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Unsupervised segmentation with dynamical units
A. Ravishankar Rao, Guillermo A. Cecchi, Charles C. Peck, James R. Kozloski

Abstract— We present a novel network to deconvolve mix-
tures of inputs that have been previously learned, but more
importantly, to segment the components of each input object
that most contribute to its classification. The network consists
of amplitude-phase units that can synchronize their dynamics,
so that deconvolution is determined by the amplitude of an
output layer, and segmentation by phase similarity between
input and output layer units. Learning is unsupervised and
based on Hebbian update, and the architecture is very simple.
Moreover, efficient segmentation can be achieved even when there
is considerable superposition of the inputs.

Index Terms— deconvolution, binding problem, phase correla-
tion, synchronization, oscillations.

I. I NTRODUCTION

Deconvolution and blind deconvolution (i.e. identifying the
presence of specific objects in the visual field) have been
extensively studied in the neural network literature [1]. On the
other hand, segmentation, which refers to the ability to identify
the elements of the input space that uniquely contribute to each
specific object (i.e. establishing a correspondence between the
pixels or edges and the higher-level objects they belong to),
has been attacked more effectively with non-neural approaches
[2]. However, inspired by experimental evidence of a role for
synchronization of neural responses in a variety of motor and
cognitive tasks, and in particular in perceptual recognition
[3], [4], Malsburg and Shneider were among the first to
propose the use of synchronization to perform segmentation
of a mixture of signals [5]. Their model consists of a layer
of excitatory units connected with lateral excitation. Each
of these excitatory units receives sensory input. Furthermore,
every excitatory unit is connected to a global inhibitory unit
which receives excitatory inputs, and sends inhibitory signals
to each of the excitatory units. Segmentation is exhibited
in the form of temporal correlation amongst the activities
of the different excitatory units, so that the units that are
synchronized represent the same input class. Besides the need
for a global inhibitory unit, this network cannot disambiguate
objects with partial overlap. Indeed, a number of approaches
derived from [5] inherit the same shortcomings [6], [7], [8],
and therefore the issue of effective segmentation by networks
of synchronizing units needs to be addressed. In subsequent
sections, we will introduce a novel network architecture that
can efficiently segment overlapping one-dimensional inputs,
and can potentially be generalized to higher dimensions.

Segmentation can also be considered a solution to the bind-
ing problem, an issue extensively discussed in the neuroscience
literature. The idea, which can be traced back to Rosenblatt,
states that neural networks do not have the capacity to encode
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superimposed inputs (Rosenblatt’s superposition catastrophe
[9]), but which can be achieved by a variable independent
from the amplitude, ie. the phase of ongoing oscillations.

II. SEGMENTATION

We will first introduce an objective function for vector
quantization or sparse representation (cf. [18]), in whichit
is assumed that inputsx drawn from an input ensemble are
represented by an output layery through synaptic weights
{Wij}, and such that a non-negativity condition is imposed
on the output layer,yi ≥ 0∀i. We write then:
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1
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where E represents the input ensemble. The first term is
related to faithfulness of representation, by rewarding the
alignment between the network’s output and the feed-forward
input. The second term is a constraint on the global activity,
and the third term is derived from imposing normalization of
the synaptic vectors. The last term is defined as:
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whereN represents the network, consisting ofN units. Given
the imposition of non-negativity ofyi, this term rewards the
sparseness of the representation. Imposing normalizationon
the synaptic weights and whitening of the inputs, the objective
function can be simplified as:

E = 〈yWxT +
1

2
λS(y) −

1

2
y2〉E (3)

assuming that synaptic normalization is enforced during the
maximization process. Applying gradient ascent to the objec-
tive functionwrt y, one obtains the dynamics that maximizes
it upon presentation of each input, and applying itwrt W

one obtains the optimal learning update. Within an appropriate
parameter range, learning leads to a winner-take-all dynamics
upon presentation of one of the learned inputs; moreover, when
two learned inputs are presented two winners arise, as depicted
in Fig. III (see Appendix II).

We will now introduce a generalization of the objective
function that leads to efficient segmentation of the inputs:

Es = E + βRe[C(E)] (4)

whereC[E] = E(p,q) is the complex extension of the energy

C(E) = qWp +
1

2
λS(q) −

1

2
qq (5)
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where pn = xne
iφn , qn = yne

iθn , (·) is the conjugate
operation, and
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We can gain further insight into the nature of the objective
function by regrouping the terms:

ES = 〈
∑

n,m

ynWnmxm(1 + β cosΨnm)

−α
∑

n

y2
n(1 + β) − γ

∑

n6=m

ynym(1 + β cosΦnm)〉E (7)

whereΨnm = θn −φm, Φnm = θn−θm, α = λ(2−N)/2N ,
γ = λ/N . This functional form makes evident that we are in
the presence of a hybrid model of an Ising system with an XY
model.

III. N ETWORK AND LEARNING DYNAMICS

To obtain the network dynamics, we derive the network
updates to maximize the objective function in a short time-
scale, according to gradient ascent. Given the condition of
non-negativity on the amplitudes, we can choose the gradient
in polar coordinates:

∆yn ∼
∂ES

∂yn
∆θn ∼

1

yn

∂ES

∂θn
(8)

Setting for simplicityβ = 1, we obtain:

∆yn ∼
∑

j

Wnjxj [1 + cos(φj − θn)] − αyn
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yk[1 + cos(θk − θn)] (9)
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∑

j

Wjnyj sin(θj − φn) (11)

Whereα = 1−λ(N − 1)/N andγ = λ/N . To maximize the
objective function over the entire input ensemble, in a slower
time-scale, we perform gradient descent over the synaptic
weights, yielding the learning update rule:

∆Wij ∼ yixj [1 + cos(φj − θi)] (12)

Observe that this a simple extension of the traditional Hebbian
learning rule.

IV. N ETWORK CONFIGURATION

We present here a network to perform dynamical seg-
mentation that implements the dynamics described in the
previous section. The activation and phase variables are simply
interpreted by oscillating units described by an amplitudeand a
phase. The phase is derived from an ongoing oscillation whose
natural frequency (ie. in the absence of inputs) is determined
by each unit, although within a small range for the entire
ensemble.
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Fig. 1. Behavior of the network after learning; (a) and (c): amplitude and
phase response upon presentation of an input from the training ensemble; (b)
and (d): response to the presentation of a mixture. For the amplitude, the
evolution is shown since input onset; for the phase, only thebehavior after
convergence is shown. Blue circles correspond to upper layer units, and red
ones to lower layer units. Time is in simulation steps.

The network is designed as follows:(a) A bottom layer
receiving input from an input signal, and consisting of dy-
namical units. The amplitude output of these units is only a
function of their inputs, whereas the phase is a function of
their natural frequency and feedback interactions with a top
layer;(b) A top layer consisting of dynamical units that receive
input from the bottom layer through feed-forward connections.
For these units, the amplitude and the phase are computed by
integrating inputs as a function of their amplitude and their
phase difference with respect to the receiving phase;(c) The
top layer sends feedback to the bottom layer, which is used to
modify only the phase of the bottom layer’s units as a function
of the incoming amplitudes and phase differences with respect
to the receiving phases.

The network operates in two stages, learning and perfor-
mance. Only during the learning stage are the feed-forward
and feedback connections modified, whereas the inhibitory
connections are fixed throughout. During the learning stage,
elements of the input ensemble are presented to the network,
upon which the response of the network is dynamically
computed. A unit’s phase update is the result of its internal
frequency, and of integrating all feed-forward, inhibitory and
feedback inputs, weighted by their amplitude and the receiving
unit’s amplitude, as well as by a non-linear function of their
relative phases with respect to the receiving unit. For the
amplitude update, the incoming amplitudes are weighted by
a function of the relative phases, and limited by a leakage
function of the receiving unit’s amplitude.

The rationale for these equations is the following: (a) the
effect of feed-forward inputs on the amplitude is stronger for
synchronized units; (b) excitatory feed-forward and feedback
connections are such that units that are simultaneously active
tend towards phase synchrony; and (c) inhibitory connections
tend towards de-synchronization; at the same time, they have
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Fig. 2. Illustrating the network connectivity. (A) shows feedforward connec-
tions. (B) shows lateral connections (C) shows feedback connections.

a stronger depressing effect on the amplitude of synchronized
units, and correspondingly a weaker effect for de-synchronized
units.

The system is organized into two layers as shown in
Figure 2. The lower layer consists of 8x8 units, each of which
receives an image intensity value as input. Each unit in the
lower layer is connected to every unit in the upper layer, which
consists of 4x4 units. Furthermore, the units in the upper layer
possess lateral connections such that each unit is connected
to every other unit. Finally, each unit in the upper layer is
connected to every unit in the lower layer through feedback
connections.

Figure 3 shows the input images used to test the system.
These images are of size 8x8, and possess gray levels in the
range 0-255. They represent 16 different 2D objects such as a
square, triangle, cross, circle etc.

V. DYNAMICAL SEGMENTATION

The system described in section IV is presented with a
randomly chosen image from this set of images. The inputs
are pre-processed to convert them to zero mean and unit
norm. Upon settling of the transient behavior, which takes
400 iterations, the Hebbian learning rule in Eq. 12 is applied.
This process is repeated for1, 000 presentations. The typical
behavior of the system is that a single unit in the output layer
emerges as a winner. Furthermore, after the1, 000 trials, a
unique winner is associated with each input.

The system is then presented with a superposition of two
randomly selected objects from Figure 3. Two aspects of
the system response,y, are measured. The first aspect is to
determine whether the winners for the superposed inputs are
related to the winners when the inputs are presented separately.
We term this measurement the deconvolution accuracy, which
is defined as follows. Let uniti in the upper layer be the
winner for an inputx1, and let unitj be the winner for input
x2. If units i andj in the upper layer are also winners when
the input presented isx1 +x2, then we say the deconvolution
is performed correctly, otherwise not. The ratio of the total
number of correctly deconvolved cases to the total number of
cases is the deconvolution accuracy.

We used the following parameters to instantiate the model:
β = 0.5, γA = 0.25, γP = 0.25, µ = 0.5, γr = 0.1, γθ =
0.3, βf = 0.1 ∀f, σα = 2π/32 ∀α The natural periods (τ =
2π/ω) are drawn uniformly from[2, 2.1], and learning takes

Object 1 Object 2 Object 3 Object 4

Object 5 Object 6 Object 7 Object 8

Object 9 Object 10 Object 11 Object 12

Object 13 Object 14 Object 15 Object 16

Fig. 3. Input images.

place after 40 real time units, or approximately 20 cycles.
Learning consists of 1000 presentations drawn at random from
the training ensemble. The learning rate is reduced with an
exponential schedule:e−n/T , wheren is presentation number,
andT = 2000.

In our experiment, the deconvolution accuracy was 90%
over 100 trials.

The phase behavior of the system can be understood through
Figure 4. Suppose unitsi and j in the upper layer are the
winners for a presentation consisting of a mixture of two in-
puts,x1 andx2, indicating that deconvolution has taken place
correctly. Here,i = 7 and j = 2, for inputs corresponding to
objects 1 and 3. Let the phases of unitsi and j in the upper
layer beθ2i and θ2j respectively. Consider a unitk in the
lower layer with phaseθ1k. The behavior of the network is
such that the phase of thiskth unit is usually synchronized
with the phase of one of the winners in the upper layer.

Figure 4(a) shows the activity of all the units in the lower
layer displayed as a vector field. The magnitude of the vector
reflects the amount of activity in the unit, and the direction
encodes the phase of the unit. The input layer in this case
was formed by superposing objects 1 and 3 (rectangle and
cross) in Figure 3. Figure 4(b) and (c) show the phases of
the two winners. As can be seen, units in the lower layer are
synchronized with the winners in the upper layer. Furthermore,
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the units that have similar phase in the lower layer units tend
to represent a single object, as can be seen from the silhouettes
in the phase image of Figure 4(a). In order to make this phe-
nomenon more apparent, we display the segmented lower layer
as follows. We display those units in the lower layer that are
synchronized with the first winner in the upper layer. We allow
a zone of synchronization, which is calculated as follows. Let
d = cos(θ2i−θ1k) be a measure of the difference between the
phase of an upper layer unit and a lower layer unit. (The cosine
function is used to avoid the problem of taking the difference
between two circular variables.) A value ofd = 1 represents
perfect synchronization,d = 0 represents no synchronization
and d = −1 represents perfect anti-synchronization. For the
purpose of illustration, we assume that a value ofd > 0.7
represents synchronization. The units in the lower layer that
are synchronized with the first winner in the upper layer are
shown in Figure 4(d) and those synchronized with the second
winner are shown in Figure 4(e). Figure 4(d) shows that the
phases of those lower layer members that represent object 1 are
synchronized with the upper layer winner that also represents
object 1. Similarly, the upper layer winner for object 3 is
synchronized with lower layer units that represent object 3.

Similarly, Figure 5(a) shows the activity in the lower layer
for a superposition of objects 3 and 4. The two winners in
the upper layer again represent objects 3 and 4, and are also
synchronized with the lower lever units that correspond to
these same objects.

The implication of this result is that the phase information
can be used to convey relationship information between dif-
ferent layers in a hierarchy. Thus, if some action needed to be
taken based on the identification of a certain object at a higher
layer, the phase information provides information about where
that object is localized in the lower layer. This is the essence
of the binding problem as explained in Section I.

The phase relationship between the layers is not always
as crisp as indicated in Figure 4. The accuracy of phase
segmentation can be measured by computing the fraction of
the units of the lower layer that correspond to a given object
and are within some tolerance of the phase of the upper
layer unit that represents the same object. The segmentation
accuracy for our experiment was 81% over 100 trials.

The trials were carried out in the following manner. The
entire network was randomized, and inputs were presented
individually during the training phase. Once the network was
trained, its performance for deconvolution and segmentation
was measured for 10 pairs of randomly selected inputs. This
entire process was repeated 10 times, giving rise to 100 trials.

VI. N EURAL DYNAMICS AND BIOLOGICAL CONSTRAINTS

It is possible to map the abstract network equations pre-
sented in the previous section to realistic neural dynamics.
Neural oscillations have been described in terms of field
dynamics of small ensembles of locally interacting neurons,
exemplified by the cortical dynamics derived by Wilson and

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a)

(b) (c)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(d) (e)

Fig. 4. Illustrating the behavior of phase information. (a)shows the activity
in the lower layer units, displayed as a vector field. The magnitude of the
vector reflects the amount of activity in the unit, and the direction encodes
the phase of the unit. (b) shows the phase of the first winner, which is 3.147.
(c) shows the phase of the second winner, which is 0.351. (d) shows the units
in the lower layer that are synchronized with the first winner. (e) shows the
units in the lower layer that are synchronized with the second winner.

Cowan [19]:

τĖi = −Ei + S(
∑

j

[wEE
ij Ej − wIE

ij Ii] + Ui) (13)

τ İi = −Ii + S(
∑

j

[wEI
ij Ej − wII

ij Ii] + Vi) (14)

whereE, I are the excitatory and inhibitory local populations,
U, V external inputs, andS(·) a monotonic function. The pres-
ence of generalized oscillations in the range of 40Hz has been
documented in a large number of experiments, in particular
related to sensory processing and recognition. Interestingly,
the Wilson-Cowan equations can generate oscillations under
a wide range of conditions, and in particular they can create
Type-II oscillations [11] so that the frequency of oscillation is
relatively constant as a function of the input. The possibility of
defining phases is predicated upon the existence of oscillations.
This implies that the phase equations will include an additional
term,∆ψn ∼ Ψn + ωn, where the first term is the previously
determined interaction term, and the second one is the natural
frequency of the oscillations. However, if we assume that these
natural frequencies are sufficiently similar, the effect onthe
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Fig. 5. Illustrating the behavior of phase information. (a)shows the activity
in the lower layer units, displayed as a vector field. The magnitude of the
vector reflects the amount of activity in the unit, and the direction encodes
the phase of the unit. (b) shows the phase of the first winner, which is 4.087.
(c) shows the phase of the second winner, which is 0.241. (d) shows the units
in the lower layer that are synchronized with the first winner. (e) shows the
units in the lower layer that are synchronized with the second winner.

gradient ascent of the objective function is negligible. The
additional component of the on-line energy change is:

∆Eω ∼
∑

i∈p,j∈q

ωiWijxiyj
∂E

∂φi

+
∑

m∈q,n∈p

ωmymWmnxn
∂E

∂θm
(15)

∆Eω ≈

Ω
∑

n,m

xmWnmyn (sinΦnm + sin Φmn)

−Ωγ
∑

n,m

ynym sin Θnm = 0 (16)

The interaction terms in the update equations can be un-
derstood also in biological terms. We will to assume that the
receiving ensemble is oscillating at a frequency similar tothat
of the forcing, so that the phase of the receiving ensemble
changes slowly relative to the forcing phase; moreover, we
will interpret the amplitude as representing the oscillating rate
of the ensemble. Therefore, an instantaneous description of

the ensemble and the forcing can be approximated byr(t) ∼
[1 + cos(θ(t))] and f(t) ∼ [1 + cos(θ(t) + Φ)] respectively,
whereΦ is the (slowly varying) phase difference between the
ensemble and the forcing. We can compute then the average
change over a cycle as:

〈∆r〉 ∼ 〈f〉 + k0〈rf〉 (17)

The rational is as follows: for an ensemble of spiking or
threshold elements with leakage, to first order the change
in rate is proportional to the average forcing amplitude, and
to second order to the coincidence between the forcing and
the proximity to threshold, i.e. the forcing has the strongest
effect when it peaks near the state at which the ensemble is
closer in average to the threshold. Similarly, the phase change
is proportional to the difference between the forcing’s and
ensemble’s rate derivative, times the ensemble’s rate:

〈∆θ〉 ∼ 〈r(
df

dt
−
dr

dt
)〉 ≈ ω〈r(

df

dθ
−
dr

dθ
)〉 (18)

From Eq. 17 we obtain〈∆r〉 ∼ 1 + β cosΦ, where β =
k0/(1 + k0) and from Eq. 18〈∆θ〉 ∼ sin Φ.

Finally, for biological considerations, one can interpretthat
in the last equation (update of the input layer’s phase), the
weight matrixWjn = (Wnj)

T is replaced by a new set of
feedback connectionsWFB

nj . This will indeed be the case:
given that the Hebbian learning rule (Eq. 12) is symmetric
in its arguments,Wnm −→

t→∞
WFB

mn .

VII. D ISCUSSION

The original network proposed by Malsburg and Shneider
[5], [6] has been influential in advancing a theory for the
use of synchrony as a solution to segmentation. However, the
specific implementation proposed in their paper has several
shortcomings. Firstly, a global inhibitory neuron is required.
Our model overcomes this restriction and spreads inhibition
across the entire network, which is more biologically plausible.
Secondly, learning in their model requires a combination
of short-term and long-term synaptic modification, which in
our model is reduced to a single generic rule. Thirdly, the
test cases used in their model did not involve any overlap
amongst the spectral inputs to be separated. Our model allows
complete overlap, and shows that successful separation and
segmentation is still possible. Buhman and Malsburg [6]
explicitly introduced oscillatory units into the model, but
their model suffers from earlier noted shortcoming in that the
presence of a global inhibitory unit is required. The subsequent
work of Chen, Wang and Liu [8], and Wang and Liu [8]
offer enhancements of the original model, but maintains the
essential aspect of utilizing a global inhibitor. The work of
Izhikevich [12] is mainly theoretical, and does not presentany
specific methodology to address the problem of segmentation.
Hoppensteadt and Izhikevich [13] illustrate their method with
a single example using three inputs, and have not applied their
methodology to a larger number of inputs or test cases, or
addressed the segmentation problem. Furthermore, they raise
the issue that the Hebbian learning rule they use may not
be the best. In contrast, our formulation uses the Hebbian
rule, which is simple, and we have shown that it works
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extremely well. The method of Sunet al [14] requires the
use of visual motion to perform segmentation, and hence
is not applicable to static inputs as we have investigated.
Furthermore, their scheme relies on supervised training, and
uses back-propagation learning.

In summary, although much work remains, our model
presents many interesting novel features with a rich potential
for formalization and generalization.

APPENDIX I
NORMALIZATION CONSTRAINT

Imposing normalization on the synaptic weights and whiten-
ing of the inputs, it is easy to see that the third term in Eq. II
can be dropped. Applying gradient descent on the synaptic
vectors, we find:∆W ∼ 〈yxT 〉 − W. The normalization
constraint impliesW(t+1) = v/|v|, v = µyxT + (1 −
µ)W(n).

Given the normalization constraint on the synaptic vectors,
andµ≪ 1, Wn+1 ≈ Wn + µ

1−µyxT , and therefore∆Wn ∼

yxT , so that the objective function can be simplified as:
E = 〈yWxT + 1

2λS(y) − 1
2y

2〉E , assuming that synaptic
normalization is imposed during the maximization process.

APPENDIX II
WINNER-TAKE-ALL DYNAMICS

The dynamics derived from Eq. II result in the emergence
of a unique winner after learning, and at least two winners
when two inputs are superimposed, as shown in Fig. III.
To understand this, we start by writing:ẏn = In − yn −
λ

∑

m 6=n ym, whereIn = Wn · x is the input to unitn. In
steady-state,̇yn = 0 ∀n; let’s assume that for the maximal
input yM ≈ IM , and thereforeyn ≈ 0 ∀n 6= M . In this
case, the condition for stability impliesxn − λxM ∀n 6= M ,
or equivalentlyIM > xN/λ ∀n 6= M ; this condition can
be achieved if the weight vectors are properly aligned after
learning.

When two vectors are presented to the network after learn-
ing, a similar analysis shows that the solution of two winners
is a stable one, provided that(I

(1)
M1

+ I
(1)
M2

)/(1 + λ) + (I
(2)
M1

+

I
(2)
M2

)/(1 + λ) > I
(1)
n /λ+ I

(2)
n /λ.
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