
RC23821 (W0512-008) December 1, 2005
Computer Science

IBM Research Report

Proceedings of the First International Workshop on
Engineering Service Compositions (WESC'05)

Amsterdam, The Netherlands, December 2005

1Christian Zirpins, 2Guadalupe Ortiz
1Winfried Lamersdorf, 3Wolfgang Emmerich (Eds.)

1University of Hamburg, Germany
2University of Extremadura, Spain
3University College, London, UK

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Preface

The emerging paradigm of service-oriented computing (SOC) introduces ground-
breaking concepts for distributed- and e-business processing. In fact, they are
believed by many to radically change the way software applications are designed,
architected, delivered and consumed. Web Services, which constitute the heart
of SOC, are autonomous platform-independent computational elements that can
be described, published, discovered and accessed over the Web using standard
protocols. Service-oriented architectures (SOA) leverage the foundational capa-
bilities of computational service models. They provide a technological as well as
conceptual framework for new classes of cooperative business applications: ag-
ile networks of collaborating business applications distributed within and across
organisational boundaries.

Consequently, SOA not only includes software technologies to aggregate atomic
services into composite services (a.k.a. service composition). It also comprises
the software engineering methodology to turn composite services into coopera-
tive business applications (a.k.a. service engineering). These aspects are highly
interrelated. Service composition became one of the major software technology
approaches for composing multiple coarse-grained applications over the Web.
Thereby, it originated innovative composition models with pioneering concepts
for e.g. generation, coordination and aggregation of compositions. Such models
introduce significantly different ways of managing business connectivity. Thereby
they make a strong impact on application semantics and vice versa. Thus, soft-
ware engineers have to take into account the impacts of different service com-
position models. This is crucial for them to guarantee a certain quality level
of SOA-based cooperative business applications with respect to functional and
non-functional requirements.

The upcoming discipline of service engineering generally benefits from former
research on component- and aspect-oriented software engineering methodologies.
Meanwhile, there are already promising results on novel conceptual and tech-
nological tools to support the development processes of cooperative business
applications. However, such tools need to be increasingly aligned with service
composition technology. Joint approaches on engineering service compositions
face several open problems and challenges. On the technology side there is still
neither an agreement on service composition models and languages nor on their
scope of application; let alone experiences on mission critical operation. As re-
gards methodology, reference architectures of service-oriented cooperative infor-
mation systems taking into account particularities of the service composition
lifecycles are just at the beginning. This is just to name a few issues.

Accordingly, this workshop brought together experts from service composi-
tion technology and service engineering methodology; researchers and practi-
tioners from industry and academia. It fostered discussions about problems and
challenges that particularly arise during the practical combination of both fields

of expertise for the realisation of service-based, cooperative business information
systems. In reply to the call for paper a brought variety of submissions illustrated
the relevance of the topic. All received contributions where carefully reviewed by
the international program committee. In the end, 13 papers were selected with
focus on quality, originality and topical relatedness. This set covers perspectives
and concepts in the form of ideas as well as results on a wide range of topics
related to engineering software by service composition.

Finally, we would like to thank the people without whom this workshop
would not have been possible: the members of the program committee as well as
the assisting reviewers for their tremendous work, the organisers of the ICSOC
conference and especially Frank Leymann and Mike Papazoglou for their help
in planning and implementing the workshop, Paco Curbera for his support in
publishing the proceedings, George Feuerlicht for his co-operation and of course
the many authors for their great contributions.

November 2005 Christian Zirpins
Guadalupe Ortiz

Winfried Lamersdorf
Wolfgang Emmerich

VI Preface

Organisation

Workshop Chairs

Wolfgang Emmerich, University College London, UK
w.emmerich@cs.ucl.ac.uk

Winfried Lamersdorf, University of Hamburg, Germany
lamersdorf@informatik.uni-hamburg.de

Guadalupe Ortiz, University of Extremadura, Spain
gobellot@unex.es

Christian Zirpins, University of Hamburg, Germany
zirpins@informatik.uni-hamburg.de

Program Commitee

M. Aiello, University of Trento, Italy
F. Casati, HP Palo Alto, USA
V. D’andrea, University of Trento, Italy
S. Dustdar, Technical University of Vienna, Austria
W. Emmerich, University College London, UK
G. Feuerlicht, Technical University of Sydney, Australia
H. Foster, Imperial College London
M. Hauswirth, EPFL Lausanne, Switzerland
J. Hernández, University of Extremadura, Spain
W. Lamersdorf, University of Hamburg, Germany
M. Mecella, University of Rome, Italy
G. Ortiz, University of Extremadura, Spain
M. Papazoglou, Tilburg University, The Netherlands
P. Plebani, Politecnico di Milano, Italy
T. Risse, Fraunhofer Society, Germany
C. Roland, University of Paris, France
S. Tai, IBM Watson, USA
M. Weske, HPI at University of Potsdam, Germany
A. Wolf, University of Boulder, USA
J. Yang, Macuquarie University, Australia
C. Zirpins, University of Hamburg, Germany

Additional Referees

L. Braubach
G. Frankova

G. Gr
M. Husemann

N. Kokash
A. Lazovik

H. Meyer
A. Pokahr

F. Rosenberg
B. Schmit
H. Schuschel

VIII Organisation

Table of Contents

Automated Service Composition

An organisational approach to building adaptive service-oriented systems 1
Alan Colman, Jun Han

A Multiagent Web Service Composition Engine . 9
Paul Buhler, Dominic Greenwood, Alois Reitbauer

A Genetic Programming Approach to Support the Design of Service
Compositions . 17
Lerina Aversano, Massimiliano Di Penta, and Kunal Taneja

A Classification of Issues and Approaches in Service Composition 25
Ulrich Kster, Mirco Stern, Birgitta Knig-Ries

An Ontology for Quality-Aware Service Discovery . 35
Steffen Bleul, Thomas Weise

Aspect-Oriented Composition of Software Services

Reusable Web Service Choreography and Orchestration Patterns 43
Guadalupe Ortiz, Juan Hernández, Pedro J. Clemente

Engineering Distributed Service Compositions . 51
Thomas Cottenier, Tzilla Elrad

Validation and Verification of Service Compositions

Modelling and Analysis of Time-related Properties in Web Service
Compositions . 59
Raman Kazhamiakin, Paritosh Pandya, Marco Pistore

Invocation Order Matters: Functional Feature Interactions of Web Services 69
Michael Weiss, Alexander Oreshkin, Babak Esfandiari

Behavioural Verification of Service Composition . 77
Pascal André, Gilles Ardourel, Christian Attiogbé

Static Validation of Business Process Compatibility in Web Services
Choreographies . 85
Agust́ın Cernuda del Rı́o, Jose Emilio Labra Gayo, Daniel Gayo Avello,
Daniel Fernández Lanv́ın

Applied Service Composition

Cost-Effective Service Composition . 93
Hakan Hacigumus

Standardizing ERP system components: First considerations based on
Web Services . 101
Nico Brehm, Jorge Marx Gómez

Author Index . 111

X Table of Contents

An Organisational Approach to Building Adaptive

Service-oriented Systems

Alan Colman and Jun Han

Faculty of Information and Communication Technologies

Swinburne University of Technology

Melbourne, Victoria, Australia

{acolman,jhan}@swin.edu.au

Abstract. The relationships between the loosely coupled services of a

composition can be non-deterministic and unreliable. This requires that a

composite application have the ability to adaptively reconfigure itself to

continuously satisfy the system requirements. Imperative composition

approaches, such as BPEL, do not provide the abstractions necessary to create

adaptive compositions. In this paper we introduce an organisation-oriented,

application-centric service composition framework that aims to achieve

adaptive application behaviour from non-deterministic and unreliable services.

The responsibility for coordinating and managing service interactions resides

with a coordination/management layer of the application itself. This layer

involves two types of essential elements: service contracts and service

organisers. The service contracts define and regulate the relationships between

the services in a composition. The service organisers control the bindings

between service types and individual services, and can create and revoke

contracts between services within the composition in order to adaptively

reconfigure the application in response to changing conditions. An adaptive

service composition can be formed by connecting and configuring services

through dynamically formulated contracts, under the control and management

of service organisers.

1 Introduction

In order to compose Web services with other services or applications, the services

need to be functionally compatible, the interactions between the services need to be

well-ordered, and the composed behaviour must meet any requirements for the system

as a whole. However, in the open and distributed environment of the Internet, the

relationship between loosely coupled services can be non-deterministic. In an

application-centred architecture, the central application needs to be able to meet its

functional and non-functional requirements, even if the Web services it relies upon

are to some degree unpredictable. In particular, if an application needs to guarantee a

certain level of performance, and yet relies on distributed Web services to provide

some functionality, the application needs a mechanism to manage the quality of

service (QoS) of its subsidiary services. For example, if the application is a work flow

scheduling system, the system needs to respond dynamically to variations in the

performance of its constituent services. It must monitor and restructure the

interactions of the services as demand changes and service loads change. As such, it

requires the composite system to have management capabilities.

Much work has been done on the preparation of standards to allow the

development of Web service compositions that are well-behaved and meet the

requirements of the composite system. While the point-to-point simple interactions

have reached a level of maturity in their standardisation and implementation,

achieving reliable behaviour from more complex configurations of Web services is

still an open problem. The development of standards to address such behavioural and

non-functional aspects of complex composed services is being undertaken on a

number of fronts: for example, coordination [3], choreography [11], orchestration [4],

and management [10].

Many of these standardisation efforts define a management or coordination level of

abstraction. In these standards management and coordination functions are

encapsulated as services with a well-defined Web service interface. No clear guidance

is provided on how the programmer can use these various overlapping and sometimes

incompatible middleware standards to achieve a well regulated, adaptive application.

What is needed is a framework that provides the necessary management and

coordination functions that the application programmer can readily extend to suit

domain and application specific requirements. In this paper, we propose such a

framework – the Role Oriented Adaptive Design (ROAD) framework for Web

services. Like a number of WS standards, the ROAD framework defines a separate

coordination/management layer. However, this layer is superimposed on the pre-

existing decoupled application entities and creates an organisational structure for it,

rather than being a separate encapsulated service provided by the middleware. The

primary responsibility for coordination and management of the interactions resides

with this coordination/management layer of the application.

The structure of the paper is as follows. Section 2 defines the concept of an adapt-

ive system in terms of managed indirection of instantiation and composition. Section

3 outlines a role-based architectural framework that supports managed indirection to

achieve adaptivity. Section 4 concludes and briefly discusses of related work.

2 Adaptive systems – the management of indirection

We define an adaptive system as one that can reconfigure itself in response to changes

in its environment, or in response to changes in its own goals or capabilities. The

perturbation between a system and its environment can include the availability and

variable performance of Web services that it relies on to function. Even if a system’s

services have unpredictable performance, we still need to achieve some acceptable

level of system-wide performance. A system needs to be able to recognise when one

of its services is underperforming, and then take remedial action: action such as

reorganising the work load, reconfiguring the interactions between services, or

replacing the underperforming service. Adaptable systems are those that can be

2 A. Colman, and J. Han

readily recomposed. To achieve recomposition, the system structure must be flexible,

with indirection between the entities in the system.

Indirection in Web service compositions can be created in two dimensions —

indirection of instantiation, and indirection of composition. Firstly, abstract

description of services can be distinguished from their concrete implementation (as in

the separation of the abstract and concrete parts of a WSDL specification [12]). In an

adaptive system, such binding should be able to be created and destroyed at runtime.

Such dynamic binding is well supported in Web services (in specification at least)

through service discovery and selection mechanisms.

The second type of indirection is found in the association between the abstract

services. Associations between service types might be hard-coded references in the

implementation of a client service, or hard-coded using an imperative composition

language such as BPEL [4]. Such associations are abstracted by using reference

variables, or by explicitly representing an association type (such as a contract or

partner-link type as in BPEL). However, in the absence of other mechanisms, all

possible runtime determinations (resolutions) of the association indirection must be

anticipated at design time (e.g. in BPEL as cases in a switch structure). The

indirection in the association is not per se adaptive because the associations are hard-

coded when the service or the composition script is implemented.

Fig. 1 Two dimensions of indirection in Web services.

Fig. 1 illustrates the two types of indirection that give software systems the flexib-

ility needed to be adaptive: namely indirection of instantiation and composition.

While the mechanism of runtime determination of instantiation is supported in Web

services, the determination of composition between service types is often fixed during

implementation.

In a functioning system any indirection must be determined before or during

runtime. An adaptive system needs to manage its indirection: that is, it needs to be

able to dynamically create bindings between its loosely coupled elements on both the

above dimensions in response to changing demands and changing environment. To do

this, the adaptive system needs to be able to perform the following management and

binding functions:

monitor the performance (or other quality attributes) of its current configuration;

have access to alternative services (with various performance/quality

characteristics) and the ability to select between services

ensure associated services are functionally and interactionally compatible

check the validity and evaluate the performance of alternative compositions

reconfigure its bindings and associations.

<<Abstract
Service>>

Type1

<<Abstract
Service>>

Type2

Concrete

Service 2a
Concrete

Service 1c

Concrete

Service 1b

Concrete

Service 1a

Indirection

of

instantiation

(service

selection)

Indirection of

composition

association

An Organisational Approach to Building Adaptive Service-oriented Systems 3

The basic Web service standards of WSDL and UDDI partially address some of these

functions (basic functional compatibility and service selection respectively). There

has been a recent proliferation of standards that address some of the other functions

listed above [3,8,10,11]. These standards are to an extent overlapping and

incompatible, and they do not provide clear guidance on how to integrate and use

such standards, if we want to develop an adaptive application as characterised above.

For example, BPEL allows us to define compositions from services that are

compatible in signature, but does not support performance monitoring in its

orchestration model other than fault handling and compensation. If the programmer

wants to monitor the performance of a service, the monitoring code is tangled with the

orchestration script. As well as providing the necessary indirection, an adaptive

architecture must show what elements in the system are responsible for the binding

and management of that indirection, and how this can achieve adaptive adjustment.

3 An Adaptive Framework for using Web Services

In this section we introduce a framework to facilitate the development of applications

built from Web services. We call this framework Role Oriented Adaptive Design

(ROAD). The design aims of this framework are as follows:

facilitate the development of adaptive applications that can perform reliably while

using Web services whose performance is unreliable

support the managed indirection of instantiation and composition

provide a framework of constructs that can be extended by the programmer to

create coordination and management for adaptive composites

allow the management/coordination layer to be coded as a separate concern from

the functional roles and services

have compositions that can be imposed on services without the services needing to

be (necessarily) written to horizontal standards such as WS-Coordination.

This section outlines the basic elements of the ROAD framework, and shows how it

can be used to create adaptive compositions as defined above. The adaptive

framework for using Web services introduced here is based on the conceptual

separation of roles from the entities that play those roles, and the association of such

roles with contracts. Applications are viewed as organisations — goal-driven
networks of roles bound together by contracts. Roles can be played by various

players, in much the same way as a role in a business structure may be played by

various employees, or outsourced to external organisations. Similarly, roles in the

adaptive service-oriented application can be played by Web services or other

components that are within the organisation, or by external Web services outside the

application’s immediate scope of control. Players can be dynamically bound/unbound

(indirection of instantiation) to roles as demands on the application changes, or as the

players’ performance varies.

Contracts associate organisational roles. They monitor and regulate interactions

between the roles. As all roles (as opposed to the players) are internal to the

organisation, contracts are also internal (although these internal contracts may be

mirrored in external SLAs). Contracts define the mutual obligations of the participant

roles in an organisational context. They define what interactions are permissible or

4 A. Colman, and J. Han

required by the participant roles, and can be used to enforce sequences of interactions

(conversations). Contracts can also be used to set performance or other quality

conditions on the roles’ interactions, and monitor those interactions for compliance to

those conditions (performance management). Contracts thus encapsulate both the

coordination and the performance management of interactions.

Organisers make and break the bindings between organisational roles and players

(service selection), and create and revoke the contracts between the roles. They can

thereby create various configurations of roles and players. Organisers set performance

requirements for the contracts they control, and receive performance information from

those contracts. Organisers are themselves a role-player pair, so that role players of

varying capability can be bound to the organiser role. In short, organisers provide the

adaptivity to the application by managing the indirection of composition and

instantiation. Organisers are responsible for the configuration of a set of roles and

contracts. We call such configurations self-managed composites. The following

subsections explain these concepts in more detail.

3.1 Determining Indirection with Bindings and Contracts

At runtime, services are bound to roles, and roles are associated with each other using

contracts. Functional roles are application entities that hold abstract service

definitions. Because the services that play roles can be transitory (for example, there

may be no service currently available to play a role), roles also maintain any state

(e.g. message queues) associated with their position in the organisation. To illustrate

the concept of a role, consider a highly simplified segment of a production system

application for a Widget manufacturing department. Thingies are obtained from an

external supplier and made into Widgets by an Assembler. A Foreman supervises,

among other things, the work schedule of the Assembler.

Fig. 2. Creating flexible role-structures with role-player bindings and role-role contracts

Fig. 2 above illustrates the relationship between a role within an organisation and an

external service that plays that role. The role can be thought of as a proxy within the

f1:
Foreman

a1:

Assembler

Nested self-managed

composites

tm1:

ThingyMaker

SystemX
wdo: WD

Organiser

manages Concrete

service

selection

Management interface

…

Contract

Functional role (abstract
service definition)

Organiser role

SystemY

SystemZ

tm2:

ThingyMaker

Role Players
Widget Department
Organisational

Boundary

Contracts define the interaction

and monitor performance of

role-player pairs in particular

associations

An Organisational Approach to Building Adaptive Service-oriented Systems 5

organisation for the external service. The role includes a WDSL abstract service

definition that is made concrete with a service endpoint reference when a service is

bound to the role. Service selection (eg. between ServiceX and ServiceY) is not the

responsibility of the role itself, but the responsibility of the composite’s organiser wdo
(as discussed below).

Contracts between roles can also be used to create flexibility. By creating and/or

revoking contracts, the topology of the composition of roles can be altered. For

example, if a role instance tm1 of type ThingyMaker (played by ServiceX) is unable to

meet the requirements of an Assembler a1. An alternative to replacing ServiceX with a

more capable service (say ServiceY) would be to add another role instance tm2 of type

ThingyMaker (played by ServiceZ) to the role structure. This changes the topology of

the organisation. Contracts, however, provide more than simple references between

role types. They monitor and regulate interactions between the roles. Contracts define

the mutual obligations of the participant roles. They define what interactions are

permissible or required by the participant roles, and can be used to enforce sequences

of interactions. Contracts can also be used to set performance and quality conditions

on the interactions, and monitor those interactions for compliance to those conditions

(performance management). Contracts thus encapsulate both coordination and

performance management of interactions. A more detailed discussion of ROAD

contracts, their contents and how they are implemented can be found in [6,7].

 Functional contracts specify the required performance of interactions between the

parties, and they monitor and store actual performance. They can be thought of as

service level agreements (SLAs) for the roles in the organisation. The monitoring of

service performance using the ROAD framework is extrinsic; that is, it is performance

of a concrete role-player pair as measured from the application that is using the

service. The application does not have to rely on abstract descriptions of service

quality (although this may be helpful as a starting point for service discovery) because

it can measure the time elapsed (or other change of state) between, for example,

request and response messages. Basic time and count based metrics (similar to those

defined in WSDM-MoWS [10]) are provided as part of the ROAD framework and do

not have to be coded by the application programmer. However, the programmer can

extend the performance measurement capabilities with domain-specific metrics (for

example cost or reliability functions) if required. There is another advantage to storing

performance measurements in the contract rather than in, say, a log of all interactions

of a service. The advantage of contract-centric monitoring is that the performance

profile of a service relates to a particular client. This profile may vary depending on

the client identity and location of the service; for example the client’s priority or the

capacity of the connection between the client and the service.

3.2 Internal Contracts and External SLAs.

The above discussion only deals with ‘internal’ contracts between roles within the

organisational boundary, although those roles may be proxies that represent external

services. Some interactions, particular long-lived ones, may need an external contract

between the role (Web service proxy) and player (concrete Web service). The ROAD

framework does not preclude the use of external coordination mechanisms such as

WS-Coordination [3], or external contracts such as WS-Agreement [8]. Indeed, the

6 A. Colman, and J. Han

internal contract that binds the proxy role to the rest of the system can serve as a

template for defining external coordination contexts or contracts.

The concept of a ROAD contract also maps naturally to Service Level Agreements

at the business level, in part because roles (such as ThingyMaker) map better to

business entities than do, say, BPEL activities. Discussion of these mappings is

beyond the scope of this paper, other than to note that the definition of an internal

contract provides the desired requirements (both protocol and performance) from the

organisation’s point of view. What can be negotiated in an external contract also

provides constraints for what can be defined in the associated internal contract.

3.3 Organisers and Self-managed Composites

A self-managed composite contains functional roles bound by contracts and an

organiser role. From the enclosing system’s perspective, a self-managed composite is

a role player with a management interface. Self-managed composites contain roles

which may themselves be self-managed composites. This recursive structure enables

the nesting of self-managed composites (as in Fig. 2). Self-managed composites have

two interfaces – a functional interface and a management interface. The functional

interface of a composite is the aggregation of all the Web services it exposes. The

management interface of the composite is the interface of the organiser role. This is a

conceptually similar arrangement to an ‘out-of-band’ manageability interface in

MoWS [10] which could be used for this purpose.

The organiser role is responsible for monitoring the performance of the

composite’s contracts either through notification from its contracts or by polling

them. It also reconfigures the composite if environmental perturbation, or a change of

requirements, leads to the composite not meeting (or potentially not meeting) its

contractual performance obligations. The organiser can achieve reconfiguration by

assigning and revoking contracts, and by changing the binding between functional

roles and services as shown in Fig. 2. For an organiser to be able to respond

adaptively to changing situations, it needs to have at its disposal a range of role/role-

players of various performance characteristics, and a mechanism for service discovery

such as UDDI. The function of organisers and the dynamics of reconfiguration is not

further described here due to space limitations, but a description of adaptive

behaviour in self-managed composites, can be found in [5].

4 Related Work and Conclusion

The ROAD adaptive framework for using Web services can be used by an application

programmer to create applications that respond to changes in performance or other

non-functional requirements. The application can also adapt to performance variations

in the Web services it uses. In ROAD, contracts are used to monitor

performance/reliability, and enforce protocols. Organisers provide adaptive behaviour

to the application by creating and revoking contracts between roles, and by binding

roles to services. Organisers control a cluster of roles, contracts and service bindings

called a self-managed composite. These composites form a recursive hierarchy that

localises organisation but allows system level requirements to be fulfilled.

An Organisational Approach to Building Adaptive Service-oriented Systems 7

Like BPEL, our framework is a means of creating executable compositions, but

ROAD has roles as its fundamental unit rather than activities. The use of contracts in

our framework maps more naturally to inter-organisational business contracts than do

process-based approaches. While BPEL is not in itself adaptive, there has been much

recent focus on making service composition more flexible. A recent overview of

dynamic workflow-based composition can be found in [13]. These approaches focus

on adaptive processes using process abstraction, rather than an adaptive role structure

as presented here. Monitoring of services has also been addressed in [2] using

external ‘Smart Monitors’ services rather than application-based monitors. However,

there is no mechanism for ‘monitoring the monitors’ (organisers and contracts) as in

the recursive ROAD structure. The Cremona framework [9] based on WS-Agreement

addresses many of the same issues as the ROAD framework, but focuses on external

contracts. These contracts do not control interaction as the management level of a

ROAD contract does.

While we have not discussed the implementation of the ROAD framework in this

paper, [7] gives a description of an aspect-oriented implementation of ROAD

contracts. A similar aspect-oriented approach can be found in [1], where policies are

woven into the Web service stubs rather than used to create instances of contracts.

References

[1] Baligand, F. and Montfort, V., "A concrete solution for web services adaptability using

policies and aspects," Proc. of the 2nd Inter. Conf. on Service Oriented Computing, 2004.

[2] Baresi, L., Ghezzi, C., and Guinea, S., "Smart Monitors for Composed Services ," Proc. of

the 2nd Inter. Conf. on Service Oriented Comp (ICSOC'04), 2004.

[3] BEA Systems, IBM, and Microsoft Web Services Coordination (WS-Coordination),

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf (2004)

[4] BEA, IBM, Microsoft, SAP, AG, and Siebel Systems Business Process Execution

Language for Web Services (BEPL4WS), http://ifr.sap.com/bpel4ws/index.html (2003)

[5] Colman, A. and Han, J., "Coordination Systems in Role-based Adaptive Software," Proc.

of the 7th Inter. Conf. on Coordination Models and Languages, LNCS 3454, 2005.

[6] Colman, A. and Han, J., "Operational management contracts for adaptive software

organisation," Proc. of the Australian Software Eng. Conf. (ASWEC 2005), 2005.

[7] Colman, A. and Han, J., "Using Associations Aspects to Implement Organisational

Contracts," Proc. of the 1st Inter. Workshop on Coordination and Organisation, 2005.

[8] Global Grid Forum Web Services Agreement Specification (WS-Agreement),

www.gridforum.org/Meetings/GGF11/ Documents/draft-ggf-graap-agreement.pdf (2004)

[9] Ludwig, H., Dan, A., and Kearney, R., "Cremona: an architecture and library for creation

and monitoring of WS-agreements," Proc. of the 2nd Inter. Conf. on Service Oriented

Computing (ICSOC'04), 2004.

[10] OASIS Web Services Distributed Management -Management of Web Services 1.0, wsdm-

mows-1.0, http://docs.oasis-open.org/wsdm/2004/12/cd-wsdm-mows-1.0.pdf (2005)

[11] W3C Web Services Choreography Description Language (WS-CDL) WD-ws-cdl-10-

20041012, http://www.w3.org/TR/ws-cdl-10/ (2004)

[12] W3C Web Services Description Language (WSDL) Version 2.0 Primer, WD-wsdl20-

primer-20050510 , http://www.w3.org/TR/wsdl20-primer/ (2005)

[13] Zirpins, C., Lamersdorf , W., and Baier, T., "Flexible coordination of service interaction

patterns ," Proc. of the 2nd Inter. Conf. on Service Oriented Comp (ICSOC'04), 2004.

8 A. Colman, and J. Han

A Multiagent Web Service Composition Engine

Paul Buhler1, Dominic Greenwood2 and Alois Reitbauer3

1 College Of Charleston, Charleston SC, USA
2 Whitestein Technologies AG, Zuerich, Switzerland

3 Profactor Research, Steyr, Austria

Abstract. This paper reports on a novel approach to the problem of
aggregating Web services into meaningful compositions with the aid of a
service composition engine constructed with multiagent system and topic
map technologies. The engine utilizes a distributed path determination
algorithm and due to the multi-threaded nature of the implementation,
multiple compositions requests can be serviced concurrently.

1 Introduction

Participation in the global marketplace is no longer restricted to businesses with
large Information Technology (IT) budgets. Small and medium sized enterprises
are now able to project their presence due to the global connectivity provided by
the Internet and the emergence of widely accepted, standards-based platforms
for service-oriented computing. These factors have caused a flattening of the IT
landscape, as standards-based computing allows the commodization of software.
Technologies and methodologies for automating the development of software via
compositional approaches are needed in order to reduce the integration friction
amongst dynamic collections of software services.

A recent survey of automated Web service composition techniques [6] iden-
tifies two broad categories of composition producing systems, those that use
workflow-based composition methods and others based upon Artificial Intelli-
gence (AI) planning algorithms. The approach used by the system described in
this paper falls loosely into the AI planning category; however, it is distinguished
from typical AI planners in several ways.

AI planning algorithms are typically centralized and perform symbolic rea-
soning. AI planners often operate with a closed world assumption regarding the
collection of services eligible for composition and they assume the availability of
global and uniform state. We sought to develop a system that addresses these
issues by architecting a service composition engine with a multiagent system
foundation. With multiagent systems, it is possible to build systems that are
both open and scalable and due to their decentralized nature exhibit resiliency in
the face of environmental dynamics and partial system failures. The architecture
described in this paper is a continuation of our existing research which explores
relationships between agent-based and service-oriented computing [1] [3] [2].

2 Architecture

The architecture of the Service Composition Engine is illustrated in Figure 1,
which shows the major components of the engine and their interaction. As can
be seen, the two primary components of the system are a JADE Agent Platform
and a Topic Map System. The latter is used to store WSDL descriptions of Web
services to be composed, whilst the former forms the composition engine itself.

The role of each component in Figure 1 and the interactions between them
will be described in the following sections.

Fig. 1. Service Composition Engine architecture

2.1 Coordination System Architecture

The JADE Agent Platform [7] is the predominant FIPA4 compliant multiagent
system toolkit; it is available open source and supports rapid development of
agent-oriented applications. JADE5 provides both a middleware infrastructure
to support agent communication and lifecycle, and the means to build agents
consisting of behaviours that cooperatively multitask.

The coordination environment of the SCE is built using the JADE execu-
tion model with agents housed within container constructs and communicating

4 FIPA is a set of public standards for agent-based systems engineering, see
http://www.fipa.org/

5 http://jade.tilab.com/

10 P. Buhler, D. Greenwood, and A. Reitbauer

via the provided middleware for inter-agent messaging. For the purposes of the
SCE, a JADE application is created consisting of three primary agent types: Ser-
vice Agents, Composition Initiator Agents, and Composition Terminator Agents.
Other than these, JADE’s default Directory Facilitator agent is used for the dis-
covery of agents and the services they provide.

The Service Agents (SA) contain the primary mechanics of the SCE. In the
current system each SA serves as a proxy for a single Web service. It is a simple
matter to extend this model to a one to many relationship between an agent
and several Web services, but the current system scales adequately and is better
suited to demonstration and debugging. At startup each SA receives information
describing the Web service it is to represent (from the Topic Map System),
it then registers itself with the JADE Agent Platform’s Directory Facilitator
(DF). During this registration process, the SA uses the name of the Web service
operation it represents as its service name. As the composition process executes,
the DF is used by the SCE agents to perform service lookup based on registered
service names. In this manner the DF is able to provide a mapping between a
Web service operation name and the address of the agent serving as a proxy for
the named service.

The Composition Initiator Agents (CIA) trigger searches for new composi-
tions. When a composition request is sent to the engine, a unique CIA is created.
Each CIA represents a virtual Web service that has no inputs, but whose outputs
are the composition inputs specified in the composition request. The CIA starts
the composition process by sending a composition request message to each Ser-
vice Agent representing a Web service which consumes at least one of the CIA’s
outputs. Each composition computed by the engine will be rooted by a separate
CIA agent, which can of course operate concurrently.

Composition Terminator Agents (CTA) are created to serve as an endpoint
for successful compositions. Each CTA is matched with a unique CIA and as with
the CIA, each CTA represents a virtual service. Its virtual service interface has
inputs that match the desired outputs found in the composition request; CTAs
produce no outputs. During SCE operation CTAs will wait to receive completed
composition paths and publish them to an appropriate channel.

2.2 Topic Map System

In order to compose a collection of Web services, it is necessary that the in-
terface to each Web service operation be available to the SCE. These interface
descriptions are readily available in each service’s WSDL file. In the WSDL file,
one finds the Web service’s operation name(s), the operation’s associated input
and/or output message names, and the constituent parts of each message. In
order to compute a composition, this interface information is extracted from
the WSDL files and made accessable to the SCE with a network addressable
repository.

Rather than replicating the information from the WSDL files into a relational
database, a Topic Map [4] representation was used. A Topic Map represents the
definition of topics, the associations between topics, and links to occurrences of

A Multiagent Web Service Composition Engine 11

the topic. Notably, the reason for the use of Topic Maps is that the composition
engine is being enhanced to provide for semantically-driven service composition
and referent metadata technologies, like Topic Maps, will be necessary to bridge
between the various ontologies used for semantically describing Web services.

When discovering compositions, CIA and SA use a heuristic to prune the
search space. The heuristic is based upon the definition of a potential successor

service. A potential successor is a service that consumes one or more outputs
of the current service. The agents acquire this information from the Topic Map
System. Following is a discussion of the matching algorithm used by the SCE.

2.3 Matching Algorithm

The goal for determining compositions is simple: detect all possible invocation
paths through a network of services connected by the input and output parts
within their operation definitions. The foundation of our strategy consists of the
architectural configuration previously described, where a single CIA-CTA pair is
created per composition request and each WSDL description in the Topic Map
is represented by an SA in the SCE. The SCE can essentially be modeled as a
classical production system [5] which provides a computation model for solving
a problem involving the notion of discovery. A generalized production system
consists of three major components:

– One or more data repositories that hold information related to a given prob-
lem. Repositories may be static or dynamic.

– A set of production rules, generally in the form of (condition, action) pairs.
When the condition is true, the rule is said to be enabled and the action
thereby eligible to be performed. When a rule fires, its action is performed
and the state of the repository is changed.

– A control strategy that specifies the order in which rules are evaluated and
a conflict resolution mechanism which determines which rules to fire when
several are enabled.

In the SCE, the repository of the production system is distributed across the
Topic Map System, the platform DF, and the CIA, SAs and CTA. In general, for
a given composition problem, the data found in the topic map and platform DF
can be considered static. The SAs maintain both static and dynamic data in their
local state. The static members of the SA’s state consists of a production rule
that condition specifies the collection of message parts that enable the underlying
service, and the action contains the set of message parts output by the service.
The dynamic state maintained by the agents of the SCE is always related to
specific composition requests.

The SCE explores the search space of potentially connected services via the
iterative building of a connectivity graph. Unlike many composition planning
systems, knowledge of the potential connections between Web services is dis-
tributed across the local state retained by each agent. With this approach the
problem is reduced from a question of composability, to one of reachability, i.e.,

12 P. Buhler, D. Greenwood, and A. Reitbauer

is the CTA reachable by a path that extends from the CIA through a collection
of SAs.

The dynamic information about potential invocation paths is shared amongst
SAs via asynchronous message exchange. The SAs exchange composition re-
quests messages, which alert an SA that they might be able to contribute to a
composition. A composition request message, contains a construct known as an
invocation path. The invocation path is always rooted at a CIA. The invocation
path represents a valid composition chain from the CIA to the current service.
It is the role of the SA to evaluate the invocation path, via its production rules
in order to determine if it can contribute itself and its outputs to the building
of a potential composition path.

The production rules and control strategy in the SCE define whether or not
an SA can contribute toward an ongoing composition. A SA is responsible for
evaluating its production rules against the contents of the invocation path found
in a composition request message received from another agent (either CIA or
other SA). The order of rule evaluation is as follows:

First, the SA checks to see if a received invocation path contains all input
parts required to invoke the service. If so, then the service is considered directly

invocable. This implies that all input parameters required by the service are
available from predecessor services found in the invocation path.

Next, if the service is not directly invocable, a partial matching search is made
of previously received invocation paths to determine whether a path conjunction
can be formed. If this is the case the service is considered conjunctively invocable,
as it is at the join of two or more split paths.

If the service is determined to be invocable, then the service is considered to
be a candidate contributor to the current invocation path. As a candidate con-
tributor, the SA must consider if it provides at least one output parameter that
is not already available in the existing invocation path. If the action component
of the enabled production rule contains a novel contribution to the invocation
path, then the SA adds itself and its outputs to the path and sends composition
request messages to its potential successors and the CTA. Recall that a potential
successor is a service that consumes at least one output from the current service.

Finally, if it is determined that a service is not invocable, then the invocation
path from the composition request message is retained within the local state of
the SA. These non-invocable paths will be used by the SA at a later time when
testing for conjunctively invocable paths.

Each SA performs this set of rules on each invocation path received. The CTA
evaluates each composition request message it receives with the same algorithm
used by the SAs, with the notable exception that if the CTA is invocable, it
sends a notification that a valid composition has been discovered.

2.4 Concurrent Search

One major advantage of the distributed, multi-threaded approach taken is that
multiple compositions can be computed in parallel. For each new composition
request a CIA-CTA pair is created, with CIA loaded with the set of supplied

A Multiagent Web Service Composition Engine 13

input parts and the CTA with the set of required output parts. To discriminate
between the different compositions, we employ a reserved field in the ACL6

messages exchanged between agents. In ACL parlance, the field is called the
conversation ID and is intended for tagging messages belonging to the context of
particular conversations (multiple message exchanges). We overload this usage
slightly by using the field to identify invocation paths belonging to different
composition requests concurrently working their way through the system. Each
composition request is assigned a different conversation ID.

Notably, the distribution of a traditionally centralized algorithm requires
thoughtful handling of search termination. The SCE handles termination by
having the CTA timeout if an enabling composition path has not reached it
within a configurable period of time. Each time a valid composition is detected
by the CTA, the timer is reset. Upon timeout, the CTA notifies the SAs to
stop searching for a connection path between the CIA and CTA for a particular
conversation ID. Once an SA receives such a notification, it purges its local
state of all invocation paths stored against the given conversation ID. Due to
the distributed nature of the algorithm, notification of the CTA’s timeout takes
time to propagate across the population of SAs; thus the SA will discard all
future messages it may receive for the given conversation ID.

3 Example of Operation

In order to demonstrate the operation of the service composition engine we will
employ an artificial use case consisting of several services with a fixed intercon-
nection pattern. The simple scenario consists of a set of WSDL defined services
which define a set of operations existing within the context of a virtual manufac-
turing enterprise. Each service has a potential part to play in transitioning from
the reception of a product order, through its manufacture to eventual delivery
to a requesting customer. For the sake of simplicity, each service consists of a
single operation requiring a fixed set of input parameters and producing a fixed
set of output parameters. Although by no means intended to be a comprehensive
model of a real system, this example serves as a suitable basis for providing an
example within the space limitations of this paper.

A visualization of the connections between the services is depicted in Figure 2.

The composition request provides order request as input to the composition
and requires order delivery as its output. An examination of the connectivity be-
tween the sample services shows that the composition engine should identify two
composition pathways. One should indicate a path via Manufacturing Process A
and another through Manufacturing Process B. The composition engine reports
the two valid compositions; the output for the first composition is shown in Fig-
ure 3. The output provides the name of the CIA that initiated the composition,
in this case CompositionInitiator-1. On subsequent lines, information about the

6 ACL is the Agent Communication Language defined by the FIPA standards to which
JADE is compliant

14 P. Buhler, D. Greenwood, and A. Reitbauer

Fig. 2. A simple example of a set of services connections

services used in the composition is found, along with provenance information for
each of the enabling inputs.

Fig. 3. First composition result from the initial request

4 Concluding Remarks

The coordination of Web services as a decentralized problem is a natural fit to
real world situations where services are typically distributed, potentially across
different semantic domains. As a result, we have selected a multiagent system
approach to solving the composition problem due to its inherently distributed
nature with strong coordination capabilities. This is of particular relevance when

A Multiagent Web Service Composition Engine 15

service populations are dynamic and transient as is often the case with applica-
tions that span multiple domains and/or enterprise boundaries.

Our specific approach shows that a strategy consisting of local coordination
guided by a globally applied configuration and matching algorithm is an effec-
tive means to solve the composition problem. Coordination between agents at
the local level ensures the solution is easy to adapt and extend, while the global
composition strategy adopted has been found to produce consistently accurate
results. Detailed scalability studies need to be performed; however, by allowing
SAs to represent multiple services and splitting the SA population across con-
tainers on separate hosts, we don’t perceive scalability of the architecture to be
a significant issue.

The work described in this paper represents the first step in a phased re-
search plan. Importantly, the SCE is currently being extended to account for
semantic Web service descriptions. Additionally, work is underway to provide
a post processing mechanism which can convert the output from the composi-
tion engine into other representations, such as a graphical view or a WS-BPEL
compliant process description.

Acknowledgments

The authors would like express their thanks to their respective organizations for
the investment required to pursue this work.

References

1. Paul Buhler and José M. Vidal. Towards Adaptive Workflow Enactment Using
Multiagent Systems. Information Technology and Management Journal, volume
6:1, 61–87, 2005.

2. Dominic Greenwood and Monique Calisti. Engineering Web Service - Agent Inte-
gration. In Proceedings of the IEEE International Conference on Systems, Man and

Cybernetics, The Hague, The Netherlands, 2004.
3. P. Buhler and J.N. Vidal. Enacting bpel4ws specified workflows with multiagent

systems. In Proc. of the 2nd International Workshop on Web Services and Agent

Based Engineering, New York, U.S.A., July 2004.
4. ISO/IEC. Topic maps iso/iec 13250. Technical report, ISO/IEC, USA, 1999.
5. George F Luger. Artificial Intelligence: Structures and Strategies for Complex Prob-

lem Solving, 5th Edition. Addison-Wesley, 2005.
6. Jinghai Rao and Xiaomeng Su. A survey of automated web service composition

methods. In LNCS, volume 3387, pages 43–54. Springer-Verlag, 2004.
7. Collected Works. EXP: Special Issue on JADE, volume 3:3. Telecom Italia Labo-

ratories, September 2003.

16 P. Buhler, D. Greenwood, and A. Reitbauer

A Genetic Programming Approach to Support the
Design of Service Compositions

Lerina Aversano, Massimiliano Di Penta, and Kunal Taneja

RCOST - Research Centre on Software Technology
University of Sannio

Palazzo ex Poste, Via Traiano 82100 Benevento, Italy
{aversano, dipenta, tankunal}@unisannio.it

Abstract. During the last few years, Web service composition has received much
interest to support business–to–business or enterprise application integration. Sev-
eral approaches have been developed and are going on rather independently from
each other. Nevertheless, the automatic/semiautomatic composition of web ser-
vices is still an open research issue. In this paper we propose a search–based
approach to support the design of service compositions. The approach uses ge-
netic programming to automatically generate workflows that realize a functional
goal.

Keywords: service composition, genetic programming

1 Introduction

Web services are rapidly gaining presence and popularity in the development of dis-
tributed software systems. However, while many schemas and standardizations have
been proposed for collaborating processes of web services (also referred as service
compositions), several open issues remain unresolved with respect to achieving an op-
timal solution. Considering that there are many web services exhibiting similar (if not
equivalent) behavior, it is particularly relevant to properly compose the best set of ser-
vices in order to accomplish a functional requirement.

Although the problem of finding the best way to compose services is relevant, many
recent approaches essentially focused on the problem of single service discovery [1].
This because users dealing with the development of service–oriented system are, very
often, interested to find operations that can be composed each other in order to accom-
plish a functional requirement. Indeed, one of the key promises of building applications
with web services is that one should be able to compose a set of given services to create
ones that are specific to the application’s needs.

A number of XML–based standards have been developed to formalize the specifica-
tion of web services, their automatic/semiautomatic composition and execution. More-
over, some research proposals have been presented. The service composition problem
has been viewed as a planning problem in which state descriptions are ambiguous and
operator definitions are incomplete. This brings back the problem to interpreting doc-
uments (which describe the world state), and introduces the need for a semantic type

matching algorithm. The matching algorithm together with an interleaved search and
execution algorithm allow for basic automated service composition [2]. An algorithm
for similarity research that exploits clustering techniques has been proposed by Dong
et al. [3]. Their tool supports similarity search for web services, such as finding similar
web service operations and finding operations that compose with a given one.

The need to automatically compose web service operations to solve a given prob-
lem has also motivated the research of Peer [4]. The paper follows the idea of using
Artificial Intelligence (AI) planning software, but argues that the diversity of the web
service domains is best addressed by a flexible combination of complementary reason-
ing techniques and planning systems.

In this paper we propose a search–based approach to support the design of service
compositions. The approach uses genetic programming to automatically generate work-
flows that realize a functional goal. By using a Genetic Algorithm (GA) to aid in service
composition, we aim to look into a search space considerably large, thereby obtaining
a solution that is near–optimal given the computational constraints of GAs.

The rest of the paper is organized as follows. Section 2 describes the genetic pro-
gramming approach for service composition. Section 3 illustrates, with a small exam-
ple, how the approach can be applied. Section 4 concludes and outlines the work–in–
progress.

2 The Approach

The objective of this work is to determine service compositions that realize a given
functional goal. For example, if we consider as application domains those defined in
the “context” ontology [5] we could be interested to build a service that receives as
input an Agent entity and returns its personal information as output entities Application,
Phone, and Company. A single service returning this information does not exist, but an
aggregation of services can meet the requirement. The resulting workflow is represented
in Figure 1.

Fig. 1. Representation of Service Composition as a Tree Genome

18 L. Aversano, M. Di Penta, and K. Taneja

Determining the best service compositions can be considered as an optimization
problem: maximize a fitness function defined as the capability of the service composi-
tion of produce a given set of outputs once some inputs are available. To find a solution
to this problem, different strategies can be adopted, for example AI planning algorithm,
or Genetic Programming (GP). The next subsection provides a short primer on GAs,
and GP in particular.

2.1 Genetic Algorithms and Genetic Programming

GAs originated with an idea, born over 30 years ago, of applying the biological principle
of evolution in artificial systems. Roughly speaking, a GA is an iterative procedure that
searches for the best solution of a given problem among a constant size population, rep-
resented by a finite string of symbols, named the genome. The search is made starting
from an initial population of individuals, often randomly generated. At each evolution-
ary step, individuals are evaluated using a fitness function and selected for reproduction
using a selection operator. High–fitness individuals will have the highest probability to
reproduce. The evolution (i.e., the generation of a new population) is made by means of
two operators: the crossover operator and the mutation operator. The crossover operator
takes two individuals (the parents) of the old generation and exchanges parts of their
genomes, producing one or more new individuals (the offspring). The mutation opera-
tor prevents convergence to local optima, in that it randomly modifies an individual’s
genome (e.g., by flipping some of its bits, if the genome is represented by a bit string).
Further details on GAs can be found, for example, in the Goldberg’s book [6].

In the case of GP, the genome represents a program (for example encoding the
program’s parse tree), while the crossover and mutation operators represent ways to
recombine two programs in new one(s) or to create a variation of a given program. The
fitness function measures how far the program encoded in the genome is from producing
a given output. More details can be found in the Koza’s book [7].

2.2 Encoding the Service Composition Problem with GP

To allow the GP algorithm search for a solution of our problem, we first need to encode
the problem with a suitable genome. In our case, the genome is represented as a tree,
where non–terminal nodes represent composite service workflow constructs, while ter-
minal (leaf) nodes represent single services invoked inside the workflow. In other words,
the genome may represent a simplified parse tree of a composite service, for example
realized in BPEL4WS. Non–terminal nodes can be:

– Sequence nodes: where each node of the sequence produces outputs that are used
by the subsequent nodes as inputs. For example, in Figure 2–a the service S2 uses
the output d2 from S1, plus d4 (available from the root), to produce the output d6;

– Switch nodes: representing situations where the same output (goal) can be achieved
in two different ways. For example, in Figure 2-b the output d3 can either be pro-
duced by S1 or by S2, that in addition also produces d4;

– Flow nodes: representing situations where more services can work in parallel to
produce some outputs (d3, d4 in the example of Figure 2-c);

A Genetic Programming Approach to Support the Design of Service Compositions 19

Fig. 2. Workflow constructs

– Loop nodes: where the input and/or the output are sets of data of a given type. In
the example of Figure 2-d) iterations over the service S1 (that produces d2 from
d1) give us a set of d2 starting from a set of d1.

Clearly, the above constructs only represent a rough model of the target workflow:
loops needs to be completed specifying how composite data structure are handled and
obtained, and how many times the loop has to be executed; much in the same way
switch constructs need to specify the conditions. In our experience we believe that, to
complete the production of the workflow there is still the need for human intervention,
while the automatic, GP-based approach is able to select the services to be used and to
give to the system integrator a rough idea of the composition itself.

Moreover, specific ontology concepts can refer to composite types and identify
whole–part relationships. For example, a set of books can be referred as library. Thus, it
can happen that our service requires a library, while a loop in the composition produces
a set of books. In this case, reasoning over whole–part relationships is needed.

Fig. 3. One Point Tree Crossover

Let us now define the operators needed to let the GP operate. The crossover oper-
ator randomly selects two nodes (i.e., subtrees) from two individuals and swaps them,
producing two new trees (individuals). An example is shown in Figure 3.

The mutation operator randomly picks a node and changes it in:

1. a non–terminal node, randomly selecting its type (sequence, switch, flow, loop) and
adding to it some randomly selected (children), terminal nodes (i.e., single service

20 L. Aversano, M. Di Penta, and K. Taneja

invocations). For sequence, switch and flow, the number of children is randomly
chosen, while for the loop is always one; or

2. it changes the node in a terminal node, randomly selecting the invoked service.

Clearly, repeated applications of crossover and mutation operators ensure to pro-
duce trees of different width and depth.

Crossover and mutation are applied with probability 0.7 and 0.01 respectively. The
GA used is the simple GA with non–overlapping population and with elitism of one
(best) individual across subsequent generations (it means that the best individual is
kept alive across subsequent generations). The selection operator is the roulette–wheel
selection [6]: individuals with the highest fitness function have the highest probability
to reproduce. The initial population consists of randomly generated trees of depth 2
with a max of 5 nodes as leaves.

Last, but not least, we need to define the fitness function for our problem. As we
said, we need to generate a workflow that produces a set of outputs (goals) from a set
of inputs. The far a solution is to achieving this goal, the worse should be the fitness
function. We adopted the following criteria:

1. a correct solution, i.e., a workflow that produces the desired output from the avail-
able inputs, scores 1;

2. Partial solutions are evaluated as follows. The fitness of an individual is calculated
starting from the leaves. If a particular leaf produces outputs desired by the parent,
the score is incremented by 0.01.

The resulting formula is a function defined as (let us call Fgoal(g), where g is an
individual’s genome) :

Fgoal(g) = w1 ∗ numsc(g) + w2 ∗ numsnc(g) + w3 ∗
n∑

i=1

(numnodes(g) + numloops(g))

(1)
where numsc is the number of solutions with correct arrangement of loops; numsnc

is the number of solutions with incorrect arrangement of loops; n is the number of
partial solutions (subset of a partial or a complete solution already in the individual is
not counted); numnodes is the number of nodes in a particular solution; num loops is
the number of correct loop in a particular partial solution. Finally, w 1, w2 and w3 are
properly defined weights.

3 Illustrative Example

To show how the algorithm presented in this paper works we used a set of service inter-
faces defined by the authors, due to the lack of a significant number of service in public
registries. The service interfaces specify the input/output parameters. Due to the limited
space available, the list of services is not reported in this paper (the interested reader
can access it from [8]). To make the examples more realistic, the service parameters
are entities defined within ontologies. In particular, the examples that follow use the

A Genetic Programming Approach to Support the Design of Service Compositions 21

entities defined in the “context” domain [5]. Let us now to consider the service requests
reported in Table 1. Each request is specified by the input and the output of the service
composition that an user aims to design.

Inputs Outputs
ServiceRequest1 Presentation, Person Application, PDA
ServiceRequest2 Application Person
ServiceRequest3 Simple, Presentation Application, PDA, Phone

Table 1. Example of Service Requests.

The ServiceRequest1 specifies a request for compositions that receives as input
the Presentation and Person entities, and returns its Application and PDA. The
second request is for compositions that returns Person receiving Application as in-
put. The following Figures 4, and 5 show the service compositions found out by the
algorithm considering the ServiceRequest1 and the ServiceRequest2 specified in
Table 1.

 FindRC

I- Person

O - RemoteConference

FindBuilLookupConfProf

FindAppPhone FindPDA

I- Presentation

O - PDAO - Application, Phone

I - Laptop, Thing

O - LapTop

I - RemoteConference I- Person

O - Thing, Building

 FindProfile

I- Presentation

O - System

BlueProf

FindApp FindPDA

I- Presentation

O - PDAO - Application

I - Bluetooth

I- System

O - Bluetooth

Fig. 4. Representation of Service Compositions found for ServiceRequest1

To evaluate the fitness function all the possible service compositions in the genome
have been analyzed. In particular, as explained before, an individual scores 1.0 for every
correct solution. Duplicate solutions, whenever present, do not score anything. The fit-
ness of an individual is calculated starting from the leaves. If a particular leaf produces
the desired outputs, the score is incremented by 0.01, and if the parent node produces
the outputs required by this node another 0.01 is added to the score. Obviously, an
individual may contain more solutions which satisfy the given input and outputs, and
consequently the score of the individual increases with the number of solutions. For the

22 L. Aversano, M. Di Penta, and K. Taneja

 AppToRCSC

I- Application

O - RemoteConference, ServiceCategory

ConfToAction

I- RemoteConferenve

O - OtherAction

ActionToRole

I- OtherAction

O - ThingRole

O - ProtocolCharacterastic, Person

RoleToProtocol

I - ThingRole

 AppToConf

I- Application

O - RemoteConference

ConfToAction

I- RemoteConferenve

O - OtherAction

ActionToRole

I- OtherAction

O - ThingRole

O - ProtocolCharacterastic, Person

RoleToProtocol

I - ThingRole

 AppToRCSC

I- Application

O - RemoteConference, ServiceCategory

ConfToAction

I- RemoteConferenve

O - OtherAction

ActionToCompRole

I- OtherAction

O - ThingRole, Composite

O - ProtocolCharacterastic, Person

RoleToProtocol

I - ThingRole

 AppToConf

I- Application

O - RemoteConference

ConfToAction

I- RemoteConferenve

O - OtherAction

ActionToCompRole

I- OtherAction

O - ThingRole, Composite

O - ProtocolCharacterastic, Simple

RoleToProtocol

I - ThingRole

Fig. 5. Representation of Service Compositions found for ServiceRequest2

examples reported in this section, the defined weights are w1= 1.0, w2= 0.75 and w3=
0.01.

For example, the genome represented in Figure 6 is found out by the algorithm
considering the ServiceRequest3. It contains 4 service compositions. The first one,
composition 1 in Figure 6, scores 1.0 since it produces exactly the required outputs
(Applications, PDA) from the given inputs. The second composition, composition 2 in
Figure 6, is a subset of the third composition (composition 3 in Figure 6), therefore
it does not score anything. While in the third composition the leaf node produces the
outputs required and the parent of the leaf node produces the inputs required by the
leaf but partially fails the input condition. As a consequence, it scores 0.02, since its
a partial solution till 2 nodes. The fourth composition fails to produce the outputs so
it does not score anything. Then the overall genome scores 1.02 (as sum of the single
composition score). The results of the algorithm have been compared with the results of
an exhaustive search approach. We found out that the GP was quite successful in finding
a solution up to 5–6 levels of tree depth as compared to exhaustive search. Moreover,
we experienced that it was not possible for exhaustive search to find a solution even in
a large number of generations.

4 Conclusions and work–in–progress

This paper presented an approach based on Genetic Programming that creates service
compositions starting from i) a set of inputs and desired goals, and ii) a set of available
services. Genetic Programming resulted effective to explore a large search space and
properly combine the most suited services.

The resulting workflow indicates the composition structure in terms of sequences,
flows, switches, loops. Such a workflow is not directly executable: loop and switch
controls expressions need to be manually specified, and also manual intervention is
needed to handle recovery actions [9]. Nevertheless, the obtained workflow constitutes
a potential guideline for the service integrator.

Work–in–progress is devoted to apply the approach to more complex case studies,
involving sets of real services, and to assess its usefulness with controlled experiments.

A Genetic Programming Approach to Support the Design of Service Compositions 23

 Root

FindPDAFindApp

O - Application

I - Bluetooth
I- Presentation

O - PDA

SysToBluetooth

O - BlueTooth

I - System

SysToBluetooth

O - Bluetooth

I - System

LookupConfProf

O - LapTop

I - RemoteConference

 FindRC

I- Simple

O - RemoteConference

FindBuilLookupConfProf

FindAppPhone FindPDA

I- Presentation

O - PDAO - Application, Phone

I - Laptop, Thing

O - LapTop

I - RemoteConference I- Simple

O - Thing, Building

FindPDAFindApp

O - Application

I - Bluetooth I- Presentation

O - PDA

Given Inputs : Simple, Presentation

Outputs Reguired : Application, PDA

O: Application, PDA, Phone

Laptop, Thing, Building

O: Application, PDA

O: Application, PDA

Composition 1. Composition 3.Composition 2. Composition 4.

(Complete Solution) (Partial Solution) (Partial Solution)

Fig. 6. Representation of Service Compositions found for ServiceRequest3

Last but not least, the approach needs to be further improved, for instance with the ca-
pability of dealing with service non–functional properties, and of handling constrained
inputs and outputs.

References

1. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web services
capabilities. In: First International Semantic Web Conference (ISWC 2002). Volume 2348.,
Springer-Verlag (2002) 333–347

2. Carman, M., Serafini, L., Traverso, P.: Web service composition as planning. In: Workshop
on Planning for Web Services in conjunction with The 13th International Conference on Au-
tomated Planning Scheduling. (2003)

3. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web services.
In: Proceedings of the 30th International Conference on Very Large Data Bases. (2004)

4. Peer, J.: A PDDL based tool for automatic web service composition. In: Proc. of the Second
Workshop on Principles and Practice of Semantic Web Reasoning at The 20th International
Conference on Logic Programming. (2004)

5. Khedr, M.: Context ontology (2005 (last accessed))
http://www.site.uottawa.ca/ mkhedr/contexto.html.

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Pub Co (1989)

7. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection (Complex Adaptive Systems). The MIT Press (1992)

8. Aversano, L.: Service interfaces (2005 (last accessed))
http://www.rcost.unisannio.it/aversano/servicelist.html.

9. Hagen, C., Alonso, G.: Exception handling in workflow management system. IEEE Transac-
tions on Software Engineering 10 (2000) 943–958

24 L. Aversano, M. Di Penta, and K. Taneja

A Classification of Issues and Approaches in
Automatic Service Composition

Ulrich Küster,1 Mirco Stern,2 Birgitta König-Ries1

1 Institute of Computer Science, Friedrich-Schiller-Universität Jena, D-07743 Jena,
Germany, ukuester|koenig@informatik.uni-jena.de

2 Institute for Program Structures and Data Organization, Universität Karlsruhe,
D-76128 Karlsruhe, Germany, mirco.stern@stud.uni-karlsruhe.de

Abstract. Resulting from the constantly increasing usage of service ori-
ented computing, the problem of automatic composition of services is
rapidly gaining attention. Many solutions have been proposed, yet too
little attention has been paid to thoroughly analyzing the different needs
that require the ability of (automatic) service composition. This paper
therefore aims at identifying the different cases in which service compo-
sition is needed and at classifying existing approaches accordingly. Three
distinguishable types of service composition applications are described
along with their basic problems and various approaches addressing the
identified classes are presented.

1 Introduction

Automatic service composition remains one of the key challenges of service ori-
ented computing today. In general, ”service composition” can be defined as cre-
ating a composite service, obtained by combining available component services.
It is used in situations where a client request cannot be satisfied by any single
available service, but by a combination thereof [1]. In terms of software engineer-
ing automatic service composition will significantly enhance the power of service
oriented architectures (SOAs). SOAs combine available base services in order
to build higher level services or distributed applications. Specifying manually
which base services to use and how to combine them is a cumbersome task. Fur-
thermore the resulting composite process is vulnerable to change as it must be
corrected manually when base services become unavailable or new better services
appear. Automatic service composition has the potential to dramatically change
the way how SOAs are engineered: Given a rich set of base services and efficient,
reliable automatic service composition methods the vision of programming as
specifying what a program is supposed to do and not how it is supposed to do it
can become reality. That way software engineers could create flexible programs,
able to adopt to changes in the environment completely autonomously.

Service composition in general can be differentiated into synthesis and orches-
tration. Synthesis refers to generating a plan how to achieve a desired behavior
by combining the abilities of multiple services. In contrast, orchestration refers
to coordinating the control and data flow among the various components when

executing that plan. While our focus in this paper is on automatic synthesis,
orchestration is an important problem that is complementary to synthesis. Ex-
amples of ”service composition” approaches referring to orchestration include [2,
3]. Concerning synthesis the definition of service composition given above covers
a number of different problems with distinct characteristics, each of which has
been addressed by different approaches. This work’s goal is to (a) identify the
distinct classes of composition applications, (b) point out specific problems of
each of those classes and (c) give an overview of existing approaches and their
suitability for the individual classes.

A number of surveys on service compostion exist, however, none of these
meet the goals listed above: Rao et al. [4] provide a quite comprehensive overview
categorized according to the technique used, i.e. workflow techniques and various
AI planning methods. Another survey solely centered around AI planning is
[5]. In a more general overview Benatallah et al. [6] focus on workflow-based
approaches for web service integration. Some of the considered approaches are
abstracted in the form of software design patterns. Another survey on web service
composition platforms is [7]. Milanovic et al. [8] provide an overview of different
approaches for modelling composite services that are evaluated against a number
of requirements to service composition modelling.

In contrast to all these surveys, this paper is structured around a classifica-
tion of different applications of service composition and furthermore specifically
focuses on automatic service composition. Given a service request that can’t be
met right away those existing automatic composition approaches are introduced
that seem best suited to overcome the specific type of problem at hand. We
believe that a categorization along this domain is the most helpful one from
an engineering point of view. In detail we identify the following three classes of
problems:

– Fulfilling preconditions: A service that can provide the desired effects
exists, however, not all of this service’s preconditions are met from the outset.

– Generating multiple effects: The request encodes multiple effects that
are related, yet can be generated by different services.

– Overcoming a lack of knowledge: Additional knowledge gathering is
necessary in order to correctly fulfill a request.

In the following Sections 2, 3 and 4 we elaborate on these different classes of
service composition needs. In Section 5 we give a summary and conclude.

2 Fulfilling Preconditions

In an attempt to find an appropriate service providing a requested functionality
it is a common situation to find a service that is able to generate the requested
effects but some of its preconditions are not fulfilled. In these cases, ”chaining”
services can be used to overcome that problem. There might, e.g., be a request for
a service that translates a given document from Chinese to German. If no such
service exists a service that translates English documents to German can be used

26 U. Küster, M. Stern, and B. König-Ries

in conjunction with another service that translates from Chinese to English. Such
chaining can be understood as a way to compose services by recursively regarding
the effects of one service as the preconditions of a following one until a desired
effect is reached. The most common approaches to service chaining include graph
search, forward chaining, backward chaining and estimated-regression planning.
Each of them will be considered in turn.

Graph Search approaches rely on building a graph representation of all
services available. In [9], Zhang et al. build a graph whose nodes represent the
available services and whose edges encode whether one of a service’s outputs
may serve another service as one of its inputs. Edges are weighted according
to the level of correspondence of the associated input and output. An adapted
Bellman-Ford algorithm is used to find the shortest paths from the user’s inputs
to the expected outputs which represent the best available composition. The
same idea has been used in an earlier work [10] with the restriction that services
are only allowed to have a single input and a single output which simplifies the
graph and the corresponding searching algorithm. A problem of this class of
approaches is that they do not scale well with the number of offered services.
For instance, the algorithm by Zhang et al. works in O(n3).

Forward Chaining is typically used by approaches rooted in logic-based
planning systems. Starting with the available knowledge about the world and
the preconditions and inputs from the service request the planning system uses
applicable services, i.e. services whose preconditions can be met, in order to
infer additional knowledge until the requested effects are fulfilled. An example
of this approach is SWORD [11]. Another example is [12] which also exhibits
the fundamental problem that forward chaining has: its undirected search. While
the requested effects always have to be generated completely, in many cases it is
not necessary to use all knowledge about the world in order to accomplish this.
Thus, forward chaining tends to search in directions that are unnecessary for the
requested effects1.

Backward Chaining overcomes this problem. Backward chaining works
similar to forward chaining with the difference that the composition starts with
those services generating the requested effects instead of those whose precondi-
tions are grantable. Any algorithm then recursively tries to create the necessary
preconditions using other services until all preconditions are met. In [13], Sirin et
al. use a semi-automatic approach to establish the composite service. Here, the
user decides which service to add to the chain whenever more than one possibil-
ity exists. An example of a fully automatic algorithm using backward chaining is
[14] where Sheshagiri uses heuristics2 to pick the next service in the chain when-
ever there is a choice. While backward chaining generally implements a better
directed search than forward chaining the problem space typically is still large.

1 [12] tries to overcome this problem by including search control in the deduction rules
of their planner.

2 To give an example, one of the proposed heuristics is to use the service with the
smallest number of preconditions.

A Classification of Issues and Approaches in Automatic Service Composition 27

Estimated-Regression Planning is an attempt to improve the perfor-
mance of the search by implementing a forward chaining guided by a heuristic
based on backward chaining. McDermott [15] applies this idea to the domain
of web services. While he doesn’t actually compose services but rather plans
the interaction with a single web service (i.e., he plans an execution sequence of
atomic interactions leading to the requested result) his results are applicable to
the domain of service composition as well.

Concluding remarks. Generally, when implementing automated chaining
of services, it should be noted that chaining may insert a degree of uncertainty
regarding the semantic correctness of the generated composite service. In theory,
a service that translates Chinese to German is equivalent to a composite service
that translates Chinese to Japanese to English to German. In practice, each
translation involves a loss of accuracy and, thus, the two services are far from
equivalent. Although these conversion tasks are a natural application of chaining,
to the best of our knowledge this problem hasn’t been addressed so far.

Another problem of service chaining are cases where a user does not want
a precondition of a service to be fulfilled due to side effects of that action.
Take for instance a service that requires the user to have a valid credit card.
Assuming one doesn’t have a credit card a chaining algorithm might try to
create a credit card contract in order to overcome this problem. Obviously that
might be considered unacceptable. Consequently, a user’s preferences need to be
regarded when designing automated service chaining algorithms.

As a final remark it is noted that a large number of approaches to chaining
is based on AI planning systems which generally leads to scalability problems in
case of an increasing number of available services.

3 Generating Multiple Effects

Service requests like ”I want to travel to Italy and need a hotel and a flight to
a nearby airport” are characterized by the fact that multiple effects (flight and
hotel booking) are requested. These effects are related (e.g. by the travel dates
and by a shared location) but typically can be fulfilled by different services.

Chaining is used to provide a requested functionality that typically could
be provided by a single service which simply is currently not available. In con-
trast, when dealing with multiple effects, service composition is somewhat more
inherent to the request. Furthermore, when multiple effects are specified, the
problem of composition synthesis is really a problem of decomposing the request
into a collection of component requests each of which can be satisfied by a single
service. Basically such service composition approaches can be divided into two
categories. These categories differ in the granularity at which services are re-
garded. The first category, behavior-based service composition, relies on services
being described by the their messages and the possible sequences thereof, i.e.,
the interaction with a service. In contrast, in the second category, component-
based service composition, services are regarded as atomic, that is they can only
be executed as a whole. Thus, in the first case, it is possible to combine parts of

28 U. Küster, M. Stern, and B. König-Ries

services to new services, whereas in the second approach, only complete services
can be combined to new ones. In addition to exploring approaches in these two
categories, a closer look at at special subclass of requests with multiple effects,
namely quantified requests, is worthwhile and will be provided later on in this
section.

Behavior-Based Service Composition. Most approaches for modelling
behavioral descriptions, especially those targeted towards composition, are based
on finite state machines [16]. As an example, in [1], Berardi et al. describe all
available component services as well as the request as finite state machines. Their
goal is to find a composition of offered services that permits the interaction
sequences given by the request. By using DPDL (Deterministic Propositional
Dynamic Logic) the problem of service composition is reduced to the problem of
satisfiability of a constructed formula. One of this approach’s problems is that
it doesn’t scale well (needs EXPTIME). A related approach is described by
Bultan et al. [17].

Component-Based Service Composition. The second category can be
characterized by the use of decomposition frameworks that directly contain the
component services to be used. A large body of research in this field uses some
sort of rules to manage the decomposition of requests in a more or less auto-
mated fashion. As an example, Wu et al. [18] have implemented a hierarchical
task network planner whose knowledge base contains methods representing the
decomposition of higher level tasks. Similarly, McIlraith et al. [19] encode the
decomposition using constructs of the logic programming language Golog, which
is used for creating a sequence of services providing the requested functionality3.

An approach based on data integration techniques is proposed by Thakkar et
al. [20]. Here, the decomposition is implied by regarding the available services as
views over a global schema. As a consequence, only information retrieval requests
can be supported.

The work by Medjahed et al. [21] is an example of an approach in which
the composition is contained in the client’s request, given in a proprietary spec-
ification language CSSL (Composite Service Specification Language). Here, the
exact sequence of desired operations (or to be more precise, of descriptions of
the desired components) is specified in the request. The main contribution of
this work is a composability model which captures information about whether
available services that match the components’ descriptions can be combined as
specified in the request.

Quantified Requests. A special case of requests asking for multiple effects
are quantified requests like ”I want to download all publications of a certain
author” where the same effect (download a publication) is requested multiple
times. Such a request might be answered by a single service if that source has
all publications available (e.g. a publication database) but often it will be neces-

3 An interesting point about this work is that additionally chaining can sometimes be
used to fulfill the preconditions of a component service.

A Classification of Issues and Approaches in Automatic Service Composition 29

sary to query multiple services (e.g. all common publishers) and to combine the
results.

This kind of requests should not be confused with a request for ”all services”
providing a certain effect, like all services offering publications by the author.
From a procedural point of view the difference is that in the case of a request for
all services, the problem is in locating services, whereas in our case the problem
is in composing services. From a semantics point of view, the result of the first
request could contain duplicates of the same publication (provided by different
service providers), which is not possible in the second case.

Here, a request’s effect (or an effect’s attribute) is quantified and the problem
is to combine various services in order to cover the requested publications. The
challenge is first to get to know which publications to look for and second to
combine the available sources in an optimized way. To the best of our knowledge,
this problem hasn’t been addresses so far regarding service composition, even
though it contains a large number of quite natural requests. There are approaches
available that probably could be extended to cover this case, e.g. those rooting
in first order logic planning systems like [12] but this remains as future work.

Concluding Remarks. One problem that needs to be dealt with when using
composition in order to generate multiple effects is how to enforce transactional
properties when invoking multiple services. In the context of the travel example
one probably doesn’t want to book a hotel anymore, if the booking of the flight
fails. This problem has been addressed, e.g., by Casati et al. [22] or by the Web
Service Transaction Specification [23]. It should also be noted that especially
some of the earlier approaches listed above are based on semantically weak ser-
vice descriptions (the same is true for approaches addressing service chaining).
More recent approaches have broadened their focus to address this problem.

4 Dealing with Missing Knowledge

When searching for an appropriate service it may happen that knowledge nec-
essary to choose the correct service is missing. Taking up the traveling example
once more, assume the requested service is supposed to book a flight given a
maximum price. Assume further that there is a service available booking flights
with a certain airline by their flight number. This offer could be used – provided
one knows how much each flight costs. Moreover, even if one has this knowledge,
one still needs to know which flights are available.

But since assuming complete knowledge is obviously unsuitable for the Se-
mantic Web [24], it is a basic requirement of any approach that aims at finding a
(maybe composed) service matching a certain request that this approach is able
to deal with incomplete knowledge. That is, the algorithm must be able to detect
such a situation and implement procedures to acquire the missing knowledge.

One can distinguish two approaches addressing this problem: (a) one can
make use of knowledge services while searching for a suitable service or (b)
this search can be deferred until the time of execution. In this case a conditional
plan has to be established. Note that in the first case, even if the planner returns

30 U. Küster, M. Stern, and B. König-Ries

a single service sufficient for providing the requested effects, we consider this to be
a form of service composition as the cooperation of multiple services is necessary
and is only brought forward to planning time.

Creating Conditional Plans. Here, the knowledge gathering services are
executed in conjunction with the remaining services and are used to navigate
through the plan. In [15] McDermott proposes an extension of DPDL to model
gaining information (and thereby to overcome the restriction of relying on per-
fect knowledge). Whenever the planner encounters a situation in which it lacks
knowledge that can be learned it inserts an information gathering action into the
plan. Branches are created for different outcomes of the information retrieval.
The approach for building conditional plans taken by Martinez et al. [12] is
based on a similar idea. One advantage of using conditional plans is that the
time consumption at planning time of the alternative approach is dominated
by the time spent waiting for knowledge gathering services to complete their
execution which can be arbitrarily long. A further advantage is that knowledge
services that have world altering effects like causing costs might not be tolerated
at planning time. Finally, if one gathers information at planning time, this infor-
mation may have become outdated at execution time [19]4. The disadvantages
of using conditional plans include a sometimes unrealistically high number of
alternative paths. In the flight booking example for instance, one would have
to create a path for each available service offering flights to the target location
in case that all other services are booked up. In this case the number of paths
is determined by the number of available services. This doesn’t scale well. Ad-
ditionally, having to consider a large number of alternative paths leads to an
increased time consumption when creating the plan. These disadvantages lead
to approaches that retrieve information at planning time.

Searching While Planning. SHOP2 [18] is an example of this approach.
Wu et al. designed their planner’s decomposition rules such that the planner is
able to distinguish between component services gathering information and oth-
ers, so that the former ones can be executed at planning time. While in this work
the mechanism to determine when to ask for what information can be regarded
as ”hard wired” in the rules, in a follow up work the authors remedied this lead-
ing to automatic recognition that information is missing [25]. An approach to
gathering information similar to that of SHOP2 is taken by McIlraith et al. [19].

Concluding Remarks. A fundamental problem of approaches aiming at
automatically recognizing that information is missing: there needs to be a mech-
anism to determine whether the available knowledge is complete or not. In the
flight booking example it would be necessary to know when the found set of
flights is complete to be able to pick the cheapest flight with certainty. The
problem here is to know when to stop searching for more information. This
problem has been, for instance, addressed by [24].

4 McIlraith et al. address this problem using a monitor that repeats the knowledge
gathering at execution time.

A Classification of Issues and Approaches in Automatic Service Composition 31

5 Summary and Conclusion

In this paper we have analyzed the different needs that require the ability to
(automatically) compose services and have identified three distinct classes:

First of all, service chaining addresses the problem of fulfilling a service’s
preconditions by using another service. Solutions to this problem have to take
into consideration that the chaining of services may insert a degree of uncertainty
and that automated chaining is sometimes unacceptable for the user.

A second class of service composition approaches aims at generating multiple
effects that are somehow related. As a special case we identified requests con-
taining a quantification of some attributes. Problems that have to be addressed
by approaches of this class as well as by approaches of the former one include en-
suring scalability in the number of offered services and establishing transactional
properties of the service composition.

Finally, the problem of incomplete knowledge can be solved using service
composition by adding knowledge gathering services to acquire it. The main
difficulty here is how to decide when to stop searching for additional knowledge.

Our overview has shown that while quite a number of approaches to service
composition exist, it is necessary to take a close look at the requirements of
ones particular situation to find a suitable approach. Also, while many problems
concerning service composition have been solved, there remain important open
issues that need to be addressed in order for service composition to become a
feasible tool. Among the most important of these issues are the degrading quality
in long service chains, the lack of transactional properties of composed services,
scalability with an increasing number of offered services, the foundation of most
approaches on semantically weak service descriptions, the lack of approaches to
allow for quantified requests and an appropriate treatment of missing knowledge.

References

1. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic
composition of e-services that export their behavior. In: Proc. of 1st Int. Conf. on
Service Oriented Computing (ICSOC-03), Trento, Italy. (2003)

2. Benatallah, B., Sheng, Q.Z., Ngu, A.H.H., Dumas, M.: Declarative composition
and peer-to-peer provisioning of dynamic web services. In: Proc. of the 18th Int.
Conf. on Data Engineering (ICDE’02), San Jose, CA, USA. (2002)

3. Pistore, M., Bertoli, P., Barbon, F., Shaparau, D., Traverso, P.: Planning and
monitoring web service composition. In: Proc. of the 14th Int. Conf. on Automated
Planning and Scheduling (ICAPS 2004), Whistler, BC, Canada. (2004)

4. Rao, J., Su, X.: A survey of automated web service composition methods. In: Proc.
of the 1st Int. Workshop on Semantic Web Services and Web Process Composition,
SWSWPC2004, LNCS, San Diego, USA. (2004)

5. Peer, J.: Web service composition as AI planning - a survey. Technical report,
Univ. of St. Gallen, Switzerland (2005)

6. Benatallah, B., Dumas, M., Fauvet, M.C., Rabhi, F.A.: Towards patterns of web
services composition. In: Patterns and skeletons for parallel and distributed com-
puting, London, UK, Springer-Verlag (2003) 265–296

32 U. Küster, M. Stern, and B. König-Ries

7. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web
and Grid Services 1 (2005) 1–30

8. Milanovic, N., Malek, M.: Current solutions for web service composition. Internet
Computing, IEEE 8 (2004)

9. Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic
web services. In: Proc. of the 2003 Int. Conf. on Web Services (ICWS’03), Las
Vegas, NV, USA. (2003)

10. Mao, Z.M., Brewer, E.A., Katz, R.H.: Fault-tolerant, scalable, wide-area internet
service composition. Technical Report UCB//CSD-01-1129, University of Califor-
nia, Berkeley, USA (2001)

11. Ponnekanti, S.R., Fox, A.: SWORD: A developer toolkit for web service compo-
sition. In: Proc. of the 11th Int. WWW Conf. (WWW2002), Honolulu, HI, USA.
(2002)

12. Mart́ınez, E., Lespérance, Y.: Web service composition as a planning task: Ex-
periments using knowledge-based planning. In: Proc. of the 14th Int. Conf. on
Automated Planning and Scheduling (ICAPS 2004), Whistler, BC, Canada. (2004)

13. Sirin, E., Hendler, J.A., Parsia, B.: Semi-automatic composition of web services
using semantic descriptions. In: Proc. of the 1st Workshop on Web Services: Mod-
eling, Architecture and Infrastructure (WSMAI’03), Angers, France. (2003)

14. Sheshagiri, M.: Automatic composition and invocation of semantic web services.
Master’s thesis, University of Maryland, Baltimore County, USA (2004)

15. McDermott, D.V.: Estimated-regression planning for interactions with web ser-
vices. In: Proc. of the 6th Int. Conf. on Artificial Intelligence Planning Systems
(AIPS’02), Toulouse, France. (2002)

16. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the
curtain. In: Proc. of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS’03), San Diego, CA, USA. (2003)

17. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to
design and analysis of e-service composition. In: Proc. of the 12th Int. Conf. on
World Wide Web (WWW’03), Budapest, Hungary. (2003)

18. Wu, D., Parsia, B., Sirin, E., Hendler, J.A., Nau, D.S.: Automating DAML-S
web services composition using SHOP2. In: Proc.of the 2nd Int. Semantic Web
Conf.(ISWC2003), Sanibel Island, FL, USA. (2003)

19. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web ser-
vices. In: Proc. of the 8th Int. Conf. on Principles and Knowledge Representation
and Reasoning (KR-02), Toulouse, France. (2002)

20. Thakkar, S., Knoblock, C.A., Ambite, J.L.: A view integration approach to dy-
namic composition of web services. In: Proc. of the 13th Int. Conf. on Automated
Planning and Scheduling (ICAPS’03), Trento, Italy. (2003)

21. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on
the semantic web. The VLDB Journal 12 (2003) 333–351

22. Casati, F., Ilnicki, S., jie Jin, L., Krishnamoorthy, V., Shan, M.C.: Adaptive and
dynamic service composition in eflow. In: Proc. of the 12th Conf. on Advanced
Information Systems Engineering (CAiSE*00), Stockholm, Sweden. (2000)

23. IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA: Web service transaction
specification (2005)

24. Heflin, J., Munoz-Avila, H.: Lcw-based agent planning for the semantic web. In:
Proc. of the 18th Nat. Conf. on Artificial Intelligence (AAAI2002), Edmonton, AB,
Canada. (2002)

25. Kuter, U., Sirin, E., Nau, D.S., Parsia, B., Hendler, J.A.: Information gathering
during planning for web service composition. In: Proc. of the 3rd Int. Semantic
Web Conf. (ISWC2004), Hiroshima, Japan. (2004)

A Classification of Issues and Approaches in Automatic Service Composition 33

34 U. Küster, M. Stern, and B. König-Ries

An Ontology for Quality-Aware Service

Discovery

Steffen Bleul and Thomas Weise

Kassel University, Distributed Systems
{bleul, weise}@vs.uni-kassel.de

Abstract. The fast emergence and acceptance of service oriented archi-
tectures leads to fast development of extensional technologies like service
delivery, discovery and composition. As main effort is being spent on au-
tomatic discovery and composition, current solutions do not reflect real
world scenarios sufficiently. Services are offered by different vendors with
different quality levels and prices. Large service oriented architectures
with dynamic service compositions are not able to adapt without man-
ual inspection of service quality and negotiation of service contracts. We
propose an ontology for modelling Quality of Services (QoS) and Service-
Level-Agreements (SLA). A semantic approach should bridge the gap of
different terminology, languages and metrics making Service-Level offers
and requests agent understandable and automatic quality-aware discov-
ery possible.

1 Introduction

Service oriented architectures (SOA) have become important means for imple-
menting enterprise processes in the industry and on the web. Service oriented
architectures are potentially easy to maintain, to extend and to improve. Ser-
vices are building blocks in implementing business processes in companies and
to integrate heterogeneous resources and external systems [BHMS05]. Therefore
a SOA is a powerful software design paradigm.
Multiple services are necessary to realize a process which is usually represented
by a workflow [RS04]. Companies implement processes like ordering, billing and
accounting by composing several services where each service realizes a process
task and services communicate with messages. Composition of services is sup-
ported by a process execution language like BPEL4WS [IBM03], and a message
choreography language like WS-CDL [Wor04]. These languages allow automatic
execution of service compositions because they allow the specification of work-
flows of services and message choreography between services.
Service oriented architectures are easy to evolve by replacing each service with a
better substitute. Substitutes may offer less response time or traffic. Especially
outsourced services offer flexibility in choosing software vendors or providers of
specialised services, e.g. providing an improved search function for the internal
infrastructure. Therefore it is beneficial to use service discovery mechanisms to
adapt service compositions to changing quality and pricing.

Although automatic service discovery is already possible, e.g. with IOPE match-
ing algorithms, like the one presented in [JT04]. However it currently does not
take into account quality and pricing aspects of services. Using outsourced ser-
vices also demands special actions like dealing out service level obligations, con-
tract signing, accounting and quality monitoring. Based on current SLA (Service
Level Agreement) description languages like WSLA [ea02] and WSML [SDM02]
we believe a semantic approach can automate quality aware discovery of services.
We propose an ontology for machine understandable service level requests and
offers for quality-aware service discovery. As a result it enables dynamic binding
of external services in an internal workflow under quality and pricing aspects.
Therefore the ontology contributes to service brokering and dynamic service
bindings in large-scale service oriented architectures and compositions.
The remainder of this paper is structured as follows. The next section is an intro-
duction to quality-aware service discovery and presents a use case. Section 3 is
an overview of the proposed ontology and section 4 gives an example on match-
making in quality-aware service discovery. Section 5 is about related work before
the paper closes with a conclusion.

2 Quality-Aware Service Discovery

Quality-aware discovery of services comprises finding a service with the requested
quality dimensions and checking if the service can offer the requested guaran-
tees. Even if service descriptions offer specifications of service dimensions and
guarantees, quality-aware service discovery remains cumbersome. The task is
even harder if different parties use different terms and metrics for the same
quality dimension. Furthermore, providers can offer different service levels at
different prices and enhance certain quality levels by offering supplementary ser-
vice packages. A service package is a union of obligations and its price. The user
can combine service packages and supplementary packages to accomplish his re-
quested service level.
A quality level consists of several obligations. Each obligation offers a guaran-
tee on a quality dimension, e.g. a guarantee on response time with at most 200
milliseconds. Service provider and service user both negotiate a certain quality
level by agreeing on obligations on quality dimensions. The outcome is a SLA
with several obligated SLO (Service Level Objectives). Service Level Agreements
are necessary for continuous service delivery and quality. The providing party
must enforce these objectives or face negotiated violation penalties like contract
cancellation or paying violation fees.
In Figure 1 we present an example for a service level offer on the left and service
level request on the right side. The service level request consists of three guaran-
tees on the quality dimensions response time, transactions and contract time. A
service provider offers the necessary service for travel booking with guarantees on
the requested dimensions but two kinds of service levels. The Gold-Guarantees
are better than the Silver-Guarantees but also at a higher price. A supplemen-
tary package offers enlarging the contract time for one month at a price of five

36 S. Bleul, and T. Weise

Service Offer
Travel Booking Service

Silver-
Guarantees

< 400ms

5000

12 month

20 €

Gold-
Guarantees

< 200ms

10000

12 month

50 €

Quality-
Dimensions

Responsetime

Transactions

Contract time

Price

Supplementary-
Package

+1 month

5 €

Service Request
Travel Booking Service

Requested-
Guarantees

< 0,4 s

> 4000

1 year

Quality-
Dimensions

Responsetime

Transactions

Contract time

Fig. 1. Example scenario

Euros. As you can see, the offered guarantees on response time are measured in
milliseconds but the requested is measured in seconds. So they have semantically
the same dimensions but different metrics.
Existing service descriptions allow searching for syntactically matching services.
Discovery of services is done manually by browsing search results for semanti-
cally matching services which is cumbersome in large registries. There is not
only the need for syntactic description languages but also for semantic inter-
face descriptions. Currently this is realized mostly by the WSML [SDM02] and
OWL-S [ea04] ontologies. OWL-S is based on OWL (Ontology Web Language)
the W3C proprietary language for the Semantic Web [MH04]. Both languages
allow the semantic description of Web Service interfaces.

3 Service Level Ontology

As already mentioned, current service brokering approaches lack the ability to
model service level packages and pricing. In the real world service brokering is
much more flexible. Service providers offer service level packages, e.g. gold, silver
or copper packages, with different pricings and service level objectives. A service
level package can be optimized by buying supplementary packages, e.g. buying
additional transactions or a better guarantee on response time.
Otherwise quality-aware service discovery is limited to matching obligations on
quality dimensions against each other. This decreases the probability of success-
ful service discovery. Our approach proposes a SL-Ontology (Service Level) for
modelling service level packages, supplementary packages and pricing for service
offers. It includes modelling of QoS, metrics and units. The following paragraphs
give an overview of our SL-Ontology followed by an example on matchmaking
in the next section.
The structure of our SL-Ontology can be illustrated as an ontology pyramid,
which is presented in Figure 2. On top we distinguish between three individuals
of the SL-Ontology. The Service-Level-Offer concept represents the service level
provider and his offered service level packages. The Service-Level-Request con-
cept represents a requested obligations for the wanted service level and finally

An Ontology for Quality-Aware Service Discovery 37

Metric-Ontology

Unit-Transformation-Ontology

Grounding-Ontology

QoS-Ontology

Service-Level-Ontology

Service-
Level-
Offer

Service-
Level-

Request

Service-
Level-

Agreement

Fig. 2. Service-Level-Ontology Pyramid

the Service-Level-Agreement concept specifies the service level both parties agree
on. While current service discovery does not distinguish between offers and re-
quests, we believe that differentiation between them is necessary when handling
multiple requests and offers in one knowledge base.
The SL-Ontology is build on top of a QoS-Ontology. The QoS-Ontology is used
for modelling service quality dimensions. Since different providers can use dif-
ferent identifiers for the same quality dimension, the ontology allows binding
of individuals to external taxonomies. Therefore we can distinguish between di-
mensions, which relate to semantically the same concept. Each quality dimension
value is defined by a metric. The Metric-Ontology specifies the unit and data
type the provider uses to measure his quality dimension. We have to know the
data-type of the quality dimensions. Otherwise if we use a data type that is too
limited, we will have inaccurateness by interpreting the quality dimension value.
At the bottom of the ontology pyramid the Unit-Transformation-Ontology is the
base ontology for semantic specification of service levels. Each metric has its unit.
The most obvious problem in matching service dimensions is the use of different
units for the same metric. Response time for example can be measured in mil-
liseconds or seconds. Therefore the Unit-Transformation-Ontology allows spec-
ifying the functional relation between different units. The Grounding-Ontology
is used for grounding semantic concepts on logical entities like rule descriptions
for guarantees or service execution for unit transformation.

4 Quality-Aware Matchmaking

Let us look at matchmaking between a Service-Level-Offer and a Service-Level-
Request. Matchmaking as part of a discovery process will show how our ontology
enhances quality-aware service discovery. We start to illustrate how to specify
individuals with our SL-Ontology and realize matchmaking between them. We
use the example of section 2, Figure 1.

38 S. Bleul, and T. Weise

ServiceLevel

GoldPackage

Obligations

TravelBooking

Actions

TravelBooking

OfferParties

TravelBooking

OfferActor

TravelBooking

ServiceProvider

EasyService

Cooperated

Obligation

onResponsetime

Respontime

Guarantee

EasyService

Responsetime

hasObligations

involvesParties

hasGuaranteehasRole byParty

GoldPackage

provides

GoldPackage

Price50Euro

hasPrice

onDimension

hasActions

hasObligationpartofhasActor

hasObligatons

Ruledefinedby

TravelBooking

SL-Offer

P(x): x < 200

EasyService

MetricMilliseconds
hasMetric

hasMetric

hasGrounding

Fig. 3. Service-Level-Ontology Example

In Figure 3 we illustrate an individual of the SL-Ontology. The individual is a
SL-Offer of the Travel Booking service. The service provider is the Easy Service
Company which is specified by the EasyServiceCooperated -Individual. The ser-
vice level obligations are part of the gold package. This is specified by the partof-
Property between the GoldPackage-Individual and the GoldPackageObligations-
Individual. The other packages are modelled analogously to this example. Our
semantic matchmaking example of quality dimensions consists of three parts:

1. We have to decide if any offered package deals with guarantees on the same
quality dimensions as the requested quality dimensions. Otherwise the pack-
age can not achieve at least one requested quality guarantee.

2. Check if two semantic equivalent quality dimensions use different metrics.
3. Check if the offered guarantee satisfies the requested guarantee.

As a matter of simplicity we limit the example of matching guarantees on re-
sponse time and leave out the effects of supplementary packages. Actions for
contract signing and contract cancellation are matters of service choreography
or orchestration and therefore out of the scope of this paper. Obligations consist
of a guarantee on one quality dimension. The guarantee consists of a hasEffect-
Property which is connected to a quality-rule; in our example the rule guarantees
a response time lower than 200. Each quality dimension is connected with a met-
ric with the hasMetric-Property.
The example is continued in Figure 4. We are looking for semantic equivalent
quality dimensions. In Figure 4 we present on the left side the specified quality

An Ontology for Quality-Aware Service Discovery 39

GoldPackage

Obligations

GoldObligation

onResponsetime

Guarantee

<200

hasGuarantee

hasObligation

SilverPackage

Obligations

SilverObligation

onResponsetime

hasObligation

hasGuarantee

Guarantee

<400

Requested

Obligations

Obligation

onResponsetime

Guarantee

<0,4

hasObligation

hasGuarantee

EasyService

Responsetime

Requested

Responsetime

onDimensiononDimension
onDimension

isofTypeResponseTimeisofType

EasyService

MetricMilliseconds

RequestedMetric

Seconds

hasMetric hasMetric

Unit

Seconds

Unit

Milliseconds

SecondsTo

MilliSeconds

Transformation

transformsTo transformsFrom

definedby definedby

Seconds*1000

Function

hasFunction

definedby

P(x): x < 200

definedby

P(x): x < 400

definedby

P(x): x < 0,4

canbetransformedto

F(x): y = x * 1000

definedby

Fig. 4. Matchmaking of quality dimensions.

dimension ResponseTime of the gold and silver package and on the right side
the requested quality dimension RequestedResponsetime. We have two quality
dimension individuals of the same class but with different identifiers. To check
if both parties mean the same quality dimension we use the isofType-Property.
It is a binding-property to map to an external taxonomy which specifies the se-
mantic relation of the quality dimensions. We see, that both specified dimensions
are semantically related to the external specified individual Responsetime and
therefore semantically equivalent.
Afterwards we check if both used metrics are semantically equivalent. Easy

Service Company uses the individual EasyServiceMetricMilliseconds to measure
its response time, which measure unit is milliseconds. Whereas the requested
guarantee on response time is expressed in seconds, which is specified by the
definedby-Property between the RequestedMetricSeconds- and the UnitSeconds-
Individual.
At this point we use the Unit-Transformation-Ontology to specify the func-
tional relation between units. Without this ontology we could only match qual-
ity dimension guarantees with the same measurement unit against each other,
but we also want to match guarantees whose measurement units can be trans-
formed into each other. If we have two Unit-Individuals, e.g. UnitMilliseconds
and UnitSeconds which have a transformation between them, we specify a tran-
sitive canbetranformedto-property.
We can conclude that there is a stepwise transformation from seconds to mil-

40 S. Bleul, and T. Weise

liseconds by multiplying seconds with 1000. Functions are expressed by function
groundings, which can be realized by a rule or an execution of a service. The
function grounding is used to adapt the guarantee rules to equal units, e.g. trans-
forming the rule P (x) : x < 0, 4 to P (x) : x < 400. Afterwards we can match
the guarantees. As both packages contribute the necessary quality level, the
requestor takes the packages with the lowest price which is the silver package.

5 Related Work

Some work dealt with specifying quality of service and service level agreements.
WSML [SDM02] and WSLA [ea02] are specification languages for SLA. Both
languages allow specification of quality dimensions, metrics and guarantees, but
both approaches lack the usage of semantics and therefore cannot bridge the gap
of using different terms and semantic related metrics.
In OWL-S [ea04] QoS is specified as service parameters but lacks the specification
of metrics and guarantees. It also lacks the specification of functional relations
between metrics and is therefore not applicable for quality-aware service dis-
covery. WSMO [RKL04] has indirect support for QoS by using non-functional
properties for quality dimensions and functional properties for relation between
quality dimensions. Their approach lacks semantic definition of stepwise trans-
formation between metrics and therefore you have to specify a transformation
for each unit into another unit.
DAML-QoS [ZCL05] is an ontology for QoS-Specification. Like our approach
DAML-QoS differentiates between QoS-Offers and QoS-Requests but does not
support the specification of service-packages and pricing. It uses object-oriented
identifiers to bridge different terminologies and metrics in quality dimensions.
These identifiers are predefined metrics. Our approach has an underlying Unit-
Transformation-Ontology to define functional relations between metrics.

6 Conclusion

This paper introduces an ontology for quality aware service discovery. We have
presented the necessary elements of quality aware service discovery and impor-
tance of integrating quality aspects in service integration. A description language
needs flexibility for service level packages and service providing parties. It must
also handle different terms in specifying QoS-Dimensions. Therefore we propose
our ontology for semantic modelling of Service-Levels.
This is followed by an example for matchmaking of Service-Level-Offers and
Service-Level-Requests 4. Our ontology is able to express the necessary general-
ity for the specification of Service-Levels, Service-Level-Offers and Service-Level-
Requests. Additionally we are able to bridge the usage of different terms by using
binding-properties to include external ontologies.
Furthermore we are able to specify transformations between metrics. A transitive
property is used to specify semantically if there exists a stepwise transformation

An Ontology for Quality-Aware Service Discovery 41

between two different metrics.
Currently we are testing a prototype matchmaker for different examples. We
are confident to realize an automatic service brokering system and extend our
approach not only on simple services but for whole service compositions.

References

[BHMS05] R. Berbner, O. Heckmann, Andreas M., and Ralf S. Eine dien-
stgüte unterstützende webservice-architectur für flexible geschäftsprozesse.
Wirtschaftsinformatik, 47(4):268–277, 2005.

[ea02] A. Dan et al. Web service level agreement (wsla) language specification.
In In documentation for Web Services Toolkit, version 3.2.1. International
Business Machines Corporation (IBM), August 2002.

[ea04] D. Martin et al. OWL-S, OWL-based Web Service Ontology, 2004.
URL: http://www.daml.org/services/owl-s/1.1/.

[IBM03] IBM. BPEL4WS, Business Process Execution Language for Web Services
Version 1.1, 2003.
URL: http://www-128.ibm.com/developerworks/library/specification/ws-
bpel/.

[JT04] M. C. Jaeger and S. Tang. Ranked matching for service descriptions using
daml-s. In Janis Grundspenkis and Marite Kirikova, editors, Proceedings of
CAiSE’04 Workshops, pages 217–228, Riga, Latvia, June 2004. Riga Tech-
nical University.

[MH04] E. Miller and J. Hendler. Web Ontology Language (OWL). World Wide
Web Consortium (W3C), 2004.
URL: http://www.w3.org/2004/OWL/.

[RKL04] D. Roman, U. Keller, and H. Lausen. Wsmo - web service modeling ontology.
In DERI Working Draft 14. Digital Enterprise Research Institute (DERI),
February 2004.

[RS04] J. Rao and X. Su. A survey of automated web service composition methods.
In Semantic Web Services ancd Web Process Composition, 2004, Springer-
Verlag, pp 43-54. First International Workshop, SWSWPC 6. July 2004,
San Diego, July 2004.

[SDM02] A. Sahai, A. Durante, and V. Machiraju. Towards Automated SLA Man-
agement for Web Services. Hewlett-Packard Laboratories Palo Alto, July
2002.
URL: http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf.

[Wor04] World Wide Web Consortium. WS-CDL, Web Services Choreography De-
scription Language, December 2004.
URL: http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/.

[ZCL05] C. Zhou, L.-T. Chia, and B.-S. Lee. Semantics in service discovery and qos
measurement. Wirtschaftsinformatik, IT Pro(March/April):29–35, 2005.

42 S. Bleul, and T. Weise

Reusable Web Service Choreography and
Orchestration Patterns1

Guadalupe Ortiz, Juan Hernández, Pedro J. Clemente

 University of Extremadura
Quercus Software Engineering Group

http://quercuseg.unex.es
{gobellot, juanher, jclemente}@unex.es

Abstract. Web Service composition provides a new and successful way of
enabling interoperability among different web applications. In this paper, an
approach to the implementation and reuse of orchestration and choreographies’
functional patterns by using aspect-oriented techniques is provided. The
interaction patterns are implemented as abstract aspects, to specialize them in
the contexts where they could appear, without the need of knowing or
modifying the code of the services composed, thus improving modularity,
scalability and flexibility in the compositions, whilst allowing reusability of the
different patterns previously invoked.

1. Introduction

Web Services composition has become the new way to compose various applications
through the Web, originating the appearance of the two new terms orchestration and
choreography [1]. They refer to two different ways of managing business
connectivity, and have arisen in a moment in which many companies have begun to
incorporate Web Services to their deployments.

Many languages have been proposed and discussed for Web Services composition,
but among them we can only stress two within Web Services: BPEL4WS [2] and WS-
CDL [3]. To start with, BPEL4WS (Business Process Execution Language for Web
Services) allows users to describe the control logic for coordinating different Web
Services, which takes place in a process flow; it is mainly focused on permitting
orchestrations to be defined. Alternatively, WSCDL (Web Service Choreography
Description Language) specification is the standard proposal from the W3C, mainly
centered on choreographies. In any case, the boundaries between choreographies and
orchestrations are not very clearly defined and therefore we cannot establish limits for
the given approaches’ application.

Let us consider we have already defined a composition, orchestration or
choreography, and we find the same functional pattern in another context. It would be
desirable to be able to reuse the pattern and simply adapt it to the specific context, not

1 This work has been developed with the support of CICYT under contract TIC2002-04309-

C02-01.

to have to rewrite the composition code. Furthermore, we do not want all the
composition code scattered and highly coupled to the main application, but to have
different patterns in a modularized way so as to specialize them should they be
necessary. In spite of its being influential to both evolution and maintenance in Web
Services, the market has not proposed a good answer to this matter for the time being,
as the previously mentioned standards do not allow to define independent patterns in
order to reuse them in a later stage. For this reason, we propose composing Web
Services by using Aspect-Oriented Programming (AOP) [4], thus totally decoupling
the various Web Services composed and facilitating service maintenance and
modularization, as well as reusability of their interaction patterns. In this paper we
shall centre mainly on how to apply AOP techniques to Web Service composition and
reuse the interaction logic of the previously defined composition.

The rest of the paper will be arranged as follows: a case study is presented in
Section 2 to identify the aforementioned problems and illustrate the orchestration and
choreography concepts. Section 3 underlines the shortcomings of the case study
implementation using different kinds of tools. Section 4 moves on to outline the way
in which AOP can help to solve these problems. Section 5 shows how AspectJ has
been used for implementing composition interaction patterns, whereas Section 6
shows how to specialize these patterns in a specific context. To finish with, related
approaches are considered in Section 8, and discussion and conclusions are presented
in Section 9.

2. Web Service Choreographies and Orchestrations: our Case
Study

As we previously mentioned, the terms choreography and orchestration are not
clearly discriminated and, depending on the author, they are used with the same or
different meanings. In our view, choreographies refer to the sequence of messages
that may be interchanged among various Web Services, wherein each one describes
its role in the communication and none of the services involved but an external layer
controls the process,. On the contrary, in the case of orchestrations, one of the
services involved in the composition is the one that manages all the interaction logic.

As current Web Services are not prepared to be choreographed and we are not
supposed to be able to modify services’ code, we suggest the use of an auxiliary
service to lead the choreography interaction logic (an alternative when the service
code can be modified can be found in [5]). In this respect, the composition
implementation using aspect-oriented programming is illustrated in both types of
composition with a common case study, which is shown in Figure 1.

Consider that we have a travel agent service offering products as booking a flight
or a hotel. We may be interested in offering a new product which consists of renting
a car with a driver to go from one city to another within the United States, which
would be the operation invoked by the client, carRenting. The cost of the service will
depend on the distance between the two cities. In order to offer the new product we
invoke the operation getDistance in distanceService and each mile is multiplied by
one dollar. The client will then be able to choose the currency for payment, so the

44 G. Ortiz, J. Hernández, and P. J. Clemente

convert operation will be invoked in the currencyConverterService. Finally, the cost
will be paid by credit card, which will be checked by invoking the creditCardService
validateNumber operation. Once this is finished, the client receives the final result.

Fig. 1. Example of an invocation order in a composition

In this case, we would be talking about an orchestration, as our travel agent service
manages the interaction logic to offer this new product. For instance, in Figure 1, the
composition service would be the travel agent service, where we are only showing the
behaviour of one of its operations. If we did not have a travel agent or any other
service to incorporate the new product, but we wished this kind of composition to be
offered, we would be talking about a choreography, where the different services
would be composed but none of them would manage the interaction logic, and so we
should have to create an auxiliary service, whose only purpose would be to offer this
choreography. The composition service in Figure 1 would be this auxiliary service.

3. Composition Implementations

In this section we are going to analyse the advantages and disadvantages of the
composition implementation defined in Figure 1 with two different tools (briefly
described due to space restrictions). First, we will use a general purpose tool and then
we will utilize a tool based on the creation of an XML file that leads the composition.

The first option could be using the Sun tool JWSDP. When we implement the
composition with this tool, both in the case of the choreography and the orchestration,
this implementation does not perform many of the basic mainstay of programming, as
we will briefly go on to argue:

Modularity: The code related to stub creation and services invocations related to
the specific platform used is very strongly coupled in the module, which creates
hard dependences between the composition and the particular platform used.

CLIENT DISTANCE S.
CURRENCY

CONVERTER S. CREDIT CARD S.

carRenting getDistance

getDistance
Response

convert

convert
Response

validateNumber

validateNumber
Response

carRenting
Response

COMPOSITION S.

carRenting

getDistance
Response

convert

convert
Response

validateNumber

validateNumber
Response

getDistance convert validateNumber carRenting

Reusable Web Service Choreography and Orchestration Patterns 45

Reusability: If we wanted to reuse an interaction pattern modelled by the

composition we would have no chance to do so, as all the code related to the

services composed is mixed with the one which models the interaction logic.

Maintenance and evolution: The maintenance of the application is hindered as we
would have to modify our main applications when any change was made in the
remote services. This would result in time wasted due to bad design and therefore

damage in evolution.

To exemplify the second option we have chosen BPEL4WS, as WS-CDL is not so
established, but it is enough to show both types of composition shortcomings. If we
examine the same points we previously analysed for the general purpose tool
implementation, we will find that we have improved as far as modularity,
maintenance and evolution are concerned but we still find some essential aspects not
desirable in an application. Regarding maintenance and evolution, the only drawback
is the need to generate the XML file again when the remote services change.
Concerning reusability, we can only reuse the orchestration completely, as a new
service, provided we have exactly the same requirements in another application, in
which case we would invoke the operations offered by the orchestration.
Nevertheless, we still have no chance to reuse the interaction pattern in other contexts.

4. AOP and Compositions

AOP arises because of the problems detected in Object-Oriented Programming
(OOP). OOP is supposed to permit the encapsulation and modularity of related data
and methods which address a common goal, but this is not always possible. We could
simply have transversal concerns, which cannot be included in the logical structure of
the code by functionality. As a result of these concerns, code is scattered and tangled
all over our application. AOP describes five kinds of elements to modularize these
crosscutting concerns: firstly, we have to define the join point model which indicates
the points where we could include new behaviours. Secondly, we have to define a
way to indicate the specific join points to specify in which points of the
implementation we wish to insert the new code. Next, we ought to determine how to
specify the new behaviour to be included in the join point referred to. We would then
encapsulate the join points and their corresponding behaviours into independent units.
Finally, a method to weave the new code with the original one has to be applied [6].

In any composition a certain order has to be followed when making invocations:
thus, sometimes we will have services which have to be invoked before others, those
which will have to be invoked after others have finished and finally, services which
may or may not be invoked depending on the result of other invocations. AOP allows
us to model these interactions into independent units called aspects, maintaining the
independence among the services composed. As we will see in the next section, while
modelling our composition using these techniques, we can reuse common functional
patterns in different contexts in which they could appear, thus improving our
applications. AOP is also successfully used within the Web Service domain for
implementing non-functional properties at compilation time, as logging or timing, in a
modularized and decoupled way [7].

46 G. Ortiz, J. Hernández, and P. J. Clemente

5. Implementing Functional Patterns with AOP

When the developer considers the possibility of implementing a pattern that can be
reused later in different contexts, he has to decide on the grain of the pattern. In our
example we may adapt to a coarse grain pattern (Figure 2a)), or we could also have
very fine grain one, as shown in Figure 2b). Furthermore, we can have a pool of
typical functional patterns with different grain to be implemented as a composition of
services, as, for instance, a purchase with a previous credit and stock check or related
pursuits based on the result of previous searches, or our case study pattern…, so
patterns can be reused in the different contexts in which they may appear.

Fig. 2. Coarse and fine grain interaction patterns

By using AOP, interaction patterns can be implemented as abstract aspects: we
may define an abstract aspect which describes the interaction pattern for a specific
kind of composition. Both choreography and orchestration have the same abstract
aspect implementing the interaction logic. The difference, as we mentioned before, is:

The interaction logic is linked to a particular method of a specific service which
takes part in the composition in the case of an orchestration.
We have to create an auxiliary service with an auxiliary method, which is linked to
the interaction logic for the choreography to be available.
To illustrate this point, we have represented the pattern in Figure 2b) as an AspectJ

aspect in Figure 3a). This aspect is integrated by the abstract pointcut Renting, which
refers to a general renting operation. As it is an abstract aspect, we still do not have to
specify in which method execution the new code is to be inserted. In the advice linked
to pointcut Renting, the arguments are obtained from the context and used for the
invocation of the abstract classes that represent the remote methods. To implement a
car rental operation, as our example goes, we first have to invoke getDistance, then
getCurrencyConverter and, finally, checkCreditCard, all of them abstract. We do not
need to instruct on the specific services to be invoked nor their operations, since this
will be done when we create the specific aspect that inherits the abstract one.

6. Specializing and Reusing Patterns with AOP

In the very moment we need to implement a specific composition of the case study
pattern, we will inherit the composition pattern from the abstract aspect, as we can see

BOOK
 GET PRODUCT PRICE
 CONVERT THE PRICE BETWEEN CURRENCIES
 CHECK CLIENT´S PAYMENT METHOD
 IF PAYMENT METHOD IS VALIDATED
 BOOK PRODUCT & RETURN BOOKING RESULT
 ELSE
 RETURN ERROR
 END IF
END BOOK

Fig. 2a). Thick grain interaction pattern

BOOK
 GET DISTANCE BETWEEN TWO CITIES
 GET PRODUCT PRICE DEPENDING ON

DISTANCE
 CONVERT DOLLARS INTO OTHER CURRENCY
 CHECK CLIENT CREDIT CARD NUMBER
 IF CREDIT CARD NUMBER IS VALIDATED
 BOOK PRODUCT & RETURN BOOKING

RESULT
 ELSE

 RETURN ERROR

Fig. 2b). Thin grain interaction pattern

Reusable Web Service Choreography and Orchestration Patterns 47

in Figure 3b). Hence, if we want to implement our specific composition case study
using the designed pattern, we have to implement the aspect which extends the
abstract one, specifying the particular stubs of the services involved. We also have to
redefine the abstract operations, getDistance, getCurrencyConverter and
checkCreditCard, now to implement their actual behaviour, invoking the
corresponding operation in the remote services. Finally, pointcut Renting has to be
redefined, indicating the point in which the new code is to be inserted. In the case of
orchestrations, this point is the operation offered in the orchestrator service for
offering this new product. With choreographies, a new service has to be created which
will provide the operation offered by the choreography in question, namely the point
intercepted by the pointcut.

Fig. 3. Abstract and inherited aspects for pattern in Figure 2b)

To sum up, we have a representation of our final proposal in Figure 4, where we
have depicted in bold the abstract interaction pattern, which is the main reusable
element. This pattern could be selected from a pool of available patterns. In this
respect, whenever we want to use the given pattern, we only have to specify the
particular operation our choreography is going to offer or determine the operation
which is going to be used for the orchestration in the main service and extend the
pattern with the specific parameters and operation specifications, both modules being
represented in italics in the said Figure. In this specification we are already linking the
pattern with the remote services involved in the composition, which are the only
elements whose code is not needed for implementing the composition.

abstract aspect OrchesAbstractAspect{

public abstract double getTheDistance(Object[] args);
public abstract float getCurrencyConverter(Object[]
args);
public abstract String checkTheCreditCard(Object[]
args);

abstract pointcut Renting();

String around () : Renting(){
 Object[] args =thisJoinPoint.getArgs();
 Try{
 double DistanceResult= getTheDistance(args);

 if (DistanceResult==-1)
 return ("Distance Service not found");
 else{
 args[args.length()+1]=DistanceResult;
 float ConverterResult=getCurrencyConverter(args);
 if (ConverterResult==-1)
 return ("Currency Converter Service not found");
 else{
 args[args.length()+1]=DistanceResult;
 String CreditCardResult = checkTheCreditCard(args,);
 if (CreditCardResult.compareTo("-1")==0)
 return ("Credit Card Service not found");
 else if (CreditCardResult.compareTo("-2")==0)
 return ("Invalid Card. Amount:"+ ConverterResult;)
 else
 return ("Valid Card. Amount"+ ConverterResult);
 } } } } catch (Exception ex) { ex.printStackTrace(); }}

Fig. 3a). Abstract aspect for pattern in Figure 4b) Fig. 3b). Inherited aspect for the case study

public aspect CarRentingAspect extends
OrchesAbstractAspect {
//code related to the distance stubs creation
//code related to the currencyConverter stubs creation
//code related to the creditCard stubs creation
pointcut Renting (): execution(public * *.carRenting(..));

public double getTheDistance(Object[] args){
 double distanceResult = -1;
 try{
 distanceResult= distance.getDistance(args[1], args[2]);
 }catch(Exception e){e.printStackTrace();}
 return distanceResult;}

public float getCurrencyConverter(Object[] args){
 float currencyConverterResult=-2;
 try{

 currencyConverterResult=
currencyConverter.convert

((float)args[5], "USD",(String)args[4]) ;
 }catch(Exception e){e.printStackTrace();}
 return currencyConverterResult;}

public String checkTheCreditCard(Object[] args){
 String creditCardResult=”-1”;
 try[
 creditResult= creditCard.validateNumber(args[3]);
 if (creditResult==false) creditCardResult="-2";
 else creditCardResult="1"
 }catch(Exception e){e.printStackTrace();}
 return creditCardResult;}

48 G. Ortiz, J. Hernández, and P. J. Clemente

Fig. 4. Diagram of composition pattern reuse with AOP

7. Related work

Web Service composition is a very common research area nowadays, and plenty of
studies can be mentioned on this sphere. Although there are undoubtedly important
infrastructural issues in this field, there seems to be little discussion in the specialized
media on how to use AOP techniques for this functionality.

 First of all, the idea of encapsulating the composition logic can be examined in
various articles. B. Orriëns et al. propose a packaging mechanism, named web
component, for developing applications by combining various existing Web Services
[8]. In contrast to our proposal where only one additional language is needed, they
propound various different stages with their different specification languages.
Otherwise, L. Melloul et al. use high level patterns to abstract composition
functionality with their own framework [9]; however, especially in orchestrations,
they do not decouple the pattern from the main application. Besides, C. Zirpins et al.
propose another mechanism to address different coordination alternatives for Web
Service compositions [10], but mainly focus on the use of coordination policies and
idioms, far from our aspect-oriented proposal.

On the other hand, in the area of aspect-oriented techniques with Web Services we
specially distinguish a paper focused on a new language based on XML, AO4BPPEL,
an aspect-oriented extension for BPEL [11]. A. Charfi et al. use this new language for
implementing business rules in BPEL compositions. In contrast with our proposal
based on languages with wide application support, they need a new weaver for the
proposed language, not available on the Web nowadays. Finally, M.A. Verheecke et
al. suggest the use of a dynamic aspect-oriented language called JAsCo for
decoupling services from the application which invokes them, focusing mainly on the
client side [12]. In contrast, our proposal uses a general use aspect-oriented language
and is not centred on the client side.

7. Discussion and Conclusions

The results obtained in this study show how aspect-oriented programming is really
useful in Web Service composition. Aspect-oriented techniques have been used for
implementing and reusing Web Services composition interaction patterns, and they
have proved to improve their modularity, scalability and flexibility.

SPECIFIC COMPOSITION

OPERATION

ABSTRACT INTERACTION
PATTERN (Fig. 6)

INTERACTION PATTERN SPECIFICATION, LINKING TO SERVICE

ASPECTS AND SPECIFIC COMPOSITION SERVICE (Fig. 7)

SERVICE 1 SERVICE 2 SERVICE 3

Reusable Web Service Choreography and Orchestration Patterns 49

In particular, we have used AspectJ, a very well-known aspect-oriented language,
to illustrate our proposal, and it has provided a good way to modularize and
encapsulate the message exchange, decoupling the services among them and offering
an easy maintenance of the application.
Regarding modularity, all the composition-related code in the aspect is now found
completely modularized, decoupling the remote services entirely from the
implemented application and thus having no trace of scattered and tangled code. As
far as reusability is concerned, it is important to emphasise the possibility of defining
abstract aspects which describe different grain functional patterns. These abstract
aspects can be later inherited from a particular aspect which only has to particularize
the arguments and the specific operations to be invoked in order to implement the
desired composition. Hence, we can have a pool of abstract interaction patterns and
select one of them, should they be necessary in a specific context, which implies a
very important benefit in this field. Finally, we can assert that maintenance and
evolution are more convenient, since we do not have to modify the main application
code at all for changing the services composed, but only the modularized aspect. In
this sense, our application will be more reliable.

8. References
[1] Peltz, C. Web Service Orchestration and Choreography. A look at WSCI and BPEL4WS.
Web Services Journal, July 2003.
[2] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leimann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S. Business Process Execution Language
for Web Services Version 1.1. Microsoft, May 2003.
[3] Kavantzas, N. Web Service Choreography Description Language (WS-CDL) 1.0 Editors
draft. W3C, December 2004.
[4] Kiczales, G. Aspect-Oriented Programming, ECOOP’97 Conference proceedings,
Jyväskylä, Finland, June 1997.
[5] Ortiz, G., Hernández, J., Clemente, P. J.Preparando los servicios web para las coreografías
Proc.I Jornadas Científico-Técnicas en Servicios Web at Congreso Español de Informática,
Granada, Spain, September 2005
[6] Elrad, T., Aksit, M., Kitzales, G., Lieberherr, K., Ossher, H.: Discussing Aspects of AOP.
Communications of the ACM, Vol.44, No. 10, October 2001.
[7] Ortiz, G., Hernández, J., Clemente, P. J. How to Deal with Non-Functional Properties in
Web Service Development, Proc. of the International Conference on Web Engineering, Sydney,
Australia, July 2005
[8] Orriëns, B., Yang, J., Papazoglou, M.P. A Framework for Business Rule Driven Web
Service Composition. Workshop ER Conference, Chicago, Illinois, October 2003
[9] Melloul, L., Foz, A. Reusable Functional Composition Patterns for Web Services. Proc.
Second International Conference on Web Services (ICWS04), San Diego, CA, July, 2004.
[10] Zirpins, C., Lamersdorf,W., Baier, T. .Flexible Coordination of Service Interaction
Patterns. Proceedings at ICSOC04, 2nd Int. Conference on Service Oriented Computing, New
York City, USA
[11] Charfi, A., Mezini, M.. Aspect-Oriented Web Service Composition, Proc. 2004 European
Conference on Web Services (ECOWS 2004), Erfurt, Germany, September, 2004.
[12] Verheecke, B., Cibrán, M..A. AOP for Dynamic Configuration and Management of Web
Services. Procedings International Conference on Web Services, (ICWS-Europe'03) Erfurt,
Germany, September 2003

50 G. Ortiz, J. Hernández, and P. J. Clemente

Engineering Distributed Service Compositions

Thomas Cottenier1, 2, Tzilla Elrad1

1 Concurrent Programming Research Group, Illinois Institute of Technology
3300 S Federal Street, 60616 Chicago, IL, USA

{cotttho, elrad}@iit.edu
2 Software and Systems Engineering Research, Motorola Labs

1300 E Algonquin Road, 60173 Schaumburg, IL, USA
thomas.cottenier@motorola.com

Abstract. Current technologies have difficulties supporting distributed service
compositions, especially transient distributed compositions. This paper dis-
cusses technologies and engineering practices that would enable service col-
laborations to be deployed, refined and customized on-demand, by third parties,
without compromising the safety and the integrity of the service and processes.
Processes that are exposed for late distributed composition need to expose more
information about themselves than processes designed for simple consumption.
Aspect-Sensitive Processes expose a description of their invocation steps. The
actions exposed by this description can be refined by third parties, as long as the
resulting executable processes do not violate the invariants of the process, as
expressed in behavioral interface descriptions. The framework provides a
ground for experimentation with dynamic and distributed workflows, and pro-
poses a common specification language for defining advanced service composi-
tion schemes, such as adaptive choreographies, mobile agents and distributed
aspect-oriented compositions in web service environments.

1 Introduction

Different service composition mechanisms reflect different patterns of mutual rela-
tionships between organizations.

Service composition languages such as the Business Process Execution Language
(BPEL) [8] are centralized orchestration languages. A BPEL engine controls all mes-
sage exchanges between an organization and its partners. It is therefore suited to im-
plement master-slave value chain relationships, between a dominant organization and
supply and distribution partners.

As organizations further specialize, and relationships are established between part-
ners that participate in other value chains, more decentralized collaborations develop
between organizations. They form value networks, where organizations relate with
each other in a more peer-to-peer manner. Each value chain might have its own speci-
ficities. It might require from the partners that they support a specific security or
transactional integrity protocol, or support a particular conversation protocol. There-
fore, partners are pressed to implement processes that adapt the services they provide
to the specificities of each value chain. Within a value network, a value chain in-
volves several coordinated processes. The value chain does not have a single center of

control anymore. We say that the service composition is decentralized [1]. Decentral-
ized compositions are implemented by coordinating the BPEL processes of the par-
ticipants. A choreography description is a specification of how these processes are
coordinated. It specifies the conversations that take place between partners.

The emergence of more dynamic value networks, such as trading communities,
forces the returned value of the relationships to be obtained over a small amount of
interactions, with short term partners. The benefit of participating in virtual communi-
ties lies in the large number of potential interactions, and the variety of available
services and resources. Yet, partners need to accommodate a very loosely coupled and
dynamic environment. Participants need the ability to quickly establish new relation-
ships with peers. They need the ability to mutually adapt their processes to make
conversations compatible, in a competitive timeframe.

Current service composition mechanisms are not suited for this kind of environ-
ments. For now, distributed service compositions can only be established through
explicit consultation between the participating parties. Distributed compositions are
therefore only deployed between long term partners, for specific cooperative business
applications.

This paper discusses technologies and engineering practices that would enable dis-
tributed compositions to be deployed, refined and customized on-demand, by third
parties.

2 On-Demand Choreography Deployment

2.1 Traditional Choreography Deployment

Distributed composite services can only be deployed after an offline agreement be-
tween the collaboration partners is reached.

Within a distributed composition, we can identify two distinct business partner
roles: one initiator party and one or more reactive parties. The initiator party is the
partner that gets the most value out of the composition. This party publishes the end-
points of the composite service. Typically, reactive parties deploy custom processes at
the request of the initiator party, in order to satisfy his requirements.

At the request of the initiator party, domain experts of the different domains meet,
and negotiate the conversations to be supported by their processes. These agreements
are described in a choreography model, expressed in a language such as the Choreog-
raphy Description Language (WS-CDL) [6] [7]. A choreography model describes the
observable sequence of message exchanges between the peers that participate in the
collaboration, viewed from a global perspective. The responsibilities of each party are
defined by a behavioral interface model. It describes the view of the choreography
description from the perspective of a single partner. It complements the structural
interface of the services (WSDL) by defining dependencies between the different
interactions of the collaboration. It also specifies the policies (security, transactional
dependencies, etc) and the responsibilities of the party in the service collaboration.

Each party then implements the individual orchestration processes that conform to
the choreography agreement. An orchestration model details the communication

52 T. Cottenier, and T. Elrad

actions and the internal actions in which a service engages to implement its behav-
ioral interface. Internal actions include invocations of internal software modules and
data transformations. Orchestrations are executable by an engine, and are expressed in
an orchestration language such as the BPEL [8].

Behavioral interfaces can be automatically generated from a choreography descrip-
tion, and orchestration skeletons can be generated from behavioral interfaces [6]. In
the next sections of the paper, it is also assumed that it is possible to check whether
the orchestration of an existing process conforms to a behavioral interface. It is there-
fore possible to detect situations where an orchestration does not meet the require-
ments that are expected by its partners, or whether a process violates essential invari-
ants.

2.2 Inter-Process Coupling

The traditional approach to choreography deployment introduces coupling between
the participant processes. We identify two different kinds of inter-process coupling:
- Conversational coupling: The business logic conversations couple the processes

deployed by the reactive parties tightly to the processes of the initiator party. They
are highly specialized for use in a specific context, and are very unlikely to be use-
able outside the scope of the collaboration.

- Protocol coupling: The collaboration commits to a specific security or transac-
tional integrity protocol such as WS-Trust or WS-Transaction. Many of these
specifications are not standardized and are still evolving. The logic that integrates
these concerns within the collaboration is tangled with the business logic of the
processes [2]. Tangling impedes the maintainability of the processes.

2.3 On-Demand Choreography Deployment

Conversational coupling can be addressed by enabling the initiator party to choreo-
graph existing reactive processes to build a composite service that fits its require-
ments. The reactive parties do not have to deploy a custom executable process for
each of the collaborations they participate in. Rather, they deploy more generic virtual
processes, which can be refined by the initiator into more specific executable proc-
esses. Conversational coupling is thereby reduced, because the reactive parties are
oblivious to the more specific conversations deployed by the initiator.

Protocol coupling can be addressed by decomposing the service collaboration into
a set of collaboration layers [3]. Each collaboration layer encapsulates a specific con-
cern within the application, such as security or transactional integrity. The implemen-
tation of these layers is defined with respect of the business logic of the application.
This decomposition allows the initiator to swap the protocols being used when
needed, and enables the reactive parties to be oblivious to the non-functional require-
ments of the initiator. Figure 1 depicts the decomposition of a distributed application
into a business logic layer and a layer that handles the coordination of the application

Engineering Distributed Service Compositions 53

with CAF [9]. Layered decomposition proceeds by transparently hooking the roles of
each party within the protocol at the right locations in their executable processes.

Fig. 1. Decomposition of a distributed composition into distinct collaboration layers

Both process refinement and layered decomposition require the initiator to have the
ability to inspect and refine the processes exposed by the reactive parties. Process
inspection requires part of the reactive processes to be visible to the outside world.
Process refinement necessitates the ability to deploy data mapping operations into the
processes and the ability to refine the default control and data flow of the process.

The data mappings to be performed can be derived from the structural interfaces of
the service endpoints. They can therefore be generated semi-automatically from the
WSDL’s of the participating services in an open standard format, such as XSL.

Finally, the executable processes resulting from the process compositions and re-
finements should not compromise safety, and should not violate the essential proper-
ties of the processes defined on the host. It should therefore be possible to validate the
executable processes generated from the compositions against specifications that
constraint the behavior of the processes.

3 Executable Choreography Framework

The Executable Choreography Framework (ECF) [4][5] introduces a language to
specify process refinements and a platform extension to enable runtime refinement
and composition of processes. Process refinements operate on Aspect-Sensitive Proc-
esses (ASP’s). An ASP provides an abstract description of a reactive process and is
associated to a set of behavioral interfaces, which constrain the executable processes
that can be composed from the ASP. Figure 2 depicts the different components of the
ECF.

A B C D

S2

WS-CAF

Business logic

Crosscut

54 T. Cottenier, and T. Elrad

Fig. 2. Components of the Executable Choreography Framework

3.1 Behavioral Constraints

Constraints on the process composition are expressed as behavioral interfaces. These
interfaces define the constraints (control-flow dependencies, data-flow dependencies,
message correlations, time constraints, transactional dependencies, etc.) that must,
may or must not be implemented by the processes composed from the ASP descrip-
tion. These can be derived from existing choreography descriptions, or specifications
such as the Composite Application Framework (WS-CAF) [9] or WS-Trust, by map-
ping the overall collaborations to the roles assumed by the host. These behavioral
interfaces specify what is required from the processes executing on the host. All proc-
esses composed by third parties need to conform to these specifications. We assume
that the processes that are composed on the domain can be checked for correctness,
with respect to the behavioral interfaces defined on the domain. The formal specifica-
tion of the behavioral constraints on the composition is an area of further research.

3.2 Aspect-Sensitive Processes

ASP’s expose a process description that conforms to the behavioral interface. Process
descriptions are not executable processes. They describe portions of executable proc-
esses, by describing parts of their control and data flow. The internal implementation
details of the executable processes do not have to be revealed. The process descrip-
tion makes public the steps that may need to be refined in order for it to participate in

Aspect-Sensitive
Process

Executable Process

Composition
Engine

ECF
Platform
Extension

External
Choreography

Request

Engineering Distributed Service Compositions 55

new collaborations. All steps of the process description are hooks where new actions
can be introduced. For example, the default process description is composed of three
sequential actions, the reception of a request message, followed by the internal invo-
cation of the service and the emission of the service response back to the requester. A
third party can refine this process, by introducing additional elements of composition
logic, before, after or around these actions.

Each intermediary step of the ASP description needs to be annotated with a WSDL
definition of the type of the data that is expected at that point. This enables third par-
ties to refine the process descriptions and adapt the data transformation steps as to
ensure the type correctness of the process.

Process descriptions can be refined and composed by third parties, as long as the
resulting executable processes do not violate the behavioral interface of the ASP.
Processes that are exposed for later composition by third parties need to expose more
information about themselves than processes designed for simple consumption. They
need to expose a description of their invocation process, and the structural interfaces
(WSDL’s) of their internal processing steps.

3.3 Executable Choreography Language

The Executable Choreography Language (ECL) is a XML-based language to define
refinements on the default control flow of service invocation and execution. Given a
choreography description, either provided as an activity diagram or a WS-CDL speci-
fication, the ECF partitions the distributed workflow into ECL rules. ECL rules spec-
ify a set of actions to be performed when a message of interest is intercepted within a
target process. For clarity purposes, XML ECL rules are represented in a graphical
notation, as shown in Figure 3. It is composed of an activity context declaration, an
event pattern, a set of conditions and an action:
1. CONTEXT: An Activity Context declaration uniquely identifies the rule. At

runtime, the context encapsulates information that relates to a distributed activity.
Activity contexts are propagated transparently from node to node, along the in-
teractions of an activity.

2. EVENT: An Event expression defines when the rule should be applied. Any
action exposed by the ASP can be intercepted. See the ACTION section for the
list actions that can be intercepted. An event expression defines a pattern on the
signature of the messages to be intercepted at that point.

3. CONDITION: The condition clauses identify the activities for which the refine-
ment of the control flow should be applied. Interactions of an activity are dis-
criminated based on their activity context information. See section 3.4.

4. MODIFIER: A modifier specifies when the rule behavior should be applied. The
rule actions can execute either Before, Around (Instead) or After the events cap-
tured by the event pattern.

5. ACTION: The ECF takes control over the thread of execution of the service
invocation or execution. The actions authorized by the ECF are:
- Compound Action: Actions can be composed into named compound actions,

using the sequence, fork, join, decision and merge control flow operators.
- Accept Request/Response Action: wait for a request or a response message.

56 T. Cottenier, and T. Elrad

- Send Request/Response Message Action: send a service request or response.
- Invoke Service Action: invoke the functionality of a local resource
- Set Timer Action, Reset Timer Action and Accept Time Event Action: tim-

ing actions allow ECL rules to define timeouts and handle faults.
- Data Mapping Action: The SOAP messages intercepted by the ECF can be

transformed according to a XSL specification. SOAP messages can be ag-
gregated and data can be consolidated.

Fig. 3. Graphical representation of an ECL rule

3.4 Executable Choreography Platform Extension

ECF-enabled platforms can interpret ECL rules, and deploy the corresponding control
and data flow logic accordingly, in the native language of the platform. The ECF
platform extension implements 3 distinct functionalities: message interception, trans-
parent activity context propagation and dynamic rule deployment.
- Message Interception: Messages flowing in and out the container can be inter-

cepted within the process, at any point that is exposed by the ASP description.
When a message matches the event pattern of an ECL rule within its activity con-
text, the ECF platform extension takes control over the thread of the service re-
quest or response, and injects the rule behavior, before, after or instead of the in-
tercepted event.

- Activity Context Propagation: The ECF provides transparent context propaga-
tion within a distributed activity. Activity contexts are piggybacked in the head-
ers of the intercepted messages. The ECF platform extension ensures that con-
texts are propagated from node to node, along the interactions of a same distrib-
uted activity. Context propagation helps managing the life-cycle of distributed
activities. The ECF concept of activity context is derived from the Composite
Application Framework (WS-CAF) specification [9].

- Dynamic Deployment: ECL rules can be deployed on remote containers by third
parties. ECF-enabled platforms expose the endpoint of the composition engine as
a Web Service. The context identification of the ECL rule ensures that only ac-
tivities that are initiated by the initiator party can be intercepted by the rule.

Engineering Distributed Service Compositions 57

4 Conclusions

This paper discusses techniques to enable service collaborations to be deployed, re-
fined and customized on-demand, by third parties, without compromising the safety
and the integrity of the services and processes. Processes that are exposed for late
distributed composition by third parties need to expose more information about them-
selves than processes designed for simple consumption. They need to expose a de-
scription of their execution process and a behavioral interface which constraints the
executable processes that result from third party composition. The framework pro-
vides a ground for experimentation with dynamic and distributed workflows, and
proposes a common specification language for defining advanced service composition
schemes, such as adaptive choreographies, mobile agents and distributed aspect-
oriented compositions in web service environments [5].

Acknowledgment

This work is partially supported by CISE NSF grant No. 0137743.

References

1. Chafle, G., Chandra, S., Mann, V., Nanda, M. G.: Decentralized Orchestration of Composite
Web Services. Proceedings of the Thirteenth International World Wide Web Conference,
New York, NY, USA, ACM Press (2004)

2. Charfi, A., Mezini, M.: Aspect-Oriented Web Service Composition with AO4BPEL.
Proceedings of the European Conference on Web Services, Erfurt, Germany, LNCS 3250
(2004)

3. VanHilst, M., Notkin, D.: Using Role Components to Implement Collaboration-Based De-
signs. In Proceedings of the 11th ACM conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, San Jose, California, United States, ACM Press. (1996)

4. Cottenier, T., Elrad T, Prunicki, A.: Contextual Aspect-Sensitive Services, formal demon-
stration presented at the 4th International conference on Aspect-Oriented Software Devel-
opment (AOSD’05), Chicago, USA (2005)

5. Cottenier, T., Elrad, T.: Executable Choreography Framework, technical report and formal
demonstration to be presented at the 3rd International Conference on Service-Oriented Com-
puting (ICSOC’05), Amsterdam, The Netherlands (2005)

6. Barros A., Dumas M., Oaks P., A Critical Overview of the Web Services Choreography
Description Language (WS-CDL), BPTrends (2005)

7. Web Services Choreography Description Language (WS-CDL) Version 1.0, W3C Working
Draft 17, http://www.w3.org/TR/ws-cdl-10/ (2004)

8. Business Process Execution Language for Web Services, BEA, IBM, Microsoft, SAP and
Siebel Systems, http://www-128.ibm.com/developerworks/library/ws-bpel (2004)

9. Web Services Composite Application Framework (WS-CAF). Arjuna Technologies Ltd.,
Fujitsu Limited, IONA Technologies Ltd., Oracle Corporation, and Sun Microsystems, Inc,
http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf (2005)

58 T. Cottenier, and T. Elrad

Modelling and Analysis of Time-related
Properties in Web Service Compositions

Raman Kazhamiakin1, Paritosh Pandya2, and Marco Pistore1

1 DIT, University of Trento
via Sommarive 14, 38050, Trento, Italy

{raman,pistore}@dit.unitn.it
2 Tata Institute of Fundamental Research

Homi Bhabha Road, Colaba, Mumbai 400 005, India
pandya@tifr.res.in

Abstract. In this paper we present an approach for modelling and an-
alyzing time-related properties of Web service compositions defined as a
set of BPEL4WS processes. We introduce a formalism, called Web Ser-
vice Timed State Transition Systems (WSTTS), to capture the timed
behavior of the composite web services. We also exploit an interval tem-
poral logic to express complex timed assumptions and requirements on
the system’s behavior. Building on this formalization, we provide tools
and techniques for model checking BPEL4WS compositions against time-
related requirements. We perform a preliminary experimental evaluation
of our approach and tools with the help of the e-Government case study.

1 Introduction

Web services provide the basis for the development and execution of business
processes that are distributed over the network and available via standard inter-
faces and protocols [1]. Service composition [2] is one of the most promising ideas
underlying Web services: new functionalities can be defined and implemented
by combining and interacting with pre-existing services. Different standards and
languages have been proposed to develop Web service compositions. Business
Process Execution Language for Web Services (BPEL for short) [3] is one of
the emerging standards for describing a key aspect for the composition of Web
services: the behavior of the service.

BPEL opens up the possibility of applying a range of formal techniques to
the verification of the behavior of Web services, and different approaches have
been defined for verifying BPEL [4–7, 13]. We are interested in particular in those
techniques that are applied to the verification of BPEL compositions: in this case,
we have to verify the behaviors generated by the interactions of a set of BPEL
processes, each specifying the workflow and the protocol of one of the services
participating to the composition. Correctness of these compositions requires not
only the satisfaction of qualitative requirements (e.g. deadlock freeness), but also
of quantitative properties, such as time, performance, and resource consumption.

Time-related properties are particularly relevant in this setting. Indeed, in
many scenarios we expect that a composition satisfies some global timing con-
straints, which can be satisfied only if all the participating services are com-
mitted to respect their own local timing constraints. Consider for instance an
e-government scenario, where the distributed business process requires the com-
position of information systems and functionalities provided by different de-
partments or organizations. The composite service can comply with the timing
commitments w.r.t. the state regulations (e.g., the duration of document analy-
sis phase) only if they are consistent with the time required by the participants
to carry out their part of the process.

In this paper we present an approach for modelling and analyzing time prop-
erties of WS compositions defined by a set of BPEL processes. We want to stress
the fact that the time properties we want to model and analyze are those that
are critical from the business logic point, i.e., they refer to the time required by
the participants to carry out their tasks and take their decisions, and to the as-
sumptions and constraints on these times that guarantee a successful execution
of the composition scenario. In e-government scenarios, their times are measured
in hours and in days. The “technical” times, which are required, for instance, by
the communications among BPEL processes and by the BPEL engines to man-
age incoming and outgoing message, are orders of magnitude smaller (seconds if
not milliseconds) and can be neglected in the scenarios above.

This work is based on previous results on the untimed verification of BPEL
compositions [8]. In that framework, implemented as a part of the Astro project
toolkit (http://www.astroproject.org), the BPEL processes are encoded as
State Transitions Systems (STS), and then their composition is verified using
NuSMV model checker. In this paper, we define the formalism of Web Services
Timed Transition Systems (WSTTS), extending STS to allow for modelling the
timed behavior of a composition. WSTTS are closely related to timed automata
but incorporate design decisions and features consistent with the Web service
composition. We also demonstrate how the duration calculus logic can be ap-
plied for the modelling of complex timed requirements in the domain, and adapt
Quantified Discrete-time Duration Calculus (QDDC) [9] to perform a verifica-
tion of WSTTS models under these requirements. The verification is carried out
by first reducing the WSTTS models and the QDDC formulae to finite state au-
tomata [9], and then by encoding these automata in the language of the NuSMV
[10] model checker. The latter is then invoked to verify the desired property.

The paper is structured as follows. In Sect. 2 we introduce the e-government
case study that describes the problem of analysis of time-related properties. The
formalism of WSTTS model, the representation of time-related properties, and
DC logic are discussed in Sect. 3. Section 4 discusses the implementation of the
analysis approach and experimental results, and Sect. 5 presents conclusions.

2 Case Study: e-Government Application

We illustrate our approach with the real e-government application. The goal of
the application is to provide a service that manages user requests to open sites

60 R. Kazhamiakin, P. Pandya, and M. Pistore

Procedure
Manager

Political
Board

Technical
Committee

Secretary
Service

Waste
Management

Office

Citizen Service

Initial
Request

Register
Protocol

Preliminary
Notification

Evaluate
Documents

Prepare
Integration

Public
Notification

Receive
Notification

Provide
Integration

Receive
Notification

Collect
Integration

Start
Procedure

Invoke
TC

Technical
Analysis

Verify
Reviews

Conference
Call

Send
Acts

Provide
Evaluation

Provide
Evaluation

Receive
Acts

Provide
Decision

Receive
Decision

Within 30 dd
after the

registration

Final Call

Change
Date

Within 30 dd
after the

registration

Within 30 dd
after the

registration

Within 30 dd after the
registration, and at least 10

dd before the conference

Within 5
dd

Conference

Within 90 dd after
the first call

Within 30
dd

At least 5 dd before
the conference

* * * * *
<receive name=“receive reviews" operation="submitReview"

partnerLink="TechCommPL"/>

<empty name=“verify reviews"
duration=“lessEqual(3D)”/>

<flow name=“conference call">
<invoke name="Customer Call" operation="sendCall"

partnerLink="CustomerPL"/>
<invoke name="TechComm Call" operation="sendCall"

partnerLink="TechCommPL"/></flow>

<pick name=“date modification">
<onMessage operation="modifyDate"

partnerLink="CustomerPL" >
<empty name=“verify preferred date”/>

</onMessage>

<onAlarm name=“modification timeout” for="PT5D">
<empty name=“calculate date”/>

</onAlarm></pick>

<flow name=“final call">
<invoke name="Customer Call" operation="sendFinalCall"

partnerLink="CustomerPL" variable="finalCallMsg"/>
<invoke name="TechComm Call" operation="sendFinalCall"

partnerLink="TechCommPL" variable="finalCallMsg"/>
</flow>

* * * * *

Fig. 1. Waste management application processes

for the disposal of dangerous waste. According to the existing Italian laws, such
a request involves the interaction of different offices of the public administration,
namely a Citizen Service, a Waste Management Office (WMO), a Secretary Service,
a Procedure Manager, a Technical Committee, and a Political Board. In this ap-
plication, the whole procedure is implemented as a composition of Web services
that serve as interfaces to the processes of the above offices. We model the com-
position using BPEL specifications to describe partners interactions. The high-
level choreography model of the request management procedure is presented in
Fig. 1. The procedure describes different phases of the application management
where the request is registered, the documentation is evaluated and collected,
tha application is analyzed regarding the ecological impact of the site, the public
conference is scheduled and organized, and final decision is provided.

Apart from the functional requirements, the execution of the process in the
choreography should respect a set of timing requirements and constraints, dic-
tated by Italian laws or by the agreement among the involved parties. These
requirements (callouts in Fig. 1) specify, for example, that the period of time be-
tween the application registration and the notification of the Procedure Manager
should not exceed 30 days, or that the participants can change the date within
5 days after the preliminary call.

The behavior of the composition and the possibility to satisfy these require-
ments depend on the time needed for the execution of the activities the involved
parties are responsible for. The critical parameters here refer to the duration of

Modelling and Analysis of Time-related Properties in Web Service Compositions 61

internal activities of the participants, and not to the communication time, which
can be neglected.

The analysis of time-related aspects of the compositions requires explicit
representation of timeouts, operation durations, and even complex properties
expressing various timing requirements. While timeouts can be represented in
BPEL, durations and timing requirements can not, and require specific way to be
modelled. In our framework, we assume that the answer times are negligible by
default, and that activities that have a non-negligible duration are annotated in
the BPEL specification with an extra “duration” attribute. In Fig. 1 an excerpt
of the annotated BPEL is represented. Here a BPEL event handler “date modi-
fication” is used to model 5-days bound for the conference data change. That is,
the onAlarm activity is triggered if the user does not invoke the “modifyDate”
operation within 5 days. On the contrary, the internal activity “verify reviews”
is equipped with a duration annotation to express that certain time may be used
for the reviews analysis. Timing requirements, however, can not be represented
with durations associated to the activities and require more powerful notations.
Consider, for instance, the requirement that the interval from the registration to
the conference call should not exceed 30 days, and it is followed by the interval
of length of at least 10 days, ending with the conference.

In order to be able to handle such aspects, it is necessary to provide model
of the BPEL process behavior that allows for an explicit representation of time.
Moreover, it is necessary to exploit and adapt the existing analysis techniques for
reasoning about time to our problem domain. In the following sections we demon-
strate how these issues can be addressed with the help of the WSTTS model,
the duration annotations and duration calculus for complex time requirements.

3 Web Service Timed Transition System Model

In order to model the behavior of the BPEL process compositions, we propose
the Web Service Timed Transition System (WSTTS) model, which adopts the
formalism of timed automata for capturing the aspects specific to the Web service
domain. In this formalism, the fact that the operation takes certain amount of
time is represented by time increment in the state, followed by the immediate
execution of the operation. In order to guarantee that the transition will take
place at the right moment of time, the states and transitions of timed automata
are annotated with the invariants and guards of the special clock variables.

Intuitively, WSTTS is a finite-state machine equipped with set of clock vari-
ables3. The values of these clock variables increase with the passing of time. A
Web service composition thus is represented as a network of several such au-
tomata, where all clocks progress synchronously. In this model, the states of the
WSTTS are equipped with the state invariants that express simple conditions
over clocks and should be true when the system is in the state. Analogously,
transitions are annotated with the set of guards that represent simple conditions
3 It is also equipped with the set of non-timed variables of finite domains. For the sake

of simplicity, we omit them in the formalism.

62 R. Kazhamiakin, P. Pandya, and M. Pistore

over clocks, and resets that are used to reset values of certain clocks to zero.
The semantic of WSTTS is defined as a transition system, where either the time
passes or a transition from one state to another immediately takes place.

Let X be a set of clocks. The constraints on the clock values Φ(X) are of the
form true | x ∼ c | φ1 ∧ φ2, where ∼∈ {≤, <,=, �=,≥, >}, x ∈ X, and c ∈ T,
a domain of time values.

Definition 1 (WSTTS). WSTTS is a tuple (S, s0, A, Tr, Inv), where

– S is the set of states and s0 is the initial state;
– A is a set of input ?m, output !m or internal τ actions;
– Tr ⊆ S × A × Φ × 2X × S is the set of transitions with an action, a guard,

and a set of clocks to be reset;
– Inv : S → Φ(X) assigns invariants to the states.

In the definition, the effect of the transition from the state s to s′ is to perform
a communication or an internal action a ∈ A, and to reset set of timers to zero.
The transition is possible only if the guard evaluates to true in the source state.

A clock valuation is a function u : X → T from the set of clocks to the
domain of time values. Let TC denote a set of clock valuations. Let u0(x) = 0
for all x ∈ X. We write u ∈ Inv(s) to denote that u satisfies Inv(s).

Definition 2 (Semantics of WSTTS). Let (V, S, s0, A, Tr, Inv) be a WSTTS.
The semantics is defined as a labelled transition system (Γ, γ0,→), where Γ ⊆
S × TC is a configuration, γ0 = (s0, u0) is an initial configuration, and →⊆
Γ × {A ∪ tick} × Γ is a transition relation such that:

– (s, u) tick−→ (s, u + d), if (u + d) ∈ Inv(s), and
– (s, u) a−→ (s′, u′), if exists a transition (s, a, φ, Y, s′) ∈ Tr, such that u ∈ φ,

u′ = u[Y
→ 0], and u′ ∈ Inv(s′).

We define a Web service composition as a WSTTS network. The WSTTS
network consists of n WSTTS Pi over common set of clocks X. The semantics
of the network is given in terms of global timed transition system (GTTS). We
use s̄ = (s1, . . . , sn) to denote a state vector, s̄0 to denote an initial state vector,
and s̄[si/s

′
i] to denote a state vector, where the element si is replaced by s′i.

Definition 3 (GTTS). Let (X,P1 ‖ · · · ‖ Pn) be a WSTTS network. Global
timed transition system has the form (Γ, γ0,→), where Γ ⊆ 〈S1×· · ·×Sn〉×TC ,
γ0 = (〈s01, . . . , s0n〉, u0), and →⊆ Γ × {A ∪ tick} × Γ is a global transition
relation:

– (s̄, u) tick−→ (s̄, u + d), if (u + d) ∈ ∧iInvi(si);
– (s̄, u) τ−→ (s̄[si/s

′
i], u

′), if there exists (si, τ, g, Y, s′i) ∈ Tri, s.t. u ∈ g, u′ =
u[Y
→ 0], and u′ ∈ ∧iInvi(si);

– (s̄, u) m−→ (s̄[si/s
′
i, sj/s

′
j], u

′), if there exists (si, ?m, gi, Yi, s
′
i) ∈ Tri and

(sj , !m, gj , Yj , s
′
j) ∈ Trj, s.t. u ∈ gi ∧ gj, u′ = u[Yi ∪ Yj
→ 0], and u′ ∈

∧iInv(si).

In other words, the transition of GTTS is either a time passing transition, an
internal transition of a particular WSTTS, or a shared communication action of
two WSTTS.

Modelling and Analysis of Time-related Properties in Web Service Compositions 63

x:=0

x<=0

x:=0

x<=a

x=a

gt<=a

gt=a

x:=0

x<=0

x~a

x~aA

instant transition onAlarm for="a" onAlarm until="a" dur(A) ∼ a

Fig. 2. Time-related constructs as WSTTS

Mapping BPEL constructs to WSTTS. We now give the definition of
BPEL constructs in terms of the WSTTS formalism (see Fig. 2). We remark
that, by default, all the activities of the underlying BPEL process are modelled
as instantaneous. The fact that a particular activity may have certain duration is
expressed explicitly through duration annotations that allow to specify bounds
of the activity duration4.

In this way all internal and message output activities are modelled as instant.
Such a transition is semantically equivalent to adding an extra clock x to the
source state of the transition, and the invariant of the state is x<=0. Hence, time
can not pass in the source state of the instant transition. Input activities do
not require such an addition, since they are blocked until corresponding output
takes place, and therefore time can pass.

BPEL also defines activities that explicitly reference time. In particular, the
activity onAlarm is used to represent timeouts and is modelled as an event
handler. This activity has two forms: in the first it is fired when certain time
passes (in Fig. 1 it is used in event handler to set up a 5 days timeout for the
date modification); and in the second it is fired if the current absolute time has
the specified value5. We model this absolute time using a special clock added to
the WSTTS network model, namely global timer. It is set to a certain value in
the beginning of the execution, and is never reset later.

As we mentioned above, it is possible to specify certain duration for the activ-
ity. In this case the activity is explicitly annotated with the duration constraints
(e.g. duration of activity “verify reviews” in Fig. 1). Such constraints are con-
junctions of the clauses of the form dur(A) ∼ c, where ∼∈ {<,>,≤,≥,=}. In
the WSTTS formalism this annotation is semantically equal to the sequence of
two transitions. First transition is instant and it resets the clock x. The second
transition and the intermediate state have the guards that evaluate to true, if
the value of the clock x satisfies the duration constraints.

Specifying Time Requirements. While the constructs described above en-
able the explicit coding of simple time-related properties of WS compositions,
we often encounter complex timing requirements which are hard to model with
above constructs. Such requirements may express the time intervals between
events (or a sequences of events), time bounds on some condition to hold or
even complex logical combinations on them.
4 We stress once more that our goal is to analyze the time properties that are crit-

ical for the business logic, and neglect the smaller “technical” times due, e.g. the
communications.

5 Another BPEL activity that deals with time is the activity wait. This activity is
blocked for certain time period and is translated into WSTTS analogously

64 R. Kazhamiakin, P. Pandya, and M. Pistore

In order to express such properties we exploit a subset of duration calculus
(DC) [11]. It allows us to express properties of finite sequences of behaviors and
to measure the duration of a given behavioral fragment.

Let P range over propositional variables, D,D1,D2 over DC formulae, c over
natural number constants, and ∼∈ {<,≤,=, >,≥, }. The DC formula syntax is:

D := �P �0 | ��P � | D1
�D2 | D1 ∧ D2 | ¬D | len ∼ c

DC formulas are evaluated over finite behaviors, i.e., over finite sequences of
valuations of propositional variables V AL(Pvar)∗.

The constructs above have the following intuitive meaning:

– �P �0 holds for the behavior consisting of a single state satisfying P ;
– ��P � requires P to hold at all but the last states of the behavior;
– D1

�D2 splits the behavior into two subintervals, such that D1 holds for the
first subinterval, and D2 holds for the second one;

– D1 ∧ D2 requires both formulas to hold, while ¬D requires that D is not
satisfied on the behavior;

– len ∼ c relates the duration of the interval with the constant value c.

Additionally, we write �D = true �D �true, if D holds for some subinterval
of the behavior; �D = ¬�¬D denotes, that D holds for all subintervals.

The requirement that the interval from the protocol registration to the con-
ference call should not exceed 30 days, and that from the call to the conference
at least 10 days should pass, can be expressed with the following formula:

�(�registration�0 �true ��conference�0 → (len ≤ 30) ��call�0 �(len ≥ 10))

The formula says that every interval of the behavior that starts with the regis-
tration and ends with the conference consists of two subintervals with the call
in between, such that the first lasts at most 30, and the second at least 10 days.

4 Implementation of Timed Analysis

We have implemented the ideas presented above as a prototype tool that allows
for the timed analysis of Web service compositions. The tool inputs the initial
composition of BPEL processes, enriched with the duration constructs, together
with complex properties and translates it into the specification suitable for the
formal techniques, such as model checking. In this implementation we adopt
discrete model of time, and use (subset of) Quantified Discrete-time Duration
Calculus [9] to express complex time requirements under this model. Under
certain conditions the dense model of time may be analogously implemented.

The tool performs the transformation of the composition into the finite state
automata representation and reflect the operational semantics of the global TTS
given above. The clock variables are represented as global integer variable that
synchronously increment their values when the time elapse transition happens.
A special tick variable is used to denote this event. The results of [12] ensure that

Modelling and Analysis of Time-related Properties in Web Service Compositions 65

for discrete time model the clock variables may be bounded without affecting
the behavior of the system and therefore the resulting specification is finite.

The complex timing requirements are used in the composition analysis in the
following ways. First, the composition specification M can be directly verified
against a property represented with the QDDC formula D. For this purposes we
construct an finite state automaton A that recognizes all and only the behaviors
that satisfy the formula ¬D ([9]). If the synchronous (i.e. lock-step) product
(M ×A(¬D)) of the specification and the automaton for the property negation
is not empty, then the behavior of the composition violates the property D.
Second, the complex time properties may express assumptions or constraints on
the system behavior. In this case the tool builds a product (M × (A(D1)×· · ·×
A(Dn))) of the specification and the properties automata. This product restricts
the specification model to behaviors that satisfies all the specified constraints.
One can use this product for further analysis of the composition (e.g. for CTL
or LTL model checking).

In order to illustrate the approach represented in the paper we have con-
ducted a set of experiments on the analysis of the presented case study in dif-
ferent settings. In particular, in one set of experiments we assigned different
bounds on the activity durations, and checked the composition for the dead-
locks. Another set of experiments dealt with complex requirements expressing
the bounds on intervals between various events (e.g. between application reg-
istration and conference call). The requirements were verified directly, or were
used to model behavioral constraints. We have used the NuSMV model checker
for verifying the corresponding finite state automata model. In the experiments
the state space ranges from 1011 to 2 × 1012 states, and the verification time
ranges from 0.6 to 15 seconds. Whenever the property is violated, the model
checker generates a counterexample that represents an execution demonstrating
the violation (e.g. a trace where both registration and conference call happened,
but the time between these events was greater then the required bound).

5 Conclusions

We presented an approach for modelling and analyzing of time-related prop-
erties on Web service compositions defined by a set of BPEL processes. This
approach is based on the formal model, Web Service Timed Transition Sys-
tem, that allows to take into account timed behavior of such compositions. We
demonstrated how BPEL time-related constructs can be expressed in this for-
malism and presented a way to express time-related requirements using both
simple modelling constructs or complex DC formulas particulary suitable for
expressing such properties. The presented approach enables verification of WS
compositions using model checking techniques.

The problem of the WS compositions analysis, in particular of BPEL processes,
is investigated in the works of [4–7, 13]. While providing facilities for the verifica-
tion of processes or their compositions, these approaches do not take time-related
properties of composition behaviors into account. The work that is closer to ours

66 R. Kazhamiakin, P. Pandya, and M. Pistore

is presented in [14]. In this work, a formal model of BPEL processes, µ-BPEL,
is presented that allows for mapping to a network of timed automata. However,
[14] does not provide a way to explicitly specify the transition or state dura-
tion bounds, or complex time-related assumptions and requirements as those
we model with DC formulas. In [15] temporal abstractions are exploited for the
compatibility and replaceability analysis of Web service protocol. In that model
one can specify when certain transitions must or may happen, similarly to what
we achieve with our duration annotations. The work does not address the prob-
lem of the verification of these time properties and the abstractions are simple
with respect to the set of properties we can express in our approach.

There are several directions for further research. In particular, we are working
on the optimizations of the translations from BPEL to NuSMV code and appli-
cations of better analysis techniques that give a possibility to drastically improve
the verification performance. Another line of research is to replace NuSMV with
a model checker, such as UPPAAL, that can verify timed properties without
requiring the generation of FSA.

References

1. Graham, S., Simenov, S., Boubez, T., Daniels, G., Davis, D., Nakamura, Y.,
Neyama, R.: Building Web Services with Java: Making Sense of XML, SOAP,
WSDL and UDDI. Sams (2001)

2. Khalaf, R., Mukhi, N., Weeravarana, S.: Service Oriented Composition in
BPEL4WS. In: Proc. WWW’04. (2004)

3. Andrews, T., Curbera, F., Dolakia, H., Goland, J., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I., Weeravarana, S.: Business Process
Execution Language for Web Services (version 1.1) (2003)

4. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of web
service compositions. In: Proc. ASE’03. (2003)

5. Nakajima, S.: Model-checking verification for reliable web service. In: Proc. OOP-
SLA’02 Workshop on OOWS. (2002)

6. Narayanan, S., McIlraith, S.: Simulation, Verification and Automated Composition
of Web Services. In: Proc. WWW’02. (2002)

7. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: Proc.
WWW’04. (2004)

8. Kazhamiakin, R., Pistore, M.: Parametric Communication Model for the Verifica-
tion of BPEL4WS Compositions. In: Proc. WS-FM’05. (2005)

9. Pandya, P.: Specifying and Deciding Qauntified Discrete-time Duration Calculus
formulae using DCVALID. In: Proc. RTTOOLS’01. (2001)

10. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic
model checker. Int. Journal on STTT (2000)

11. Chaochen, Z., C.Hoare, Ravn, A.: A Calculus of Durations. In: IPL. (1991)
12. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. (1994)
13. Pistore, M., Roveri, M., Busetta, P.: Requirements-Driven Verification of Web

Services. In: Proc. WS-FM’04, ENTCS. (2004)
14. Geguang, P., Xiangpeng, Z., Shuling, W., Zongyan, Q.: Towards the Semantics

and Verification of BPEL4WS. In: Proc. WS-FM’04, ENTCS. (2004)
15. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On Temporal Abstractions of

Web Service Protocols. In: Procs of CAiSE Forum. (2005)

Modelling and Analysis of Time-related Properties in Web Service Compositions 67

68 R. Kazhamiakin, P. Pandya, and M. Pistore

Invocation Order Matters: Functional Feature
Interactions of Web Services

Michael Weiss1, Alexander Oreshkin1, and Babak Esfandiari2

1 School of Computer Science, Carleton University, Canada
weiss@scs.carleton.ca, oreshkin@comnet.ca

2 Department of System and Computer Engineering, Carleton University, Canada
babak@sce.carleton.ca

Abstract. This paper proposes a method for detecting feature interactions re-
lated to the functionality of a composite web service. There are several impor-
tant ways in which functional features of Web Services can affect each other
through interaction. A feature interaction is an undesirable side effect of the
composition of services (also known as features in this context). There are vari-
ous causes for interactions, including race conditions, violation of assumptions,
goal conflicts, and invocation order. We have categorized the sources of feature
interactions among web services in related work. In this work, we present the
results of ongoing work on the formalization of functional interactions between
web services. In our approach we use on labeled transition systems to model
service compositions. These models are analyzed using the LTS Analyzer to de-
tect undesirable feature interactions. As a specific example, we look at invoca-
tion order as a source of functional feature interaction.

Keywords. Validation and verification, service composition, causes of feature
interaction, invocation order, and labeled transition systems.

1 Introduction

Service-oriented approaches promise to provide businesses with the freedom they
need to serve their customers no matter what software or hardware configuration their
clients are using. With this technology, businesses would be able to adapt quickly and
easily to changes that occur both on the client as well as the business-side.
Business services are implemented as functional software features. These features

are then made accessible to other businesses as distributed software components. (Of
course, services also have non-functional properties, but it is not yet standard practice
to include these in the service interface.) However, rapid changes in the services due
to the dynamic nature of businesses can lead to undesirable results and poor service
quality, when these services are interacting with each other in undesirable ways.
In the literature this problem has been studied as the feature interaction problem.

The problem of undesirable interactions between components of a system can occur
in any software system that is subject to changes. However, the problem itself and

approaches to address it have been largely unknown outside a small community of
people specialized on the design of telecommunication switches. However, some
progress has been made recently towards explicitly modeling and analyzing feature
interaction in other domains [4, 5]. Undesirable side effects of web service composi-
tion as feature interactions have first been described in [6], and further developed in
[7]. In [8], we presented a classification of feature interactions among web services.
Feature interactions are interactions between independently developed features,

which can be either intended, or unintended and result in undesirable side effects. In
[6] we make a distinction between functional and non-functional interactions. This
distinction reflects that many of the side effects affect service properties such security,
privacy, or availability. However, our focus in this paper is on functional feature
interactions, which have not been covered in earlier work on feature interactions
among web services. These include race conditions, violation of assumptions, goal
conflicts, and invocation order. These are also the categories of interactions that have
traditionally been studied by the feature interaction community.
The hierarchical architecture of building larger services from smaller services, to-

gether with object-oriented principles such as encapsulation and information hiding,
creates many challenges in dealing with service interactions. It is thus desirable to
develop formal approaches to modeling web services and detecting problematic inter-
actions. The approach presented in this paper is based on Labeled Transitions Systems
(LTS). Similar work has been presented, for example, in [1]. What our work adds is a
model of the type of interactions to expect, and ways of detecting them.
The interaction models are analyzed using the LTS Analyzer (LTSA) [3] for viola-

tion of properties that we can specify. The LTSA tool uses well-established model
checking techniques based on state-space exploration to automatically analyze proper-
ties of models. This approach lays a foundation for developing a formalized method-
ology to address the feature interaction problem in web services.

2 Feature Interaction Problem

The feature interaction problem first appeared in the domain of telecommunications
[2]. The problem concerns coordination of feature interactions such that their coop-
eration yields a desired result. Many hundreds of features can interact directly or
indirectly and can affect each other’s behavior. Some interactions are desirable, while
other interactions can lead to undesirable side effects such as an inconsistent system
state, an unstable system, or data inaccuracies.
As web services technology matures, it is becoming crucial to manage the interac-

tions among web services. The feature interaction problem is presenting new chal-
lenges for the web services domain. Causes for functional feature interactions in web
services have been categorized as following [8]:

� Race conditions. A race condition occurs between multiple components of a
composite web service (which we will refer to as feature in line with the feature
interaction terminology), when the outcome of executing the service depends on
timing delays (also known as glitches) between the executing of features.

70 M. Weiss, A. Oreshkin, and B. Esfandiari

� Violation of assumptions.Web service developers need to make some assump-
tions about how a web service will be used by service consumers (including
other web services). When service consumers break those assumptions, the serv-
ice may no longer operate correctly. Similarly, the expectations of consumers
may be violated by the implementation of a service.

� Order of invocation. The correct operation of a composite web service may
also depend on the order of invocation of some of its features. The service may
assume a certain order in which events will take place. If a service consumer
breaks this order, the correctness of the results is no longer guaranteed.

� Competition for resources. Service consumers may be competing with each
other through access to limited resources on a service provider. Examples of
such resources are: disk space, memory, CPU, network bandwidth, database ac-
cess, etc. The correctness of one consumer may be compromised by the interfer-
ence of tan other that is using more than its share of resources.

� Goal/policy conflicts. Each feature has a specific task or goal it is trying to
achieve, or policy that is follows. When there is only one web service, there is
one goal or policy. However, when services are combined into a higher-level
service, each with its own goals or policies, it may be that the goals or policies
of these services are in conflict, and we cannot guarantee their achievement.

� Encapsulation/information hiding. If encapsulation is used, service consumers
are not aware the inner workings of service providers. This necessarily means
that consumers must make some assumptions about providers. If those assump-
tions are wrong, the correct operation of the service is questionable.

3 Feature Interactions in a News Service

To provide a concrete idea of how functional feature interactions can arise, we will
look at a specific interaction of web services. For the example, we first present the
web services involved, giving a description of each web service and its main features.
Then, we illustrate and discuss the feature interaction problems arising.
This is one of several scenarios we looked. The other scenarios included a reserva-

tions system, a remote environment management system, and a supply chain. Each
example illustrated different types of interactions: race conditions, violation of as-
sumptions, conflicting goals, information hiding, and order of invocation. However,
in this paper, we deliberately focus on order of invocation as one type of interaction
for a better exposition of the approach in the limited space provided.
Consider a News service that provides clients with access to full-text articles on a

pay-per-view basis. It uses a News Catalog service as a source of recent headlines and
articles. A service that wants to use the News Catalog service must also use a Logging

service associated with News Catalog. It needs to provide payment information with
each request for the body of an article, which will be logged. At the end of each bill-
ing period, News Catalog will use the log maintained by the Logging service to compile
a statement and charge the client’s credit card (or similar) for their usage.

News Catalog provides two features, Get Headlines and Retrieve Article. The features
of the Logging service are Log and Get Log. The News service provides the Get News

Invocation Order Matters: Functional Feature Interactions of Web Services 71

and Get Article features. It also has a Cache feature, which is used in the implementa-
tion of Get Article. The intent of this feature is to avoid charging a user more than once
for retrieving the same article, and to speed up the retrieval of full text articles. It
maintains a single cache of the most recently retrieved articles. When a client requests
an article, the Get Article feature executes. If the article is not in the cache, an external
request is made to the News Catalog service, and the article is retrieved and subse-
quently cached. If the article is in the cache, then it is immediately returned to the
client, and no external request to the News Catalog service is made.
As described, News Catalog relies on the information provided in the log maintained

by Logging. As part of the usage contract between News Catalog and a service con-
sumer such as News, the service consumer must record all article requests made by the
client with Logging. News Catalog relies on this log for charging clients for their usage.
However, the News service also contains a Cache feature, which saves recently ac-
cessed articles. When a user requests to read an article that happens to be saved in the
cache, the article is retrieved from the cache instead of from the News Catalog.
A manual analysis of this scenario tells us the only those client requests are being

logged for which the requested article is not found in the cache. In the article is found
in the cache, the requests are not being logged. What is worse is that no one is
charged for those requests except the very first client that caused this article to be
cached. So it is possible to gain access to an article for free (as long it stays in the
cache). This is an example of a feature interaction due to an incorrect invocation or-
der. The behavior of the service depends subtly on when requests are logged. This
could occur either before (no interaction), or after the cache is inspected (interaction).
The situation demonstrated here also demonstrates another type of undesirable fea-

ture interaction between services, which occurs due to the information-hiding nature
of web services. The essence of the problem from the point of view of the News Cata-

log service is that it is unaware of the Cache feature present in one of its service con-
sumers, the News service. It (incorrectly, it turns out) expects that all requests for
articles made by the clients of the consumer services will be logged with the Logging

service associated with the News Catalog. It does not expect that these consumer serv-
ices have mechanisms that will prevent some of the requests from being logged.

4 Formal Analysis of Feature Interactions

For larger composite web services, which may exhibit many potential feature interac-
tions, the manual analysis described for the example is not feasible. It is, therefore,
desirable to perform the detecting problematic interactions using formal approaches.
Our approach is based on Labeled Transitions Systems (LTS), a form of state ma-
chine for the modeling of concurrent systems, in which transitions are labeled with
action names. For small systems a LTS can be analyzed using a graphical representa-
tion of the state machine description, but for large number of states and transitions, an
algebraic notation for describing process models is required.
Such a notation is provided by FSP (Finite State Processes) [3]. The LTS Analyzer

(LSTA) [3] supports the analysis of a system described in FSP to verify that the LTS
model satisfies specified safety and progress properties. Informally, a property is an

72 M. Weiss, A. Oreshkin, and B. Esfandiari

attribute of a program that is true for every possible execution of that program. A
safety property is a statement of what is considered to be a correct execution of the
system. If anything happens in the system that goes against the specifications of the
safety property, the system is considered to be in error. A progress property asserts
that some part of the system will eventually execute. A common example of a viola-
tion of this property is a deadlock. The analysis of a system is based on (exhaustive)
state-space exploration. Its main benefit is that can be automated, thus avoiding the
inherent error introduced when using manual methods.
An FSP model comprises a collection of constant definitions, named processes,

and named process compositions. FSP offers rich syntactic features including guards,
choices, variables, and index ranges. It supports action non-determinism and process
parameters. In the LTS analysis that follows, our goal is to detect the invocation order
problem given a model of the News service in FSP, and a definition of safety proper-
ties that have to hold. Fig. 1 shows an FSP model of the News service features.

// Logging service
LOG = (log_request-> LOG | get_log-> LOG).

// News Catalog service
CATALOG = (get_article-> CATALOG | proccess_billing-> BILLING),
BILLING = (log.get_log->process->CATALOG).

// Cache feature for the News service
CACHE = (add_article->NON_EMPTY_CACHE),
NON_EMPTY_CACHE = (add_article->NON_EMPTY_CACHE |
retrieve_article->NON_EMPTY_CACHE).

// The News service
NEWS_SERVICE = (request_article-> CHECK_CACHE),
CHECK_CACHE = (cache.found->cache.retrieve_article->NEWS_SERVICE
| cache.not_found->ACCESS_CATALOG),
ACCESS_CATALOG = (log.log_request->catalog.get_article->
cache.add_article->NEWS_SERVICE).

Fig. 1. FSP model of the News service features

The main concern from the point of view of correct logging is, that for every article
request there should be an invocation of the Logging service, which will log that article
request. We express this concern as a safety property as shown in Fig. 2.

// Check that each request for an article is logged.
property P = (request_article->log.log_request->P).

Fig. 2. Safety property for the News service

Finally, the composite process that represents the News Catalog service and the
News service interacting is expressed simply as shown in Fig. 3

Invocation Order Matters: Functional Feature Interactions of Web Services 73

// Composite process that represents the News service
||NEWS = (NEWS_SERVICE || cache:CACHE || catalog:CATALOG ||
log:LOG || P).

Fig. 3. Result of composing the News Catalog and the News service features

The composite process includes the safety property P. Using the LTSA, we can
perform a safety check analysis to see whether the property can be violated. The trace
will tell us, if there is a sequence of events, where a client request for a news article is
not properly logged. Performing this safety check, we get the result in Fig. 4.

Trace to property violation in P:
request_article
cache.not_found
log.log_request
catalog.get_article
cache.add_article
request_article
cache.found
cache.retrieve_article
request_article

Fig. 4. Result of safety check analysis

The trace of events demonstrates that there is a situation, where the safety property
is violated. This happens when a client requests an article, and then another client
requests the same article. Since the article was cached after the first request, the next
time it was retrieved from the Cache instead of from the News Catalog service. This
analysis reveals that the cache feature of the News service can cause problems, when it
is paired with the incorrect order of the Logging service invocation.
The graphical representation of the News service can provide us with additional in-

sight in the scenario that led up to the feature interaction. Fig. 5 shows the LTS for the
News service, indicating (in red) the violating transition (request_article).
Although our focus in this paper was on order of invocation types of interactions,

the situation demonstrated at hand can also be characterized as an undesirable interac-
tion that occurs due to the encapsulation or information hiding nature of web services.
The essence of the problem from the point of view of the News Catalogue service is
that it is unaware of the Cache feature present in one of its service consumers, the
News service. It expects that all article requests made by the clients of the consumer
services will be logged with the Logging service associated with the News Catalogue. It
does not expect that these consumer services have mechanisms that will prevent some
of the requests from being logged. This is an example where an interaction can be
described as both a functional, as well as a non-functional feature interaction.

74 M. Weiss, A. Oreshkin, and B. Esfandiari

Fig. 5. LTS for the News service

5 Conclusion

LTS modeling of web services can be a significant aid in developing a formal meth-
odology for functional feature interaction problems detection. Rather than modeling
the feature interactions explicitly, it was only necessary to model the main aspects of
behaviour of each web service, and to define safety properties that detect assumption
violations, race conditions, and incorrect order of invocation types of interactions.
One advantage of using this approach is that we can detect potential feature inter-

actions before web service implementation. Any undesirable interaction that is identi-
fied at this stage saves us the cost of correcting those errors during the implementa-
tion. By developing LTS models of web services and instrumenting them with appro-
priate safety and progress properties we are able to detect interactions automatically
using the LTSA tool. LTSA can not only detect the presence of a feature interaction
problem, but also find the exact sequence of events that leads to the problem.
A well-known problem with LTS analysis is the explosive nature in which the

number of states increases. This may limit the size of systems that can be analyzed,
even after optimizations such as state hiding [3] have been applied. Another issue is
that the safety and progress properties have been developed to target specific known
interaction problems. However, currently there is no systematic process for develop-
ing these properties to detect unknown interaction problems. Here, we rely on the
completeness of our understanding of the types of interactions that can occur. Also,
algebraic notations such us the pi-calculus should be explored.
Future work will include the application of the approach to larger case studies. For

example, we are currently investigating its application to a supply chain. The potential
interactions in these kinds of systems are significantly more complex, in particular,
because we are not focusing on isolated interactions, one at a time. In our earlier
work, results were also determined for the other classes of feature interactions prob-
lems (that is, race conditions, violation of assumptions, competition for resources,
goal conflicts and information hiding), but mostly in isolation. We are also interested

Invocation Order Matters: Functional Feature Interactions of Web Services 75

in extending the work on offline detection to the detection of feature interactions at
runtime, and ultimately, their runtime resolution. This would be of great relevance to
situations where web services are dynamically composed.

References

1. Foster H., Uchitel S., et al, Compatibility Verification for Web Service Choreography,
International Conference on Web Services (ICWS), IEEE, 738-741, 2004.

2. Keck, D, and Kuehn, P., The Feature and Service Interaction Problem in Telecommunica-
tions Systems, IEEE Transactions on Software Engineering, 779–796, 1998.

3. Magee, J., and Kramer, J., Concurrency: State Models and Java Programs, Wiley, 1999.
4. Pulvermüller, E., Speck, A., et al (2001), Feature Interaction in Composed Systems,

ECOOP Workshop on Feature Interactions in Composed Systems, Technical Report 2001-
14, 1-6, Universität Karlsruhe, Fakultät für Informatik.

5. Turner, C.R., Fuggetta, A., et al, A Conceptual Basis for Feature Engineering, Journal of
Systems and Software, 49:1, 3-15, December 1999.

6. Weiss, M., and Esfandiari, B., On Feature Interactions among Web Services, International
Conference on Web Services (ICWS), 88-95, IEEE, 2004.

7. Weiss, M., and Esfandiari, B., On Feature Interactions Among Web Services, International
Journal of Web Services Research, 2(4), 21-45, October-December, 2005.

8. Weiss, M. and Esfandiari, B., Towards a Classification of Web Service Feature Interac-
tions, International Conference on Service-Oriented Computing (ICSOC), LNCS,
Springer, 2005 (to appear).

76 M. Weiss, A. Oreshkin, and B. Esfandiari

Behavioural Verification of Service Composition

Pascal André, Gilles Ardourel, Christian Attiogbé

LINA - CNRS FRE 2729, University of Nantes
Gilles.Ardourel@univ-nantes.fr

Abstract. In this work, we present a model for the definition, the com-
position and the verification of services. In this model, the services are
bound to components. The composition of components results in the
interaction of services. An inconsistency in this interaction foretells the
failure of the service composition. The contributions of this work are: i) a
formalism that allows a flexibility in the description and the composition
of services: optional behaviours, optional sub-services and renaming; ii)
service interfaces enriched with behavioural informations that contribute
to the early detection of service incompatibilities; iii) the verification of
the behavioural compatibility of service composition. The verification
process is based on LTS techniques; we reuse existing verification tools.

1 Introduction

The development of large scale applications requires modular approaches such as
Service Oriented Computing [11, 12] or Component Based Software Engineering
[9]. In both approaches, the success depends on the availability of: expressive
languages for the elements (services and components) and their composition [2,
11], tools for checking the correct usage of the elements, and tools for managing
reliable element libraries. As a partial answer, we propose a component model to
describe services and service composition. One component offers services which
may be called by another component service. We also study the means for ver-
ifying the correct usage of these services. Indeed, it is important to detect the
defects which could lead to a faulty behaviour of a developed system early in
the development. A bad interaction between a called service and the calling one
may lead to a blocking of the whole system. To ensure the desired properties
(correctness, compatibility, composability...) we need formal descriptions of the
services. In our model, the service providers are explicitly represented as com-
ponents but service implementation is left out. The use of an abstract formal
model makes it possible to hide the implementation details of the components
in order to have general reasoning techniques which are adaptable to various
implementation environments. The EJB and CORBA-based approaches [6] are
not dealt with.

Our approach is based on a simple formalism for modelling and composing
services and components. A component is viewed and used only through its ser-
vices which constitute its behavioural interface. The use of service is central to

2

the verification of compatibility when assembling components because the com-
ponents are ”connected” by their services. The contributions of this work are:
a formalism that allows a flexibility in the description and the composition of
component and services: optional behaviours, optional sub-services and renam-
ing; service interfaces enriched with behavioural informations that contribute to
the early detection of service incompatibilities; the verification of behavioural
compatibility of service composition.

This article is organised as follows. Section 2 overviews the kmelia formal-
ism. Section 3 describes the composition of services in our formalism and the
desired properties. Section 4 details the verifications that are done during the
composition. We conclude by a short discussion in Section 5.

2 The Kmelia Model

The Kmelia model is a component model based on services. A Kmelia speci-
fication describes services, components and compositions. A service encodes a
functionality. A component provides services and may require other services (to
supply the provided services). A composition links a set of components by their
services.

The main features of Kmelia are: the encapsulation of services in components;
the enrichment of interfaces that allows an early detection of service composition
errors; the flexible description of the service behaviour.

2.1 Component, Services and Sub-services

In Kmelia the service is the basic concept (services perform functions) while the
component is a modular structuring unit that encapsulates services and allows
a fine control of when and by which services they can be called. The separation
between services and components allows system models with partially supported
services (some services work and others do not). The component defines a shared
entity for services (namespace, data, sub-services, constraints). The component
provides an interface made of provided services and required services (from some
abstract service provider). Consequently the component defines internal services.

Kmelia defines some minor services (called sub-services) that can only (and
optionally) be called during a transaction with another service. These sub-
services can be shared in a component. Sub-services can be used in place of
parameters or to introduce some flexibility in a service protocol. For instance in
Figure 1, the main service requires a chat service that can ask for a password.
The use of a passw sub-service has several benefits:

– it separates the password protocol from the main service protocol, enhancing
readability and reuse;

– it allows the control of the points where the password can be asked;
– it can be easily replaced by another password protocol;
– it allows the service to work even if the password is not asked.

78 P. Andre, G. Ardourel, C. Attiogbe

3

2.2 Enriching Interfaces of Services

The interface of a service serv is made of a signature, a precondition, a post-
condition and sets of service names (subprovides, extrequires, calrequires...). The
subprovides set contains the names of the sub-services.The two others are two
kinds of required services names. In Kmelia we distinguish two kinds of service
dependencies: external and caller dependencies. The former (extrequires) is quite
usual and establishes that a service needs other ones in order to work. The former
(calrequires) is explicitly required from the caller of the service serv.

Following is the code of the interfaces of the service main which requires a
chat service and provides a sub-service passw, which in turn needs an identifi-
cation service (idserver) from its caller.

Service main

Interface

subprovides : {passw}

extrequires : {chat}

...

end

Service passw : String()

Interface

calrequire : {idserver}

...

end

2.3 Specifying Flexible Behaviours with eLTS

A service is formally specified with a 5-uple 〈σ, P, Q, V,B〉 where σ is the service
signature, P is the precondition, Q is the postcondition, V is the set of local vari-
ables and B is the extended labelled transition system (eLTS) which describes
the service behaviour.

The service behaviour B provides details on the interactions between services
and the order in which these interactions may occur. Formally B = 〈S,L, δ〉
where S is the set of states, L is the set of transition labels and δ ∈ S×L → S is
the transition relation. The labels on transitions (which concrete form is: is--
lab-->fs) are combinations of actions which may be internal actions or interac-
tions. An internal action is a computation (elementary action or a composition
of internal actions) that does not involve other services. An interaction denotes
an exchange on the service link (service channel). In Figure 1, the composition
defines such a link between the required service Client.chat and the provided
service Server.chat.

The syntax of an interaction is: channel(??|!!|!|?)message(param*); it is
inspired by the Hoare’s CSP language. The message can be a service call (??),
a service result (!!) or a synchronous communication (send !, receive ?). When
writing a behaviour, one does not know which components will communicate,
but one has to know the channel on which it will take place. The channel is
defined when the components are composed but its name depends on the service
interface. The placeholder keyword CALLER is a special channel that stands for
the channel opened for a service call, otherwise it is the required service name.
The following descriptions are the behaviours of the services main and passw in
the Kmelia syntax.

Behavioural Verification of Service Composition 79

4

Service main

Variables # local to the service

c:Boolean

Behavior

init e0 # e0 is the initial state

final e6 # e6 is a final state

{ e0 -- _chat!!chat --> e1,

invocation of the chat service on its channel (named chat)

e1 -- _chat!login(myLogin) --> e2, # sending the login

e2 <passw>, # specifies callable sub-services on node e2

e2 -- c:=_chat?cnx --> e3,

#ask for the result of the connection

e3 -- [not c] nop --> e5,

e3 -- [c] _chat!message("hello world") --> e4,

e4 -- _chat!message("\stop") --> e5,

e5 -- _chat??chat --> e6 #wait for end of service chat

}

end

Service passw () : String

gives the client’s password to a trusted server

Variables # local to the service

trustserv : boolean, #is the server a trusted one ?

id : integer

Behavior

init e0 # e0 is the initial state

final f # f is a final state

{ e0 -- __CALLER!!idserver --> e2,

e2 -- __CALLER??idserver(id) --> e3,

calls the identification service of the caller

e3 -- trustserv:=isTrusted(id) --> e4,

isTrusted is an elementary action here

e4 -- [trustserv]__CALLER!!passw(myPwd) --> f,

e4 -- [not trustserv]__CALLER!!passw("") --> f

sends the code as a result of the service

}

end

The chat!!chat is a (required) service call on the implicit chat channel.
The CALLER!!passw(myPwd) is a result of service. You can see a notable differ-
ence between the above code and the eLTS of Figure 1: all channels are explicit.
In many cases, channels can be omitted and deduced either from the context
or from default rules. This syntactic sugar is not currently implemented in our
prototype.

In an eLTS the states may be annotated with sub-services. It means the sub-
services may be launched from this state and the control returns to this state
when the launched sub-service is terminated; for example calls to the service
passw are enabled only in the third state of the start service. Such a notation
allows flexibility (optional sub-services), service sharing and LTS size reduction.

80 P. Andre, G. Ardourel, C. Attiogbe

5

[c]!message("hello world")

Client.main=

c:=?cnx

!login(myId)

<passw>

!!chat

[−c]

!message("/stop")

??chat

main

Server.idserver=

!!idserver(myid)

idserver

Server.chat=

?uid=login

chat

!!passw

<idserver>

p:=??passw

v:=checkpassw(p)

[−v]!cnx(true)

?msg=message

!!chat

[msg="\stop"]

[−v]!cnx(false)

Client.passw=
passw

!!idserver

id:=??idserver

trusted:=isTrusted(id)

!!passw("")

[−trusted] [trusted]

!!passw(myPwd)

SERVER ComponentCLIENT Component

[msg<>"\stop"] send(msg)

passw passw

main
chat

idserver

chat

idserver

Fig. 1. Composition of chat services of two components

3 Service Composition

In Kmelia we distinguish two kinds of composition. The first one encapsulates
services in a single unit while the second one composes services from different
components.

Encapsulation of Services in a Component A component that encapsulates sev-
eral services should have the following properties: at least one service should be
provided and it should be visible; every service of the unit should be callable,
either directly or indirectly (via another service); every sub-service in a service
interface must be callable at some point during the service evolution; no service
can have itself as a sub-service; the sets of external required services and caller
required services of a service must be disjoint.

Composition of Components Two or more components may be composed by
linking their provided and required services to build larger components. There-
fore a composition of services is the result of the link of the required services
and provided services from different components. The composition of services is
the support for interaction between the components. It is only at composition
time that the channels are resolved according to the links declared between the
components. Each linked service is then defined as the communication context
of an other.

Behavioural Verification of Service Composition 81

6

For the composition to be effective, several properties should be satisfied:
(Static) Interoperability properties: compatibility of signatures and interfaces
(naming, typing and compatibility of pre and post conditions); Behavioural com-
patibility: absence of deadlocks in the communication.

4 Behavioural Verification of Services

Formal verification of services may be performed according to various aspects.
We generalise the three levels of interoperability of Yellin&Strom [13] to four
levels of conformity: service signatures, enhanced service signatures (sub-services
may be participant of a service), contracts (pre/post conditions) and behaviours
(the correct interactions between the caller service and the called service). In the
following, we focus the verification on static interoperability (level 1 and 2) and
behavioural compatibility (level 4).

4.1 Interface Compatibility

The first step of the verification of the behavioural compatibility is a pairwise
comparison of behavioural interfaces. In Kmelia the interface of a component
contains the sets of provided and required services (with the naming and typ-
ing informations); additionally, informations on required or called sub-services
are attached to the service interfaces. In a similar way, these informations are
available for the service descriptions. Accordingly, the static analysis of the in-
terface of a component is achieved by using: i) simple correspondence checking
algorithms and possibly standard typing algorithms; ii) deep investigation on
the availability of required or called sub-services. At this stage, we can detect
several incompatibilities such as missing sub-services, signature mismatch. . .

4.2 Behavioural Compatibility

The behavioural compatibility between services is a widely studied topic [13,
7, 3]. Behavioural introspection (discovering the component behaviour) is one
way to deal with behavioural compatibility; but one has to prove compatibility.
Checking behavioural compatibility often relies on checking the behaviour of a
(component-based) system through the construction of a finite state automaton.
However the state explosion limitation is a flaw of this approach [3].

In Kmelia the behaviour of the component relies on the behaviours of its
services. Therefore the component interacts correctly with its environment if its
services are compatible with the other services. The main concern is to check that
a given service interacts correctly with another one (which may be provided by
a third party developer). The interaction between services may involve not only
two but many services. But we consider only one caller service and one called ser-
vice at time. Remind that each service is described with a transition system; the
transitions are labelled with: service calls, elementary actions, guarded actions
and communication actions (messages).

82 P. Andre, G. Ardourel, C. Attiogbe

7

A service is behaviourally compatible with another one if their eLTSs are
matching: they evolve independently or they perform complementary commu-
nication actions. That is the basis of our compatibility analysis approach. This
approach is the widely used one [13, 3, 4]; but we adapt it to a more expressive
LTS used in our model. A complete interaction between the services of several
components results in a pairwise local analysis between the eLTS of a caller and
that of the called service. Indeed, two eLTS interact until a terminal state if their
labels are in correspondence according to a protocol that we have defined. The
protocol is a set of rules based on the labels of the transitions available from a
current state. The rules indicate the correct evolutions according to the current
states of involved services and the labels of the transition: either independent
evolution or a communication involving complementary actions from the peers.
After a final state of a called service, the caller may continue with independent
transitions or with transitions that imply other (sub-)services.

The ideas presented here are put into practice with the LOTOS/CADP Tool-
box [8]. We defined a policy to translate our service behaviours into LOTOS
processes. In this translation, all interactions are considered as communications
between processes. Thereafter we use the LOTOS communication facilities to
deal with behavioural compatibility. A similar experiment has been conducted
with the MEC[1] tool.

5 Discussion and Perspectives

We have presented an abstract component model and a formalism that per-
mit the flexible description of interacting services which are defined as extended
labelled transition systems. This model supports service composition and com-
ponent composition. A chat example involving two components is presented and
it illustrates an interaction between composed services and their accompanying
sub-services.

Unlike most of existing approaches [13, 3, 5] where a component has a be-
haviour (called a protocol), we argue for a model were the provided services,
defined as LTS, have their own behaviour. This moves up the granularity for the
use of components and increases the usability of components by considering a
service level. When our service behaviours are reduced to combinations of mes-
sages, we get the low level of usability found in the aforementioned approaches.

The study of compatibility at the component behaviour level is central to
CBSE approaches and has motivated number of works [13, 7, 3, 5] and applica-
tions to web-services [4]. We build on these works but we extend the study to
encompass the granularity considered here for services and components. Our ap-
proach allows for a local verification of the behavioural compatibility between
composed services. Experiments are performed with the approach using existing
toolboxes. Compared to related works [3, 10], our approach works at the abstract
specification level, it offers a more flexible formalism than the ones proposed by
[13, 3, 4] for the description of interacting services. We adopt a pairwise verifi-
cation approach that avoids state explosion like in [3]. We can extract several

Behavioural Verification of Service Composition 83

8

collaborations a la Yellin&Strom [13] from a single of our service behaviours
which interweaves collaborations on different channels and allows optional calls
of services.

The perspectives of this work are: to reinforce the correctness properties of
component with supplementary study of correctness of components and services
with regard to their environment; to extend the COSTO (Component Study
Toolbox) prototype under development to cover mechanised analysis concerns.
The prototype already integrates parsers, translators to LOTOS and MEC, static
and dynamic interoperability checkers. However we lack a graphical interface to
guide and assist the user. Then we will propose an open source delivery of the
toolbox.

References

1. P. Crubillé A. Arnold and D. Bégay. Construction and Analysis of Transition
Systems with MEC. AMAST Series in Computing: Vol. 3. World Scientific, 1994.
ISBN 981-02-1922-9.

2. M. Aiello, M. Aoyama, F. Curbera, and M. P. Papazoglou, editors. Service-Oriented
Computing. ACM, 2004.

3. P. Attie and D. H. Lorenz. Correctness of Model-based Component Composition
without State Explosion. In ECOOP 2003 Workshop on Correctness of Model-
based Software Composition, 2003.

4. L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two Web Services
Compatible? In TES, pages 15–28, 2004.

5. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-
tion. Journal of Systems and Software, 74(1):45–54, 2005.

6. C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo. Adding roles to
corba objects. IEEE Trans. Softw. Eng., 29(3):242–260, 2003.

7. L. de Alfaro and T. A. Henzinger. Interface Automata. In Proceedings of the
Ninth Annual Symposium on Foundations of Software Engineering (FSE), pages
109–120. ACM Press, 2001.

8. J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP: A Protocol Validation and Verification Toolbox. In R. Alur and T. A.
Henzinger, editors, Proc. of the 8th Conference on Computer-Aided Verification
(CAV’96), volume 1102 of LNCS, pages 437–440. Springer Verlag, 1996.

9. G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A. Szyperski, and
K. C. Wallnau, editors. Component-Based Software Engineering, 8th International
Symposium, CBSE 2005, USA, May, 2005, volume 3489 of LNCS. Springer, 2005.

10. P. Inverardi, A. L. Wolf, and D. Yankelevich. Static Checking of System Behaviors
using Derived Component Assumptions. ACM Transactions on Software Engineer-
ing and Methodology, 9(3):239–272, 2000.

11. M. P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and
Directions. In WISE, pages 3–12. IEEE Computer Society, 2003.

12. M. P. Papazoglou and D. Georgakopoulos. Introduction to service-oriented com-
puting. Commun. ACM, 46(10):24–28, 2003.

13. D.M. Yellin and R.E. Strom. Protocol Specifications and Component Adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

84 P. Andre, G. Ardourel, C. Attiogbe

Static Validation of Business Process

Compatibility in Web Services Choreographies

Agust́ın Cernuda del Rı́o, Jose Emilio Labra Gayo, Daniel Gayo Avello, and
Daniel Fernández Lanv́ın

Departamento de Informática�, Universidad de Oviedo - Asturias (Spain)
{guti,labra,dani,dflanvin}@uniovi.es

Abstract. Many technologies related to software components have a
mostly descriptive purpose. It seems desirable to promote automatic
specification and validation strategies, developing techniques that, from
the descriptions, are able to detect defects in a static manner (before
execution time). Technology transfer is also a main issue to encourage
the adoption of such technologies. It is also necessary to incorporate such
validations into the design and development process, towards the ideal
of correct-by-construction software.

Recent work on web services choreographies may be combined with sim-
ple and affordable verification techniques, making possible to exploit the
descriptive information of the choreographies for the described analysis,
by means of systems which are relatively easy to build.

1 Introduction

Software components initiatives such as COM, CORBA, JavaBeans or web ser-
vices solved basic interoperability infrastructure problems, but did not go too
far in the static verification of component compatibility [1]. Only signature com-
patibility is verified in those models; this was done already in precedents such as
OSF-DCE, by means of the IDL language. In previous work we have developed
a model, Itacio [2] for the static verification of software components, which al-
lows any facet of a component which is suitable for being expressed by means of
Constraint Logic Programming (CLP) to be denoted and used in an automatic
verification system.

At a much higher, coarser-grained level, Service-Oriented Architectures (SOA)
are also a scenario for compatibility verifications. The development of standards
for describing these interactions shows a familiar evolution pattern: there is a
high degree of consensus and adoption of the basic interoperation standards
(HTTP, XML, SOAP, SWDL...) but the scene is less clear in the upper lay-
ers, where several proposals have been made (XLANG, BPML, WSCL, WSCI).
They seem to be reaching maturity in two main lines: BPEL4WS ([3], [4], [5] and

� This work has been funded by Seresco, S.A. and the Principality of Asturias (project
reference: FC-04-PC-39)

WS-CDL [6]. Reasonably, the development of these standards is focusing on no-
tation and expressive power, and not on static verification. This paper proposes
a way for verifying protocol compatibility from WS-CDL and/or BPEL4WS
specifications, and for guiding the development process with such information.

2 Web Services Integration

2.1 Web Services Choreographies

WS-CDL 1.0 is, at this moment, a working draft of the W3C. Its purpose is
the precise description of the collaboration among parties, independent from
the respective implementation details. Verification is not a concern of this stan-
dard, although researchers are proposing different approaches [7] for enriching
descriptive standards with verification artifacts.

Basically, WS-CDL describes a choreography: the collaboration pattern among
the interacting parties, in terms of web services invocations, information inter-
changes, etc. Once this model is agreed upon, the involved organizations can
develop their role independently, according to their implementation interests.
As far as the “global contract” is honoured, the interoperability will be guaran-
teed.

2.2 Web Services Orchestrations

On the other hand, and in contrast, BPEL4WS allows the description of a busi-
ness process in an unilateral way. It is possible to describe:

– Executable processes (BPEL4WS can be translated into an implementation)
– Abstract, non-executable processes

There are different opinions about the meaning of choreography and orchestra-
tion, but we can assume that the orchestration involves mainly the combination
of existing web services to define a new one, whereas the choreography offers a
global framework for the orchestrations to cooperate. The orchestration could
be viewed as an individual, internal business process (Fig. 1).

3 Protocol Compatibility

3.1 Selection of the Theoretical Framework

Several formal models are available for verifying protocol compatibility. CSP
or π-calculus are an interesting option [7]; in fact, there exists a close relation
between WS-CDL and π-calculus, although this has not been formally estab-
lished [8]. In spite of their robustness, formal methods in general have to face
technology transfer problems for their adoption in everyday practice by the in-
dustry.

86 A. Cernuda del Rio et al.

Fig. 1. Modelling web-service-based business processes by means of choreographies
(WS-CDL) and orchestrations (BPEL4WS)

Our proposal, complementary to the initiatives based on formal methods, lies
in the model proposed by Yellin and Strom [9]. These authors define a straight-
forward notation for specifying synchronous protocols, based on state machines.
Given two protocol specifications, algorithms are described for detecting some
kinds of defects. In previous research we have established that both the protocol
description and the compatibility verification algorithms can be easily imple-
mented over a CLP-based inference engine [1].

3.2 The Yellin and Strom Model

Yellin and Strom define a model (that we will call YS model) for complementing
application interface specifications by means of sequence restrictions called pro-
tocols. A protocol makes explicit the relations among the application messages.

Their verification is focused on determining whether two given protocols are
compatible in the sense that their interaction is free from certain kind of errors:
unspecified receptions (that is to say, invocations that were not expected by the
receiver) and deadlocks. For non-compatible protocols, Yellin and Strom describe
how to automatically derive adaptors that make their interaction possible (this
latter aspect is not addressed in the work presented here).

In the YS model collaborations always happen between two parts. This may
seem a severe limitation for dealing with multipart business processes, but com-
plex collaborations can be reduced to their bilateral components. And in our
particular case, the goal is to study the compatibility between a party specifica-
tion in the choreography and the business process defined by an orchestration,
so there are always no more than two operands in each verification.

Following the YS model, a component exposes an interface for each interac-
tion pattern, and such interface has a collaboration specification. This specifi-
cation consists of the interface signature (the set of messages that can be sent

Static Validation of Business Process Compatibility in Web Services Choreographies 87

and/or received) and the protocol (the set of sequence restrictions denoted by
means of a finite state grammar). The protocol is equivalent to a state machine
in which any transition is the result of sending or receiving a message. There are
no gratuituous locks, since a system is not allowed to stay indefinitely in a state
where it can send a message (it will send it sooner or later, making a transition).
The communication in the model is synchronous, because this makes reasoning
about the systems easier.

4 From Specification to Verification

4.1 Fundamentals

The core of our proposal is to establish a correspondence between the control
structures and interface declarations of the business models (both at choreog-
raphy and orchestration levels), on one hand, and the YS model, on the other
hand (that is to say, state machines). Then, Yellin and Strom theory can be
applied to the verification of compatibility between each of the orchestrations
(the particular business process of each party) and the global choreography (the
common interaction agreement). Such correspondence seems feasible, since WS-
CDL is mainly a declarative notation and BPEL4WS processes are basically the
expression of an algorithm as a flow diagram [3]. Figure 2 shows this approach.

Web

service

Organization
Choreography

Compatible
protocols

Orchestration:
Business process

BPEL4WS

Web

service

Web

service

Fig. 2. Verifying compatibility between business processes and global choreography
through protocols

After translating a WS-CDL specification into the YS model, other YS spec-
ifications for each party’s behaviour will be taken (be it directly or as a result
of extracting them from BPEL4WS specifications, depending of the most ap-
propriate strategy for the particular enterprise context). Using these resulting

88 A. Cernuda del Rio et al.

protocols, the YS algorithms can be used for verifying the compatibility between
each business process and the defined choreography.

4.2 Choreography

At the most basic level, WS-CDL activities are organized following sequential,
parallel and alternative structures; other higher-level constructions exist (such
as WorkUnit). Sequential and alternative structures are not an issue, but the
parallel one is a usual source of trouble when state machines are involved [10].
Expressing WS-CDL parallel structures in the YS model could lead to a state
space explosion (some techniques have been proposed to address such prob-
lems [11]).

Having that into account, the first step would be to define a detailed corre-
spondence between the different kinds of interactions in the specification [6] and
the sent and received messages in YS terminology. Other activities of WS-CDL,
such as NoActivity, are internal and do not have much influence in the procotol.

4.3 Orchestration

As for the orchestration, that is, the modelling of business processes of each
involved entity, some details are worth mentioning. The general approach is
similar to that of the choreographies. Leaving aside complex questions, like error
handling, there are:

– Primitive activities (<invoke>, <receive>, <reply>) that can be iden-
tified with messages in the YS model.

– Activities which are not relevant for protocol compatibility, like <empty>.
– Structural activites, like <sequence>, <switch> or <while>, which may

fit comfortably in the YS model.
– Other structural activities, like <pick> or <flow>, that can be troublesome

for their description in the YS model.

The <pick> structure implies a non-deterministic transition. YS model does
not provide a specific notation for this, but it seems that the incoming event that
determines a <pick> transition in the orchestration could be represented as an
incoming message in YS. The <flow> structure brings again the aforementioned
problem with parallel execution; the same considerations exposed for choreogra-
phies essentially apply for orchestrations.

In the case of orchestrations, however, there is a specific question: as shown
in Fig. 2, a BPEL4WS business process may invoke very different web services,
outside the choreography definition. YS model, however, can only perform bi-
lateral compatibility verifications. Hence, some procedure must be provided for
dealing with messages that are not related to some of the two parties involved in
a verification. YS model provides an interesting resource for solving this prob-
lem: it defines the concept of subprotocol, that can be compared to the notion
of subtypes in type systems. A protocol P ′ is a suprotocol of P iff all of the
following statements apply:

Static Validation of Business Process Compatibility in Web Services Choreographies 89

– The initial state of P ′ is the same of P
– Every final state of P is also a final state of P ′

– P ′ can be obtained from P by applying the following operations:
• Adding a set S of new states to P
• Adding a set of new receive transitions to P
• Adding a set of new send transitions to P ′, such that each new transition

begins at one of the new states (the ones belonging to S)

It can be proved [9] that if P1 is a subprotocol of P and P is compatible
with P2, then P1 is compatible with P2. The full business process will contain
additional states, sendings and receptions related to web services that are not
included in the choreography; but if it can be described as a subprotocol of a
protocol wich is, in turn, compatible with the choreography (considering the
interactions with foreign services as internal, irrelevant operations) the compat-
ibility between the business process and the choreography will be ensured.

4.4 Verifiable Subset

So far, some limitations of the YS model as an intermediate representation means
for BPEL4WS and WS-CDL have been remarked, and some possible ways for
solving them have been pointed out. But a different yet appealing approach
would be the definition of a verifiable subset of both notations.

Given any static analysis technology, it is usually not too difficult to formulate
a counterexample which that technology cannot easily process, or which raises
one of the typical decidibility problems. These counterexamples, however, might
not be relevant from a practical, realistic point of view. It is usually acceptable
to establish some limits in the use of programming languages or notations, as a
tradeoff to achieve quality goals1.

When dealing with notations for developing business processes, it may be
also acceptable an initial approach in which some (even significant) limitations
are self-imposed in exchange for automatic verification tools; these limitations
can be removed as new verification techniques are developed. We propose an
approach in which only a verifiable subset of both BPEL4WS and WS-CDL is
used when an automatic verification system is desired.

5 Static Verification as the Foundation of a Design
Methodology

5.1 Building Multiparty Business Processes

With the purpose of incorporating static analysis to the software development
process, the previously defined verification process can be converted into a con-
struction process. First, a verifiable subset of WS-CDL (as described in Sect. 4.4)

1 Structured programming is an obvious example; the development of OWL-Lite be-
cause of decidibility problems in the full OWL is another.

90 A. Cernuda del Rio et al.

will be used for the choreography definition. Once the choreography has been de-
fined and agreed upon by the involved parties, the web services for the business
processes will be developed by a derivation process.

5.2 Deriving Business Processes

The derivation of business processes can rely on another interesting property
of the YS model. Given a protocol P , the inverse protocol P can be defined
from P by inverting the direction of every message, so that sent messages be-
come received messages and vice versa. Although this could not be ensured with
asynchronous semantics, under the synchronous semantics of the YS model it is
guaranteed that P is always compatible with P .

This property of te inverse protocol offers the starting point for a process for
defining the business process of each party, given a choreography (Fig. 3). If a
protocol P (in YS terms) is derived for a party of that choreograpy, the inverse
protocol P may be used as the foundation for the design process (the construction
of the inverse protocol is a well established, fully automatable process). This
inverse protocol may then be altered by the designer by applying transforms to
obtain a final protocol P

′
, provided that the conditions exposed in section 4.3

apply; this will ensure that P
′

is a subprotocol of P . Since a subprocotol is
always compatible with its base procotol, and since the inverse protocol P is
in turn proved to be compatible with the original protocol P , the result of this
derivation is a protocol which, by construction, is compatible with the protocol
denoting the behaviour of a party in the original choreography.

Fig. 3. A development method for designing business processes which are compatible,
by construction, with the agreed choreography

If the transformation between protocols of the YS model and BPEL4WS or-
chestrations is well defined, a business process definition (optionally executable)
can then be inferred from the final subprotocol. Following this procedure, it

Static Validation of Business Process Compatibility in Web Services Choreographies 91

would be possible to build a business process description in BPEL4WS which,
by construction, fits the original contract defined by the choreography, guar-
anteeing at least that there are neither unspecified receptions nor deadlocks
bewteen both sides of the collaboration.

6 Conclusions

It seems possible to develop a verification framework for WS-CDL and BPEL4WS
offering additional guarantees about the robustness of the collaboration and its
implementation, by means of widely available technologies. In this paper, an ap-
proach for verifying protocol-level compatibility (avoiding unspecified receptions
and deadlocks), based on previous work by Yellin and Strom, has been presented.

The notions of inverse protocol and subprotocol of the YS model are the
basis of a method for the reliable development of multipart business processes
(choreographies) at the SOA level. The presented approach emphasizes the idea
of incorporating static analysis technologies for the automatic verification of the
work being done and early error detection.

For the practical application of these ideas, it seems desirable to define a ver-
ifiable subset of the notations involved; the automatic verification will probably
come at the price of some loss of expressive power, but this is a usual tradeoff
in software engineering when quality is prioritized.

References

1. Cernuda del Ŕıo, A.: Sistema de verificación de componentes software. PhD thesis,
Servicio de Publicaciones (Universidad de Oviedo) (2002) ISBN: 84-8317-316-6.

2. Cernuda del Ŕıo, A., Labra Gayo, J.E., Cueva Lovelle, J.M.: A model for integrat-
ing knowledge into component-based software development. In: 4th International
ICSC Symposium - Soft Computing and Intelligent Systems for Industry, Univer-
sity of Paisley, ICSC Academic Press (2001) ISBN: 3-906454-27-4.

3. Weerawana, S., Curbera, F.: Business process with bpel4ws: Understanding
bpel4ws, part 1. IBM developerWorks (2002)

4. Khalaf, R.: Business process with bpel4ws: Learning bpel4ws, part 2. IBM devel-
operWorks (2002)

5. Duftler, M., Khalaf, R.: Business process with bpel4ws: Learning bpel4ws, part 3.
IBM developerWorks (2002)

6. : Web services choreography description language version 1.0. W3c working draft
(2004)

7. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing web service chore-
ographies. (2005) To appear in Electronic Notes in Theoretical Computer Science.

8. Barros, A., Dumas, M., Oaks, P.: A critical overview of the web services choreog-
raphy description language (ws-cdl). BPTrends (2005)

9. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems 19 (1997) 292–333

10. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans-
actions on Software Engineering 28 (2002)

11. Visnovsky, S.: Modeling Software Components Using Behavior Protocols. PhD
thesis, Charles University (Chzec Republic) (2002)

92 A. Cernuda del Rio et al.

Cost-Effective Service Composition

Hakan Hacıgümüş

IBM Almaden Research Center, hakanh@acm.org

Abstract. Service Oriented Architectures (SOAs) provide a standard
platform where applications and other IT resources are distributed and
seamlessly accessible. In such an environment, a solution offering is com-
posed from a set of primitive service components, which is called ser-
vice composition. The selection of service compositions under the system
constraints is a crucial issue both from the technical and the economic
perspectives. In this paper, we investigate the problem of composing ser-
vices to meet the multiple consumers’ business goals while minimizing
the overall delivery cost to the consumers. We model the problem as an
optimization problem and present a formal solution.

1 Introduction

Service Oriented Architectures (SOAs) provide a standard platform where ap-
plications and other IT resources are distributed and seamlessly accessible. Al-
though these applications and resources deliver significant value individually,
a greater value can be derived by combining several services from different
providers. In such an environment, a solution offering is composed from a set of
primitive service components, which is called service composition. Many recent
studies have focused on the service composition issues [2, 4, 1]

The service provider companies started to conceive innovative ways to deliver
the services to the consumers. One of the fastest growing models is establishing
service hubs that integrate heterogeneous service components to deliver solutions
to consumers’ business needs, which are typically modeled as business processes.

Along with the rich set of functionalities, the new computing paradigm
promises economic incentives both for the service providers and the consumers.
The multi-tenancy model allows sharing the standardized service compositions
among the multitude of consumers with minimal or no customization thereby
reducing the fixed-costs per consumer. The service integration model also al-
lows the service providers and consumers to shop for the best mix of service
components from an ever growing number of providers.

Under this scenario, the service provider receives the request from the con-
sumers and provides integrated service solutions to satisfy the consumers’ busi-
ness needs. The consumer requests are defined by business processes and the
integrated service solutions are created by composing heterogeneous service com-
ponents. This model defines three main entities in the system; business processes,
service compositions, and service components. A service component is essentially
any functional unit that can be exposed as a service. This functional unit can be

a part of implementation or whole application. A business processes is a collec-
tion of related, structured activities that produce a specific service or product.
The business goals can be defined as the outputs of the business processes. Nat-
urally, the consumers want to match the services that they are receiving from
the service providers with the internal business processes. We can define this
association in terms of delivering the necessary functions in the form of ser-
vices to complete the end-to-end lifecycle of all business processes defined in an
organization.

Our goal is to find the service compositions that satisfy all of the consumer
requests while minimizing the overall cost of service delivery across all of the
consumers. It should be observed that the delivery costs of a service component
could be different if it is delivered individually or as a part of a particular service
composition. Because, packaging a set of service components may result in re-
duced fixed-costs for the whole package as compared to the sum of the delivery
costs of the individual components. In addition, different service compositions
might produce different cost schemes.

In the scope of this paper, we assume that there are existing service composi-
tions available in the system. Our goal is to find the set of service compositions,
which satisfies our objectives, from the given set of service compositions. The
existing service compositions could be defined and constrained by many different
sources. Some examples are existing product implementations, interoperability
issues, and contractual agreements. This is an orthogonal problem to the main
focus of this paper. In this work, we propose a model which is independent of any
given set of service composition and application specifics. The model is defined
at the abstract level and could take any set of given service compositions as an
input.

The service composition issues have been studied in the literature. [6] presents
a comparative study of service selection methods to form the optimal composi-
tion of candidate services. [5] discusses service composition in the service overlay
networks. In that work, the optimization is formulated as a local selection strat-
egy, meaning a component service is assigned to an individual task, one at a time.
[7] proposes the use of fuzzy sets to express the users’ QoS preferences that are
used in service composition process. In [8], the authors study how to quickly com-
pose web services when a large number candidate services are available. They
present algorithms for fast membership checking to filter the candidate services
that will be used in compositions afterwards. The work presented in [9] is closely
related to our work. The authors argue that the selection of the components ser-
vices should be carried out during the execution of a composite service, rather
than at the design-time. The service selection is formulated as an optimization
problem which can be solved using linear programming methods.

2 The System Model

In this section we present the system model in more detail. We consider the
main system entities, namely, business processes, service compositions, and ser-

94 H. Hacigümüs

b1

c1

Business Processes

Service Compositions

Service Components

b2 b3

s1 s2 s3

c2 c3

Fig. 1. Individual service components

b1
Business Processes

Service Compositions

Service Components

b2 b3

s1 s2 s3

c1

Fig. 2. Single service composition

vice components, and the optimization problem as described in the previous
section. To illustrate the problem, consider the following example scenario. As-
sume that there are three consumers requests that need to be fulfilled and they
are represented as the business processes: b1, b2, b3. The service provider has
three distinct service components, s1, s2, s3, that can be delivered either indi-
vidually or as a part of a service composition. Also assume, that the business
process b1 requires the services that are implemented by the service components
s1, s2, s3, b2 requires s2, s3, and b3 only requires s3. There are individual costs
associated with the service components s1, s2, s3: 3,8, and 11, respectively. These
costs represent the service delivery costs if the service components are delivered
to the consumers individually.

The extreme case where all of the service components are delivered individ-
ually is shown in Figure 1. As the service components are delivered individually,
the service composition nodes are identical to the service component nodes. An
edge between a service component and a service composition shows that the
service component is included in the service composition. An edge between a
service composition and a business process shows that the business process re-
ceives some or all of the required services through the service composition. Then,
the total cost for b1 is 3 + 8 + 11 = 22 , for b2 it is 8 + 11 = 19, and for b3 it is
11. The total service delivery cost for all of the business processes is 52.

Another extreme case is depicted in Figure 2, where there is only one service
composition that integrates and delivers the system components together. The
associated costs are different in this case. Assume that the integration cost for
s1, s2, s3 is 4. That means if they are packaged together and delivered as a service
this is the cost added to the sum of individual costs. As the service components
are not delivered individually their individual costs are also different; 2, 5, and
6 for s1, s2, s3, respectively. Although b2 and b3 do not need all of the service
components they are charged for the integrated service delivery cost as it is
the only implementation in the system. In this case, the total cost for b1 is
4 + 2 + 5 + 6 = 17, which is obtained by adding the integration cost to the
individual costs of the service components. The total costs for b2 and b3 are
also the same as there is only one service composition is available in the system.
Therefore the total service delivery cost for all of the business processes is 51.

Next, we consider another scenario that is shown in Figure 3. Here there are
three service compositions c1, c2, c3 available. c1 directly delivers s1, c3 directly

Cost-Effective Service Composition 95

b1

c1

Business Processes

Service Compositions

Service Components

b2 b3

s1 s2 s3

c2 c3

Fig. 3. Optimal service composition

b1

c1

b2 b3

s1 s2 s3

c2 c3 c4 c5

Fig. 4. All available service composi-
tions

delivers s3, and c2 integrates s2 and s3. Assume that the integration cost for
s2 and s3 is 3 and the individual and integrated costs are the same with the
previous cases. Then, the total cost for b1 is 3 + 3 + 5 + 6 = 17, for b2 it is
4 + 5 + 6 = 14, and for b3 it is 11. The total service delivery cost for all of the
business processes is 42.

Figure 4 shows the system if we combine all of the cases described above.
The system has five possible service compositions covering the given cases. As
we stated before, our system model takes any given set of available service com-
positions defined by the system constraints. We define the optimization problem
on top of this model definition.

The last case exploits a particular service composition scheme to reduce the
total delivery cost to the consumers. If we define the system as in Figure 4, c1, c3,
and c5 would be chosen as the service compositions. b1 would receive service from
c1 and c5, b2 would receive service from c5, and b3 would receive service from c3.
Note that these service combinations fulfill all of the consumer requests stated
in the problem.

3 Problem Model

In this section, we formally present the Optimal Service Composition Se-
lection (OSCS) problem in detail. As we stated above, our goal is to choose the
most “beneficial” service compositions from the candidate service compositions
while minimizing the overall cost to the consumers.

The benefit of a service composition is defined as the ability of the service
composition to satisfy the service needs of the business processes, which is the
essential goal of the system. This ability is represented by the connections be-
tween the business processes and the service components through the service
components and formally modeled below. In the system we have three main en-
tities: service components, service compositions, and business processes defined
by the consumers.

We model the OSCS problem by using a graph model as depicted in Figure 4.
In a service delivery graph G = (V,E), we have three types of nodes (vertices),
S, C, B for service components, (candidate) service compositions, and business
processes, respectively. Thus, V = S ∪ C ∪ B.

96 H. Hacigümüs

There is an edge between a service component node s ∈ S and a service
composition node c ∈ C if s is included in c. We define an edge between a
service composition node c ∈ C and a business process node b ∈ B if c is used
by b, i.e., if business component b uses the part or all of the services provided by
c to satisfy the consumer needs. As it is clear, there are no edges between the
service component nodes and the business process nodes but they are connected
through service composition nodes. Thus, E = {(u, v) | either (u ∈ S and v ∈ C)
or (u ∈ C and v ∈ B)}.

Definition 1. (Connected Pair) sb : s ∈ S, b ∈ B is called a connected pair
⇐⇒ ∃ c ∈ C such that (s, c) ∈ E and (c, b) ∈ E. We call this as c connects s
and b, and denote it as c � sb. P is defined as the set of all connected pairs in
the graph.

Obviously, the system has to satisfy the consumer needs. Therefore, all of
the business processes should be connected to the necessary services through
the service compositions. In the model, this means, there should be at least one
sb connected pair for each b ∈ B.

Definition 2. (Service Component Cost) A cost s′ is defined for each ser-
vice component node s. This cost represents the cost to deliver the corresponding
service component to the consumer individually.

Definition 3. (Service Composition Cost) A cost c′ is defined for each ser-
vice composition node c. The cost c′ has two terms, 1) a fixed cost p that includes
the system specific cost elements for the service composition, such as integration
cost, delivery cost, etc., to deliver the service composition to the customer, and
2) the sum of the individual integration costs of the service components that the
corresponding service composition is comprised of. Formally, c′ = p +

∑
s′′i ,

where s′′i is the integration cost for si ∈ S and ∀ (si, c) ∈ E.

Note that s′ and s′′ costs are different. s′ represents the cost to deliver the
corresponding service component to the consumer individually. s′′ is specific to
the service composition that the service component is included in. s′′ is the cost
of the service component for the specific service composition.

Definition 4. (Measure) We define measure M(·) for a graph G = (V, E) as
M(S, C, B) =

∑
c′ the sum of the service composition costs, where c′ is the

service composition cost for c ∈ C.

Definition 5. (Optimal Service Composition Selection (OSCS) Prob-
lem) We define the OSCS problem as for a given service delivery graph G =
(V, E), find a subset C ′ ⊆ C, such that M(S, C ′, B) is minimum over all possi-
ble C ′ ⊆ C.

Now, we provide the definition for the Weighted Set-Covering problem, which
we will use to prove the NP-hardness of OSCS problem.

Cost-Effective Service Composition 97

Algorithm : GREEDY-WEIGHTED-SET-COVER
Input: A collection P of sets Q1, Q2, . . . , Qn s.t. U = Qi∈P Qi

and associated costs c1, c2, . . . , cn

Output: The cover P ′ of minimum cost

1 U ′ ← U
2 P ′ ← ∅
3 while U ′ �= ∅
4 do select an Qi ∈ P that maximizes |Qi ∩ U ′|/ci

5 U ′ ← U ′ − Qi

6 P ′ ← P ′ ∪ {Qi}
7 endwhile
8 return P ′

Fig. 5. Greedy Algorithm for weighted set-covering

Definition 6. (Weighted Set-Covering Problem) An instance (U,P) of
Weighted Set-Covering problem is defined as follows: A finite set of points U ,
a collection P = {Q1, Q2, . . . , Qn} of subsets of U , and positive numbers, i.e.,
costs, t1, t2, . . . , tn associated with Qi. The cost of a collection is

∑
Qi∈P ti. A

cover for U is a subset P ′ ⊆ P such that every element in U belongs to at least
one member of P ′. The problem is to find a cover of minimum cost.

The Weighted Minimum Set Cover problem is known to be NP-hard [3].

Theorem 1. Optimal Service Composition Selection (OSCS) problem is NP-
hard.

Proof: We prove the theorem by a reduction from the Weighted Set-Covering
problem. The detailed proof is omitted due to the space limitations.

4 Greedy Approach

In this section we present an approximation algorithm, with a ratio bound, to the
weighted set-covering problem. This will provide a basis for our implementation
of a greedy algorithm to solve the OSCS problem. The approximation algorithm
for the weighted set-covering problem is shown in Figure 5 [3].

The set U ′ contains the set of uncovered points at each stage of the algorithm.
The set P ′ holds the cover that is being constructed. In Line 4, we select a subset
Qi that maximizes the ratio |Qi ∩ U ′|/ci, breaking ties arbitrarily. The ratio
counts the number of points covered by Qi per unit cost. After a Qi is chosen,
its elements are removed from U ′ and Qi is added to P ′. When the algorithm
terminates, P ′ is the cover of minimum cost.

Theorem 2. GREEDY-WEIGHTED-SET-COVER algorithm has a ratio bound
of: |P ′| � |P ∗| · H(max{|Qi| : Qi ∈ P}) � 1 + ln |U |, where |P ∗| is the cost of

98 H. Hacigümüs

Algorithm : SERVICE-COMPOSITION-SELECT
Input: C: set of candidate service compositions, associated with service composition
costs c′, S: set of service components, B: set of business processes,
SB: set of all connected pairs sb
Output: C′: set of selected service compositions

Precomputation: Construct a matrix SC = (fij): 1 ≤ i ≤ |S|, 1 ≤ j ≤ |C|
such that fij = 1 if service component si ∈ S is included in
service composition cj ∈ C, fij = 0 otherwise

Computation:
1 C′ ← ∅, SB′ ← ∅, SB′′ ← SB
2 while SB′′ �= ∅ do
3 C′′ ← C − C′,SB′′ ← SB − SB′

4 for all c ∈ C′′ let benefit(c) = 0
5 for all b ∈ B do
6 for all c ∈ C′′ do
7 if c is included in b do
8 for all s ∈ S do
9 if f = 1, f element of SC corresponding to s and c

10 and no previous connection between b and c then
11 benefit(c) ← benefit(c) + 1
12 endfor, endfor, endfor
13 select cselect ∈ C′′ maximizing the ratio benefit(c)/cost(c)
14 C′ = C′ ∪ {cselect}, SB′ = SB′ ∪ {sbi|cselect � sbi}
15 endwhile
16 return C′

Fig. 6. Greedy algorithm service composition selection

an optimal cover P ∗ and |P ′| is the cost of the cover P ′ returned by the greedy
heuristic algorithm.1

The proof for the theorem can be found in [3]. Based on the greedy heuristic,
we implemented a greedy algorithm, which works on our graph model. Pseudo
code for the algorithm is given in Figure 6. An adjacency matrix, SC, among
the service component and the service composition nodes is constructed in the
precomputation step. This matrix is utilized to avoid repeated comparisons to
test the inclusion of a service component in a particular service composition in
the loop starting at Line 8.

In each iteration, the benefits of the service composition nodes c in candi-
date service compositions set C ′′ are computed and the service composition that
maximizes the ratio benefit/cost is added to the selected service composition
set C ′ (Line 14). Benefit for a service composition is computed as the number
of previously uncovered connections, which are through the service composition
node, between the service component nodes and the business process nodes. Se-
lected service composition are removed from the candidate service compositions
1 H(·) is a Harmonic number and nth Harmonic number is n

k=1(1/k) = ln n + O(1).

Cost-Effective Service Composition 99

set in Line 3. We also keep updating the set of connected pairs SB of service
components and business processes. When a service composition node is selected,
all of the connected pairs that are created by that service composition node are
also removed from the graph. (Line 3). This is required as the benefit of a ser-
vice composition node is the number of connections that are made through the
service composition node. Consequently, the benefit of each service composition
node is changed over the iterations. The algorithm terminates when all of the
connected pairs sb between the business processes and the service components
are covered. This is the essential problem we solve, i.e., assigning the necessary
service component to “all” of the business processes.

5 Conclusions

We have studied the problem of optimally selecting the service compositions. Our
goal was to to meet the multiple consumers’ business goals while minimizing the
overall delivery cost to the consumers. We have formulated the problem as a
graph problem and the service composition selection problem has been defined
as an optimization problem. We have shown that the problem is NP-hard and
presented an approximation algorithm with a ratio bound as a solution.

References

1. D. Berardi, D. Calvanese, G. Giacomo, M. Lezerini, and M. Mecella. Automatic
composition of e-services that export their behavior. In Proc. of ICSOC, 2003.

2. A. Charfi and M. Mazini. Hybrid Web Service Composition: Business Processes
Meet Business Rules. In Proc. of ICSOC, 2004.

3. V. Chvatal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of
Operations Research, 4(3):233–235, 1979.

4. Z. Duan, A. Bernstein, P. Lewis, and S. Lu. A Model for Abstract Process Specifi-
cation, Verification and Composition. In Proc. of ICSOC, 2004.

5. X. Gu, K. Nahrstedt, R. Chang, and C. Ward. QoS-Assured Service Composition
in managed Service Overlay Networks. In Proc. of ICDCS, 2003.

6. M. Jaeger, G. Muhl, and S. Golze. QoS-aware Compostition of Web Services: A
Look at Selection Algorithms. In Proc. of ICWS’05, 2005.

7. M. Lin, J. Xie, H. Guo, and H. H. Wang. Solving QoS-Driven Web Service Dynamic
Composition as Fuzzy Constraint Satisfaction. In Proc. IEEE Intl. Conf. on e-
Technology, e-Commerce and e-Service (EEE’05), 2005.

8. S. Oh, D. Lee, and S. Kumara. Flexible Web Services Discovery and Composition
using SATPlan and A* Algorithms. In Proc. of Modeling Decisions for Artificial
Intelligence Conference, 2005.

9. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng. Quality Driven
Web Service Composition. In Proc. of the 12th WWW Conference, 2003.

100 H. Hacigümüs

Standardization approach for Federated ERP systems
based on Web Services

Nico Brehm, Jorge Marx Gómez

Faculty of Computer Science, Otto-von-Guericke-Universität Magdeburg,
Universitätsplatz 2, 391o6 Magdeburg, Germany

{brehm, gomez}@iti.cs.uni-magdeburg.de

Abstract. As enterprise resource planning (ERP) systems become more complex
the financial expenditures that are connected to the application of such systems
dramatically increase. ERP systems consist of many software components
which provide specific functionality. However, these ERP systems are designed
as an all-in-one solution, often implementing functionality not needed.
Furthermore, such ERP systems depend on very large-scale infrastructures like
servers and networking technology, which are very expensive to install and to
maintain. The new idea is to develop a novel ERP system architecture which
facilitates an overall reusability of individual business components (BC)
through a shared and NON-monolithic architecture based on a peer-to-peer
(P2P) network. In this paper we present a standardization approach which uses
Web Services to wrap ERP components that are provided by a distributed
system which appears as an ERP community.

Keywords: ERP, Web Service, Web Service Standardization, WSDL, SOA, Peer-to-Peer

1 Introduction and motivation

Definition 1:
An ERP system is a standard software system which provides functionality to
integrate and automate the business practices associated with the operations or
production aspects of a company. The integration is based on a common data model
for all system components and extents to more than one enterprise sectors [1, 2].

Modern ERP systems consist of many software components which are related to each
other. Currently these components are administered on a central application server. In
connection to the ERP system complexity several problems appear:

• Not all installed components are needed.
• High-end computer hardware is required.
• Customizing is expensive.

Due to the expensive proceedings of installation and maintenance only large
enterprises can afford such complex ERP systems. One solution to face these
problems is to develop a distributed ERP system where the system components are
reachable over a network (e.g. internet). This component ensemble (federated system)
still appears as single ERP system to the user, however it consists of different
independent elements which exist on different computers. Based on this construction
it is possible for an enterprise to access on-demand functionality (components) as
services of other network members over a P2P network. This approach solves the
mentioned problems as follows:

• Due to the separation of local and remote functions, no local resources are wasted

for unnecessary components.
• Single components are executable on small computers.
• Due to decreasing complexity of the local system also installation and maintenance

costs subside.

Definition 2:
A federated ERP system (FERP system) is an ERP system which consists of system
components that are distributed within a computer network. The overall system
functionality is provided by an ensemble of allied network nodes that all together
appear as a single ERP system to the user. Different ERP system components can be
developed by different vendors.

Definition 3:
An ERP system component in this case is a reusable, closed and marketable software
module which provides services over a well-defined interface. These components can
be combined with other components in a not foreseeable manner [4, p. 19].

2 Resource sharing in an ERP network

With the distribution of the ERP system components on different servers some
advantages arise for the operators of each of these servers, because hardware demands
are made to only their part of the total ERP system. This reduction of complexity
facilitates administration and availability securing because all measures are confined
to only one ERP peer whereas conventional ERP system operation is geared to the
provision of all components at the same time. Figure 2 shows these two approaches in
comparison to each other. The left hand side represents the architecture of a
conventional ERP system where a closed amount of ERP components (C1, C2, …,
C8) are installed on the same application server. The right hand side shows an open
ERP network where each node is assigned to one ERP component which is provided
as service (S1, S2, …, Sn). This P2P network consists of allied network nodes that all
together represent a federated ERP system. New components are added as new ERP
peers that provide corresponding services.

102 N. Brehm, and J. Marx Gómez

Figure 1: Conventional ERP system with ERP components (C) versus a federated ERP system
that provides its ERP components as services (S)

As explained above, the distribution of the ERP system is based on a P2P
architecture. Each peer can communicate with all the rest of the participating network
nodes. The duties and responsibilities of every network node are divided into two
sections. On one hand the service providing peers and on the other hand the ones
which utilize theses services establish the basis for exchanging software components,
whereas the overall system functionality will be available to the whole ERP network.
The total charges and costs of the ERP system are averaged to all ERP network nodes,
which means that each node saves expenses. This leads to the conclusion that the
proposed component distribution to several servers has three main advantages:

• Every ERP server stores only a part of the total system.
• The open ERP network architecture allows the provision of more ERP components

than only one server does.
• New ERP system versions arise by adding new components and peers to the

network. New versions are available at once.

Perspectively the proposed distributed architecture paves the way to an overall
ERP system that includes all imaginable functionality whereas the functions are
provided as Web services. Although there are differences between Web services and
business components a lot of similarities exist that argue for an equalisation of both
technologies [3, p.1 ff]. Solutions and models for

• standardising,
• development,
• customisation
• and composition

Standardization approach for Federated ERP systems based on Web Services 103

of business components [4] must be given if we assume that the encapsulation of ERP
functions as business components equals the provision of these functions as superior
Web Services.

3 Example business process

Below we chose a manufacturing company to exemplify the distribution of ERP
system functions. Figure 2 shows a typical example of a manufacturing business
process as Event Process Cain (EPC) and in connection to this an opportunity of how
internal functions can be processed by other ERP peers.

Figure 2: Example manufacturing business process and outsourcing of ERP-internal
functions

The example above shows a highly simplified work process of a manufacturing
company starting with the acceptance of the customer order until the completion of
the production scheduling. The process contains three functions which are each
supposed to be executed by external nodes of the P2P network.

• Function 1: After a customer placed a production order, it hast to be examined

whether there is sufficient material in stock. The necessary input data which must

104 N. Brehm, and J. Marx Gómez

be sent to the external network node includes all Bills of Material (BOM) of the
product to be produced and information about the stock of inventory as regards all
individual parts. On this basis the function calculates whether production
scheduling can start directly or whether anymore material has to be ordered at first.
Finally the external function returns a respective information message back to the
local business process.

• Function 2: If there is not enough material in stock the second function determines
the missing material and sends material orders to the corresponding suppliers. The
input values are BOM, stocks of inventory and supplier information. After the
demand of material is calculated material orders are sent to the suppliers
automatically. For simplification purposes we assume that the suppliers will
deliver all materials in time without considering possible problems in this context.
The return value of this external function is complex object which contains all
executed material orders and the related delivery times.

• Function 3: When there is enough material in stock production is supposed to start.
Therefore the third function creates all needed data records, e.g. optimized time
schedules and work plans, and wraps them as a complex object which will be
returned back to the requesting ERP peer. Among other things BOM, work places,
capacities and production calendar data are required as input values of this
function.

The local peer in this example wraps the required data as business objects which

are included in the remote function calls. Complex return objects contain secondary
master data records that are inserted into the local enterprise database. The example
shows how single functions of a business process are executed on external ERP peers
and how a local ERP system benefits from using external business logic, e.g. by using
optimisation algorithms.

4 Standardization approach

Within the scientific environment of business informatics there is a variety of models
existing which specify the different components of ERP systems in theory. The
determination of an appropriate technology is the basis for a subsequent
implementation. This proposal uses Web Services as communication basis and the
exchange of messages respectively. The standardizing process focuses on the
unification of ERP specific entity types, messages and functions. The following
model refers to the description of an FERP standard as XML Schema.

Components of an ERP System

Before the elements of the FERP standard can be specified the functional structure of
the target ERP system has to be fixed. The problem thereby is the amount of functions
an ERP system can contain in principle. The following list gives a survey of the

Standardization approach for Federated ERP systems based on Web Services 105

different enterprise sectors where functions and processes of ERP systems can be
assigned to. The list shows grouping categories for business objects in SAP/R3:

• Finance
• Treasury
• Controlling
• Investment management
• Enterprise controlling
• Real estate management
• Logistics
• Sales
• Logistics Execution
• Quality management
• Maintenance
• Customer service
• Project management
• Environmental management
• Human resource management
• Payroll accounting
• Event management
• Production planning and controlling (PP)
• Materials management (MM)
• …

Syntactic ERP component specification model

The basis of the ERP component specification model is the summarization of all
functions that belong to the same sector of the functional business organization.
Functions of the same sector are assigned to the same ERP component. The
standardization of components includes the following levels:

• Syntactic level
• Behavioral level
• Synchronization level
• Quality-of-Service level

The following model describes the syntax standardization approach of ERP
components and is based on the summarization of allied functions in components.
This model defines three steps which are shown in figure 3:

1. Description of data types as XML Schema: All entity types of the component are

specified in this document. In this manner the data model is described.
2. Description of message types as XML Schema: This document describes the

request and response message types.

106 N. Brehm, and J. Marx Gómez

http://dict.leo.org/se?lp=ende&p=/Mn4k.&search=human
http://dict.leo.org/se?lp=ende&p=/Mn4k.&search=resource
http://dict.leo.org/se?lp=ende&p=/Mn4k.&search=management

3. Description of function types as XML Schema: This document summarizes all
functions of the ERP component to be standardized. On one hand the overall
functionality of the component is framed and on the other hand the message types
are assigned to the respective functions as input and output messages.

Based on this proposal it is possible that component providers cover an incomplete

functional range because not all functions have to be mapped to a Web Services
description. The idea in this case is that multiple vendors can contribute one part of
the whole ERP component implementation. Likewise redundant functions are also
possible.

Figure 3: Syntactic ERP component specification model with example descriptions

Example specification

Figure 4 shows an uncompleted example specification of a production planning and
controlling (PP) component. Based on the specification of data types e.g. BOM, work
plan, operation etc. message types are specified. These message types are used to
describe the functions of the PP-component. Out of this function specification
different Web Services can be derived which implement the overall component
functionality in a different completeness. The Web Service descriptions are expressed
in the Web Service Description Language (WSDL) [5].

Standardization approach for Federated ERP systems based on Web Services 107

PP
types description

PP
messages description

PP
functionality description

BOM

Material

Inventory

Requirement

materialRequirementsPlanning

Work_plan

Resource

Operation

Time_plan

productionScheduling

materialRequirements-
PlanningRequest

materialRequirements-
PlanningResponse

productionScheduling-
Request

...

productionScheduling-
Response

...
...

Message

Legend
Complex
datatype

Function depends on

Standardized for all PP Web Services

www.providerZ.com/
services/PP.wsdl

materialRequirements-
Planning

www.providerY.com/
services/PP.wsdl

productionScheduling

www.providerX.com/
services/PP.wsdl

productionScheduling

materialRequirements-
Planning

...

WS
operation

XML-
Schema

Figure 4: Uncompleted example component specification and three possible Web Service
descriptions

5 Related works

Semantic Web Services are Web Services whose properties, capabilities, interfaces,
and effects are encoded in an unambiguous, machine-understandable form [6].
Research works that deal with Semantic Web Services aim at the provision of a
comprehensive Web Service description, discovery and mediation framework.
Because UDDI, WSDL and SOAP are not sufficient other specification languages
like Web Ontology Language (OWL) [7] and the Resource Description Framework
(RDF) [8] are used. This approach is more abstract then the presented proposal
because the efforts within the scope of Semantic Web Services do not concentrate on
a specific type of Web Service. Our proposal is based on XML Schema to define a
fixed language for ERP systems as basis for the communication between software
components of a distributed application.

108 N. Brehm, and J. Marx Gómez

6 Conclusions and Outlook

Comparing distributed ERP systems and ERP systems running on only one computer,
the distributed systems offer a lot of advantages. Particularly small- and medium sized
Enterprises (SMB) benefit from using shared resources. However, the design and
development of a system architecture is subject to a number of problems. The paper
presents a basis for the standardizing process of ERP system components that are
provided as Web Services. A standardized data model builds the basis for message
and functionality specification.

The standardization of the syntactic level is only the first step. Behaviour,
synchronization and quality of Web Services must flow into the definition of an
overall ERP system standard. The future work must pick up these problems to realize
the vision of a loosely coupled ERP system which allows the combination of software
components of different providers.

References

1. Robey, D.; Ross, J.; and Boudreau, M. (2002): Learning to implement enterprise
systems: An exploratory study of the dialectics of change. Journal of Management
Information Systems, 19, 1, 17--46.

2. Rautenstrauch, C.; Schulze, T. (2003): Informatik für Wirtschaftswissenschaftler und
Wirtschaftsinformatiker, Berlin et al.

3. Krammer, A., Turowski, K. (2001): Spezifikationabedarf von Web-Services. In:
Ortner, E., Overhage, S. (Hrsg.): 1. Workshop „Entwicklung von Anwendungen auf
der Basis der XML Web-Service Techologie. Darmstadt

4. Turowski K. (2003): Fachkomponenten: Komponentenbasierte betriebliche
Anwendungssysteme, Aachen

5. W3C (2001): Web Services Description Language (WSDL) 1.1, URL:
http://www.w3.org/TR/wsdl

6. S. McIlraith, T. Son, and H. Zeng (2001). Semantic Web services. In IEEE Intelligent
Systems (Special Issue on the Semantic Web)

7. W3C (2004): OWL Web Ontology Language, URL: http://www.w3.org/TR/owl-
features/

8. W3C (2004): RDF Vocabulary Description Language 1.0: RDF Schema, URL:
http://www.w3.org/TR/owl-features/

Standardization approach for Federated ERP systems based on Web Services 109

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

110 N. Brehm, and J. Marx Gómez

Author Index

André, Pascal, 77
Ardourel, Gilles, 77
Attiogbé, Christian, 77
Aversano, Lerina, 17

Bleul, Steffen, 35
Brehm, Nico, 101
Buhler, Paul, 9

Cernuda del Ŕıo, Agust́ın, 85
Clemente, Pedro J., 43
Colman, Alan, 1
Cottenier, Thomas, 51

Di Penta, Massimiliano, 17

Elrad, Tzilla, 51
Esfandiari, Babak, 69

Fernández Lanv́ın, Daniel, 85

Gayo Avello, Daniel, 85
Greenwood, Dominic, 9

Hacigumus, Hakan, 93

Han, Jun, 1
Hernández, Juan, 43

Kazhamiakin, Raman, 59
Knig-Ries, Birgitta, 25
Kster, Ulrich, 25

Labra Gayo, Jose Emilio , 85

Marx Gómez, Jorge, 101

Oreshkin, Alexander, 69
Ortiz, Guadalupe, 43

Pandya, Paritosh, 59
Pistore, Marco, 59

Reitbauer, Alois, 9

Stern, Mirco, 25

Taneja, Kunal, 17

Weise, Thomas, 35
Weiss, Michael, 69

