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Abstract

A new preorder relation is introduced that orders states of a Markov process with
an additional reward structure according to the reward gained over any interval
of finite or infinite length. The relation allows the comparison of different Markov
processes and includes as special cases monotone and lumpable Markov processes.

1 Introduction and Basic Definitions

We consider Markov processes Xt on some finite or countable state space S,
an initial distribution p0 (p0 : S → R and

∑
i∈S p0(i) = 1.0) and an additional

reward function r (r : S → R+) which assigns a non-negative reward to
the states of the Markov process. Throughout the paper we introduce our
approach for Markov processes in discrete time (DTMCs). However, as shown
below, a continuous time Markov process (CTMC) with bounded transitions
rates can be transformed into a DTMC via uniformization [10] and most of
the presented results hold as well for uniformizable CTMCs. Let P be the
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transition matrix of the DTMC. P is a stochastic matrix of dimension |S|
where |S| is the size of the state space and P(i, j) is the transition probability
from state i to j. Similarly, the initial distribution and the reward function
can be described as a |S|-dimensional row vector p0 and a |S|-dimensional
column vector r, respectively. We use the notation DM = (S,P,p0, r) for a
DTMC with rewards.

The state distribution of the DTMC after k steps is given by

pk = p0P
k . (1)

The reward Rk after k steps is a random variable with distribution function

FRk
(s) =

∑
x∈S,r(x)≤s

p(x) (2)

and expectation

E[Rk] =
∑
x∈S

pk(x)r(x) = p0P
kr . (3)

For 0 ≤ k1 ≤ k2 ARk1,k2 is the accumulated reward with expectation

E[ARk1,k2] =
k2∑

k=k1

Rk = pk1


k2−k1∑

k=0

Pk


 r . (4)

Following [8], a random variable X is stochastically larger than a random
variable Y , denoted as X ≥st Y , if FX(t) ≤ FY (t) for all values of t. Obviously
X ≥st Y implies E[X] ≥ E[Y ]. To apply the stochastic ordering for states of
a DTMC, we define Rk(p) as the reward gained in the kth step according to
(2) when the initial distribution equals p (i.e., p0 = p). Let ex be a vector of
appropriate length where element x equals 1 and all other elements are equal
to 0. If we consider different DTMCs, then we number them consecutively and
denote by DM (i) = (S(i),P(i),p

(i)
0 , r(i)) the process with number i. Similarly,

R
(i)
k and AR

(i)
k1,k2

are defined.

Definition 1.1 Let DM = (S,P,p0, r) be a DTMC with rewards and x, y ∈
S. We say x ≥st y iff Rk(ex) ≥st Rk(ey) for all k = 0, 1, . . ..

Definition 1.2 Let DM (i) = (S(i),P(i),p
(i)
0 , r(i)) (i = 1, 2) be two DTMCs.

We say DM (1) ≥st DM (2) iff R
(1)
k ≥st R

(2)
k for all k = 0, 1, . . ..

Since Xk ≥st Yk for k ∈ K ⊆ N for mutually independent Xk and mutually
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independent Yk, implies
∑

k∈K Xk ≥st
∑

k∈K Yk we have

x ≥st y ⇒




E[R(ex)] ≥ E[R(ey)]

ARk1,k2(ex) ≥st ARk1,k2(ey) for all 0 ≤ k1 ≤ k2

E[ARk1,k2(ex)] ≥ E[ARk1,k2(ey)] for all 0 ≤ k1 ≤ k2

(5)

and similarly

DM (1) ≥st DM (2) ⇒




E[R(1)] ≥ E[R(2)]

AR
(1)
k1,k2

≥st AR
(2)
k1,k2

for all 0 ≤ k1 ≤ k2

E[AR
(1)
k1,k2

] ≥ E[AR
(2)
k1,k2

] for all 0 ≤ k1 ≤ k2

(6)

We now extend the approach to CTMCs. Let CM = (S,Q,p0, r) be a CTMC
with generator matrix Q where Q(i, j) is the transition rate between states i
and j for i �= j and Q(i, i) = −∑

j∈S,j �=i Q(i, j). We assume that |Q(i, j)| ≤
α < ∞ for some constant α. The uniformized DTMC DM for CTMC CM
has the same state space, the same initial distribution, the same reward values
and a transition matrix

P = Q/α + I

where I is the identity matrix of appropriate dimension. Let pt be the distri-
bution of a CTMC at time t, then the distribution function of the reward Rt

at time t is defined using (2) with pt instead of pk. Similarly, the accumulated
reward in the interval [t1, t2] with t1 ≤ t2 is given by

ARt1,t2 =

t2∫

t=t1

Rtdt . (7)

It is well known that the distribution pt of a CTMC and the distributions pk

(k = 0, 1, . . .) of the corresponding uniformized DTMC are related as follows
[10].

pt = e−αt
∞∑

k=0

pk
(αt)k

k!
(8)

Order relations for CTMCs can be derived via the corresponding uniformized
DTMC as shown in the following definition and theorems.

Definition 1.3 Let CM = (S,Q,p0, r) be a CTMC with rewards and x, y ∈
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S. We say x ≥st y iff Rt(ex) ≥st Rt(ey) for all t ≥ 0.

Let CM (i) = (S(i),Q(i),p
(i)
0 , r(i)) (i = 1, 2) be two CTMCs. We say CM (1) ≥st

CM (2) iff R
(1)
t ≥st R

(2)
t for all t ≥ 0.

Theorem 1.1 Let CM = (S,Q,p0, r) be a uniformizable CTMC and DMα =
(S,Q/α + I,p0, r) be the uniformized DTMC for uniformization rate α. If for
some α with maxi∈S |Q(i, i)| ≤ α < ∞: x ≥st y in DMα, then x ≥st y in CM .

Proof. Let Rt(ex) be the reward at time t when starting in state x at time 0.
We have

Rt(ex) = e−αt
∞∑

k=0

(αt)k

k!
exP

kr ≥st e−αt
∞∑

k=0

(αt)k

k!
eyP

kr = Rt(ey)

which implies that x is stochastically larger than y in CM .

It is interesting to note that the previous theorem includes no equivalence
since the relation depends on the choice of α which implies that not all uni-
formized discrete time chains preserve the stochastic ordering of the CTMC.
The following theorem shows that it is sufficient to choose α large enough.

Theorem 1.2 Let CM = (S,Q,p0, r) be a uniformizable CTMC and DMα =
(S,Q/α+I,p0, r), DMβ = (S,Q/α+I,p0, r) be two uniformized DTMCs with
uniformization rates α ≤ β (maxi∈S(|Q(i, i)| ≤ α < ∞). If x ≥st y in DMα,
then x ≥st y in DMβ.

Proof. Let ρ = α/β, then Pβ = ρPα + (1 − ρ)I. We have to show that if
exP

k
αr ≥st eyP

k
αr for all k = 0, 1, . . ., then exP

k
βr ≥st eyP

k
βr. Consider for

some fixed k the following relation

exP
k
βr = ex(ρPα + (1 − ρ)I)kr =

k∑
l=0

(
l
k

)
ρl(1 − ρ)k−lexP

l
αr ≥st

k∑
l=0

(
l
k

)
ρl(1 − ρ)k−leyP

l
αr =

ey(ρPα + (1 − ρ)I)kr = eyP
k
βr

which proves the theorem.

The next theorem relates different CTMC via their uniformized DTMCs.

Theorem 1.3 Let CM (i) = (S(i),Q(i),p
(i)
0 , r(i)) (i = 1, 2) be two CTMCs and

DM (i) = (S(i),Q(i)/α+ I,p
(i)
0 , r(i)) the corresponding uniformized DTMCs for

some appropriate uniformization rate α with maxi=1,2(maxx∈S(i)(Q(i)(x, x)|)) ≤
α < ∞. If DM (1) ≥st DM (2) then CM (1) ≥st CM (2).
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Proof. The proof follows from the proof of theorem 1.2.

Due to (8) it follows that for the stochastic ordering of states in a CTMC or
complete CTMCs, the relations (5) and (6) hold as well. The above relation
between DTMCs and CTMCs shows that it is often sufficient to consider
DTMCs for stochastic orders.

Stochastic orders among states of a DTMC or different DTMCs are useful
from a theoretical and practical viewpoint since they allow the comparison
of processes and the computation of bounding processes. However, the gen-
eral computation of the relation ≥st is cumbersome. Therefore we present in
the following section a weaker order among states and DTMCs that implies
≥st and has a finite characterization for finite state spaces. Afterwards, the
generation of bounding DTMCs for a given DTMC and finally the relation
between the new order and the well known concepts of monotonicity [3,6] and
lumpability [1,7] is investigated, followed by a brief example.

2 A Preorder Relation for Markov Reward Processes

Before we present a new preorder relation and some of its features, some
notation is introduced. P(x•) denotes row x of matrix P. A preorder 	 is a
reflexive and transitive relation among the states from S. We use the notation
i 	 j to indicate that i and j are related according to preorder 	.

Definition 2.1 A decomposition φ of a non-negative vector a over finite or
countable state space S is a set of vectors (a1, . . . , aKφ

) with ak ≥ 0 and∑Kφ

k=1 ak = a. Kφ is the size of the decomposition which can be infinite.

Next we extend the definition of a preorder 	 on the states of a model to
define a preorder on probability vectors for a model.

Definition 2.2 Let S be a state space, 	 be a preorder on the states of S, and
a,b be two distributions over the state space S, then a 	 b iff a decomposition
φ of size |S| exists such that for every x ∈ S:

∑
y�x ax(y) ≥ b(x).

The previous definition can be used to define preorder relations that order
states according to their contribution to the reward measures.

Definition 2.3 A preorder 	 on the state space of a DTMC DM = (S,P,p0, r)
is reward preserving, iff x 	 y implies

(1) r(x) ≥ r(y) and
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(2) P(x•) 	 P(y•).

Theorem 2.1 If for two states x, y ∈ S x 	 y and 	 is reward preserving,
then x ≥st y.

Proof. We have to show that FRk(ex)(s) ≤ FRk(ey)(s) for all k and s. The proof
is done by induction over k. For k = 0 the result follows since r(x) ≥ r(y).

Now assume that the result has been proved for k, we show that it also holds
for k + 1. We have

exP
k+1r = P(x•)Pkr and eyP

k+1r = P(y•)Pkr .

Since P(x•) 	 P(y•) a decomposition φ = (p1, . . . ,pKφ
) of P(x•) exists such

that for each v ∈ S:
∑

u�v pv(u) ≥ P(y, v). Thus, we have for every P(y, v) > 0
a vector pv and it follows by the induction assumption that

pvP
kr ≥st P(y, v)evP

kr

and also

∑
v∈S

pvP
kr ≥st

∑
v∈S

P(y, v)evP
kr ⇒ P(x•)Pkr ≥st P(y•)Pkr

To extend relation 	 to DTMCs instead of states of a single DTMC, we first
define the union of DTMCs.

Definition 2.4 Let DM (i) = (S(i),P(i),p
(i)
0 , r(i)) (i = 1, 2) with S(1) ∩ S(2) =

∅, then DM (12) = DM (1) ∪ DM (2) = (S(12),P(12),p
(12)
0 , r(12)) is defined as

S(12) = S(1) ∪ S(2),

P(12) =


 P(1) 0

0 P(2)


 , p

(12)
0 = 0.5

(
p

(1)
0 ,p

(2)
0

)
and r(12) =

(
r(1), r(2)

)

Theorem 2.2 Let DM (i) = (S(i),P(i),p
(i)
0 , r(i)) (i = 1, 2) and 	 be a reward

preserving preorder on the union of both processes, then DM (1) ≥st DM (2) if(
p

(1)
0 , 0

)
	

(
0,p

(2)
0

)
.

Proof. By assumption a decomposition (0, . . . , 0, a1, . . . , a|S2|) of p
(1)
0 exists

such that for all x ∈ S2
∑

y�x ax(y) ≥ p
(2)
0 (x). Observe that all non-zero

elements of ax belong to states from S(2). Since 	 is reward preserving, x 	 y
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implies R
(12)
k (ex) ≥ R

(12)
k (ey) and R

(12)
k (ex) = R

(i)
k (ex)

1 for x ∈ S(i). This

implies that
∑

x∈S(2)

∑
y�x ax(y)R

(12)
k (ey) ≥ ∑

x∈S(2) p
(2)
0 (x)R

(12)
k (ex) for all k =

0, 1, . . ..

For an algorithmic generation of reward preserving preorders define a sequence
	k (k = 0, 1, . . .) of relations for a DM as follows

(1) x 	0 y ⇔ r(x) ≥ r(y),
(2) x 	k y for k > 0 iff

(a) x 	k−1 y and
(b) P(x•) 	 P(y•).

Due to condition 2a, 	k+1 contains no more relations between states than 	k.
We say 	k+1 is finer than 	k. The following theorem shows that 	k is indeed
a family of preorders.

Theorem 2.3 All relations 	k are transitive and reflexive.

Proof. The proof of reflexivity is trivial. For k = 0 transitivity holds since
x 	0 y and y 	0 z implies r(x) ≥ r(y) ≥ r(z) which implies x 	0 z. Now
assume that transitivity has been proved for k we show that it then also holds
for k + 1.

Since x 	k+1 y a decomposition (a1, . . . , a|S|) of P(x•) exists such that∑
u�kv av(u) ≥ P(y, v) and similarly since y 	k+1 z a decomposition (b1, . . . ,b|S|)

of P(y•) exists such that
∑

u�kv bv(u) ≥ P(z, v). We have to show that a de-
composition (c1, . . . , c|S|) of P(x•) exists such that

∑
u�kv cv(u) ≥ P(z, v).

We construct cv from a. and bu as follows

cv(w) =
∑

u�kv

bv(u)

P(y, u)
· au(w)

where w 	k v. Since 	k is transitive, the above construction generates valid
vectors c such that also 	k+1 is transitive.

Theorem 2.4 If 	k=	k+1, then 	k=	k+l for all l > 0.

Proof. The proof is straightforward, since the basic relation remains unchanged
and no further refinement takes place.

1 Observe that the vectors ex are of different length.
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If the sequence 	k reaches a fixed point where 	k=	k+1, then we denote the
fixed point as 	∼. Observe that for finite state spaces the fixed point is always
reached after at most |S| iterations. The following theorem shows that 	∼ is
indeed the coarsest reward preserving preorder which means that it contains
the greatest number of relations between states among all order preserving
preorders.

Theorem 2.5 If 	∗ is a reward preserving preorder on the state space of a
DM where the fixed point 	∼ exists, then x 	∗ y ⇒ x 	∼ y.

Proof. The proof is done inductively over the preorders 	k. First notice that
x �0 is necessary for x �∗ y because otherwise 	∗ cannot be reward preserving.
Now assume that we proved the assumption for k, i.e., x 	∗ y ⇒ x 	k y. We
show that it also holds for k + 1. Let x and y be two states such that x 	k y
but ¬(x �k+1 y). This implies that no appropriate decomposition of P(x•)
exists. Since 	∗ contains more relation than 	k it is obvious that also no
decomposition of P(x•) exists according to 	∗ such that ¬(x 	∗ y) follows
from ¬(x 	k+1 y). Since x 	∗ y ⇒ x 	k y holds for all k, it also holds for the
fixed point 	∼ if it exists.

The computation of 	∼ is beyond the scope of this paper, but it is obvious
that the relation can in principle be computed for finite state spaces. The
central step is to check a 	 b for a given relation 	 which means to compute
up to |S|2 elements ax(y) such that

ax(y) ≥ 0 ,
∑
x∈S

ax(y) = a(y) and
∑
y�x

ax(y) ≥ b(x) .

In a practical realization several simplifications can be introduced to make the
analysis feasible. For details we refer to [4].

3 Order Preserving Aggregation

The concept of stochastic orders of DTMCs allows the definition of bounding
processes for a given DM . A bounding process yields lower or upper bounds
for all reward measures of the original process and it is useful if it is some-
how easier to analyze than the original DM . One way of building bounding
processes is state aggregation which will be briefly presented.

Definition 3.1 Let DM = (S,P,p0, r) and Π = {S1, . . . ,SJ} be a partition
of the state space.

• Π contains least states, iff for all Sj some x ∈ Sj exists such that x �∼ y
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for all y ∈ Sj,
• Π contains greatest states, iff for all Sj some x ∈ Sj exists such that x 	∼ y

for all y ∈ Sj,

We consider only finite partitions such that J is some integer denoting the
number of partition groups. Knowing 	∼ partitions with greatest and least
states can be generated easily. The idea of aggregation is to generate a new
DTMC where each group of states Si is substituted by a single state which
is greater/less than than all states in the block according to relation 	∼.
The following definition describes one possible way to build these aggregated
processes.

Definition 3.2 Let DM = (S,P,p0, r) be a DTMC with rewards and Π =
{S1, . . . ,SJ} a partition of its state space. The following aggregated processes
can be defined where S̃ = {1, . . . , J}, P̃ ∈ R

J×J , p̃0 ∈ R
J and r ∈ R

J .

(1) If Π contains least states and x−
j is the least state of Sj, then DM− =

(S̃, P̃, p̃0, r̃) where p̃0(j) =
∑

y∈Sj
p0(y), r̃(j) = r(x−

j ) and P̃(j, l) =∑
y∈Sl

P(x−
j , y).

(2) If Π contains greatest states and x+
j is the greatest state Sj, then DM+ =

(S̃, P̃, p̃0, r̃) where p̃0(j) =
∑

y∈Sj
p0(y), r̃(j) = r(x+

j ) and P̃(j, l) =∑
y∈Sl

P(x+
j , y).

Theorem 3.1 The relation DM+ ≥st DM ≥st DM− holds.

Proof. We show that DM+ 	∼ DM . By assumption x+
j 	∼ y for all y ∈ Sj .

Thus, we have to show that j 	∼ x+
j holds for all j ∈ S̃. Due to the transitivity

of 	∼ this implies j 	∼ x for all x ∈ Sj . Obviously r̃(j) ≥ r(x+
j ) holds. Thus,

it remains to find a partition (a1, . . . , a|S|) of P̃(j•) such that
∑

z�∼y ay(z) ≥
P(x+

j , y). Let y ∈ Sl, then we set ay = P(x+
j , y)ex+

l
which observes the above

condition since x+
l 	∼ x for all x ∈ Sl. For the comparison of the processes we

finally have to show (p̃0, 0) 	∼ (0, p̃). Since p̃0(j) =
∑

x∈Sj
p0(x) and j 	∼ x

for x ∈ Sj , the relation holds.

The proof for DM ≥st DM− is completely analogous.

4 Relation to Monotonicity and Lumpability

The following definition of stochastic domination and monotone matrices can
be found in [3,6]. We consider here the finite case, extension to infinite state
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spaces can be found in [3].

Definition 4.1 Let a,b be two distribution vectors and P be stochastic matrix
on some finite state space S, then

• a dominates b written as a � b iff
∑|S|

y=x a(y) ≥ ∑|S|
y=x b(y) for all x ∈ S. a

dominates b strictly, if the strict inequality holds.
• P is a monotone matrix, iff P(x•) � P(y•) for x ≥ y. P is strictly mono-

tone if strict dominance holds.

For monotone matrices P and a � b also aP � bP such that also aPk �
bPk for all k ≥ 0 [6]. In the context of Markov processes with rewards this
implies aPkr ≥ bPkr for all reward vectors where x ≥ y implies r(x) ≥ r(y).
Via uniformization similar results can be derived for continuous time Markov
processes [6]. The following theorem shows the relation between our preorder
and stochastic dominance and monotonicity.

Theorem 4.1 Let DM = (S,P,p0, r), then the following implications hold

(1) If P is a monotone matrix and r(x) ≥ r(y) for all x ≥ y ⇒ x 	∼ y for
all x ≥ y.

(2) If x 	∼ y for all x ≥ y and ¬(y 	∼ x) for y < x ⇒ P is strictly
monotone and r(x) ≥ r(y) for all x > y.

Proof. 1) Since r(x) ≥ r(y) for x ≥ y, x 	0 y holds. Now we have to compute
a partition (a1, . . . , a|S|) of P(x•) such that

∑
u≥v av(u) ≥ P(y, v). For v = |S|

we set a|S| = P(y, |S|)e|S| which is possible since P(y, |S|) ≤ P(x, |S|). For

the remaining elements v < |S| the relation
∑|S|

u=v P(x, u)− ∑|S|
u=v+1 P(y, u) ≥

P(y, v) assure that we can find an appropriate vector av.

2) r(x) ≥ r(y) for x > y has to hold since x 	∼ y ⇒ x 	0 y. For x > y a
partition (a1, . . . , a|S|) of P(x•) exists such that

∑
u�∼v av(u) =

∑|S|
u=v av(u) ≥

P(j, v). This implies

∑
u�∼v

P(x, u) =
|S|∑

u=v

P(x, u) ≥
|S|∑

w=v

|S|∑
u=w

aw(u) ≥
|S|∑

u=v

P(y, u) =
∑

u�∼v

P(x, u)

which shows that P is a strictly monotone matrix.

Another concept in Markov chains is lumpability [7].

Definition 4.2 A partition Π = {S1, . . . ,SJ} on the state space of a DTMC
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DM = (S,P,p0, r) is lumpable, iff for all i, j ∈ {1, . . . , J} and all x, y ∈ Si:

(1) r(x) = r(y) and
(2)

∑
z∈Sj

P(x, z) =
∑

z∈Sj
P(y, z).

The lumpable partition with the least number of partition groups can be
computed for finite state spaces with a partition refinement algorithm [2,5]
and will be denoted as Π∼.

Theorem 4.2 Let DM = (S,P,p0, r), then the following equivalence holds

x 	∼ y ∧ y 	∼ x ⇔ x, y ∈ Sj for some Sj ∈ Π∼.

Proof. ⇐: For x, y ∈ Sj r(i) = r(j) holds. Now define y 	 x if x, y ∈ Sj ∈ Π∼,
then it is straightforward to show that 	 is reward preserving and therefore
x 	 y implies x 	∼ y.

⇒: Define a partition Π = {S1, . . . ,SJ} such that x, y ∈ Sj iff x 	∼ y∧y 	∼ x.
Due to the transitivity of the relation all states from Sj are related via 	∼.
Obviously r(x) = r(y) holds in this case. Now consider some Sj such that no
u /∈ Sj exist which is larger than some v ∈ Sj according to 	∼. Such a Sj has to
exist since 	∼ is transitive. For two states x, y ∈ Sl (l = 1, . . . , J) a partition
(a1, . . . , a|S|) of P(x•) has to exist such that

∑
u�∼v av(u) =

∑
u∈Sj

av(u) ≥
P(y, v) and by a symmetric argument a partition (b1, . . . ,b|S|) of P(y•) exists
such that

∑
u�∼v bv(u) =

∑
u∈Sj

bv(u) ≥ P(x, v). Thus we have

∑
v∈Sj

P(x, v) ≥ ∑
v∈Sj

∑
u∈Sj

av(u) ≥ ∑
v∈Sj

P(y, v) ≥ ∑
v∈Sj

∑
u∈Sj

bv(u) ≥ ∑
v∈Sj

P(x, v)

which implies that ≥ can be substituted by =. Consequently, the argumen-
tation can continue with some Sl such that no u /∈ Sj ∪ Sl exists such that
u 	∼ v for some v ∈ Sl. This implies that Π is a lumpable partition. However
since the first part of the proof shows that for x, y ∈ Π∼ x 	∼ y ∧ y 	∼ x is
necessary and Π∼ is the lumpable partition with the least number of groups
Π = Π∼ has to hold.

According to a lumpable partition, an aggregated DTMC DM∼ = (S∼,P∼,p∼
0 , r∼)

can be computed by substituting each partition group of states by a single
state [1]. It is known that FRk

(x) = FR∼
k
(x) for all k and x [1,7], i.e. original

and lumped process are indistinguishable. If 	∼ is computed on DM∼, then
x 	∼ y implies ¬(y 	∼ x), the relation becomes antisymmetric and therefore
	∼ is a partial order in this case.
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(a) Transition Diagram

S,M,P1,P2

M,P1,P2 S,M,P2S,M,P1

M,P2S,P1,P2M,P1 S,M

S,P2 P1,P2S,P1 M

P1

All failed

P2S

(b) Hasse Diagram

Fig. 1. Transition diagram and Hasse diagram of the partial order on the states of
the processing node component for the distributed DB model.

5 Example

We present a small example of the preorder and its application to build bound-
ing aggregates. We consider the model of a processing node from a highly
available distributed database presented in [9], and determine the preorder
on the states of the processing node to create three bounding aggregates.
The distributed database has multiple redundant components, and requires
one component of each type to be operational for the database to be opera-
tional. One of the components of the database is a processing node consisting
of two processors, a switch, and a memory. The processing node is consid-
ered operational if the switch, the memory, and at least one of the processors
are operational. Each subcomponent fails independently with an exponential
rate. Failed subcomponents are repaired one at a time, according to a prior-
ity scheme, with the switch repaired first, then the memory, then processor
1, and finally processor 2. Observe that due to the prioritized repair and the
component specific failure rates of the processors, the model is not lumpable
according to the processors.

We generated the preorder for the state space for one of the processing nodes
to determine the node availability. The transition diagram for the processing
node and the Hasse diagram of the partial order are shown in Figure 1. Each
state is represented as a list of operational subcomponents, with an S for the
switch, an M for the memory, P1 for processor 1, and P2 for processor 2.
The processing node has the basic property that a failure always moves the
component to a worse state, and a repair moves the component to a better
state.

Based upon the preorder and the aggregation theory of Section 3, we developed
a set of aggregates for the model. We reduce each processing subsystem to 6
states from the original 16 states by creating a partition of the states contain-
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(a) 6 State Upper Bound
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S
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(b) 6 State Lower Bound
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S

(c) 8 State Lower Bound

Fig. 2. Upper- and lower-bounding aggregates for one processing node.
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Fig. 3. Bounds and exact results for the unavailability.

ing 6 subsets, each containing least and greatest states. Each processing sub-
system has three operational states (SMP1P2, SMP1, SMP2), each of which
we place into singleton sets in the partition. We partition the failed states
into three sets based upon the highest priority failed component. Therefore,
there is a set with the switch failed (All Failed, P1, P2, M, P1P2, P1M, P2M,
P1P2M), the memory failed (S, SP1, SP2, SP1P2), and P2 failed (P1P2). The
singleton sets trivially have greatest and least states, and it can be observed
that the other sets also have greatest and least states. Bounding processes
DM+ and DM− are show them in Figures 2(a) and 2(b) respectively.

Note that in the processing subsystems, like in almost all models for avail-
ability analysis, the most likely states are those in which all components are
operational, or one component has failed. Those states are the greatest states
in the partition and are used in the upper bounding process. However, in the
lower-bounding process, two of those states (MP1P2, SP1P2), are aggregated
to states with other failed components. In this case, the accuracy of the aggre-
gation can be improved by placing those two states into singleton sets in the
partition, increasing the state space size of the lower-bounding process (shown
in Figure 2(c)) from 6 states to 8 states.

To show the quality of the aggregation, the unavailability of the system in
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the interval [0, t] is computed for t from 0 to 20 hours. The results for the
unavailability are shown in Figure 5. Observe that the lower bound aggregates
yield an upper bound for the unavailability and the upper bound aggregate
yields an lower bound for the unavailability. The 6 state upper bound and
the 8 state lower bound aggregate yield excellent results which cannot be
distinguished from the exact values in the figure. In fact, the difference between
the exact values and the bounds for the unavailability is less than 0.5% over
the whole interval. The 6 state lower bound aggregate is less good, it results
in an upper bound for the unavailability which is nearly 2.5 times larger than
the exact value. Of course, this difference becomes much smaller when the
availability is compared, which is much larger than the unavailability, but
usually one is interested in the unavailability and results should be compared
based on this measure.
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