
RC23825 (W0512-016) December 2, 2005
Computer Science

IBM Research Report

Effective Typestate Verification in the Presence of Aliasing

Stephen Fink, Eran Yahav, Nurit Dor*, G. Ramalingam, Emmanuel Geay
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

*IBM Research Division
Haifa Research Laboratory

Mt. Carmel 31905
Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Effective Typestate Verification in the Presence of Aliasing

Stephen Fink1 Eran Yahav1 Nurit Dor2 G. Ramalingam1 Emmanuel Geay1

1IBM T.J. Watson Research Center 2IBM Haifa Research Lab�
sjfink,eyahav,grama,egeay � @us.ibm.com nurit@il.ibm.com

Abstract
This paper addresses the challenge of sound typestate verification,
with acceptable precision, for real-world Java programs.

We present a novel framework for verification of typestate prop-
erties, including several new techniques to precisely treat aliases
without undue performance costs. In particular, we present a flow-
sensitive, context-sensitive, integrated verifier that utilizes a para-
metric abstract domain combining typestate and aliasing informa-
tion. To scale to real programs without compromising precision,
we present a staged verification system in which faster verifiers run
as early stages which reduce the workload for later, more precise,
stages.

We have evaluated our framework on a number of real Java
programs, checking correct API usage for various Java standard
libraries. The results show that our approach scales to hundreds of
thousands of lines of code, and verifies correctness for over 95% of
the potential points of failure.

1. Introduction
Statically checking if programs satisfy specified safety properties
can help identify defects early in the development cycle, thus in-
creasing productivity, reducing development costs, and improving
quality and reliability.

Typestate [32] is an elegant framework for specifying a class
of temporal safety properties. Typestates can encode correct us-
age rules for many common libraries and application program-
ming interfaces (APIs) (e.g. [33, 2]). For example, typestate can
express the property that a Java program should not read data from
java.net.Socket until the socket is connected.

This paper addresses the challenge of typestate verification,
with acceptable precision, for real-world Java programs.

We focus on sound verification; if the verifier reports no prob-
lem, then the program is guaranteed to satisfy the desired proper-
ties. However, if the verifier reports potential problems, they may
or may not indicate actual program errors. Imprecise analysis can
lead a verifier to produce “false positives”: reported problems that
do not indicate an actual error. Users will quickly reject a verifier
that produces too many false positives.

While the most sophisticated and precise analyses can reduce
false positives, such analyses typically do not scale to real pro-
grams. Real programs typically rely on large and complex support-

�

ing libraries, which the analyzer must process in order to reason
about program behavior.

This paper presents several new typestate verification tech-
niques, ranging from the simple but imprecise, to the fairly pre-
cise but somewhat expensive. We also present a staged typestate
verification approach, which exploits these verifiers of varying
cost/precision trade-offs. Early stages employ the efficient but im-
precise analyses; subsequent stages employ progressively more
expensive, and precise, techniques. Each progressively more pre-
cise stage focuses on verifying only “parts” of the program that
previous stages failed to verify.

The key technical challenge facing typestate verification for
Java concerns pointer aliasing. Since all structured data in Java
is heap-allocated, almost all interesting operations involve pointer
dereferencing. Further, Java libraries encourage layers of encapsu-
lation around data, which leads to multiple levels of pointer deref-
erencing. In order to prove that a program manipulates an object
correctly, the verifier must cut through the tangle of alias relation-
ships by which the program manipulates the object of interest.

Researchers have developed a variety of extremely efficient
flow-insensitive may-alias (pointer) analysis techniques (e.g. [10,
21]). Unfortunately, may-alias analysis is inadequate for most
typestate verification problems, which require strong updates [6].
To support strong updates and more precise alias analysis, we
present a framework to check typestate properties by solving a
flow-sensitive, context-sensitive dataflow problem on a combined
domain of typestate and pointer information. As is well-known [9],
a combined domain allows a more precise solution than could be
obtained by solving each domain separately. Furthermore, the com-
bined domain allows the framework to concentrate computational
effort on alias analysis only where it matters to the typestate prop-
erty. This concentration allows more precise alias analysis than
would be practical if applied to the whole program.

1.1 Contributions

The main contributions of this paper are:

� a flow-sensitive, context-sensitive, integrated verifier that uti-
lizes a parametric abstract domain that combines typestate and
points-to abstractions.

� two new techniques to handle destructive updates, utilizing
information from a preceding flow-insensitive may points-to
analysis. Specifically,

a uniqueness analysis that can strengthen the results of
the may points-to analysis to support “strong updates” under
certain conditions, and

a focus operation, similar in spirit to the one used in shape
analysis [31], that enables the analysis to use strong updates
in certain cases. Though inspired by shape analysis techniques,
our focus operation applies to a more efficient, abstract domain,

init // initONMLHIJK connect() //

close()

��

getInputStream(),
getOutputStream()))

connONMLHIJKBC
ED

getInputStream(),
getOutputStream()

GF��
close() // closedONMLHIJK

getInputStream()
uu

errONMLHIJKEDBC �@AOO

Figure 1. Partial typestate specification for java.net.Socket.

and results in analyses that are orders of magnitude more scal-
able than typical shape analyses.

� an empirical evaluation of the efficiency and precision of var-
ious verification techniques. The empirical results shed light
on the relative importance of various techniques for treating
aliases, and demonstrate the validity of a staged approach.

Our implementation handles the full Java language, excluding
concurrency, subject to caveats described regarding dynamic lan-
guage features such as reflection. The experimental results show
that the staged solver verifies correctness for over 95% of the po-
tential points of failure, usually running in less than 20 minutes
across a suite of moderately-sized programs.

The rest of this paper is organized as follows: Sec. 2 provides
an informal overview of the various challenges in typestate verifi-
cation, and sketches our solutions. Sec. 3, Sec. 4 and Sec. 5 present
the abstractions and techniques formally. Sec. 6 presents the empir-
ical evaluation, and Sec. 7 reviews related work.

2. Overview
2.1 Typestate Verification

A typestate property can be specified using a finite state automa-
ton. States in the automaton correspond to typestates which an ob-
ject can occupy during execution. The automaton also contains a
designated typestate err corresponding to an erroneous state of the
object. Transitions in the automaton correspond to observable op-
erations that may change the object’s typestate. In this paper, we
focus on observable operations corresponding to method invoca-
tions. The goal of typestate checking is to statically verify that no
object reaches its error typestate during any program execution.

Fig. 1 shows a finite state automaton providing a partial speci-
fication for the java.net.SocketAPI. This automaton shows,
for example, that calling getInputStream() is only legal after
a preceding call to connect().

Fig. 2 presents a program that exercises Java Sockets, I/O
streams, and Iterators. Our goal is to verify that the program

� never calls getInputStream() or getOutputStream()
on a Socket unless it is connected,

� never calls read() on a closed stream, and
� always calls hasNext() on an Iterator before calling
next().

In the example program, some typestate properties (e.g.Iterators)
could be verified relatively easily by local, intra-procedural reason-

class Sender
�

public static Socket createSocket()
�

return new Socket();�
public static Collection createSockets()

�
Collection result = new LinkedList();
for (int i = 0; i < 5; i++)

�
result.add(new Socket());�

return result;�
public static Collection readMessages() throws IOException

�
Collection result = new ArrayList();
FileInputStream f = new FileInputStream("/tmp/foo.txt");
// ...
f.read();
// ...
return result;�

public static void talk(Socket s) throws IOException
�

Collection messages = readMessages();
PrintWriter o = new PrintWriter(s.getOutputStream(),true);
for (Iterator it=messages.iterator();it.hasNext();)

�
Object message = it.next();
o.print(message);�

o.close();�
public static void example() throws IOException

�
InetAddress ad=InetAddress.getByName("tinyurl.com/cqaje");
Socket handShake = createSocket();
handShake.connect(new InetSocketAddress(ad, 80));
InputStream inp = handShake.getInputStream();

Collection sockets = createSockets();
for (Iterator it = sockets.iterator(); it.hasNext();)

�
Socket s = (Socket) it.next();
s.connect(new InetSocketAddress(addr, 80));
talk(s);�

talk(handShake);��

Figure 2. Program with correct usages of common APIs.

ing. Unfortunately, any local alias analysis can be easily defeated
by unknown side effects from procedure calls.

Other properties require more powerful (and costly) techniques.
In particular, socket usage in the example requires an interprocedu-
ral analysis with relatively precise alias analysis, since the socket
objects flow across procedure boundaries and through complex col-
lection data structures.

2.2 Outline of our Algorithm

Our verification system is a composite verifier built out of several
composable verifiers of increasing precision and cost. Each verifier
can run independently, but the composite verifier stages analyses in
order to improve efficiency without compromising precision. The
early stages use the faster verifiers to reduce the workload for later,
more precise, stages.

All of our verifiers use the results of a preceding flow-insensitive,
selectively context-sensitive subset-based pointer analysis. This
analysis produces a conservative approximation of the heap, and in-
duces a partition of concrete objects into abstract objects; as is typi-
cal, the pointer analysis creates names for abstract objects based on
static allocation sites and the governing context-sensitivity policy 1.
The flow-insensitive alias analysis can be performed relatively ef-
ficiently, and scales to large programs (e.g. [21, 24]).

Given a program and a typestate property, we consider all oper-
ations in the program that may cause a transition to an error state as

1 Sec. 6 gives details on our implementation’s context-sensitivity policy.

Flow-ins.
feasibility

check

Initial
verification

scope

Intra-
procedural

verifier

Unique
verifier

Integrated
verifier

Possible failure
points

Figure 3. Overview of framework stages.

points of potential failure (PPF). We consider a pair ��������� where
� is an abstract object, and � a point of potential failure, as a sepa-
rate verification problem. We refer to such pairs as potential failure
pairs. We define a verification scope to be a set of potential failure
pairs.

Our verification system starts by initializing the verification
scope to contain all matching pairs of abstract typestate objects and
potential points of failure. The verification scope is then gradually
reduced by a sequence of stages, as shown in Fig. 3. Each stage
may successfully eliminate potential failure pairs by verifying for
a pair ���	����� that a failure cannot occur for objects represented by �
at the point � .

Each composable verifier in our framework exploits separa-
tion [11, 35]: it performs the typestate checking separately for each
abstract object of the appropriate type in the program. It accepts as
a parameter a verification scope which holds information from the
preceding stages about which potential failure pairs remain unveri-
fied.

Each verifier restricts its attention to the verification scope, and
produces an updated verification scope for the subsequent phase.
The system reports any potential failure pairs that remain after the
last stage as potential errors.

In the following discussion we briefly describe each of these
stages. Later, we present a more detailed description of the algo-
rithms.

2.2.1 Flow-Insensitive Feasibility Checking

Prior to any flow-sensitive analysis, the first stage prunes the ver-
ification scope using an extremely efficient flow-insensitive error-
path feasibility check. The flow-insensitive pointer analysis pro-
vides the set of observable operations that may occur for each ab-
stract object. The flow-insensitive verifier determines if it is pos-
sible for the abstract object to reach the err state in the typestate
automaton, using this set of operations.

Any abstract object that does not exhibit a feasible error-path
could be considered as verified.

In our running example, the FileInputStream object allo-
cated in readMessages() is pruned at this stage, as the pro-
gram never invokes close() for this abstract object, and thus it
can never reach an error state (for “read() after close()”).

This stage, however, is unable to verify the correct usage of the
Iterators or Sockets in the example program.

2.2.2 Intraprocedural Verifier

The intraprocedural verifier is a flow-sensitive verifier that re-
stricts the scope of each verification attempt to a single procedure.
The verification starts at the beginning of each procedure assum-
ing an arbitrary unknown initial context (state). Method calls are
treated conservatively, without analyzing the method. This essen-
tially works well for “local” objects, which are pointed-to by local
variables only. The intraprocedural verifier uses the same abstrac-
tion as the integrated verifier (see Sec. 2.2.4 and Sec. 5).

When the intraprocedural verifier is able to verify all uses of
an abstract object in the program, we can avoid interprocedural
verification for that object. This is often the case for typestate
objects that do not escape the method in which they are allocated.

For example, the intraprocedural verifier can verify that all
Iterators in our running examples are used correctly. Applying the

intraprocedural verifier as an early stage eliminates the need for
verification of the Iterators in the running example by the latter,
more expensive interprocedural solvers.

2.2.3 Supporting Strong Updates: Uniqueness Analysis

While a flow-insensitive alias analysis suffices to check feasibility
of an error-path (as in Sec. 2.2.1), it generally does not suffice for
verifying typestate properties. A flow-insensitive analysis produces
only may alias information and not must alias information. There-
fore, an analyzer that directly uses the results of a flow-insensitive
analysis must use “weak updates” to handle assignments and oper-
ations via a pointer.

Using “weak updates” precludes verification of many typestate
properties. For example, it is insufficient for verifying the typestate
property of Fig. 1. Using only may alias information, the analyzer
cannot guarantee that a connect() operation occurs on the same
concrete object as a subsequent getInputStream() operation.
Hence, such analysis cannot verify this property.

We now present a verifier that is still based on flow-insensitive
alias analysis, but uses a novel uniqueness analysis to allow strong
updates in some scenarios.

Consider the invocation of a method, via a pointer � , that may
alter the typestate of the receiver object. If the following two con-
ditions hold, then the analysis can apply a strong update to change
the typestate of the receiver object:

(a) the points-to set for � consists of a single abstract object

(b) this abstract object represents a single concrete object2.

Consider an abstract object
 representing a particular (context-
sensitive) allocation site � . This abstract object represents all con-
crete objects that are allocated at � . The Unique solver performs
a flow- and context-sensitive analysis with a simple abstraction to
determine if more than one object allocated at � can be simultane-
ously alive. If not, then the abstract object
 represents at most one
concrete object at that program point, and the verifier can exploit
strong updates at that point if condition (a) mentioned above also
holds.

For example, the Unique verifier can verify the hasNext/next
property for all iterators in the running example. Note, in particu-
lar, that the unique verifier verifies the correct usage of the iterator
in the talk(...) method, even though program execution will
witness more than one concrete object allocated at this single allo-
cation site. This approach can similarly verify correct usage of the
socket handShake.

Uniqueness analysis is of general use in our framework, and
later stages incorporate the technique. This novel analysis com-
pares favorably to existing techniques for computing unique ab-
stract locations, as it relies on flow- and context-sensitive analysis
of a pruned program with respect to the tracked abstract object (see
discussion in Sec. 7). Results in Sec. 6 indicate that this analysis is
often sufficient for verifying as much as 80% of the potential points
of failure.

2.2.4 Integrated Verifier

The Integrated verifier improves upon the Unique verifier by per-
forming flow- and context-sensitive verification with an abstraction
that combines aliasing information with typestate information. The
use of a combined domain is more precise than separately perform-
ing typestate checking and flow-sensitive alias analysis, as is com-
mon with abstract interpretation over combined domains [9].

2 For purposes of typestate checking, we may safely ignore the possibility
of the pointer p being null, which will result in a null-pointer dereference
exception. If desired, null-pointer checking is done separately.

For example, flow-sensitivity of alias information enables
strong-updates in cases such as the one below, where the Unique
verifier fails because the abstract file object does not qualify as
unique.

Collection files = ...
while (...) �
File f = new File();
files.add(f);
f.open();
f.read();�

Since all our verifiers exploit separation, it suffices to focus
on the problem of verifying usage for a single abstract object.
The Integrated verifier utilizes an abstract domain that captures
information about the typestate of the given abstract object, as well
as information about a set � of pointer access paths that definitely
point to the given abstract object, and a set ��� of pointer access
paths that definitely do not point to the given abstract object. The
domain also includes a boolean flag indicating if there may exist
other access paths, not mentioned in � , that may point to the given
abstract object. Sec. 5 presents a more complete description of the
abstraction.

A key element of the integrated verifier’s abstraction is the use
of a focus operation [31], which is used to dynamically (during
analysis) make distinctions between objects that the underlying ba-
sic points-to analysis does not distinguish. For example, consider
the loop in the method example() in our running example. The
verifier utilizes two or more abstract objects to represent the set
of all (5) Socket objects created by the createSockets()
method (even though the flow-insensitive pointer analysis repre-
sents them by a single abstract object): one abstract object rep-
resents the Socket pointed to by s, and the other abstract objects
represent the remaining Sockets.

This enables the use of strong updates, allowing verification for
all Sockets in the running example, despite their flow through a
collection and across procedures.

3. Typestate Checking Framework
This section presents a framework for typestate checking which
enables declaration of different levels of abstractions.

First, we sketch an instrumented concrete semantics for this
problem. Intuitively, given a typestate property, our semantics in-
struments the program state, state � to include for every object, ��� ,
its typestate from the property definition. The instrumented seman-
tics verifies that an object never reaches its error typestate.

Next, we present a parameterized conservative abstraction that
allows us to define the family of abstractions used by the various
verifiers in our framework.

3.1 Instrumented Concrete Semantics

We assume a standard concrete semantics which defines a program
state and evaluation of an expression in a program state. The se-
mantic domains are defined in a standard way as follows:
� � � objects �	 � � Val
 objects ��� �

null � � � Env
 VarId � Val� � � Heap
 objects ��� FieldId � Val

state �
�� � � � � � � ��� �
�����������
�� objects � � Env � Heap

where objects � is an unbounded set of dynamically allocated ob-
jects, VarId is a set of local variable identifiers, and FieldId is a set
of field identifiers.

A program state keeps track of the set of allocated objects
(
� �), an environment mapping local variables to values (�), and

a mapping from fields of allocated objects to values (
� �).

We also define the notion of an access path as follows: A
pointer path !�#"!
 FieldId

�
is a (possibly empty) sequence

of field identifiers. The empty sequence is denoted by $. We use the
shorthand %'& where %(� FieldId to mean a sequence of length) of
accesses along a field % . An access path �+*-,�. /� VarId � " is a
pair consisting of a local variable , and a pointer path .

We denote by APs all possible access paths in a program. The
l-value of access path � , denote by state �10 �32 , is recursively defined
using the environment and heap mappings, in the standard manner.

We formally define a typestate property as follows.

DEFINITION 3.1. A typestate property 4 is represented by a finite
state automaton 45
6�87 �:9 �<; � init �:9>= �

err � � where 7 is the
alphabet of observable operations, 9 is the set of states, ; is the
transition function mapping a state and an operation to a successor
state, init �?9 is a distinguished initial state, err �?9 is a
distinguished error state for which for every @��A7 , ;�� err �<@ �B

err, and all states in 9C= �

err � are accepting states. Given a
sequence of operations we say that it is valid when it is accepted by
4 , and invalid otherwise.

Our instrumented concrete semantics instruments every con-
crete state � � � � � � � � � with an additional mapping typestate ��D � �E�
9 that maps an allocated object to its typestate.

For a given state state �F
G� � � � � � � � � , we define a function
AP �state � D

� � �H� APs as a mapping between allocated objects

and the access paths that evaluate to them, i.e. AP � ��� � �I
 � �KJ
state � 0 �L2�
 � � � . When the state is clear from context, we omit it
and simply write AP � ���M� � .

A state of the instrumented concrete semantics is therefore a
tuple � � � � � � � � � typestate � � .
EXAMPLE 3.2. Given the property of Fig. 1, the instrumented con-
crete state before the first call to s.connect() in example()
contains six objects: one object � �N allocated during the invoca-
tion of createSocket(), and five other objects � � O �L.P.L. � � �Q , al-
located during the invocation createSockets(). The values of
typestate � and the function AP � ��� �N � are:

typestate � ��� �N �R
 conn AP � ��� �N �R
 �
handShake �

typestate � ��� � O �R
 init AP � ��� � O �R
 �
s �1S1TLUWVMXZY8S\[]^XP_a` �

typestate � ��� �b �E
 init AP � ��� �b �E
 � S1TLUWVMXZY8S\[]cXZ_�`M[d3XZe�Y bgf O �h � �\i��	�gj�
��	�\.k. l �
The instrumented semantics updates the typestate of the object

in a natural way. When the object is first allocated, its typestate
is mapped to the initial state of the typestate automaton. Then, on
every observable event, the object typestate is updated accordingly.

3.2 Abstract Semantics

The instrumented concrete semantics uses an unbounded set of
objects with an unbounded set of (unbounded) access paths. In this
section, we describe a parameterized abstract semantics that allows
us to conservatively represent the instrumented concrete semantics
with various degrees of precision and cost.

Our abstract semantics uses a combination of two representa-
tions to abstract heap information: (i) a global heap-graph represen-
tation encoding the results of a flow insensitive points-to analysis;
(ii) enhanced flow-sensitive must points-to information integrated
with typestate checking.

3.2.1 Flow-insensitive May Points-to Information

The first component of our abstraction is a global heap graph,
obtained through a flow-insensitive, context-sensitive subset based
may points-to analysis [3]. This is fairly standard and provides a
partition of the set objects � into abstract objects. In this discussion,
we define an instance key to be an abstract object name assigned by
the flow-insensitive pointer analysis. The heap graph provides for
an access path � , the set of instance keys it may point-to and also
the set of access paths that may be aliased with � .

The heap graph representation of the running example contains
two instance keys for type Socket: one representing the object
allocated in createSocket, denoted by � �N in Example 3.2, and
another one, for the second allocation site, representing all five
objects in the sockets collection.

3.2.2 Parameterized Typestate Abstraction

Our parameterized abstract representation uses tuples of the form:
� o � unique � typestate � APmust � May � APmustNot � where:

� o is an instance key.
� unique indicates whether the corresponding allocation site has

a single concrete live object.
� typestate is the typestate of instance key o.
� APmust is a set of access paths that must point-to o.
� May is true indicates that there are access paths (not in the must

set) that may point to o.
� APmustNot is a set of access paths that do not point-to o.

This parameterized abstract representation has four dimensions, for
the length and width of each access path set (must and must-not).
The length of an access path set indicates the maximal length of
an access path in the set, similar to the parameter) in k-limited
alias analysis. The width of an access path set limits the number of
access paths in this set.

An abstract state is a set of tuples. We observe that a conser-
vative representation of the concrete program state must obey the
following properties:

(a) An instance key can be indicated as unique if it represents a
single object for this program state.

(b) The access path sets (the must and the must-not) do not need
to be complete. This does not compromise the soundness of the
staged analysis due to the indication of the existence of other
possible aliases.

(c) The must and must-not access path sets can be regarded as
another heap partitioning which partitions an instance key into
the two sets of access paths: those that a) must alias this abstract
object, and b) definitely do not alias this abstract object. If the
must-alias set is non-empty, the must-alias partition represents
a single concrete object.

(d) If May
!%3���g�\� , the must access path is complete; it contains
all access paths to this object.

This can be formally stated as follows:

DEFINITION 3.3. A tuple
� o � unique � typestate � APmust � May � APmustNot � is a sound repre-
sentation of object ��� at instrumented state istate � when:

o
 ik ��� � ��
unique � � , � ��� j 	 � � istate � � J ik �g, � �R
 o �
 � � � ��
typestate
 typestate � ���M� � � APmust � AP � ���M� �� ���E���	�
� � APmust
 AP � ��� � � � � � APmustNot � AP � ��� � �R
�

where ik is an abstraction mapping a concrete object to the in-
stance key that represents it, and � j 	 � � istate � � is defined to be� , � J AP � �g, � ���
�� � .

DEFINITION 3.4. An abstract state istate is a sound representation
of a concrete state istate �F
?� � � � � � � � � typestate � � if for every
object ��� � � � there exists a tuple in istate that provides a sound
representation of ��� .
3.3 Base Abstraction

The Base (least precise) abstraction is an instance of the parame-
terized abstraction with zero length and width of both the must and
the must-not access path sets. In addition, this abstraction does not
track uniqueness. This yields a typestate checking algorithm, simi-
lar to [11] in its alias handling, that cannot verify any property that
requires strong updates. For simplicity, we denote each tuple in this
abstraction as � o � typestate �
EXAMPLE 3.5. A base abstraction representing the concrete state
described in Example 3.2 contains two instance keys: o N represent-
ing � �N and o O�� � Q representing the five objects � �b �Wj
�� �1�	�\.k. l in
the sockets collection and the following three tuples: � o N � init � ,
� o N � conn � , � o O�� � Q � init � .

This analysis is an iterative flow- and context-sensitive propa-
gation, that tracks tuples starting with an initial � o � init � generated
at an allocation. The analysis only needs to handle observable op-
erations and propagates tuples according to typestate changes. The
result of an observable operation associated with event � � on the
tuple � o � typestate � are two tuples: The previous tuple and the tuple
� o �<;�� typestate � op � � . Tuples are never removed; all operations are
handled as weak updates. The first tuple in Example 3.5 demon-
strates the results of a weak-update. It represents that � �N , in Exam-
ple 3.2, may be in the init state, which is not feasible in any concrete
state at this program point.

4. Uniqueness Analysis
The Unique verifier extends the Base abstraction, adding an ab-
straction which determines whether more than one concrete object
corresponding to a given instance key can be simultaneously alive.
This information allows the verifier to use strong updates under
certain conditions. We refer to this analysis as uniqueness analysis.

In terms of the abstraction tuples introduced in Sec. 3, the
Unique verifier makes use of only the instance key, uniqueness flag,
and the typestate. (Thus the must-point-to set and must-not-point-
to set are always empty, and the May flag is always true.) Hence,
we will represent each tuple as a triple � o � unique � typestate � .

The analysis works as follows. The first time an allocation site
with an instance key) is executed (during analysis), it generates the
tuple �) ����i��'� � init � . If, during the analysis, any tuple �) ����i��'� �1� �
reaches the same (context-sensitive) allocation site, the allocation
site will generate the tuple �)��W%3��� �:� � typestate � .

To make the above technique effective for allocation sites that
are in a loop, it is necessary to find a way to “kill” the tuples where
possible. This verifier utilizes a preliminary liveness analysis, com-
puted prior to typestate checking, that determines a conservative
approximation of which instance keys may be live at each program
point. Whenever a tuple � for an instance key o flows to a program
point where o cannot be live, � can be removed soundly.

The framework admits any form of liveness analysis, which
can be plugged into the verifier. Our current implementation uses
a simple bottom-up interprocedural liveness analysis, based on
the results of the preliminary flow-insensitive, partially context-
sensitive pointer analysis.

This approach is effective in two situations. First, singleton pat-
tern objects clearly retain their unique predicates, and so enjoy

strong updates everywhere. The Java standard libraries use single-
ton patterns frequently.

Additionally, the liveness analysis allows unique analysis to
succeed for a ubiquitous pattern: an allocated object dies before
its allocation site executes again. In practice, we have found that a
simple liveness analysis catches many of these cases.

For tuples not marked unique, this verifier degenerates into the
Base verifier of Sec. 3.3. For example, while uniqueness handles
the handshake socket in the running example, uniqueness cannot
show that the Sockets in the collection are used correctly. The
instance key that represents all the Socket objects in the sockets
collection is, naturally, not unique. Therefore, when the statement
s.connect() is analyzed, the typestate of the abstract Socket
object is weakly-updated, indicating that a socket may occupy the
conn state or the init state. These tuples propagate to the statement
s.getOutputStream() in talk(), causing the verifier to
imprecisely report a possible error.

Note that in the example, although verifying usage of the
handshake object does not rule out errors at any potential
points of failure, the staged verifier will remove pairs involving
the handshake object from the running verification scope. This
would reduce the computational workload for the next stage.

5. Integrated Typestate and Alias Analysis
In this section, we describe two verifiers that make use of the
access-path sets in the tuple representation. We first describe the
APFocus verifier, our most precise analysis.

5.1 Update Functions

The interpretation of an allocation statement “v = new T()”
with instance key � will generate a tuple � o ����i��'� � init � � 	 � �Z%3���g�\� � � �
representing the newly allocated object. When May is false, the
APmustNot component is redundant and, hence, initialized to be
empty. Table 1 shows how a tuple is transformed by the interpreta-
tion of various statements. When a typestate method is invoked, we
can (1) use the APmustNot information to avoid changing the type-
state of the tuple where possible, (2) use the APmust information
to perform strong updates on the tuple where possible, and (3) use
the uniqueness information also to perform strong updates where
possible.

When a tuple reaches the allocation site that created it, we
generate two tuples, one representing the newly created object, and
one representing the incoming tuple. We change the uniqueness flag
to false for reasons explained earlier. For assignment statements, we
update the APmust and APmustNot as appropriate.

5.2 Focus Operation

We now describe the focus operation, which improves the preci-
sion of the analysis. As a motivating example, consider the state-
ment s.connect() in the loop in the method example() in
our running example. We have an incoming tuple representing all of
the sockets in the collection, and, hence, we cannot apply a strong
update to the tuple, which can subsequently cause a false positive.
The focus operation replaces the single tuple with two tuples, one
representing the object that s points to, and another tuple to repre-
sent the remaining sockets. Formally, consider an incoming tuple
� o � unique � typestate � APmust ����i��'� � APmustNot � at an observable
operation �M. � � � � , where � �� APmust , but � may point to o (accord-
ing to the flow-insensitive points-to solution). The analysis replaces
this tuple by the following two tuples:

� o � unique � typestate � APmust � � � � ��� i � � � APmustNot �� o � unique � typestate � APmust �<��i��'� � APmustNot �
� � � �

In the example under consideration, the statement s.connect()
is reached by the tuple � o O�� � Q �1%3���g�\� �<j � jg� � �	�<��i��'� ��� � . Focusing re-

places this tuple by the following two tuples:

� o O�� � Q �1%3���g�\� � init � � � � �<��i��'� ��� �
� o O�� � Q �1%3���g�\� � init � �	����i��'� � � � � �

The invocation of connect() is analyzed after the focusing. This
allows for a strong update on the first tuple and no update on the
second tuple resulting in the two tuples:

� o O�� � Q �1%3���g�\� � conn � � � � �<��i��'� ��� �
� o O�� � Q �1%3���g�\� � init ������� i �'� � � � � �

We remind the reader that the unique component tuple merely
indicates if multiple objects allocated at the allocation site o may
be simultaneously alive. A tuple such as
� o O�� � Q �1%3���g�\� � conn � � � � �<��i��'� ��� � , however, represents a single ob-
ject at this point, namely the object pointed to by � , which allows
us to use a strong update.

5.3 Focus and polymorphism

Polymorphism is the distinguishing feature of object-oriented lan-
guages; an object’s behavior depends on its concrete type rather
than it’s declared type. Polymorphic call sites, present an interest-
ing and widespread difficulty for the integrated typestate checking.

Consider the following snippet of code:

Collection c = ...
for (Iterator it=c.iterator();it.hasNext();) �

it.next();
�

The Java Collections API often returns one of two Iterator im-
plementations, depending on whether the collection is empty. Thus,
the calls to both hasNext and next are polymorphic. This effec-
tively introduces a path-sensitivity issue, where the two dynamic
dispatch sites play the role of correlated branches in traditional
path-sensitive discussions.

As in ESP [11], we could introduce path-sensitive predicates
that encode the direction of dynamic dispatch. Instead, our focus
algorithms exploit information from the tuple to avoid propagation
at polymorphic call sites.

In particular, before the call to hasNext, if we have the tuple

� o �1%3���g�\� ��j � jg� �����<��i��'� ��� �
then the focus operation will result in two tuples after the call to
hasNext:

� O
>� o �1%3���g�\� � � � �\�(�\,3� � ����� � �<��i��'� ��� �
���
>� o �1%3���g�\� �<j � j � � ���<� i �'� � ����� � �

The flow functions for call edges exploit alias information to avoid
propagating tuples down infeasible paths. In particular, the flow
function for the call to it.nextwill not propagate � � to the next
operation, since ��� indicates that it must-not alias o. Thus, focus
avoids a spurious transition to �\i�i .

Intuitively, the focus operation introduces a notion of path-
sensitivity, where a path corresponds to a dynamic dispatch gov-
erned by alias relationships for tracked objects.

5.4 Discarding Access Paths

As explained earlier, we enforce limits on the length and the num-
ber of access paths allowed in the APmust and APmustNot compo-
nents to keep the number of tuples generated finite. We designed
the abstract domain specifically to discard access-path information
soundly, allowing heuristics that trade precision for performance
but do not sacrifice soundness. This feature is crucial for scalabil-
ity; the analysis would suffer an unreasonable explosion of dataflow
facts if it soundly tracked every possible access path, as in much
prior work [13, 23, 7, 14].

We can always safely discard access path elements from the
APmustNot component, since the flow functions do not rely on the

Stmt S Resulting abstract tuples
observable operation Xa[T������
as op ��� where o �	�^Y�� X
�

�
o � unique ���� typestate � op ��� APmust � May � APmustNot � if X��� APmustNot � � X�� APmust � May ��
o � unique � typestate � APmust � May � APmustNot � if X�� APmustNot � � X��� APmust ��� � unique � �^Y�� X
��� � o � � � May �

� = new T() where o = Stmt S
�
o ����_�� S1X�� typestate � APmust � � [!#"$!%�'& � � May � APmustNot (� � � ��
o ����_�� S1X�� init �<� � � �)��_�� S1X���* � �� = null
�
o � unique � typestate � APmust � � [!+"$!%�'& � � May � APmustNot (� � � �� [� = null
�
o � unique � typestate � APmust �PX-,8[��[!." mayAlias � X-,/� � ���0!%�1& � � May � APmustNot (� � [� � �� = X �
o � unique � typestate � APmust (� � [!2"LX:[!�� APmust

� � May � APmustNot � � " X�� APmustNot
�
�

� [� = X
AP ,must 3 � APmust (� � [�M[!2"LXa[!'� APmust

�
�
o � unique � typestate � AP ,must � May �%4 � [��[!5� AP ,must �6�7� AP " mayAlias � � �8�9� � � [�M[!:�� AP ,must � APmustNot � � [�;" X�� APmustNot

�
�

Table 1. Transfer functions for statements indicating how an incoming tuple � o � unique � typestate � APmust � May � APmustNot � is transformed,
where � � � � � is the set of instance keys pointed-to by � in the flow-insensitive solution, 	 � VarId. mayAlias � � O �W� � � iff pointer analysis
indicates � O and ��� may point to the same instance key.

must-not set being complete. Additionally, we can safely discard
elements from the APmust component by setting the May compo-
nent to be true, indicating that the APmust set does not contain all
possible aliases.

There are a variety of possible heuristic options for limiting
the number of tuples. For example, ESP’s “property simulation”
introduced lossy joins, to merge tuples that do not differ in the
typestate property of interest [11].

Our current implementation uses a different heuristic. It dis-
cards the prior APmustNot paths when applying a focus operation,
maintaining the more precise information from the most recent fo-
cus. This is based on intuition that in most cases the extra precision
from focus will manifest at the next typestate change. This heuristic
avoids a common exponential blowup in state due to a sequence of
focus operations, and seems to perform well in practice.

5.5 The APMust Verifier

APMust is a simpler version of APFocus engine that makes use
of the APmust component, but not the APmustNot component.
Thus, the APmustNot component is always an empty set in this
abstraction. Since it does not use the APmustNot , it does not use
focus either (since focus is ineffective without the APmustNot).
Other aspects of this engine, such as the transfer functions, can be
obtained in a straightforward way from the description of APFocus.

We include the APMust verifier for comparison in the next
section, to help evaluate the contribution of the focus operation.

6. Experimental Results
6.1 Implementation

The preliminary flow-insensitive pointer analysis provides a mostly
context-insensitive field-sensitive Andersen’s analysis [3], en-
hanced with a selective object sensitivity policy [26] to disam-
biguate contents of Java collection classes and I/O stream con-
tainers. The pointer analysis relies on an SSA register-transfer
language representation of each method, which gives a measure
of flow-sensitivity for points-to sets of local variables [20]. The
pointer analysis names each context-sensitive allocation site as an
instance key, and builds the call graph on-the-fly.

The analysis deals with reflection by tracking objects to casts,
as in [17, 25] . When an object is created by a reflective call
(e.g. newInstance), the analysis assumes (unsoundly) that the
object will be cast to a declared type before being accessed. The
analysis tracks these flows, and infers the type of object created by
newInstance based on the declared type of relevant casts. While
technically unsound, we believe that this approximation is accurate
for the vast majority of reflective factory methods in Java programs.

The pointer analysis adds one-level of call-string context to
calls to various library factory methods, arraycopy, and clone

statements, which tend to badly pollute pointer flow precision if
handled without context-sensitivity. The system uses a substantial
library of models of native code behavior for the standard libraries.

The flow-sensitive combined typestate and alias analysis builds
on a general Reps-Horwitz-Sagiv (RHS) IFDS tabulation solver
implementation [29]. We have enhanced the standard IFDS solver
in straightforward ways to handle Java’s exceptional control-flow
and polymorphic dispatch without undue precision loss.

6.2 Sparsification

To make the analysis scale, we rely on a lightweight sparsification[28]
optimization prior to solving the IFDS problem. Consider an inte-
grated verifier using access-paths bounded by depth) . We first
consult the flow-insensitive points-to graph to conservatively deter-
mine all program variables that may appear in access-paths of depth
at most) , which point to typestate objects of interest for a given
property. Next, we perform a context-insensitive mod-ref analysis
over the call graph, to determine those call graph nodes which may
write to such variables; call these the relevant nodes. We prune the
call graph to include only those nodes from which some relevant
node is reachable, since the other nodes cannot modify the IFDS
solution.

This pruning is particular important for the LocalFocus verifier.
Exploiting the pruning, the LocalFocus verifier can avoid making
conservative assumptions for every method call, thus greatly in-
creasing its precision.

We assume that methods from the standard libraries will not
directly transition to err, and apply sparsification accordingly. Of
course, the analysis still must analyze all relevant library code
to account for typestate transitions to non-err states, and aliases
induced by the libraries.

In the staged verifier, we exploit results from early stages to
improve sparsification in latter stages in two ways. First, if an early
stage verifies that a particular statement does not transition to err,
latter stages incorporate this information to improve sparsification.
Second, if an early stage proves that a particular abstract object
never causes an error, latter stages ignore tuples for that abstract
object entirely.

6.3 Benchmarks

Table 2 lists the benchmarks employed in this study.
Apache Bcel is a bytecode processing toolkit with a sample

verifier. Java cup and JLex are a parser generator and lexical an-
alyzer, respectively, for Java. Jbidwatcher is an online auction
tool. JHotDraw is a graphics framework for technical and struc-
tured graphics. L2j is Multi-User Dungeon game server. Apache
lucence is a text search engine. Portecle is a GUI application
for managing secure keys and certificates. SPECjvm98 is a col-
lection of client-oriented applications. TVLA is a research vehicle

Benchmark Classes Methods Bytecode Statements Contexts
bcel 1723 7130 1474264 13725
gj 230 2362 139305 2521
java cup 123 661 53296 990
jbidwatcher 1182 4994 1029507 7030
jhotdraw 1688 6337 1400640 11203
jlex 111 473 44736 776
jpat-p 64 225 17783 269
kawa-c 612 3027 141527 3438
l2j 838 4247 877077 6438
lucene 1783 6694 1474334 12576
portecle 1800 6737 1481249 13430
rhino-a 196 1293 92225 1645
sablecc-j 391 2144 96201 2747
schroeder-m 1459 5215 1367432 9682
soot-c 665 2764 144554 3272
specjvm98 965 4673 979159 8152
symjpack-t 74 305 80508 351
toba-s 163 760 65415 1169
tvla 346 2077 139474 12874

Table 2. Call graph characteristics for benchmarks.

Name Description
Enumeration Call hasNextElement before nextElement
InputStream Do not read from a closed InputStream
Iterator Do not call next without first checking hasNext
KeyStore Always initialize a KeyStore before using it
PrintStream Do not use a closed PrintStream
PrintWriter Do not use a closed PrintWriter
Signature Follow initialization phases for Signatures
Socket Do not use a Socket until it is connected
Stack Do not peek or pop an empty Stack
URLConn Illegal operation performed when already connected
Vector Do not access elements of an empty Vector

Table 3. Typestate properties.

for abstract interpretation. The remainder of the benchmarks come
from the Ashes suite, described at the Ashes web page 3.

The Table reports size characteristics restricted to methods
discovered by on-the-fly call graph construction. The call graph
includes methods from both the application and the libraries;
for many programs the size of the program analyzed is domi-
nated by the standard libraries. The table also reports the number
of (method) contexts in the call graph. Recall that the context-
sensitivity policy models some methods with multiple contexts.

Table 3 lists intuitive descriptions of the typestate properties
checked in the experiments.

6.4 Methodology

The experiments evaluate the following verification algorithms:
� FI: flow-insensitive analysis (Sec. 2.2.1)
� LocalFocus: the intraprocedural analysis (Sec. 2.2.2)
� Base: the base analysis (Sec. 3.3)
� Unique: the analysis using the unique reasoning (Sec. 4)
� APMust: the integrated analysis without focus (Sec. 5)
� APFocus: the integrated analysis with focus (Sec. 5.)
� Staged: a staged analysis consisting of three stages: LocalFo-

cus, Unique, and APFocus.

3 http://www.sable.mcgill.ca/ashes/

Note that each verifier performs the FI analysis as a first step, since
it is extremely fast and can prune the workload based on the “ver-
ification scope” passed from the previous stage. The experiments
use an access-path depth limit of 1, and unlimited access-path set
width4.

Each experiment ran in a time limit of 15 minutes for each type-
state property. In a few cases, a benchmark/property/verifier com-
bination timed out 5. When reporting warnings data, we penalize a
timed-out run by assigning it the same results as the most precise
previous verifier that did not time out. This value represents what a
staged verifier could safely report after a phase times out.

All experiments ran on an IBM Intellistation Z pro with two
3.06 GHz Intel Xeon CPUs and 3.62 GB of RAM, running Win-
dows XP. The analysis implementation, consisting of roughly
200,000 lines of Java code, ran on the IBM J2RE 1.4.2 for Win-
dows, with a max heap of 800MB.

6.5 Results

Figure 4 shows the percentage of warnings, as a percentage of total
number of statements that the callgraph indicates might transition
to �:iai (points of potential failure (PPF)). The rightmost cluster of
bars shows the total number of warnings across all runs. Overall,

� The FI verifier verifies correctness for 30% of PPFs.
� The LocalFocus verifier verifies correctness for 66% of PPFs.
� The Base verifier verifies correctness for 75% of PPFs.
� The Unique verifier verifies correctness for 80% of PPFs.
� The APMust verifier verifies correctness for 90.6% of PPFs.
� The APFocus verifier verifies correctness for 95.6% of PPFs.

By construction, the Staged verifier has the same precision as
APFocus. Sec. 6.7 discusses the sources of many false positives.

6.6 Performance

Figure 5 reports the running times of the various verifiers across
the benchmarks. The results show the expected relative costs of the
various verifiers.

Impact of Staging The Staged verifier improves performance
compared to the APFocus verifier on 8 of the 12 codes where type-
state checking takes more than one minute. The performance im-
provement on these 12 codes from staging ranges from 85% (jbid-
watcher) to -13% (lucene), with a median of 22%. These numbers
include effects of the 15 minute timeout described earlier; without
the timeout, staging would appear somewhat more effective.

Impact of Sparsification We evaluated the sparsification of
Sec. 6.2 across all runs of the staged verifier. With sparsifica-
tion, 70% of supergraphs have fewer than 3500 nodes, 95% have
fewer than 25,000 nodes, and 100% have fewer than 40,000 nodes.
The corresponding numbers without sparsification are drastically
higher: roughly 80% of unpruned supergraphs have more than
125,000 nodes, and 20% have over 290,000 nodes. Overall, sparsi-
fication reduces median supergraph size by roughly a factor of 50.
We would expect a corresponding reduction in space and running
time, if we could run the unpruned verifiers without running out of
memory.

Impact of Initial Pointer Analysis The precision of the preceding
flow-insensitive pointer analysis has a significant impact on per-
formance and precision. A more accurate pointer analysis allows

4 Experiences with deeper access-paths have not shown significant improve-
ments for our benchmark/property set
5 Schroeder/InputStream/APFocus, specJvm98/PrintStream/APMust and
APFocus, tvla/Iterator/APMust and APFocus

0

20

40

60

80

100

W
ar

ni
ng

s/P
PF

s (
%

)

234 46 388 158 55 400 3 412 121 68 388 35 74 27 293 1793 16 420 876 5807

TO
TA

L

bc
el gj

jav
a_

cu
p

jbi
dw

atc
he

r
jho

tdr
aw

jle
x

jpa
t-p

ka
wa-c l2j luc
en

e

po
rte

cle
rh

ino
-a

sa
ble

cc
-j

sc
hr

oe
de

r-m
so

ot-
c

sp
ec

jvm
98

sy
mjpa

ck
-t

tob
a-s tvl
a

PPFs
FI
LocalFocus
Base
Unique
APMust
APFocus

a)

0

20

40

60

80

100

W
ar

ni
ng

s/P
PF

s (
%

)

372 502 855 2 2388 1502 18 6 92 14 56 5807

TO
TA

L

En
um

era
tio

n

In
pu

tS
tre

am

Ite
rat

or

Key
St

or
e

Pr
int

St
rea

m

Pr
int

W
rit

er

Si
gn

atu
re

So
ck

et

St
ac

k

URL
Co

nn
ec

tio
n

Vec
tor

PPFs
FI
LocalFocus
Base
Unique
APMust
APFocus

b)
Figure 4. Percentage of warnings out of total number of points of potential failure (PPFs). Results are grouped by a) application, and b)
property. Number of PPFs is shown above each group.

better sparsification, more effective live analysis and improved dis-
ambiguation overall. We ran many of the analyses with a context-
insensitive Andersen-style pointer analysis, without the custom
context-sensitivity policies described earlier. Many of the bench-
marks timed out on several rules; we conclude that adequate preci-
sion in the preceding pointer analysis is vital.

Our context-sensitivity policy employs object-sensitivity for
classes from the standard libraries typically relevant to theses type-
state properties (namely collections and I/O streams). Some bench-
marks defeat this object-sensitivity policy by using application-
level collections or streams. For example, TVLA uses a library of
application-level collections, and specJVM98 uses a reporting li-
brary of application-level I/O streams. To handle these cases more
effectively, we need to infer a pointer-analysis context-sensitivity

policy for application classes that match typestate properties. Itera-
tive refinement techniques [27, 19] may apply to this problem.

6.7 Discussion

Overall, the results show that our combination of techniques is rel-
atively successful and efficient at verifying these typestate proper-
ties. The various techniques complement each other, contributing
to the effectiveness of the staged verifier.

We have examined, by hand, many of the warnings which our
most precise verifier does not eliminate. From inspection, it appears
that roughly half of the warnings result from analysis imprecision,
and roughly half from overly strict typestate properties.

The analysis imprecisions stem usually from aliasing knots that
our current implementation cannot cut through. We expect, in par-
ticular, that in the near future we can improve precision by a)

0

500

1000

1500

2000

Ru
n T

im
e (

sec
s)

T

T

T

bc
el gj

jav
a_

cu
p

jbi
dw

atc
he

r
jho

tdr
aw

jle
x

jpa
t-p

ka
wa-c l2j luc
en

e

po
rte

cle

rhi
no

-a

sab
lec

c-j
sch

roe
de

r-m
so

ot-
c

sp
ec

jvm
98

sy
mjpa

ck
-t

tob
a-s tvl
a

LocalFocus
Base
Unique
APMust
APFocus
Setup

Figure 5. Total wallclock time needed to run the analysis. “Setup” indicates the preliminary activities; primarily the preceding flow-
insensitive pointer analysis and call graph construction. The rightmost stacked bar in each group represents the running time of the Staged
verifier. A T over a group indicates a benchmark that suffered a 15 minute timeout on some property/verifier combination.

access-path tracking for objects that are not typestate objects, but
are likely to point to them, and b) increasing the scope of focus by
exploiting inexpensive local alias reasoning. We suspect that sub-
stantial improvements in alias precision are within reach, without
undue performance compromise.

In many other cases, our verifiers fail to verify a PPF due
to failure of the typestate property to capture all legal behav-
ior, as opposed to solver limitations. For example, our typestate
property for Vector does not account for the return value from
Vector.size(). Many times, application code accesses a Vec-
tor via statements guarded by a test that �\j��M����� . This pattern ac-
counts for many of the false positives for the Stack and Vector rules.
For proper treatment, these APIs require at least range-check anal-
ysis, as commonly applied to array-bounds checking (e.g. [18]).

In many cases, programmers deduce from application logic
that a particular iterator must have a next element, or a particular
collection must not be empty. The typestate property for a single
object does not allow for application logic which ensures, via some
back door, that an object occupies a particular typestate. Designing
efficient, effective analysis for more general specifications remains
a difficult problem.

7. Related Work
Many existing verification frameworks (e.g., [11, 4, 8]) use a two-
phased approach, performing points-to analysis as a preceding
phase, followed by typestate checking. This approach only sup-
ports weak updates as discussed in Sec. 3.3.

The current version of ESP [13] uses an integrated approach,
recording must and may alias information in a flow-sensitive man-
ner. They observe that the may set becomes polluted and expensive
to maintain, and even hint toward maintaining a must-not set as a
possible future solution. In contrast, our approach adds must-not
and also introduces the notions of uniqueness and focus, and uses
staging to achieve increased scalability and precision.

DeLine and Fähndrich [12] present a type system for types-
tate properties for objects. Their system guarantees that a program
that typechecks has no typestate violations, and provides a modu-
lar, sound checker for object-oriented programs. To handle aliasing,

they employ the adoption and focus operations to a linear type sys-
tem, as described in [15]. With these operations, the type checker
can assume must-alias properties for a limited program scope, and
thus apply strong updates allowing typestate transitions. Our ap-
proach can prove correctness of a more general class of programs,
since a context-sensitive analysis can accept programs for which
an expression cannot be assigned a unique type at a given pro-
gram point. Furthermore, our focus operation generates facts that
can flow across arbitrary program scopes, in contrast to the limited
program scope handled by [15]. On the other hand, our approach is
non-modular and thus more expensive.

Aiken et al. [1] present an inference algorithm for inferring
restricted and confined pointers, which they use to enable strong
updates. We believe that the focusing technique we exploit, inspired
by [30], can sometimes achieve a similar effect without explicitly
inferring restricted and confined pointers, and sometimes enable
strong updates even when the pointers are not restricted/confined.
Further, the uniqueness technique we use provides a somewhat
orthogonal, cheap, technique for enabling strong updates.

Field et al. [16] present algorithms based on abstractions that
integrate alias and typestate information, but restricted to shallow
programs, with only single-level pointers to typestate objects.

The parametric shape analysis presented in [31] has served as
the basis for very precise verification algorithms, where the ver-
ification is integrated with heap analysis (e.g., [35].) These algo-
rithms, however, do not scale well. We plan to extend our staged
verifier by adding such precise verifiers as a last stage.

Counter-example guided refinement [5, 22] based approaches
have had impressive results in certain domains. But they have so far
been less successful in dealing with complex heap manipulation,
partly because these approaches attempt to automatically derive
appropriate heap analyses. Our staged verifier has a “refinement”
flavor, but restricted to a fixed set of manually crafted verifiers.

Aliasing of our combined domain resembles previous ap-
proaches to flow-sensitive, context-sensitive access-path-based
pointer analysis [23, 7]. Emami, Ghiya and Hendren [14] presented
a domain that combined may and must points-to information. Our
IFDS-based solvers memoize function summaries, similar to Wil-

son and Lam’s partial transfer functions [34]. Our domain differs
from these previous works since a) it tracks must and must-not
paths, but not may, and b) Java’s strong typing avoids complica-
tions arising from pointers to stack locations.

Iterative refinement techniques [27, 19] perform pointer analy-
sis in multiple passes, with a client-independent first pass, followed
by subsequent passes using context-sensitivity policies driven by
client feedback. In future work we plan to integrate these tech-
niques into our framework, where each typestate solver provides
feedback for the next stage’s pointer analysis.

References
[1] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking and

inferring local non-aliasing. ACM SIGPLAN Notices, 38(5):129–140,
May 2003. In Conference on Programming Language Design and
Implementation (PLDI).

[2] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface
specifications for java classes. SIGPLAN Not., 40(1):98–109, 2005.

[3] L. O. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, Univ. of Copenhagen,
May 1994. (DIKU report 94/19).

[4] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic
predicate abstraction of C programs. In Proc. ACM Conf. on
Programming Language Design and Implementation, pages 203–
213, June 2001.

[5] T. Ball and S. K. Rajamani. The ������� project: debugging system
software via static analysis. ACM SIGPLAN Notices, 37(1):1–3, Jan.
2002.

[6] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and
structures. ACM SIGPLAN Notices, 25(6):296–310, June 1990. In
PLDI.

[7] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side
effects. In POPL 93, pages 232–245, 1993.

[8] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach,
and H. Zheng. Bandera: Extracting finite-state models from Java
source code. In Proc. Intl. Conf. on Software Eng., pages 439–448,
June 2000.

[9] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proc. ACM Symp. on Principles of Programming
Languages, pages 269–282, New York, NY, 1979. ACM Press.

[10] M. Das. Unification-based pointer analysis with directional
assignments. ACM SIGPLAN Notices, 35(5):35–46, May 2000. In
Conference on Programming Language Design and Implementation
(PLDI).

[11] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program
verification in polynomial time. ACM SIGPLAN Notices, 37(5):57–
68, May 2002. In Conference on Programming Language Design and
Implementation (PLDI).

[12] R. DeLine and M. Fähndrich. Typestates for objects. In 18th
European Conference on Object-Oriented Programming (ECOOP),
volume 3086 of LNCS, June 2004.

[13] N. Dor, S. Adams, M. Das, and Z. Yang. Software validation via
scalable path-sensitive value flow analysis. In ISSTA, pages 12–22,
2004.

[14] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function pointers.
ACM SIGPLAN Notices, 29(6):242–256, June 1994. In Conference
on Programming Language Design and Implementation (PLDI).

[15] M. Fahndrich and R. DeLine. Adoption and focus: practical
linear types for imperative programming. ACM SIGPLAN Notices,
37(5):13–24, May 2002. In Conference on Programming Language
Design and Implementation (PLDI).

[16] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate

verification: Abstraction techniques and complexity results. In Proc.
of Static Analysis Symposium (SAS’03), volume 2694 of LNCS, pages
439–462. Springer, June 2003.

[17] S. Fink, J. Dolby, and L. Colby. Semi-automatic J2EE transaction
configuration. Technical Report RC23326, IBM, 2004.

[18] R. Gupta. Optimizing array bound checks using flow analysis. ACM
Lett. Program. Lang. Syst., 2(1-4):135–150, 1993.

[19] S. Guyer and C. Lin. Client-driven pointer analysis. In Proc. of
SAS’03, volume 2694 of LNCS, pages 214–236, June 2003.

[20] R. Hasti and S. Horwitz. Using static single assignment form to
improve flow-insensitive pointer analysis. ACM SIGPLAN Notices,
33(5):97–105, May 1998. In Conference on Programming Language
Design and Implementation (PLDI).

[21] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA:
A million lines of C code in a second. ACM SIGPLAN Notices,
36(5):254–263, May 2001. In Conference on Programming Language
Design and Implementation (PLDI).

[22] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Symposium on Principles of Programming Languages,
pages 58–70, 2002.

[23] W. Landi and B. G. Ryder. A safe approximate algorithm for
interprocedural aliasing. ACM SIGPLAN Notices, 27(7):235–248,
July 1992. In Conference on Programming Language Design and
Implementation (PLDI).

[24] O. Lhoták and L. Hendren. Scaling Java points-to analysis using
SPARK. In 12th International Conference on Compiler Construction
(CC), volume 2622 of LNCS, pages 153–169, Apr. 2003.

[25] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for java.
In Proceedings of Programming Languages and Systems: Third Asian
Symposium, APLAS 2005, November 2005.

[26] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to analysis for java. ACM Trans. Softw. Eng.
Methodol., 14(1):1–41, 2005.

[27] J. Plevyak and A. A. Chien. Precise concrete type inference for
object-oriented languages. ACM SIGPLAN Notices, 29(10):324–324,
Oct. 1994. In Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA).

[28] G. Ramalingam. On sparse evaluation representations. Theor.
Comput. Sci., 277(1-2):119–147, 2002.

[29] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Conference record of POPL
’95, 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 49–61, New York, NY, USA, 1995.
ACM Press.

[30] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. In Proc. ACM Symp. on Principles of Programming
Languages, pages 105–118, 1999.

[31] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via � -
valued logic. Transactions on Programming Languages and Systems
(TOPLAS), 24(3):217–298, May 2002.

[32] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Software
Eng., 12(1):157–171, 1986.

[33] J. Whaley, M. Martin, and M. Lam. Automatic extraction of object-
oriented component interfaces. In Proceedings of the International
Symposium on Software Testing and Analysis, July 2002.

[34] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer
analysis for C programs. ACM SIGPLAN Notices, 30(6):1–12,
June 1995. In Conference on Programming Language Design and
Implementation (PLDI).

[35] E. Yahav and G. Ramalingam. Verifying safety properties using
separation and heterogeneous abstractions. In Proceedings of the
ACM SIGPLAN 2004 conference on Programming language design
and implementation, pages 25–34. ACM Press, 2004.

