
RC23829 (C0512-004) December 14, 2005
Computer Science

IBM Research Report

Aspect-Oriented Business Process Modeling

Jian Wang, Jun Zhu, Haiqi Liang
IBM Research Division

China Research Laboratory
HaoHai Building, No. 7, 5th Street

ShangDi, Beijing 100085
China

Ke Xu
Tsinghua University

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Aspect Oriented Business Process Modeling

Jian WANG, Jun ZHU, Haiqi LIANG, Ke XU
IBM China Research Lab, Tsinghua University

{wangwj, zhujun, lianghq}@cn.ibm.com, xk02@mails.tsinghua.edu.cn

Abstract

Model-driven approach has been regarded by many
researchers and practitioners as an efficient and practical
way for well handling large scale and complex IT systems.
However, model composition and decomposition as an
existing way to reduce model complexity isn ’t enough to
fully deal with large scale and complex cases. We need a
dynamic model componentization structure to support the
flexible composition, decomposition and refactoring of
models. This paper proposes an approach to
aspect-oriented business process modeling, which
introduces a set of dynamic model componentization
technologies to business process modeling practices. The
following key contributions of this work are introduced in
detail: the concept and definition of aspectual process as
the base for dynamically structuring business process
model; an end-to-end aspect-oriented business process
modeling method covering key phases including aspect
definition, identification, extraction, assembling and
weaving and key technologies to support the above
method. A prototype system, together with an end-to-end
scenario as sample is also presented.

1. Introduction

With the needs for global resource and information
consolidation and the continuous advancing of
information technologies, today ’s business is now asking
for more and more support from IT systems. As a result,
IT systems are growing larger and larger, and introducing
more and more functions to cover enterprise business
execution from various aspects, i.e. operating, producing,
planning, controlling, auditing and so on. IT system is
usually built with hundreds thousands of codes, and
inevitably causing a lot of problems in building, changing,
maintaining and reusing them.

Model-driven approach has been regarded by many
researchers and practitioners as the future way for well
handling large scale and complex IT systems. MDD [1]
(Model-Driven Development), proposed by OMG on
2001, has been widely studied and practiced in many
cases, and proved itself to be a promisingly effective
approach, especially in the following perspectives:
formalized business semantics to achieve mutual
understanding across teams, backgrounds and scenarios;
automatic model transformation across layered models to

facilitate job distribution and role-based development;
formally captured inter-model relationship to facilitate the
change, maintenance and reapplying of target system after
it is delivered.

However, with MDD gradually got widely adopted,
model composition and decomposition as an existing way
to reduce model complexity isn ’t enough to fully deal
with large scale and complex cases. Today ’s modeling
methods rely on a formalized meta-model (i.e., MOF [2]
for UML [3]) to organize and present modeling elements
within a model. The model organization structure, usually
specified by the meta-model in a fixed way, thus becomes
the dominant model componentization scheme and
inevitably determines the way in which the model is
understood, created, manipulated and reused. This fixed
model componentization scheme has generated the
following problems:

1) IT system normally includes the concerns or
requirements from different stakeholders. But the
modeling elements to represent them, in existing modeling
methods, are usually contained in one single model in a
crosscutting way (as illustrated in Fig. 1). Taking
security, auditing, compliance, logging, and recovery in
business models into consideration are necessary for
building a real executable IT solution, whereas such a
comprehensive model in an auditor ’s view will be too
hard to understand because so many irrelevant things are
added. One subsequent problem of crosscutting modeling
elements is that it makes the modification of existing
system difficult to handle and control, because every
minor change has to be made on top of a complete model
together with many other intricate aspects.

Exception handling
Auditing

Authorization
Redo/Undo ……

Business Logic 1

Business Logic 2

Business Logic 3

……

Business
SolutionBusiness Logic 4

Business Logic 5

Risk Control

Exception handling
Auditing

Authorization
Redo/Undo ……

Business Logic 1

Business Logic 2

Business Logic 3

……

Business
SolutionBusiness Logic 4

Business Logic 5

Risk Control

Fig. 1 multiple concerns scattering in business

processes make process models complex.

2) In the lifecycle of building model-driven solutions,

models are widely used as the vehicle to convey project
participants’ ideas and working results. The fixed

mailto:@cn.ibm.com
mailto:xk02@mails.tsinghua.edu.cn

 2

componentization structure of the models, from this point,
also brings challenges to the work distribution and team
collaboration among project members; models have to be
created, exchanged and shared under this structure.

3) There are many common features (such as exception
handling and auditing) in each solution that ought to be
represented separately but cannot be supported by current
model driven approach. These features are usually
associated with main logics and features in a crosscutting
way. They cannot be represented as a single model unit in
most existing model scheme. This results in redundancy
and overlapping of similar features across different
solution functions.

4）One key advantage of model driven approach is that
the resulting models, as formal representations of business
knowledge or solution design, are more likely to be
understood and reused in future scenarios. Since the
current reuse at model level are largely restricted by the
fixed asset model structure, reusable parts in models
cannot be easily refactored and extracted to make them
tailored for use in other situations.

The key reason for all above problems is that we are
greatly constrained by the fixed model componentization
architecture defined in the meta-model. To fully address
the above challenges, we need a dynamic model
componentization structure to support the flexible
composition, decomposition and refactoring of models. In
the programming domain, the same problem also exists
and there have been quite some efforts on addressing this
problem, among which aspect-oriented programming [4]
or separation-of-concern [5,6] technologies are the most
related ones. AspectJ [7] builds itself on top of Java
programming language to support the specification of
common programming functions (e.g. logging); CME [8]
(Concern Manipulation Environment) provides an
integrated framework to support the extraction and
weaving of code level concerns in different stages of
software development. These technologies are proved to
be effective in reducing code level complexities, and
hence triggering the research on resolving the complexity
problem in business process modeling domain through
this concern separation concept.

There have been several related works, such as
AO4BPEL[9], that focus on migrating existing technology
from executable code level to executable process script.
However in business modeling domain, things are quite
different: model plays a more important role in building
business solutions than in software development lifecycle.
More focuses should be laid on higher level models to
attack the complexity raised by concerns from multiple
stakeholders. Model simplification technologies should be
combined with end-to-end model-driven lifecycle to make
sure that they are truly consumable, and adhere to the
solving of real business problems, as listed in(but surely
not limited to) the following scenarios:

- Refactoring an existing model from another
viewpoint, so that the model componentization structure is
tailored for a specific usage scenario.

- Extract common features as a separated unit and
weaving them with main business logic during the
solution development process.

- Extracting a solution pattern from existing solution
implementation as a reusable asset, and then reuse it in
future cases by weaving it with other functional parts.

- Flexibly making changes to existing solutions,
removing existing features and replacing them with newly
developed ones.

- Building a new feature and then plugging the feature
to main model by weaving.

In this paper, we will provide detailed description to
one research work in IBM China Research Laboratory
(CRL) aiming at addressing the fixed model
componentization challenge. Our efforts mainly focus on
business process modeling by introducing a set of
dynamic model componentization technologies. The key
contribution of this paper includes: introducing the
concept and definition of aspectual process as the base for
dynamically structuring business process models;
proposing an end-to-end aspect-oriented business process
modeling method which covers key phases including
aspect definition, identification, assembling, and weaving;
some initial theoretical work done as the base for correct
aspect-oriented business process decomposition and
composition. Above technologies are implemented in a
prove-of-concept prototype system on top of CME and
WSU (WBI Service Utility [10], a.k.a. Model Blue, a
lightweight business process modeling tool developed by
IBM CRL), and based on the prototype we implemented
the four business scenarios as described above.

The rest part of this paper is organized as follows. The
key concepts we used (including aspectual process) are
introduced in section two, followed by the end-to-end
aspect oriented business process modeling approach
described in steps in section three. We then introduce in
section four the key enabling technologies for our
approach, i.e., model query language, extraction and
weaving method. The prototype system, together with an
end-to-end scenario as sample, is described in section five.
Section six concludes this paper with summary and
possible future work.

2. Basic Concepts

The approach of business process modeling proposed
in this paper is based on the concept of aspectual process,
which is an extension of the general concept of aspect and
concern in aspect-oriented programming (AOP) area.

2.1. Concern and Aspect

 3

In general, a concern is what users may be interested in.
In programming domain, a concern is a problem that a
program tries to solve. Programmers write programs in
order to address one or more core concerns (such as credit
card billing, or sending email), whereas cross-cutting
concerns form aspects of a program that do not relate to
the core concerns directly, but which proper program
execution nevertheless requires.

Separation of concerns (SOC) forms an important goal
in program design. When programmers simply insert calls
to cross-cutting concerns (such as logging, object
persistence, etc.) in the source code when needed, the
resulted program leads to a highly-coupled system and is
difficult to change, because every time programmers
change a feature of these cross-cutting concerns, they may
need to recompile a lot of source files and check a lot of
calls for consistency. And every time programmers
change the signature of an operation, they have to change
all calls to that operation, again touching many separate
source files. Cross-cutting concerns are those parts, or
aspects, of the program that in standard design
mechanisms end up being scattered across multiple
program modules, and tangled with other modules.
Isolating these cross-cutting concerns is the essential idea
in Aspect-Oriented Programming (AOP). AOP allows the
programmer to create cross-cutting concerns as first-class
program modules.

2.2. Aspectual Process and Its Visualization

Extending the concept of aspect and concern, this paper
introduces a new concept of aspectual process. An
aspectual process is basically a kind of representation of
business process from certain specific concern perspective.
It can be a piece of business process, a group of business
process fragment or even a complete business process. A
business process typically fulfills specific business
requirements by integrating functions of different business
units and resources, while an aspectual process clearly
defines a specific view of a business process. For example,
an aspectual process can represent how a certain resource
is consumed solely, or how a crosscutting business
function such as auditing is done, or what a single
employee does in the overall process. Each aspectual
process depicts a facet of a business process. A global
view of the business process can be obtained by weaving
the aspectual processes together. For example, the
following shows some sample aspectual processes in a
general ‘Purchase Order Handling’ business process:
l The aspect that depicts activities of the financial

department;
l The aspect that depicts activities of the manager in

the financial department;
l The aspect that depicts how a certain resource (such

as printer) is consumed in the purchase order
handling process;

l The aspect that depicts how a certain standard (e.g.
ISO9000) is ensured in order handling.

Different from aspects in programming, an aspectual
process is basically a business process or a fragment of
business process. It needs to be modeled in a visualized
way just like a business process model. As an example
illustrated in Fig.2, we design an intuitive presentation for
aspectual processes. In this visualization, an aspectual
process is considered as a self-contained meaningful
process. Aside from normal modeling elements in a
generic business process model, an aspectual process also
includes a boundary box with the aspect ’s name and
multiple losing/gaining control (captioned with L and G
respectively) nodes. The boundary box encapsulates all
modeling elements in the aspectual process. On the
boundary, several interaction points can be modeled as
aspect’s interfaces interacting with other processes or
aspectual processes. The semantics of “losing control ”
nodes is “releasing a control token to other aspects
through interaction point, and then executing its following
nodes”. The semantics of “gaining control” is “waiting an
incoming control token, and executing its following nodes
once it is received”. In Fig.2, the dashed lines stand for the
directed control token flows.

Name

Interaction
Point

Task

L

G

G

Task Task

Ctrl1

Ctrl2

Ctrl3

Losing
Control

Gaining
Control

Name

Interaction
Point

Task

L

G

G

Task Task

Ctrl1

Ctrl2

Ctrl3

Losing
Control

Gaining
Control

Fig. 2 Visualization of Aspectual Process

3. AOBPM Approach Overview

Based on the concept of aspectual process, we propose
an aspect-oriented business process modeling (AOBPM)
approach targeting at manipulating and componentizing
business process model by leveraging aspect technology.
The AOBPM approach is illustrated in Fig.3 as a state
chart.

There are the following key actions in the approach:
aspect definition, aspect identification from existing
process models, aspect extraction as a self-contained
process, aspect assembling, aspect weaving, aspect
creation and aspect modification. These actions make
aspects transit from one aspect state to another. For
different usage scenarios, the performance path can be
different. For example, to separate/delete an aspect from
an existing process, actions are performed along the
following path: aspect definition à aspect identification

 4

à aspect extraction; to add a new feature to an existing
process, we need: aspect definition à aspect creation à
aspect assembling à aspect weaving; to refactor an
existing process from a concern point, we need: aspect
definitionà aspect identification à aspect extraction à
(aspect modification) à aspect assembling; to modify and
reuse an aspect, we need: aspect modification à aspect
assemblingà aspect weaving. The following subsections
will explain several main steps in AOBPM approach in
detail.

Defined

Identified but
embedded in

process

Meshed with
process (or

other aspect)

Stand-alone

Start
Define aspect

Identify aspect
elements Create

Modify

Assemble

Disassemble

Weave

Extract

Defined

Identified but
embedded in

process

Meshed with
process (or

other aspect)

Stand-aloneStand-alone

Start
Define aspect

Identify aspect
elements Create

Modify

Assemble

Disassemble

Weave

Extract

Fig. 3 AOBPM Approach

3.1 Aspect Definition

Most AOBPM usage scenarios start from aspect
definition. The definition of an aspect is critical to aspect
element identification, extraction and reuse. In this step,
AOBPM users ought to carefully think what their interests
are, and they should be able to articulate what the aspect is
and what its scope and granularity is in a formal
specification. It is mainly a human thinking action.

AOBPM allows user to define aspects at different
granularities. The definition of aspects in fine granularity
should be concrete and specific enough to be directly
describable with the concepts or terms in business process
models. It enables aspect element identification simply via
query statements or manual selections. For example, an
aspect can be defined by all tasks performed by a specific
role (e.g. auditing department). For aspects in coarse
granularity, they don ’t need to be described with the
concepts in process model, but they must be finally
defined with other fine granularity aspects. For example,
an aspect can also be defined as all tasks that make the
business process compliant with ISO9001. Its definition,
however, should be further refined with the definition of
other aspects.

3.2. Aspect Identification

A crosscutting aspect scatters in process model. If we
need to extract an aspect from existing process models
after aspect definition, all model elements covered by the

aspect definition should be pinpointed. This procedure is
called aspect identification. There are two approaches to
identify related model elements: automatic selection by
query engine and one-by-one selection by user. A flexible
and powerful query mechanism is critical to make
AOBPM approach practical and consumable. Section 4.1
and 4.2 will present our query mechanism and
semantic-based query extension. For elements that can not
be searched out due to the lack of semantics and clear
definition, they have to be selected manually.

3.3. Aspectual Process Extraction

In identification step, all the corresponding modeling
elements are identified. Aspectual process extraction will
repack all identified aspect elements in a consistent or
self-contained view so that it can be understood and
reused. “losing/gaining control ” nodes and interactions
points will be added into the original and extracted
business processes so as to maintain their completeness.
The extraction result is an “aspectual process ” with
internal structure (indicating its internal behavior) and
external interaction points (indicating how it interacts with
its external environment).

3.4. Aspectual Process Assembling

Aspectual Process 1

Task

L

G

G

Task Task

Ctrl

Ctrl

Ctrl

Aspectual Process 2

Task

G

L

Task

Ctrl

Ctrl

Aspectual Process 1

Task

L

G

G

Task Task

Ctrl

Ctrl

Ctrl

Aspectual Process 2

Task

G

L

Task

Ctrl

Ctrl

Fig. 4 Assembled Aspectual Process

If we want to add certain aspectual process to another
aspect or process, we need assemble aspects together to
build a complete business process which reflects all
critical and typical aspects (see Fig.4). Assembling is
realized by linking corresponding interaction point pairs.
Among these aspectual processes, the exchange of control
tokens represents the logical integration of aspectual
processes. We can manually build the interaction
relationships among those aspectual processes. If business
semantics are recorded in exchanged tokens, it is also
possible to automatically connect each pair by semantics.

3.5. Aspect Weaving

 5

The assembled business process depicts different
aspects as separated aspectual processes and visualizes
their relationships clearly. However, the assembled result
is not a general business process and a weaving algorithm
is needed to merge them together into one single
“aspectual process” that represents the combination of all
related aspects.

4. Key Enabling Technologies

The previous section provides an overview description
about our AOBPM approach, which follows the principle
of ‘separation of concern ’ and ‘divide and conquer ’ in
business process modeling by modeling and weaving of
aspectual processes. In this section several key enabling
technologies evolved in our approach are explained in
detail, including aspect identification by process query,
process extraction, process assembling and weaving, and
the further optimization for simplifying the process
extraction / weaving results. It must be emphasized here
that we have laid enough theoretical groundwork so as to
implement a “reasonable” process extraction / weaving
approach and result optimization mechanism. More
specifically, the correctness of the above techniques is
ensured by applying a set of model transformation rules
that are deducted from the weak-bisimulation analysis of
our formalized business process model with the process
algebra of CCS [11]. Consequently, the business process
models before and after applying these techniques are
guaranteed to be equivalent by their observable behavior
to the external environment. Due to the size limitation of
this paper, this part of theoretical support will be
addressed in detail in another incoming paper.

4.1. Aspect Identification by Process Query

Aspect definition and identification are the very first
two steps of our AOBPM approach. Typically a user can
identify the critical/dominant aspects either by manually
selecting different elements in a business model (i.e.
activities, documents, resource, etc) or through an
intelligent query mechanism which automatically returns
all business elements that satisfy specific query conditions.
Our query engine is built upon the extension of Pattern
Unified Matcher (PUMA) [12] in CME, which enables the
automatic identification of business elements, their
relations and even their different semantics in business
process models.

Originally in CME, a common meta-model for various
software applications is provided based on which PUMA
can search for its desired results. The common
meta-model can be briefly concluded in the left part of
Fig.5 below. All external application models are
represented in CME with two basic concepts: concerns
and the hierarchical structure of its units. Each unit is
further associated with an artifact definition which
contains the location of where the unit is physically stored.
Various relations can be defined among different units. In
order to realize the aspect oriented business process
modeling, an abstract business process model is extended
based on this common structure as illustrated in the right
part of Fig.5. The abstract process model contains the
most usual business model constructs (e.g. Activity, Fork,
Join, Decision, Merge, Timer, Information Artifact,
Collaboration Entity,…) and their possible properties (e.g.
role, purpose, cost, date ……). Furthermore, to enhance
the flexibility for the dynamic creation of user-customized
model constructs, these extended units can be generated
“on-the-fly” according to user ’s own configuration of
his/her query targets in a business process model. This is
especially important for unit like properties since different
users usually concerns about different information in the
business process model.

Fig.5 Extended Abstract Process Model for Aspect Identification

 6

A comprehensive list of the syntax for querying about
model elements and their relations in our extended
abstract process model is summarized in Fig.6.

CommonBPUnitType and CommonBPProperty are the
basic predicates for constructing our queries. In the above
syntax specification, “Op” indicates the general binary
logical relation for “equality”, “less than ”, “more than ”,
and etc. Wildcards like “*” and “?” are supported in the
specification of “Value”s. Using the query
“containment(Activity, Role=role1) ” that will be used in
the next section as a sample, it consists of a reserved key
word “containment”, the specification of its target
CommonBPUnitType “Activity” and the unit that each
target “Activity” is supposed to contain: “Role=role1”.
With this query, all Activities that are performed by the
role of “role1” can be retrieved.

4.2. Intelligent Aspect Identification with
Semantics

In Fig 6, there is a special “SemanticQuery” with key
word “semantic” in the query syntax specificiation This
means that in our query language, units in business
process models can not only be explicitly identified by
specifying its value or wildcards, but also be indirectly
deduced from the semantics of business model elements.
Querying business models with semantics enables the
intelligent identification of aspects with the query engine.
To implement this important feature, a general ontology
repository of the most commonly used synonyms of terms

in specific business domains 1 is maintained for the query
engine. Whenever a semantic query is triggered with the
key word of “semantic”, the query engine will first search
for business units that are the exact match of the expected
values, it will then access the ontology repository and try
to identify other qualified units that are semantically
equivalent to the expected value.

For example, with the query of “semantic Activity
Purpose=PayMoney”, not only activities with purpose of
“Pay Money” are returned, but also activities with purpose
of “Pay Cash” or “Pay Bill” will also be identified.

4.3. Aspectual Process Extraction

The main purpose of aspectual process extraction is to
separate the target business aspects from original business
process model, and keep the extracted aspectual process
as a meaningful self-contained process. The extracted
process is supposed to represent a specific aspect of the
original business process model. In Fig 7, a simple
scenario is used to provide an intuitive understanding of
the overall aspectual process extraction procedure. In the
sample scenario, it is expected that the aspect of security
operations (annotated with an asterisk mark) will be
separated from the original business process model to help
business consultants get a clearer understanding of the
core businesses. The steps of the extraction procedure are
explained as following:

Step1: Identify the to-be extracted business elements in
the original process “Poriginal” and insert losing / gaining

1 As in our case, we focus mainly on the business domain of
banking.

Fig.6 Query Syntax for Business Process Models

 7

control pairs with unique IDs before and after these
elements respectively.

BusinessOp

BusinessOp

BusinessOp

SecurityOp

L1

G1

L2

G2

Poriginal

BusinessOp

BusinessOp

BusinessOp

SecurityOp

L1

G1

L2

G2

BusinessOp

BusinessOp

BusinessOp

SecurityOp

L1

G1

L2

G2

Poriginal Pextracted

BusinessOp

BusinessOp

BusinessOp

L1

G2 SecurityOp

G1

L2

Poriginal Pextracted

Step1

Step2

Step3

Step4

Step5

BusinessOp

BusinessOp

BusinessOp

L1

G2 SecurityOp

G1

L2

Pextracted

Poriginal

BusinessOp

BusinessOp

BusinessOp

L1

G2 SecurityOp

G1

L2

Pextracted

Poriginal

BusinessOp

BusinessOp

BusinessOp

SecurityOp
*

Poriginal

Fork

Join

Fig.7 A Simple Scenario for Aspectual Process
Extraction

For example, in Fig.7 two losing / gaining control pairs
L1/G1 and L2/G2 are inserted before and after the activity
“SecurityOp” respectively. These pairs will serve later as
the potential interaction points for the process model be
integrated with its external environment.

Step2: Create a duplication of the original process
“Poriginal” called “Pextracted”, as the initial extraction result.

Step3: Reduce “Poriginal” and “Pextracted”, by applying
the following rules.

 For “Poriginal”:
l Remove all model elements belonging to the

extracted aspect;
l For the losing / gaining control pairs that are inserted

before the to-be extracted business elements, remove
the gaining control node in the pair;

l For the losing / gaining control pairs that are inserted
after the to-be extracted business elements, remove
the losing control node in the pair;

 For “Pextracted”:
l Remove all model elements that do not belong to the

extracted aspect;

l For the losing / gaining control pairs that are inserted
before to-be extracted business elements, remove the
losing control node in the pair;

l For the losing / gaining control pairs that are inserted
after to-be extracted business elements, remove the
gaining control node in the pair;

Fig 7 (step3) shows the reduced results of “Poriginal” and
“Pextracted” in the sample scenario according to the above
rule.

Step4: Connect each single losing control node and
gaining control node in the two separated process by their
unique ID.

In this way, we connect the sparsely scattered process
fragments of the current extracted process results into a
complete and self-contained aspect. The losing control
node in the process model now indicates the generation of
request tokens for calling external functions outside this
aspect. On the other hand, the gaining control node thus
blocks the execution of the current process model and
waits until a request token is received from external side.
By introducing the losing control and gaining control
nodes with ID as identification, we are able to capture the
inter-dependencies between the business process of
“Poriginal” and “Pextracted” and preserve the completeness of
our extracted results in terms of semantics.

Step5: A rule driven optimization procedure is applied
on both “Poriginal” and “Pextracted” to further remove or
merge redundant structure nodes and control nodes.

For example, in fig7 (step5) the fork/join structure in
“Pextracted” can be removed to simplify the extracted
process model since an alternative process branch that
actually does nothing is found in the structure.

As stated earlier, the correctness of the above aspectual
process extraction procedure and optimization approach is
ensured by proving the observable behavior equivalence
between the original process model and our extraction
results based on the weak-bisimulation analysis of the
formalized business process model with CCS [11].

4.4. Process Assembling and Weaving

Process assembling and weaving enables the automatic
business model reconstruction by integrating and reusing
existing aspectual business process. We will also use a
simple scenario here to provide an intuitive understanding
of the complete assembling and weaving procedure as
shown in fig 8. In the sample scenario, it is expected that
the original business process can be conveniently
reconstructed so as to support additional functionality of
financial operation (which is modeled in another process
fragment) in the end of the process. Similar to extraction,
each correspondingly step of the assembling and weaving
procedure is explained in detail as following:

Step1: Losing control and gaining control nodes are
pinpointed on the to-be weaved aspectual processes as

 8

their external interaction points either automatically by the
operation of process extraction, or manually by users;

In the sample scenario, the financial process “Pfinancial”
needs to be weaved into the original business process
“Poriginal” to supplement its functionality. Firstly, the
losing control and gaining control nodes L3, G4, G3, L4
are pinpointed in the two processes.

Step2: The dependencies among different aspectual
processes are established by pairing of losing control and
gaining control nodes with their unique IDs;

Step3: Each pair of losing control and gaining control
nodes is merged to generate the parallel or
synchronization relations between aspectual processes.

For example, in Fig.8 (step2), the merge of losing /
gaining control pair is fulfilled by replacing each pair with
additional Fork / Join structure nodes in the process
models.

FinancialOp

G3

L4

Pextracted

Poriginal

BusinessOp

BusinessOp

BusinessOp

SecurityOp

L3

G3

FinancialOp

G3

L4

Pextracted

Poriginal

BusinessOp

BusinessOp

BusinessOp

SecurityOp

L3

G3

FinancialOp

Poriginal

BusinessOp

BusinessOp

BusinessOp

SecurityOp

Step1

Step2

Step3

Step4

FinancialOp

Pfinancial

Poriginal

BusinessOp

BusinessOp

BusinessOp

SecurityOp

Fork

Join

FinancialOp

Poriginal

BusinessOp

BusinessOp

BusinessOp

SecurityOp

Fork

Join

Fig.8 A Simple Scenario for Business Process Weaving

Step4: A rule driven optimization procedure is applied
on the connected business process to further remove or
merge redundant elements.

In the sample scenario, the final optimization operation
removes the additional Start / Finish node of “Pfinancial”,
merges the redundant Fork and Join nodes in the original
weaved process model.

It should also be noted here that the correctness of the
above aspectual process assembling and weaving

procedure and optimization approach is ensured by
proving the observable behavior equivalence between the
original process models and our weaving results based on
the weak-bisimulation analysis of the formalized business
process model with CCS [11].

5. Proof of Concept with a Prototype

To verify above concepts and technologies, we built a
prototype system on top of CME and WSU for us to
practice several useful business scenarios. In this section,
one scenario will be used to demonstrate how we cab use
aspect-oriented approach to flexibly manipulate business
process models, i.e. refactoring an existing model from
another meaningful viewpoint. The key objective of this
scenario is to refactor an existing business process model
from each individual role ’s perspective. Usually, “role” is
a typical property of business tasks. Business process
models can be regarded as the combination operations
performed by in different roles. Refactoring a business
process from “role” perspective can help user identify the
responsibility of each individual role, demonstrate the
interaction relationship among roles, and enable workload
analysis and optimization of efficiency. For other
purposes, you can also refactor process from other
viewpoints. In this scenario, there are two important
phases: (1) refactor process by executing aspect definition,
identification and extraction; (2) merge aspectual
processes together by executing aspect assembling and
weaving. Limited by paper size, we will use a fictive
business process rather than a real one from customer
cases.

Fig.9 Aspect Definition

l Aspect Definition
Before manipulating aspects, we should define which

aspects we are interested in and what they are. In this
example, we are interested in the tasks performed by
certain roles. So I can define aspects by roles. In the
following sample process, we marked business tasks with
roles (R1, R2 and R3). We define all tasks performed by

 9

role R1 as an aspect Role1, tasks performed by role R2,
R3 as aspect Role2 and Role3.
l Aspect Identification

We can use two ways to do aspect identification: by
query language or by manual selection. For example, in
the following diagram, we use a query command
“containment(Activity, Role=role1) ” to find all business
tasks done by ‘role1’. The query result is listed in CME
search result view, and also listed under the aspect
“Role1”.

Fig.10 Aspect Identification by Query

l Aspect Extraction

Although we have identified all elements related with
role1, they are still as separated elements. To make them
more meaningful, aspect extraction operation can be
performed to extract all aspect elements, transform them
into a self-contained and reusable aspectual process
format. The following diagram shows the extraction result.
All tasks performed by role1 are linked together as an
aspect of the whole business process from role1 ’s point of
view. Some additional nodes are added, such as the
losing-control node and the gaining control node. At these
nodes, control tokens are sent to or received from other
aspects. Those nodes can be considered as the interface of
interaction with other aspects.

Fig.11 Aspect Extraction

Through the steps of aspect definition, identification

and extraction, the aspect-oriented technology makes it
possible to flexibly componentize business process model.
It provides another view to make the process clear and
enable independent change and reuse.

l Aspect Assembling
To integrate aspectual processes together, we can

assemble them like the following figure and create the
linkages between pairs of control tokens. Linkages can be
automatically created with semantic matching or manually
built. This diagram presents another perspective of the
original business process model by role-based refactoring.
Here, we only select role as a typical view, people can
choose any other concerns for each specific case, such as
location, time, financial dimension, and security-related
aspects.

Fig.12 Aspect Assembling

l Aspect Weaving
Aspect weaving is a followup action to fuse the

assembled process model into one complete process. This
is an optional step for this scenario. If there is no change
to any aspectual processes during all above steps, aspect
weaving is expected to fully recover the original business
process at the starting point.

6. Conclusion

This paper introduces an end-to-end aspect-oriented
business process modeling method and related
technologies to support dynamic model componentization.
The concept of aspect is from programming domain (AOP)
is introduced into business process modeling domain for
for reducing complexity in business process models and
improving model reusability. Contribution of this work
can be summarized as following:
l It extends the method in CME for AOBPM, which

covers the following key phases: aspect definition,
identification, extraction, assembling, and weaving.
AOBPM enables the flexible process model
manipulation, such as model refactoring,
componentization, adding new feature and model
reuse, etc.

l It provides a novel presentation way to intuitively
visualize aspectual business process models and their
relationship.

 10

l It extends the query language provided by PUMA
query engine with process-related query and
semantic-based query capability.

l It provides a set of approach for aspectual process
extraction and weaving with CCS as its theoretical
foundation.

Although we have built some scenarios for the purpose
of showing ideas, there is still a long way to make this
technology truly practical and consumable. We will
continue the AOBPM work from both theoretical and
practical perspectives in the future.

7. Reference
[1] OMG Model-Driven Architecture, http://www.omg.
org/mda.
[2] Meta-Object Facility, http://www.omg.org/cgi-bin/doc?
formal/2002-04-03.
[3] Unified Modeling Language, http://www.uml.org/
#UML2.0
[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira, and J.-M. Loingtier. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on
Object-Oriented Programming, volume 1241 of LNCS,
pages 220{242, Jyv ÄaskylÄa, Finland, June 1997.
Springer-Verlag.
[5] William Harrison, Harold Ossher, Stanley Sutton Jr.,
Peri Tarr, “Concern Modeling in the Concern
Manipulation Environment ”, IBM Research Report
RC233443, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, September 2004.
[6] P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr., “N
degrees of separation: Multi-dimensional separation of
concerns”, In 21st Int'l Conf. Soft. Eng, IEEE, 1999.
[7] AspectJ, http://eclipse.org/aspectj/
[8] Concern Manipulation Environment, Eclipse
Technology Project, http://www.eclipse.org/cme/.
[9] A. Charfi and M. Mezini. “Aspect-Oriented Web
Service Composition with AO4BPEL ”, In Proceedings of
European Conference on Web Services (ECOWS ’04),
Erfurt, Germany, September 2004.
[10] Jun, Zhu and etc. “Model-Driven Business Process
Integration and Management: A Case Study with Bank
SinoPac Regional Service Platform ”, on IBM Journal of
Research and Development issues in Asia, 2004
[11] Robin Milner: A Calculus of Communicating
Systems, Springer Verlag, ISBN 0387102353, 1980
[12] Peri Tarr, William Harrison, Harold Ossher,
“Pervasive Query Support in the Concern Manipulation
Environment”, IBM Research Report RC23343, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, September 2004.

http://www.omg
http://www.omg.org/cgi-bin/doc
http://www.uml.org/
http://eclipse.org/aspectj/
http://www.eclipse.org/cme/

