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An O(n log n) Algorithm for Constrained
Network Nash Equilibria

D. Towsley∗ and L. Wynter†

April 11, 2005

Abstract

We present an efficient dual algorithm for solving the constrained Nash equi-
librium problem over bipartite networks. This problem models selfish routing on
networks. In the case of quadratic payoff functions for each agent, we provide an
O(n log n) algorithm, where n is the number of agents in the game. This com-
plexity bound improves known results for this class of problems.

1 Introduction

We focus on the Nash equilibrium paradigm played on a bipartite network structure.
This generalizes the setting of [7] (also used in Fotakis et al. [5]), in which the network
consisted of a set of parallel links, and all users on a given link experienced the same
cost. A bipartite graph structure arises, for example, in dynamic routing, when the
dynamics are defined over discretized time intervals. Indeed, routing decisions are,
at any time epoch, made from sources with excess load, to destinations, with excess
capacity. In other words, at any time period, it is possible to divide the players in
the network into those with excess load to be sent and those having excess capacity,
and a Nash network game solved over the resulting bipartite graph. Note that, in this
framework, in a dynamic context, the structure of the graph changes from one time
epoch to the next since the set of sending nodes and the set of receiving nodes changes
at each time step.

The complexity of computing Nash equilibria is a related topic which has begun to
receive considerable attention. Conitzer and Sandholm [2] prove the NP-hardness of
certain Nash equilibrium problems, such as whether there exists a symmetric, 2-player
(hence a general) Nash equilibrium in which some or all players have a utility of at least
k, or a Pareto-optimal Nash equilibrium. Fabrikant et al. [4] study the complexity of
computing pure network Nash equilibria (i.e. only one route is chosen by each agent);
they provide a polynomial-time algorithm for the case in which there exists a single
origin and destination through the use of Rosenthal’s [11] potential function. None of
the problems considered in [2] have coupling constraints across the players.

Papadimitriou and Roughgarden [9] present a proof and sketch of a method for
finding all Nash equilibria in symmetric games, without coupling constraints, by solv-
ing a particular linear system. However, the linear system is of size polynomial in the
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size of the compact representation of the game, and solving a linear system itself is
of complexity O(nk) for k ≥ 2.5 [14, 13]. Hence the complexity of the framework
proposed in that reference is significantly higher than that which we propose here.

Fotakis et al. [5] examine mixed Nash network equilibria and provide a sketch
of a polynomial-time algorithm for the case in which all users are identical. While
their model does include coupling capacity constraints, their simplification of identical
traffic means that the strategy spaces of each player are identical.

Blum et al. [1] present a path-following method for solving a particular form of
Nash equilibrium games called graphical games. In graphical games, a link is drawn
from each node i to every other node j whose actions influence the payoff of i. In our
setting, such a representation would result in a complete, rather than bipartite, network
structure. Furthermore, their path following algorithm is exponential in the size of the
game. Vickrey and Koller [15] present a hill climbing heuristic for a similar type of
Nash game.

A paper on a related topic but using a somewhat simplified payoff structure is that
of Even-Dar et al [3], who study pure Nash equilibrium in load balancing problems.
The corresponding payoff structure in our network game terminology is when all play-
ers experience the same payoff function when being routed to a common destination
node. This simplification is not assumed in our work. Even-Dar et al. then determine
bounds on the number of steps to reach the pure Nash equilibrium, which is related to
a polynomial of degree equal to the sum of the weights of the jobs in their system.

In this paper, we consider a mixed Nash network equilibrium problem. The agents’
utility functions are quadratic, and are not identical. In particular, the agents’ loads are
not identical, leading to user-specific flows. Furthermore, the network includes explicit
capacity constraints, in our case, on the nodes themselves. These constraints couple the
individual Nash games across agents, in addition to the usual interaction across players
arising from the payoff functions. Capacity constraints of this type complexify the
properties of the equilibrium and any algorithmic procedure for solving it. We make
use of quadratic utility functions, which allow us to have strong analytical expressions
for solutions, given partitions of the Lagrange multipliers. These expressions allow
us to define an efficient and implementable algorithm for obtaining a particular Nash
network equilibrium, and a proof as to when that equilibrium exists.

The structure of the paper is as follows. In Section 2 we present the basic notation
and model. Section 3 provides the expressions for the analytical solutions of the Nash
network game, in terms of the Lagrange multiplier values, and properties of the optimal
solutions necessary for development of the algorithm. In Section 4, we provide an
O(n2) dual algorithm as well as the O(n log n) algorithm.

2 Preliminaries

We consider a a strongly connected graph G = (N, E, C, A) where the set of nodes is
N , and the set of links is E. Here C denotes the service capacities associated with the
nodes in N (node i can process Ci units of work in one time unit) and A denotes the
demand processes, also associated with the nodes in N ({Ai : i = 0, 1, . . . n} denotes
the amount of work brought into node i). Let {Q i : j = 0, 1, . . . n} denote the load
process at node i. The load process, which may represent random arrivals of work into
the nodes, will allow us to define the bipartite graph: depending upon which nodes
have excess load and which nodes have excess capacity, they will be represented on the
sending or the receiving side of the bipartite network.
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The process by which demands may be reallocated amongst agents for processing
is defined by a Nash network game, first introduced in [6]. This procedure in general
is dynamic; at at each time step, in a dynamic problem, the algorithm is rerun given
the particular bipartite network that results from the load process at that time step. The
Nash network game is played whenever there exists at least one node i with non-zero
residual capacity C̃i := [Ci −Qi]+ and at least one node i with non-zero residual load,
Ãi :== [Qi − Ci]+. When these conditions are not met, no reallocation is needed. In
this paper, we consider a single time step, and develop an algorithm for a single-period
Nash network game.

The game is defined by the payoff functions associated with the nodes. We consider
quadratic payoff functions with the following form:

Ui(x) =
∑

k∈N\{k}
xikPk(x). (1)

In other words, the payoff to a particular node, i, is the product of its k−destined flow,
xik, times a function of all nodes’ flows to node k, summed over all destination nodes,
k. We refer to the destination-specific function, Pk, as the receiving agent’s preference
function, and it has the following form:

Pk(x) = βk −
∑

i∈N\{k}
aikxik, (2)

where βk ≥ 0 and aik ≥ 0.
The quadratic form is important for tractability. However, notice that the utility

function exhibits reasonable properties; U i increases for small values of xik, reaches
a maximum and then decreases for large values of x ik , representing reluctance on the
part of k to take too heavy a load. Further, βk represents a willingness-to-accept load
on the part of node k, while aik denotes the relative weight from node k’s point of view
of receiving load from node i.

As mentioned above, the nodes divide into two classes, sources that have excess
load beyond their capacity, and receivers that have excess capacity. Formally, let S =
{i ∈ N : Qi > Ci} and R = {i ∈ N : Qi < Ci}. Each node i ∈ S solves the
following optimization problem.

max
xi

Ui(x) =
∑
k∈R

xik

(
βk −

∑
l∈S

xl,k

)
. (3)

subject to ∑
k∈R

xik ≤ Ãi, (4)

∑
l∈S

xlk ≤ C̃k, ∀k ∈ R, (5)

xik ≥ 0, k ∈ R. (6)

Hence, this formulation is a capacity-constrained Nash network equilibrium problem,
where the constraints (5) couple the individual Nash problems of each sending node.
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3 Optimal solutions

Existence of a solution to this constrained, quadratic Nash network game is guaranteed
under the following assumption.

Assumption 1 Let
∑

k∈R C̃k ≥∑i∈S Ãi.

Theorem 1 Let Assumption 1 hold. Then there exists at least one mixed strategy Nash
equilibrium solution to (3)–(6).

Proof. The preference functions (2) defined for each sending agent i to each receiver
k are concave and continuously differnetiable in x ik over the feasible region, and each
agent’s payoff function, Ui is the the sum of the preference functions. Under 1 the
feasible region is not empty. Then, by Theorem 1 in [10] (see also [8]), the game of
(3)–(6) is equivalent to a convex game and a Nash equilibrium exists.

Let us now decompose the set of receiving nodes, R, into R = Ru ∪ Rc where
receivers in Rc use up all of their excess allocation and receivers in Ru do not, and
similarly for the set of sending nodes, S = Su ∪ Sc where sources in Sc transfer all
of their excess load elsewhere and sources in Su do not. Further, denote λk as the
Lagrange multiplier on the capacity constraints, (5), and µ i the Lagrange multiplier on
the demand constraints, (4).

Using this notation, and taking partial derivatives of the Lagrangian of the objective,
(3), we obtain that the solutions to the optimization problem satisfy:

βk − 2xik −
∑

l �=i;l∈S

xlk + λi
k + µi = 0, i ∈ S; k ∈ R. (7)

Note that λi
k = 0 if k ∈ Ru and µi = 0 if i ∈ Su and are less than or equal to zero

otherwise.
The above equations have the following solutions.

x∗
ik =




(βk −∑l∈Sc
µl)/(|S| + 1), i ∈ Su; k ∈ Ru

(βk + |S|λi
k −∑l �=i;l∈S λl

k −∑l∈Sc
µl)/(|S| + 1), i ∈ Su; k ∈ Rc,

(
βk + |S|µi −

∑
l �=i;l∈Sc

µl

)
/(|S| + 1), i ∈ Sc; k ∈ Ru,

(|S| + 1)−1∗
(
βk + |S|λi

k −∑l �=i;l∈S λl
k + |S|µi −

∑
l �=i;l∈Sc

µl

)
, i ∈ Sc; k ∈ Rc

(8)
where the Lagrange multipliers {λi

k ≤ 0 : i ∈ Sc; k ∈ Rc} and {µi ≤ 0 : i ∈ Sc} are
solutions of ∑

i∈S

λi
k +

∑
i∈Sc

µi = (|S| + 1)C̃k − |S|βk, ∀k ∈ Rc, (9)

∑
k∈Rc


|S|λi

k −
∑

l∈Sc,l �=i

λl
k


+
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|R|


|S|µi −

∑
l∈Sc

l �=i

µl


 = (|S| + 1)Ãi −

∑
k∈R

βk, ∀i ∈ Sc (10)

This Nash system with coupling capacity constraints does not admit a unique solu-
tion, as the system is under-determined due to the multiplicity of Lagrange multipliers
on the coupling constraints, one for each sender. Indeed, each sender, i, sees the same
capacity constraint for each receiver, k, but has its own value of the multiplier, λ i

k. This
amounts to |S||Rc| multipliers, λi

k, but only Rc distinct equations.
In a general Nash equilibrium model with coupling constraints, one has no reason

to believe that the multipliers on the coupling constraints be equal across senders, for a
given receiver.

Lemma 1 Let either Ru �= ∅, that is, let there be at least one unconstrained receiver.
Then, at a given Nash equilibrium solution, x∗, there exists a multiplier vector, λ,
for the coupling capacity constraints which is equal across all sending nodes; that is,
there exists a common vector, λ, such that λi

k = λj
k = λk, for all nodes i, j ∈ S, for

all receivers, k ∈ R. Furthermore, the multipliers (λ, µ) satisfying that property are
given by:

[
λ
µ

]
= M−1

[
(|S| + 1)C̃c − |S|βc

(|S| + 1)Ãc − 1|Sc|×|R|β

]
, (11)

where the matrix M is given by

M =
[ |S| I|Rc| 1|Rc|×|Sc|

1|Sc|×|Rc| |R| [(|S| + 1)I|Sc| − 1|Sc|×|Sc|]

]
, (12)

and 1m×n is the matrix of ones of dimension m × n (m, n = 1, . . .), Im (m = 1, . . .)
is the identity matrix of dimension m × m, C̃c is the residual capacity of constrained
receivers, k ∈ Rc, Ck − Qk, and Ãc = Qi − Ci is the vector of excess loads at
constrained sending nodes, i ∈ Sc.

Proof. We make use of the equation system (16)-(17), in which the multipliers
satisfy λi

k = λj
k = λk, for all nodes i, j ∈ S, for all receivers, k ∈ R. If a solution to

this system exists, then the capacity constraint multipliers can be set equal at a solution
to that value. Expressing (16)-(17) in terms of matrices and vectors, we obtain[ |S| I|Rc| 1|Rc|×|Sc|

1|Sc|×|Rc| |R| [(|S| + 1)I|Sc| − 1|Sc|×|Sc|]

] [
λ
µ

]
=

(|S| + 1)
[

C̃c

Ãc

]
−
[ |S|βc

1|Sc|×|R|β

]
. (13)

Note that for ease of presentation, the indices of the vectors λ and µ have been redefined
so as to contain no zero entries, and their indices are shifted towards zero as needed.

Then, rearranging terms, we obtain (11)–(12). Inverting the matrix, M , we obtain

M−1 =

[
1
|S|I|Rc| + |Sc|

|S|∆1|Rc|×|Rc| − 1
∆1|Rc|×|Sc|

− 1
∆1|Sc|×|Rc|

1
|R|(|S|+1)

[
I|Sc| + |R||S|+|Rc|

∆ 1|Sc|×|Sc|
] ]

(14)
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where ∆ = |R| |S| (|Su| + 1) − |Rc| |Sc|. From (14), we have the condition that the
inverse of M exists when ∆ �= 0, which holds when |R| |S| (|Su| + 1) > |Rc| |Sc|.
This is true provided that either Ru or Su is nonempty. When this is the case, then
M−1 exists, as does a vector of common multipliers, λi

k = λj
k = λk, for all nodes

i, j ∈ S, for all receivers, k ∈ R, which concludes the proof.
Under Lemma 1, let us suppose that the multipliers {λ i

k} can be made equal across
the senders, i.e., λi

k = λk, i ∈ S, k ∈ Rc. When this is the case, (7) has the following
solution

x∗
ik =




(βk −∑l∈Sc
µl)/(|S| + 1), i ∈ Su; k ∈ Ru

(βk + λk −∑l∈Sc
µl)/(|S| + 1), i ∈ Su; k ∈ Rc,(

βk + |S|µi −
∑

l �=i;l∈Sc
µl

)
/(|S| + 1), i ∈ Sc; k ∈ Ru,

(
βk + λk + |S|µi −

∑
l �=i;l∈Sc

µl

)
/(|S| + 1), i ∈ Sc; k ∈ Rc

(15)

where the Lagrange multipliers {λk ≤ 0 : k ∈ Rc} and {µi ≤ 0 : i ∈ Sc} are
solutions of

|S|λk +
∑
i∈Sc

µi = (|S| + 1)C̃k − |S|βk, k ∈ Rc, (16)

∑
k∈Rc

λk + |R|

|S|µi −

∑
l∈Sc,l �=i

µl


 = (|S| + 1)Ãi −

∑
k∈R

βk, i ∈ Sc (17)

If we are only interested in µ =
∑

i∈Sc
µi and {λk}k∈Rc , then (16) suffices coupled

with
|Sc|

∑
k∈Rc

λk + |R|(|Su| + 1)µ = (|S| + 1)
∑
i∈Sc

Ãi − |Sc|
∑
k∈R

βk (18)

This explicit solution for the equilibrium flows shall be used in the development of
the dual algorithm. First, we present some additional results which will be required.

The optimal solutions exhibit the following properties in the case that λ i
k = λk.

Lemma 2 Let the sending nodes, i = 1, . . . |S| be numbered such that Ã1 ≤ Ã2 ≤
· · · ≤ Ã|S| and the receiving nodes, k = 1, . . . |R| be numbered such that (|S|+1)C̃1−
|S|β1 ≤ (|S| + 1)C̃2 − |S|β2 ≤ · · · (|S| + 1)C̃|R| − |S|β|R|, then

1. if i, j ∈ S, i < j, and i ∈ Su, then j ∈ Su,

2. if i, j ∈ R, i < j, and i ∈ Ru, then j ∈ Ru.

Proof. Consider two nodes i, j ∈ N . Now consider claim 1. We assume that j ∈ R c.
From (17), we have that

Ãj =
1

|S| + 1

(∑
k∈R

βk +
∑

k∈Rc

λk + |R|(|S| + 1)µj − |R|µ
)

>
∑
k∈R

x∗
ik
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=
1

|S| + 1

(∑
k∈R

βk +
∑

k∈Rc

λk − |R|µ
)

>
1

|S| + 1

(∑
k∈R

βk +
∑

k∈Rc

λk + |R|(|S| + 1)µj − |R|µ
)

= Ãj ,

which is a contradicttion. Thus, j ∈ Su.
Consider claim 2. Assume that j ∈ Rc. We have from (15)

∑
i∈S

x∗
ij =

|S|(βj + λj) + µ

|S| + 1

= C̃j

or
(|S| + 1)C̃j − |S|βj ≤ µ

since λj ≤ 0. On the other hand, since i ∈ Ru, we have

|S|βi + µ

C̃i

< |S| + 1

or
µ < (|S| + 1)C̃i − |S|βi

But this contradicts the fact that (|S| + 1)C̃i − |S|βi ≤ (|S| + 1)C̃j − |S|βj . Hence
we conclude that j ∈ Ru.

Next we associate an aggregate flow rate with each node in S and R as follows.
Consider i ∈ S. Suppose that we consider a source load distribution that would be
produced by assuming that all sources j < i are constrained, sources j > i are uncon-
strained and source i is constrained with µi = 0. Let S̃j denote the flow out of source
j in this case. Then

S̃j =
{

Ãj , j ≤ i,

Ãi, i < j ≤ |S|.
The case j > i follows from summing up x∗

jk over all receivers using (15) and then
making use of (17) for i to obtain the final result. The total flow rate from sources to
receivers is F s

i =
∑

j≤i Ãj + (|S| − i)Ãi. Note that this is also the total flow from
sources to receivers for the system where the source load allocation is

Ã′
j = S̃j , j ∈ S

under the assumption that Sc = S for this allocation. This interpretation will be useful
when we present a solution algorithm.

Now consider j ∈ R. Suppose that we consider a receiver load allocation that
would be produced by assuming that receivers j < i are at capacity, receivers j > i are
unconstrained, and receiver i is constrained with λ i = 0. Let R̃j denote the flow into
receiver j for this case. From the definitions of xik in (15), R̃j is given by

R̃j =

{
C̃j , j ≤ i,

C̃i + |S|(βj−βi)
|S|+1 , i < j ≤ |R|. (19)

The total flow rate into the receivers is then
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∑
j∈R

R̃j =
∑
j≤i

C̃j + (|R| − i)C̃i +
|R|∑

j=i+1

|S|(βj − βi)
|S| + 1

.

Based on the above, it is possible to order all of the nodes in a single list, whether
they are sources or receivers, based on their aggregate flow rates. Let F i denote the
aggregate flow rate for node i. It is defined as follows,

Fi =




(|S| − (i − 1))Ãi +
∑i−1

j=1 Ãj , i ∈ S,

∑
k≤i C̃k + (|R| − i)C̃i +

∑|R|
k=i+1

|S|(βk−βi)
|S|+1 , i ∈ R

(20)

Lemma 3 We have the following:

• if i ∈ Su then
∑

k∈R

∑
j∈S x∗

jk ≤ Fi

• if i ∈ Sc and µi < 0 then
∑

k∈R

∑
j∈S x∗

jk > Fi

• if i ∈ Ru then
∑

k∈S

∑
i∈R x∗

kj ≤ Fi

• if i ∈ Rc and λi < 0 then
∑

k∈S

∑
j∈R x∗

kj > Fi

Proof. Consider the first claim. According to Lemma 2, there exists an i 0 < i such
that j ∈ Sc, j ≤ i0 and j ∈ Su, j > i0. If Su = S then take i0 = 0. It is easily shown
that the aggregate flow out of S for the optimum solution, F ∗, is given by

F ∗ =
i0∑

j=1

Ãj +
|S|∑

j=i0+1

∑
k∈R

x∗
jk

=
i0∑

j=1

Ãj + (|S| − i0)
∑
k∈R

x∗
i0+1,k

≤
i0∑

j=1

Ãj + (|S| − i0)Ãi0+1

≤
i∑

j=1

Ãj + (|S| − i)Ãi+1

= Fi

The first equality is because all unconstrained senders have the same flow out. The first
inequality is a consequence of i0 +1 being an unconstrained sender. The remaining in-
equality and equality are pretty straightforward. The remaining claims are established
in the same manner.

We have the following corollary

Corollary 1 Let the nodes, i = 1, . . . , |S| + |R|, be numbered such that F1 ≤ F2 ≤
· · · ≤ F|S|+|R|, and the sets of sending and receiving nodes each numbered according
to the ordering of Lemma 2. then

1. if i, j ∈ S, i < j, and i ∈ Su, then j ∈ Su,

8



2. if i, j ∈ R, i < j, and i ∈ Ru, then j ∈ Ru,

3. if i ∈ S, j ∈ R, i < j, and i ∈ Su, then j ∈ Ru,

4. if i ∈ R, j ∈ S, i < j, and i ∈ Ru, then j ∈ Su.

Proof. Consider first claim 1. Let F ∗ denote the aggregate flow from senders to re-
ceivers. Assume that j ∈ Sc, then by Lemma 3, F ∗ > Fj . On the other hand it follows
from Lemma 3 that Fi ≥ F ∗. This cannot be since Fi ≤ Fj . Therefore j ∈ Su. The
other claims follow in a similar manner.

The following lemma is useful as well for motivating our algorithm.

Lemma 4 [Sensitivity analysis] The multiplier values µ and lambda are such that

1. µi increases in Ã;

2. λi decreases in Ã.

Proof: Suppose i ∈ Sc, then µi is given by the following equation (11):

µi = −
∑

k∈Rc
(|S| + 1)C̃k − |S|βk

∆
+

Ãi

|R| −
∑

j∈R βj

|R|(|S| + 1)
+

|R||S| + |Rc|
|R|∆

∑
j∈Sc

Ãj −
(|R||S| + |Rc|)|Sc|

∑
k∈R βk

|R|(|S| + 1)∆
. (21)

The first claim follows from the fact that the coefficients in front of Ãj are positive.
Suppose now that k ∈ Rc, then λk is

λk = C − (|S| + 1)
∆

∑
j∈Sc

Ãj

for some constant C. The second claim follows from the fact that the coefficients in
front of Ãj are negative.

We are now able to present the algorithms.

4 An O(n log n) dual algorithm for the constrained Nash
network equilibrium

A consequence of the above properties is that, if i ∈ Sc for a given Ã(1), then i ∈ Sc

for any Ã(2) ≥ Ã(1) componentwise. This is due to the fact that µi ≤ 0 and that the
the multiplier is continuous in Ã. Similarly, if some receiver k ∈ Ru for a given Ã(1),
then k ∈ Ru for any Ã(2) ≥ Ã(1).
Notation. U is used to represent the set of sources that have not been fully loaded
and Ru the set of receivers that have not reached their capacity. Initially U = S and
Ru = R and at each iteration either U is reduced by one or V is increased by one. We
denote qi to be the load on source i ∈ S. As the algorithm proceeds, q i is the same for
all i ∈ U .

We assume that the nodes are indexed such that 0 < F1 ≤ F2 ≤ · · · ≤ F|S|+|R|.
The index j will be used to refer to the next candidate node to either become fully
loaded, if it is a sender, or become constrained if it is a receiver during the course of
algorithm.

Algorithm 1.
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1. Initialization.
Set U = S; Sc = S; Ru = R; Rc = ∅; j = 1.

2. Loop.
if j ∈ S, then

(a) Solve for {λk}, {µ�} for all k ∈ Rc and � ∈ Sc using (16) and (17) with
Ãi = Ãj for all i ∈ U , Ãl for all l ∈ S \ U , and C̃w for all w ∈ Rc;

(b) if Consistent(j)=1, then U = U \ {j};
else go to step 3.

else

(a) Set Rc = Rc ∪ {j}, set λj = 0, and solve for {λi : i ∈ Rc, i �= j}, {µ�},
for all � ∈ Sc and qj using (16) and (17) with Ãi = qj for all i ∈ U , Ãl for
all l ∈ S \ U , C̃w for all w ∈ Rc \ {j} and qj in place of C̃j ;

(b) if Consistent(j)=1, then Ru = Ru \ {j};

else reset Rc = Rc \ {j} and go to step 3.

j = j + 1
End loop

3. Termination.
Set Sc = S \ U ; Su = U . Solve for optimal x∗

i,k .

Consistency Test. Consistent(j):

1. If λk ≤ 0 and µi ≤ 0 for all i = 1 . . . |Sc|, k = 1 . . . |Rc|, then go to Step 2.
Otherwise, return Consistent(j) = 0.

2. Let χk = C̃k for all k ≤ j, k ∈ R, and if k > j, k ∈ R, then χk = C̃� +
[|S|(βk − β�)]/(|S| + 1), where � = max{k : k = 1, . . . , j; k ∈ R}, from
(19), and let χi = Ãi for all i ≤ j, i ∈ U , and for i > j, χi = Ãq , with
q = max{i : i = 1, . . . j, S; i ∈ S}.
If the pair of equations are satisfied:∑

k=1...|Rc|
λk(χk − C̃k) = 0, (22)

∑
i=1...|Sc|

µi(χi − Ãi) = 0, (23)

then return Consistent(j)=1.

3. Else, return Consistent(j)=0.

Algorithm 2.
Algorithm 2 makes use of binary search to achieve a complexity of O(n log n).

1. Initialization.
if node |S| + |R| ∈ S then Rc = R, Sc = S \ {|S| + |R|}

else Rc = R \ {|S| + |R|}, Sc = S;
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solve for {λk}, {µ�} for all k ∈ Rc and � ∈ Sc, using (16) and (17) with Ãi for
all i ∈ Sc, and C̃w for all w ∈ Rc;
if Consistent(j) = 1 then goto 3

else set j0 = 1; j1 = |S| + |R| − 1.

2. while j1 > j0 + 1 do
set j = 	(j0 + j1)/2

Rc = {i : i ≤ j, i ∈ R}; U = {i : i > j, i ∈ S};
if j ∈ S then

(a) Solve for {λk}, {µ�} for all k ∈ Rc and � ∈ Sc, using (16) and (17) with
Ãi = Ãj for all i ∈ U , Ãl for all l ∈ S \ U , and C̃w for all w ∈ Rc;

(b) if Consistent(j)=1, then j0 = j;
else j1 = j.

else

(a) Set λj = 0, and solve for {λi : i ∈ Rc, i �= j}, {µ�}, for all � ∈ Sc and qj

using (16) and (17) with Ãi = qj for all i ∈ U , Ãl for all l ∈ S \ U , C̃w

for all w ∈ Rc \ {j} and qj in place of C̃j ;

(b) if Consistent(j)=1, then j0 = j;
else j1 = j.

End while

3. Termination.
Set Sc = S \ U . Solve for optimal x∗

i,k.

In principle, an algorithm which tests which constraints are active and for every
possible combination, tests the KKT condition, is of exponential complexity. Indeed,
there are 2|S|+|R| constraints, each of which can be active or not. However, thanks to
Lemma 2, we are able to solve the problem using a KKT-based active set approach
with complexity O(n2) and O(n log n), respectively, in Algorithms 1 and 2.

Lemma 5 The complexity of Algorithm 1 is O(n2)

Proof. The outer loop executes each time a multiplier must be updated, checking
whether it is a receiver’s multiplier, a sender’s multiplier, or none. Due to the non-state
dependent ordering of Lemma 5, this happens once for each node, since the next mul-
tiplier to become nonzero is the next in the ordering. Hence, the outer loop executes
O(n) times. The inner loop checks for consistency at a particular set of active multipli-
ers, where the number of active multipliers can increase by one at each call to the loop.
The formulæ rely only on sums of the q i. Hence, the two nested loops require in all
O(n2). Finally, obtaining a primal (flow) solution requires in general one computation
for each link of the network, i.e., O(m). However, using our algorithm, it requires only
four computations for each sending node, i.e., O(n) operations, using the explicit for-
mulæfor the x∗

ik as a function of active multiplier values {λ∗, µ∗}, since there are four
possible cases leading to different flow values for each sender. Hence, the algorithm is
overall O(n2).

Lemma 6 The complexity of Algorithm 2 is O(n log n)
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Proof. The outer loop of Algorithm 2 makes use of a binary search on the single
ordered list of nodes satisfying F1 ≤ F2 ≤ · · · ≤ F|S|+|R|, instead of using a lin-
ear search on the sender and receiver lists individually. Hence, the complexity of the
outer loop is reduced to O(log n) and the remaining steps are unchanged. The overall
complexity of Algorithm 2 is thus O(n log n).
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