

tion sending to the store a checkout message confirming the intention to buy the se-

lected items. Then the store sends to the bank the payment data (store’s account data

and order cost). The bank waits for the credit card data from the user and checks its

validity, After being notified that the user is able to pay the order, the store confirms

the payment to the bank, finalizes the order (e.g., forwarding it to the internal ware-

house department), and finally notifies the user.

78

Fig. 5. The business level of the e-banking application

We remark that this choreography respects, and somehow implements, the business

logic of the back shown in Figure 3. Indeed, all the data and interactions required by

the bank in order to perform a payment are fulfilled either by the shop (e.g., payment

data) or directly by the user of the e-banking application (e.g., credit card data).

Besides defining the interaction protocol, the choreography can express additional re-

quirements identified during the negotiation. For instance, the choreography in Figure

5 identifies two activities, the payment of the bank and the finalization of an order of

the store (both bordered by the dashed rectangles) that need to be executed in a trans-

actional context (represented by a dashed oval). The transaction is here required be-

cause either both or none of them have to succeed. We remark that, in the business

level choreography, also such additional requirements are given at a “business” level,

without defining how such transactional behavior has to be implemented in the sys-

tem.

The shared choreography defined in the business level composition defines the re-

quirements and the constraints for the second phase of the composition, namely the

system level composition. The objective here is to define the systems to de deployed

and executed by the participants in order to execute the distributed business process.

In the case of our e-banking application, this corresponds, for instance, to define sys-

tem components such as executable BPEL processes to be deployed by the bank and

by the store, as well as the servlets for the web interactions with the end user. The

definition of these systems has to implement the choreography, and has to take into

account the “system level” specifications given by the different partners.

Consider for instance the transactionality requirement in Figure 5. Its implementation

requires the exchange of additional messages between the bank and the store, in order

to share a transaction context, and to manage the start and the finalization of the

79

transaction. The implementation of these messages depends on the mechanisms and

standards supported by the participants to the transaction: e.g., if both bank and store

use transaction engines such as choreology, then the management of the transaction is

delegated to these engines; if such engines are not available, then the transaction has

to be managed explicitly, e.g., by extending the executable BPEL processes with the

extra messages necessary to set up and exploit a transaction context. In Figure 6, we

see a fragment of the executable processes of bank and store extended in order to im-

plement the transaction among money transfer in the bank and finalization of the or-

der in the store. The implementation of such requirement requires the introduction of

a new participant to the interaction, the coordinator of the transaction, and the intro-

duction of new communications between store and bank and with the coordinator in

order to manage the transaction (these additional communications are represented by

the dashed arrows in Figure 6).

Fig. 6. A fragment of executable processes enriched with transaction management

Our claim is that, differently from the business level composition, the system level

composition can be performed automatically, by hiding to and releasing the human

from the implementation details that realize the electronic business process. This of

course requires advanced techniques: adding automatically the additional communica-

tions for implementing the transactions as shown in Figure 6, requires sophisticated

techniques for automated program synthesis and adaptation. Our preliminary experi-

ments show that automated composition techniques such as those described in [9],

while not adequate for a fully automated business level composition, are successful at

80

the system level for automatically synthesizing the code implementing system level

features such as transaction and reliability requirements.

System Architecture

In this section we present a possible architecture for supporting the execution of com-

posite business processes defined as in the previous section. A high level representa-

tion of the architecture is given in Figure 7.

Fig. 7. Architecture

The two main modules of this architecture are: the Backend Process Engine, which

is responsible of executing the (BPEL) processes implementing the business logics as

well as the transaction, security and reliability logics; and the Presentation Engine,

which is responsible of providing the web pages to the end user and of implementing

the presentation logic. These two modules correspond to two different busses that are

exploited in the execution of the distributed business processes: the Application Bus,

which transports the (SOAP) messages between process engines, and the HTTP Bus,

that is used to provide the web pages to the end user.

The two key components of the backend process engine are the Message Handler,

responsible of managing the communications and invocations among web services,

81

and the Process Manager, responsible of executing the distributed business proc-

esses. Examples of existing tools implementing these two modules are, respectively,

the Apache Axis server and BPEL engines such as Oracle BPEL Process Manager [3]

or Active BPEL [2]. The other modules of the backend process engine are support

these two main components offering additional services. More precisely, the Security

and the Message Reliability Managers are linked to the message handler; such mod-

ules can be implemented as Axis plug-ins. The Transaction Manager is linked in-

stead to the process manager and supports it in the implementation of the transaction

logic. An example of a tool that can be exploited as transaction manager is Choreol-

ogy [4].

The main goal of the presentation engine is to mediate the interaction of the user with

the backend process engine and to synchronize the operations performed by the user

through web pages with the processes executed by the backend process engine. Stan-

dard tools such as Tomcat can be used in the presentation engine.

Of course, the integration of all these engines and modules in order to implement a

seamless execution of the distributed business processes is far from trivial: just to

make an example, a seamless management of the transaction requires a strong cou-

pling between the processes executed on BPEL engines and transaction managers

such as cohesion. The automated generation techniques we foresee for the system

level composition are a key technology for supporting such an integration.

Towards Autonomic Composition

Several business process integration domains are highly dynamic and evolving envi-

ronments. Service oriented applications have to cope with the dynamic evolution and

required adaptation to changes in, e.g., business strategies and markets, customers and

providers relationships, etc. External partners can autonomously change the way they

interact with each other. This kind of evolution has to be tracked and monitored at

“run time”, i.e., during the execution of a business process. Monitoring is indeed the

key task that can reveal a change, e.g., in interactions with other partners, a service

oriented application has to cope with.

Monitoring can reveal evolutions that require adaptation either at the system or at the

business level:

• Monitoring at the system level. Monitoring at the system level can track unex-

pected changes in the implementation of, e.g. the transaction, security, presenta-

tion, as well as reliability mechanisms. The result of monitoring at the system level

can activate an autonomic self-modification and adaptation of the system level it-

self. For instance, monitoring can reveal that the system level implementation of

the transaction or security mechanisms do not work properly, e.g., since the trans-

action/security managers of two organizations do not exchange messages as ex-

pected. This can be due, e.g., to a changes in the transaction/security manager poli-

cies of an external organization.

82

• Monitoring at the business level. Monitoring at the business level can reveal

changes in business processes, or situations that require a rethinking of the busi-

ness strategies. It provides information to business analysts, information that can

reveal problems or changes in markets and business needs. Business analysts can

use this information to re-define the business process reflecting the market evolu-

tions. For instance, in our e-banking application we can monitor whether business

process interactions actually run as expected. A monitoring module at the bank

could for instance reveal that the store does not send the right information at the

right moment to the bank, e.g., the payment request. As a further example, the

monitor could reveal that the client in several occasions does not complete the

payment procedure, revealing a serious problem in the perception of trust of the

system. Strategic actions must be devised in order to cope with these kinds of prob-

lems.

Fig. 8. Continuous Design and Autonomic Adaptation

While monitoring at the system level can be coped with an autonomic computing

mechanism, which is opaque to humans and allows for self-adaptation and self-

repairing, changes revealed by monitoring at the business level require highly trans-

parent and human centered support. While the former is a process that can be com-

pleted autonomically at run time, the latter must return control to the business analyst

at the design phase (see Figure 8).

In this way, we envision an environment for business process modeling where the de-

signer can defer to the run-time decisions on how to carry out a given process; con-

versely, the run-time environment can detect failures in performing the business proc-

ess, for instance due to unforeseen changes in the business domain, and can trigger a

redesign phase. During redesign, the overall model of the business application is up-

dated, in order to reflect the changes in the domain (or in the strategic goals of the

partner); decisions and procedures may now be fixed by the designer and, conversely,

design decisions may be relaxed in order to give more flexibility to the run-time. In

this framework, a redesign is not destructive with respect to the run-time. Rather, we

83

envision a “continuous design” environment, where the human driven re-design and

the supporting automated techniques concur to the achievement of the strategic goals

in a service oriented world.

Conclusions

In this paper, we have described an architecture for the execution of distributed busi-

ness processes that clearly separates the business logic from the system level imple-

mentations of functionalities like transaction and security management. We have dis-

cussed techniques for the automated generation and the automated monitoring and

self-modification and adaptation of the system level. We have explained these ideas in

the case of an e-banking application we have been involved in. We see this work as a

first step towards a vision of autonomic business processes composition where the

business logic, the goals and the strategic requirements, represent the boundaries for

autonomic self-adaptation.

Acknowledgements

The authors would like to thank Fausto Giunchiglia for the interesting discussions and

suggestions on Autonomic Business Process Composition. We would also like to

thank the ASTRO lab (http://www.astroproject.org/) for their collaboration and their

feedback.

References

1 T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,

D. Smith, S. Thatte, I. Trickovic, S. Weerawarana. Business Process Execution Language

for Web Services (Version 1.1), 2003.

2 http://www.active-endpoints.com/products/activewebflow/active_bpel/

3 http://www.oracle.com/technology/products/ias/bpel

4 http://www.choreology.com/

5 J.O. Kephart and D.M. Chess. The Vision of Autonomic Computing. Computer magazine,

January 2003.

6 Web Services Security (WS-Security), IBM, Microsoft & VeriSign.

7 Web Services Coordination (WS-Coordination), Microsoft, BEA & IBM.

8 Web Services Transaction (WS-Transaction), BEA, IBM &Microsoft.

9 Supporting the Composition of Distributed Business Processes: http://www.astroproject.org.

84

A Development Methodology for Improving Cost

Estimates in Process Automation Projects

Doug Tidwell

IBM Corporation, University Relations, 4400 Silicon Drive,

Research Triangle Park, NC 27709 USA

dtidwell@us.ibm.com

Estimating the cost of a software project has long been more of an art than a

science. In this paper, we present a methodology that relies on the knowledge

of business experts and the power of process simulation tools to create much

more accurate cost estimates. With this methodology, business experts (typi-

cally non-programmers) can model and simulate business processes to create

accurate, detailed estimates of the benefits of the updated process. The business

experts deliver a complete, implementable process model to the IT department.

The IT department can then create a detailed assessment of the exact changes

needed for the updated process. The combination of the benefits analysis from

the business experts and the cost analysis from the system developers give deci-

sion makers more insight than ever before. We close with a short list of best

practices for managing process automation projects.

An Overview of our Methodology

Our methodology addresses two distinct audiences involved in process automation

projects: Business experts and developers. Our assumption is that business experts

have rudimentary programming skills, if any, and that developers’ knowledge of

business processes is limited to their impact on IT systems. In describing our meth-

odology for improving cost estimates, we will consider the particular skills and per-

spectives of both groups.

We refer to business experts as people who understand how goods and cash flow

through a business process. These experts have a high-level understanding of how

goods and services are delivered to customers, how those customers are billed, how

goods are delivered from suppliers, how suppliers are paid, and so forth.

Developers are programming experts who understand how business systems work,

including network topologies, data formats and database schemas, security, audit

trails, and other details of the actual system that implements the business process.

The Business Experts’ Perspective

The first step in estimating the cost of a process automation process should be driven

by the business experts. The business experts likely have the most knowledge of

85

“low-hanging fruit,” the obvious process inefficiencies that are the normal starting

point for automation projects. In addition, the business experts are aware of market-

place opportunities that could deliver significant competitive advantages if processes

were automated correctly.

An important part of our methodology is that business experts should be the only

stakeholders involved in the process automation design phase. Developers involved

in the discussion are likely to point out impediments to developing process improve-

ments. “We could do that, but we’d have to update the database schema for the pay-

roll system” might indeed be a reason to reject a process improvement, but that deci-

sion should not be made until our methodology has run its course.

In the design phase, the business experts should focus on their ideal system, disre-

garding practical considerations to some extent. There will always be process

changes that are completely impractical and will never be implemented; those of

course should not be used in any design. However, the business experts are encour-

aged to “think outside the box” as much as possible. Our methodology uses process

modeling to create the most accurate estimate of the benefits of the proposed changes.

The business experts’ perspective includes the process steps that involve the most

pain to the organization. Does the current process involve human interactions that

could be implemented with business rules in many cases? Does the current process

take into account the expiry date of inventory when selecting stock from different

warehouses? How does the current process balance the possibly competing goals of

faster order processing and reduced shipping costs? The business experts have the

knowledge and experience to address these questions.

Our Sample Business Process

The business process we will use as an example is based on the Supply Chain Man-

agement sample application developed by ws-i.org. (See http://ws-i.org/ for more in-

formation.) Our sample process is concerned with processing purchase orders that ar-

rive from our customers. This is certainly not an enterprise-ready application or a

real-world design, but it has enough complexity to illustrate our methodology. Here

is a high-level description of the process:

/ A purchase order is received. It contains a customer number and the requested

quantities of some number of items. For each item ordered, the purchase order has

the quantity and the product number.

/ The purchase order is sent to the first warehouse. That warehouse ships as many of

the requested items as possible. What the warehouse system returns is an updated

purchase order in which the quantities of all shipped items are set to zero.

/ The updated purchase order is examined. If there are any more items to ship (at

least one item has a quantity greater than zero), the order is sent to the second

warehouse.

/ The second warehouse processes the order just as the first warehouse does. It re-

turns an updated purchase order.

/ The updated purchase order is examined. As before, if there are any items left to

ship, the purchase order is sent to the third warehouse.

86

/ The third warehouse processes the order just as the first two warehouses.

/ The updated purchase order is examined. If there are any items left to ship, the un-

shipped items are stored are logged.

Looking at the process as a whole, the input to the process is a purchase order and

the output from the process is a purchase order. Similarly, the input to a particular

warehouse is a purchase order and the output from a warehouse is an updated pur-

chase order. For the purposes of our example, this symmetry greatly simplifies proc-

ess reuse. This aspect of our example allows us to demonstrate our methodology

more fully.

Business Process Modeling

The heart of our methodology is a comprehensive business process modeling tool.

The example we use here is IBM’s WebSphere Business Integration Modeler product,

although any tool with similar modeling and simulation techniques should work. To

begin, here is a visual model of the original process:

This screen capture shows the purchase order being sent to the first two ware-

houses. The PurchaseOrder icon on the arrows indicates that the PurchaseOrder data

item is being sent from one node of the process to another.

At the end of the process, we merge all the branches of the process and return the

updated PurchaseOrder:

87

One of the four branches comes from the “Log unshipped items” task, while the

other three branches represent empty purchase orders returned from each warehouse.

The tool’s ability to diagram a business process is a nice feature, but its real value

lies in its process simulation capabilities. Business experts can define the resources

used to perform each task. In our example, the three warehouses are resources, as is

the logging facility. Business experts can define data items as well; a purchase order

is defined in terms of the data it contains (customer number, items, etc.).

The modeling tool allows business experts to build a significant amount of logic

into the process. For example, a decision node can include logic to branch in one di-

rection or the other if the number of items in the purchase order is zero or not. Al-

though this verges on programming, it is important to define the branches through the

process for any process simulations.

Creating a Process Baseline

It is important for the business experts to model a process baseline that represents the

current state of the process. The more accurate the baseline process, the more accu-

rate the resulting cost estimates will be. This is primarily a manual task, although

there are network monitoring tools that can capture data useful for the baseline model.

It is especially important that the bottlenecks and inefficiencies in the existing process

be modeled accurately, for those are likely to be the areas of focus as process im-

provements are discussed. The experience of the business experts is invaluable in

constructing the model of the existing process because they are most familiar with

those trouble spots.

Running simulations of the baseline process and comparing the results of the simu-

lation to the results of the real-world process is crucial. As the business experts de-

velop enhancements to the business process, the simulations of the new process will

be compared to the results from the existing process. If the model of the existing

process is flawed, the resulting estimates of time or cost savings from process changes

will be flawed as well.

88

Simulating the Business Process

After the business process has been defined, the next step for the business experts is

to simulate the process. The modeling tool we use has many sophisticated simulation

techniques, including the ability to define the statistical distributions of events, the

ability to define when resources are available, and the ability to different work sched-

ules for the humans involved in the process.

Our simulation tool can define many different result sets for different versions of

the business process. This allows the business experts to compare the versions of the

business process and decide which version is preferable. As the simulations are more

detailed, chances are there will be several different versions of the process that are vi-

able. The business experts can decide which version they prefer based on the needs

of the business. For example, one version of the process might be best when orders

are above a certain threshold. Another version might be best if the company’s focus

shifts from keeping shipping costs low to shipping orders as soon as possible. A third

version might be best if labor costs at a particular warehouse rise above a certain

level.

The Business Experts’ Deliverables

Based on the preferred business process model(s), the business experts deliver their

design to the development shop. Our simulation tool delivers those designs in three

important formats, all of which can be used directly by the IT shop:

/ XML schemas that describes the data items used by the process

/ A BPEL (Business Process Execution Language) document that defines the steps

in the process and the logic for moving from one step to another

/ A Web service interface that describes how to invoke the business process.

The formats of the three files exported by the WebSphere modeling tool are both

standards-compliant and directly usable inside development tools. This is a signifi-

cant step forward in getting business experts and developers to work together. It can

be argued that all of the effort that has created the Unified Modeling Language

(UML) is an attempt to define a non-ambiguous way for business experts and devel-

opers to communicate. These standards-based files automate this communication

even further. We’ll discuss these three files in more detail here.

XML Schemas

The XML schemas are generated from the definitions of business data items. Our

modeling and simulation tool helps business experts define business items such as

purchase orders without programming skills. When those items are exported, they are

converted into XML schemas. Developers can use their tools of choice to convert the

XML schemas into Java beans, .Net objects, or similar structures in other program-

ming languages. Most significantly, the XML schemas are used directly by the de-

velopers in their implementation. No human interpretation is necessary; the XML

89

schema is not a high-level description or diagram that must be read and correctly un-

derstood by the developers before the project can move forward. The data item goes

directly from its expression in the modeling tool to an XML schema, and from there

into an object or data structure in the programmers’ language of choice.

The BPEL document

The BPEL document is used directly in the implementation phase as well. The BPEL

file defines all the steps in the business process, all of the data managed by the proc-

ess, the logic for moving from one state to another, and descriptions of the services

used in the process. A developers’ job is to take the BPEL definition of the process

and link the process steps to actual services in the business environment. In our sam-

ple application, for example, we have three warehouses that perform the “Process pur-

chase order” step in the process. In implementing the process as defined in the BPEL

file, the step that sends a purchase order to Warehouse A would be linked to the

(Web) service provided by Warehouse A. Finding the necessary services to imple-

ment the process is a crucial part of the cost estimate; more on this soon.

The Web service interface

The final artifact of the business experts’ model is a Web service interface. This in-

terface is defined in a WSDL (Web Services Description Language) file. The de-

scription includes all of the methods provided by the service, the XML format of the

data passed to the service, and the XML format of the data returned from the service.

The Web service interface defines how to access the business process itself as a Web

service. A side effect of implementing the process is that the business can then in-

voke the process from any Web services client. The universal access provided by

Web services means the process can be started (or, if the interface allows it, moni-

tored or controlled) from any device or protocol needed.

The Developers’ Perspective

In our methodology, developers get involved after the business experts have finished

designing the new process. Their first task is to assess the BPEL file to estimate the

costs of implementing the new process. Our methodology makes this estimate more

straightforward because the BPEL file specifies the services only, not their implemen-

tation. At a high level, estimating the costs of implementation involves determining

the services required for the new process. The focus of this effort is to find how many

of those services exist and sizing the effort to create the services that do not.

The use of BPEL has two distinct advantages. First, it merely defines the inter-

faces between the process steps and their implementations. In our example, each of

our three warehouses might be completely different, using different operating sys-

tems, database vendors, database schemas, and so forth. As long as each warehouse

supports the interface we need, those differences are irrelevant.

90

Second, the BPEL document defines the areas developers need to focus on in their

cost estimates. For a given step in a BPEL process, it should be obvious which sys-

tems are affected. In a simple world, all of those systems are controlled by the enter-

prise; in the real world, many of those systems will be controlled by suppliers or part-

ners. Regardless, the focus provided by the BPEL process helps developers specify

exactly what needs to be modified.

It is possible, though extremely unlikely, that developers will find that all of the

services needed by the BPEL process are available. In our existing process, ware-

houses are capable of processing purchase orders. Assuming all of the warehouses

support the interface defined in the BPEL file, implementing the process steps that in-

volve sending a purchase order to a warehouse is extremely simple.

Assessing a Process Enhancement

In our sample application, the business experts determine that a change to the process

would result in significantly reduced shipping costs. The original process sent the

purchase order to Warehouse A, then Warehouse B, then Warehouse C, until the en-

tire order was processed. The business experts proposed that each warehouse should

first be queried to see if any warehouse can ship the entire order. Modeling and simu-

lating the changed process indicates that shipping costs can be reduced by 23%. In

addition, the simulation results indicate that shipments will reach customers an aver-

age of .38 days faster. Although the shorter delivery time does not apply to costs di-

rectly, business experts can estimate how that improved service will help the business

in the field.

Continuing with our sample, when the business experts deliver the enhanced proc-

ess to the developers, the developers quickly realize that the warehouses are not

equipped to examine a purchase order without actually shipping it. Their cost esti-

mates are then based on the amount of work required to change the business systems

at each warehouse.

The ultimate goal of our methodology is for business executives to make unemo-

tional business decisions based on accurate cost and benefit estimates. This is the end

point of our sample application. After the business experts and developers have fin-

ished their assessments, the executives are presented with the following information:

/ Implementing the new process will cut shipping costs by 23%.

/ Implementing the new process will take 20 person-months of design, development,

testing, and deployment, and can be completed in as little as 5 months.

/ Implementing the new process will deliver customer orders an average of .38 days

faster.

In addition to this kind of information, developers can assess the risks of changing

the existing warehouse systems. If those systems are implemented in modern pro-

gramming languages and designed intelligently, the risk of modifying the existing

systems will probably be low. On the other hand, if those systems are implemented in

COBOL code, much of which was written decades ago, the risk of modifying those

systems could be quite high. It is possible, of course, that the risks involved outweigh

any possible benefits.

91

Executives will also have to consider other, more intangible factors. If the sales

force believes the faster shipping times will give the company a considerable com-

petitive advantage, executives will likely be willing to take more risks and absorb

more costs. The cost/benefit analysis for this particular process might not be particu-

larly attractive, but if the costs are viewed as part of a company-wide reengineering

effort, executives might be willing to approve the enhancements anyway.

Finally, given the many factors involved, it is possible that executives will ask for a

less ambitious process enhancement. In our example, what if the business systems at

Warehouses A and B are modern and relatively straightforward to enhance, while

changing the system at Warehouse C is too risky? The business experts could go

back to their model and run more simulations to see if the process enhancements

would still make sense. The business experts might be asked to come back with a less

ambitious process enhancement with lower costs or faster implementation times. The

developers might be asked to consider alternate development approaches (a Web ser-

vices gateway, for example) with similar benefits. In both cases, the ability of model-

ing and simulation tools to provide accurate benefits analysis is extremely useful in

the executives’ final decision.

Summary

In this paper we have examined a simple application that illustrates some of the issues

involved in business process automation. When our example process was modeled,

the business experts were able to simulate the process to determine its potential bene-

fits. Once the business experts were satisfied with the design of the proposed process

automation, what they delivered to development was a set of files that can be used in

the final implementation. Finally, the decision-makers can weigh the detailed benefits

analysis delivered by the business experts against the detailed costs analysis delivered

by the developers to make the most informed decision possible.

92

Author Index

Adamus, Radoslaw, 30

Babin, Gilbert, 1

Brogi, Antonio, 44

Cavarretta, Giuseppe A., 59

Hsu, Cheng, 1

Iacob, Maria-Eugenia, 15

Jonkers, Henk, 15

Kuliberda, Kamil, 30

Lankhorst, Marc M., 15

Levermore, David, 1

Lucchese, Pierluigi, 70

Mascari, Jean-Fraņcois, 59

Pistore, Marco, 70

Popescu, Razvan, 44

Subieta, Kazimierz, 30

Tidwell, Doug, 84

Trainotti, Michele, 70

Traverso, Paolo, 70

Wislicki, Jacek, 30

