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Unsupervised segmentation with dynamical units

A. Ravishankar Rao, Guillermo A. Cecchi, Charles C. PeclnelaR. Kozloski

Abstract—We present a novel network to deconvolve mix- superimposed inputs (Rosenblatt’s superposition caiaisér
tures of inputs that have been previously learned, but more [9]), but which can be achieved by a variable independent

importantly, to segment the components of each input object ; ; ; Mati
that most contribute to its classification. The network conists from the amplitude, ie. the phase of ongoing oscillations.

of amplitude-phase units that can synchronize their dynants,
so that deconvolution is determined by the amplitude of an
output layer, and segmentation by phase similarity between
input and output layer units. Learning is unsupervised and — . P .
based on Hebbian update, and the architecture is very simple We_W”_I first introduce an objec_tlve function fpr ve_<_:tor
Moreover, efficient segmentation can be achieved even wheingre  quantization or sparse representation (cf. [18]), in which
is considerable superposition of the inputs. is assumed that inputs drawn from an input ensemble are

Index Terms— deconvolution, binding problem, phase correla- represented by an output laygr through synaptic weights
tion, synchronization, oscillations. {W;;}, and such that a non-negativity condition is imposed
on the output layery; > 0vi. We write then:

Il. SEGMENTATION

I. INTRODUCTION

Deconvolution and blind deconvolution (i.e. identifyirget
presence of specific objects in the visual field) have been
extensively studied in the neural network literature [1h the ~ where & represents the input ensemble. The first term is
other hand, segmentation, which refers to the ability toiifie related to faithfulness of representation, by rewarding th
the elements of the input space that uniquely contributash e alignment between the network’s output and the feed-fatwar
specific object (i.e. establishing a correspondence bettree input. The second term is a constraint on the global acfivity
pixels or edges and the higher-level objects they belong t@nd the third term is derived from imposing normalization of
has been attacked more effectively with non-neural appresc the synaptic vectors. The last term is defined as:

[2]. However, inspired by experimental evidence of a role fo N LW
synchronization of neural responses in a variety of motar an 2 2 2 2
c)cggnitive tasks, and in parti?:ular in perceptuZ\I recogniti Sv) = N ({wn)x = {um)x) = ;yn B N(; )™ (@)
[3], [4], Malsburg and Shneider were among the first to - -

propose the use of synchronization to perform segmentatiwhere\' represents the network, consisting/éfunits. Given
of a mixture of signals [5]. Their model consists of a layeihe imposition of non-negativity of;, this term rewards the
of excitatory units connected with lateral excitation. Eacsparseness of the representation. Imposing normalization
of these excitatory units receives sensory input. Furtbeem the synaptic weights and whitening of the inputs, the object
every excitatory unit is connected to a global inhibitoryitunfunction can be simplified as:

which receives excitatory inputs, and sends inhibitoryailg 1 1

to each of the excitatory units. Segmentation is exhibited E = (ywxT + EAS(y) - §y2>g 3

in the form of temporal correlation amongst the activities

of the different excitatory units, so that the units that a@ssuming that synaptic normalization is enforced durirgy th
synchronized represent the same input class. Besides ¢ite maaximization process. Applying gradient ascent to the @bje
for a global inhibitory unit, this network cannot disambige tive functionwrt y, one obtains the dynamics that maximizes
objects with partial overlap. Indeed, a number of approachié upon presentation of each input, and applyingnit W
derived from [5] inherit the same shortcomings [6], [7],,[8]one obtains the optimal learning update. Within an appeteri
and therefore the issue of effective segmentation by nésvoparameter range, learning leads to a winner-take-all djecsam
of synchronizing units needs to be addressed. In subsequgmn presentation of one of the learned inputs; moreovesnwh
sections, we will introduce a novel network architecturatthtwo learned inputs are presented two winners arise, astdepic
can efficiently segment overlapping one-dimensional igpuin Fig. Il (see Appendix II).

and can potentially be generalized to higher dimensions. We will now introduce a generalization of the objective

Segmentation can also be considered a solution to the bifigction that leads to efficient segmentation of the inputs:
ing problem, an issue extensively discussed in the newgosei
literature. The idea, which can be traced back to Rosenblatt Es = E + pRe[C(E)] (4)

states that neural networks do not have the capacity to encod i )
whereC[E] = E(p, q) is the complex extension of the energy

1, 1 5 1
E=(yWx—5y’ -5 ;Wn +578(y)e (D)

Correspondence should be addressed to: gcecchi@us.iom.co
ARR. GAC., C.C.P. and JK. are at IBM T.J. Watson Regedenter, _ _ 1 S 1 _
Yorktown Heights, NY 10598, USA C(E) =qWp + 5)\ (q) - §qq %)



where p, = z,¢%", ¢, = yner, () is the conjugate
operation, and
N

N
Sa) = 3 i — 3o (6)
n=1 n

N
)Y @)
=1 n=1
We can gain further insight into the nature of the objectiv
function by regrouping the terms:

ES = <Z annmxm(l + ﬁCOS \Ijnm)

) = Z YnYm (1 + Bcos Py ))e
n#m

whereV,,,, = 6,, — ¢, Ppn = 0, — 0, @« = A(2—N) /2N,

v = A/N. This functional form makes evident that we are i

the presence of a hybrid model of an Ising system with an X

model.

—ad yr(1+p 7

IIl. NETWORK AND LEARNING DYNAMICS

To obtain the network dynamics, we derive the netwo@%

(@) (b)

3
250

.
250

Fig. 1. Behavior of the network after learning; (a) and (eppditude and
phase response upon presentation of an input from thertgagmsemble; (b)
and (d): response to the presentation of a mixture. For thplimmle, the
olution is shown since input onset; for the phase, onlykibleavior after
nvergence is shown. Blue circles correspond to upper lagiés, and red

updateS to maximize the ObjeCtive function in a short tim%'nes to lower layer units. Time is in simulation steps.

scale, according to gradient ascent. Given the condition

of

non-negativity on the amplitudes, we can choose the gradien

in polar coordinates:

aES 1 aES
Ayp ~ Dy Ay, ~ y—na—on (8)
Setting for simplicity3 = 1, we obtain:
Ay, o~ Z Whixi[1 + cos(p; — 0,)] — ayn
J
— > ykll +cos(O — 6,)] ©)
k
A@n ~ Z anl'j sin(¢j - Hn)
J
— Y yksin(0x — 0,) (10)
k
A ~ > Winy;sin(0; — ¢n) (11)
J

The network is designed as followga) A bottom layer
receiving input from an input signal, and consisting of dy-
namical units. The amplitude output of these units is only a
function of their inputs, whereas the phase is a function of
their natural frequency and feedback interactions witha to
layer;(b) A top layer consisting of dynamical units that receive
input from the bottom layer through feed-forward connetio
For these units, the amplitude and the phase are computed by
integrating inputs as a function of their amplitude and rthei
phase difference with respect to the receiving phésgThe
top layer sends feedback to the bottom layer, which is used to
modify only the phase of the bottom layer’s units as a funrctio
of the incoming amplitudes and phase differences with r@spe
to the receiving phases.

The network operates in two stages, learning and perfor-
mance. Only during the learning stage are the feed-forward

Wherea =1 — A(N —1)/N andy = A/N. To maximize the and feedback connections modified, whereas the inhibitory
objective function over the entire input ensemble, in a 8loWconnections are fixed throughout. During the learning stage
time-scale, we perform gradient descent over the synapiifements of the input ensemble are presented to the network,

weights, yielding the learning update rule:

AWZ'J' ~ yiilfj[l + COS((bj — 91)] (12)
Observe that this a simple extension of the traditional Heabb
learning rule.

IV. NETWORK CONFIGURATION

upon which the response of the network is dynamically
computed. A unit's phase update is the result of its internal
frequency, and of integrating all feed-forward, inhibjtand
feedback inputs, weighted by their amplitude and the rétgiv
unit's amplitude, as well as by a non-linear function of thei
relative phases with respect to the receiving unit. For the
amplitude update, the incoming amplitudes are weighted by

We present here a network to perform dynamical seg-function of the relative phases, and limited by a leakage

mentation that implements the dynamics described in t
previous section. The activation and phase variables amel\i
interpreted by oscillating units described by an amplitadé a

fignction of the receiving unit’s amplitude.

The rationale for these equations is the following) the
effect of feed-forward inputs on the amplitude is stronger f

phase. The phase is derived from an ongoing oscillation &hag/nchronized units;h) excitatory feed-forward and feedback
natural frequency (ie. in the absence of inputs) is detezthinconnections are such that units that are simultaneousiyeact
by each unit, although within a small range for the entireend towards phase synchrony; amjl iGhibitory connections

ensemble.

tend towards de-synchronization; at the same time, theg hav
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Fig. 2. [lllustrating the network connectivity. (A) showst#forward connec-
tions. (B) shows lateral connections (C) shows feedbackeadtions.

a stronger depressing effect on the amplitude of syncheoniz

units, and correspondingly a weaker effect for de-syndaezh
units.
The system is organized into two layers as shown in

lower layer is connected to every unit in the upper layerciwhi
.ﬁ‘
connections.

Figure 2. The lower layer consists of 8x8 units, each of which
receives an image intensity value as input. Each unit in the Object 9 Object 10 Object 11 Object 12
consists of 4x4 units. Furthermore, the units in the uppgaria
possess lateral connections such that each unit is comhect
to every other unit. Finally, each unit in the upper layer is
connected to every unit in the lower layer through feedbac

Figure 3 shows the input images used to test the system. . . . .
These images are of size 8x8, and possess gray levels in theOb]eCt 13 Object 14 Object 15 Object 16
range 0-255. They represent 16 different 2D objects such as a
square, triangle, cross, circle etc.

Fig. 3. Input images.
V. DYNAMICAL SEGMENTATION

The system described in section IV is presented with a ) ) )
randomly chosen image from this set of images. The inpuiace after 40 real time units, or approximately 20 cycles.

are pre-processed to convert them to zero mean and d,rﬁprnir_]g_consists of 1000 presentfa\tions dr:_;lwn at random fro
norm. Upon settling of the transient behavior, which takd8€ training ensemble. TThe learning rate is reduced with an
400 iterations, the Hebbian learning rule in Eq. 12 is applieeXPonential scheduler /", wheren is presentation number,
This process is repeated for000 presentations. The typical andT" = 2000.
behavior of the system is that a single unit in the outputdaye !N our experiment, the deconvolution accuracy was 90%
emerges as a winner. Furthermore, after theoo trials, a over 100 trials.
unique winner is associated with each input. The phase behavior of the system can be understood through
The system is then presented with a superposition of tfdgure 4. Suppose units and j in the upper layer are the
randomly selected objects from Figure 3. Two aspects winners for a presentation consisting of a mixture of two in-
the system responsg, are measured. The first aspect is tputs,x; andx,, indicating that deconvolution has taken place
determine whether the winners for the superposed inputs &msrectly. Herej = 7 andj = 2, for inputs corresponding to
related to the winners when the inputs are presented separapbjects 1 and 3. Let the phases of unitand j in the upper
We term this measurement the deconvolution accuracy, whiglyer be6,; and 6,; respectively. Consider a unit in the
is defined as follows. Let unit in the upper layer be the lower layer with phasé;;. The behavior of the network is
winner for an inputx;, and let unitj be the winner for input such that the phase of this” unit is usually synchronized
x,. If units 7 andj in the upper layer are also winners whewith the phase of one of the winners in the upper layer.
the input presented is; + x2, then we say the deconvolution Figure 4(a) shows the activity of all the units in the lower
is performed correctly, otherwise not. The ratio of the ltotdayer displayed as a vector field. The magnitude of the vector
number of correctly deconvolved cases to the total numberreflects the amount of activity in the unit, and the direction
cases is the deconvolution accuracy. encodes the phase of the unit. The input layer in this case
We used the following parameters to instantiate the modelas formed by superposing objects 1 and 3 (rectangle and
8 =057 =025~y = 0.25, u = 0.5, v = 0.1, 79 = cross) in Figure 3. Figure 4(b) and (c) show the phases of
0.3, B8 =0.1Vf, 0o =2m/32 Yo The natural periodsr(= the two winners. As can be seen, units in the lower layer are
27 /w) are drawn uniformly from2,2.1], and learning takes synchronized with the winners in the upper layer. Furtheemo



the units that have similar phase in the lower layer unitsl ten A -
to represent a single object, as can be seen from the sitiesuet I
in the phase image of Figure 4(a). In order to make this phe- i -
nomenon more apparent, we display the segmented lower layer
as follows. We display those units in the lower layer that are

oL = s - |

4 Jo— — P
synchronized with the first winner in the upper layer. Wewllo . i
a zone of synchronization, which is calculated as follonet L ] - -
d = cos(02; —01,) be a measure of the difference between the ] -
phase of an upper layer unit and a lower layer unit. (The eosin ‘
function is used to avoid the problem of taking the diffeenc oo e
between two circular variables.) A value éf= 1 represents @)
perfect synchronization = 0 represents no synchronization
andd = —1 represents perfect anti-synchronization. For the _ -

purpose of illustration, we assume that a valuedof 0.7
represents synchronization. The units in the lower layat th
are synchronized with the first winner in the upper layer are (b) (c)
shown in Figure 4(d) and those synchronized with the second

winner are shown in Figure 4(e). Figure 4(d) shows that the

phases of those lower layer members that represent objeet 1 a

synchronized with the upper layer winner that also reprssen . —

object 1. Similarly, the upper layer winner for object 3 is| _~— T~ | -~

synchronized with lower layer units that represent object 3 - | -
Similarly, Figure 5(a) shows the activity in the lower layer{ — — o : —

for a superposition of objects 3 and 4. The two winners irf] _=— — = i j

the upper layer again represent objects 3 and 4, and are a f .

synchronized with the lower lever units that correspond tob— . . . . N

these same objects. (d) (e)

The implication of this result is that the phase information
can be used to convey relationship information between dif-
ferent layers in a hierarchy. Thus, if some action neededto iig. 4. Illustrating the behavior of phase information. gapws the activity
taken based on the identification of a certain object at adnigh? the lower layer units, displayed as a vector field. The ritaga of the
. . . . . vector reflects the amount of activity in the unit, and theeclion encodes
layer, the phase 'nform"fmon provides 'nformalt'()_n abouereh the phase of the unit. (b) shows the phase of the first winneichwis 3.147.
that object is localized in the lower layer. This is the esgen(c) shows the phase of the second winner, which is 0.351.h@lys the units

of the binding problem as explained in Section | in the lower layer that are synchronized with the first winriej shows the
) units in the lower layer that are synchronized with the sdoamner.

The phase relationship between the layers is not always
as crisp as indicated in Figure 4. The accuracy of phase
segmentation can be measured by computing the fraction@jwan [19]:
the units of the lower layer that correspond to a given object

and are within some tolerance of the phase of the upper TE:i = —Ei+ S [wi”E; — w{FL]+U)) (13)

layer unit that represents the same object. The segmemtatio J

accuracy for our experiment was 81% over 100 trials. rl = —1I, + S(Z[wngj —wi] L]+ V) (14)
The trials were carried out in the following manner. The J

entire network was randomized, and inputs were presentgflere £, I are the excitatory and inhibitory local populations,
individually during the training phase. Once the networkswgy, 7 external inputs, and(-) a monotonic function. The pres-
trained, its performance for deconvolution and segmentatience of generalized oscillations in the range of 40Hz has bee
was measured for 10 pairs of randomly selected inputs. Thi§cumented in a large number of experiments, in particular
entire process was repeated 10 times, giving rise to 108.trige|ated to sensory processing and recognition. Inteiggtin
the Wilson-Cowan equations can generate oscillations runde
a wide range of conditions, and in particular they can create
Type-ll oscillations [11] so that the frequency of oscilbett is
relatively constant as a function of the input. The posiybdf
defining phases is predicated upon the existence of ogmilkat

It is possible to map the abstract network equations préhis implies that the phase equations will include an addél
sented in the previous section to realistic neural dynamid¢srm, Ay, ~ ¥,, + w,, where the first term is the previously
Neural oscillations have been described in terms of fiettetermined interaction term, and the second one is thealatur
dynamics of small ensembles of locally interacting neuronsequency of the oscillations. However, if we assume thesé¢h
exemplified by the cortical dynamics derived by Wilson andatural frequencies are sufficiently similar, the effecttha

VI. NEURAL DYNAMICS AND BIOLOGICAL CONSTRAINTS
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Fig. 5. lllustrating the behavior of phase information. gapws the activity
in the lower layer units, displayed as a vector field. The ntada of the
vector reflects the amount of activity in the unit, and theeclion encodes
the phase of the unit. (b) shows the phase of the first winnleichnis 4.087.
(c) shows the phase of the second winner, which is 0.241 h@ys the units
in the lower layer that are synchronized with the first winriej shows the
units in the lower layer that are synchronized with the sdcemner.

the ensemble and the forcing can be approximated(by~

[1 4 cos(0(t))] and f(t) ~ [1+ cos(6(t) + ®)] respectively,
where® is the (slowly varying) phase difference between the
ensemble and the forcing. We can compute then the average
change over a cycle as:

(Ar) ~ (f) + ko(rf) (17)

The rational is as follows: for an ensemble of spiking or
threshold elements with leakage, to first order the change
in rate is proportional to the average forcing amplituded an
to second order to the coincidence between the forcing and
the proximity to threshold, i.e. the forcing has the straige
effect when it peaks near the state at which the ensemble is
closer in average to the threshold. Similarly, the phasegha

is proportional to the difference between the forcing’s and
ensemble’s rate derivative, times the ensemble’s rate:

af  dr df  dr

(A) ~ <T(E - E» ~ W@"(@ - @» (18)

From Eq. 17 we obtaifAr) ~ 1+ fScos®, where§ =
ko/(1+ ko) and from Eq. 18Af) ~ sin ®.

Finally, for biological considerations, one can intergreit
in the last equation (update of the input layer's phase), the
weight matrix W;,, = (W,;)T is replaced by a new set of
feedback connections/,/;”. This will indeed be the case:
given that the Hebbian learning rule (Eq. 12) is symmetric
in its argumentsiV,,,, s Wb,

VIl. DISCUSSION

The original network proposed by Malsburg and Shneider
[5], [6] has been influential in advancing a theory for the
use of synchrony as a solution to segmentation. However, the
specific implementation proposed in their paper has several
shortcomings. Firstly, a global inhibitory neuron is regdi.

Our model overcomes this restriction and spreads inhibitio
across the entire network, which is more biologically piales
Secondly, learning in their model requires a combination

gradient ascent of the objective function is negligibleeThyt short-term and long-term synaptic modification, which in

additional component of the on-line energy change is:

OF
AEUJ ~ , Z wiWij ZiYj %
1€p,J€q
OF
meq,nep
AFE, ~
QY " 2 Whimyn (510 @y + sin Oy )

n,m

n,m

our model is reduced to a single generic rule. Thirdly, the
test cases used in their model did not involve any overlap
amongst the spectral inputs to be separated. Our modelsallow
complete overlap, and shows that successful separation and
segmentation is still possible. Buhman and Malsburg [6]
explicitly introduced oscillatory units into the model, tbu
their model suffers from earlier noted shortcoming in thnes t
presence of a global inhibitory unit is required. The subsed
work of Chen, Wang and Liu [8], and Wang and Liu [8]
offer enhancements of the original model, but maintains the
essential aspect of utilizing a global inhibitor. The work o
Izhikevich [12] is mainly theoretical, and does not presamt
specific methodology to address the problem of segmentation

The interaction terms in the update equations can be uteppensteadt and Izhikevich [13] illustrate their methathw
derstood also in biological terms. We will to assume that thesingle example using three inputs, and have not appliéd the

receiving ensemble is oscillating at a frequency similathst

methodology to a larger number of inputs or test cases, or

of the forcing, so that the phase of the receiving ensemladdressed the segmentation problem. Furthermore, they rai
changes slowly relative to the forcing phase; moreover, wvilee issue that the Hebbian learning rule they use may not

will interpret the amplitude as representing the oscitigtiate

be the best. In contrast, our formulation uses the Hebbian

of the ensemble. Therefore, an instantaneous descripfionrale, which is simple, and we have shown that it works



extremely well. The method of Suet al [14] requires the [8] D. L. Wang and X. Liu (2002) Scene analysis by integratimimitive
use of visual motion to perform segmentation, and hence segmentation and associative memdBEE Transactions on Systems,

. licabl o h . . Man, and Cybernetics, Part B, 32(3):254-268.
Is not applicable to static Inputs as we have mvestlgatqg]. F. Rosenblatt (1962pPrinciples of Neurodynamics: Perception and the

Furthermore, their scheme relies on supervised training, a  Theory of Brain Mechanisms, Washington: Spartan Books.
uses back-propagation learning. [10] The simulation parameters arg:= 0.5, v = 0.1, v = 0.3, By =

| Ilth h h K . del 0.1 Vf, oo = 27/32 Ya The natural periodst(= 27 /w) are drawn
n summary, although much work remains, our mode uniformly from [2,2.1], and learning takes place after 40 real time

presents many interesting novel features with a rich pikent units, or approximately 20 cycles. Learning consists ofdlpesentations

for formalization and generalization. drawn at random from the training ensemble. The learningisateduced
with an exponential schedule—"/7', wheren is presentation number,
and T = 2000.
APPENDIX I [11] F.C. Hoppensteadt and E.M. Izhikevich (199Wakly connected neural
NORMALIZATION CONSTRAINT networks, Springer.

. . . . . . [12] E.M. Izhikevich (1999) Weakly Pulse-Coupled Oscillat, FM Inter-
Imposing normalization on the synaptic weights and whiten- " actions, Synchronization, and Oscillatory Associative ndey. |EEE

ing of the inputs, it is easy to see that the third term in Eq. || Transactions on Neural Networks, 10(3):508-526.

: : ] F.C. Hoppensteadt and E.M. Izhikevich (2000) Patterecdgnition
can be dropped. Applylng gradlent descent on the synap[ﬁé Via Synchronization in Phase-Locked Loop Neural NetworkSsEE

vectors, we findAW ~ (yx”) — W. The normalization Transactions on Neural Networks, 11(3):734.
constraint imp|iesW(t+1) = v/lv], v = uyx? + (1 — [14] H. Sun, L. Liu and A. Guo (1999) A Neurocomputational Mbabf
)W(”) Figure-Ground Discrimination and Target Trackin@&EE Transactions
A L . . on Neural Networks, 10(4):860-884.
Given the normalization constraint on the synaptic vegtonss) H. Haken (2002)Brain dynamics: synchronization and activity patterns
andpy <1, W11 =~ W, + ﬁyxT, and therefore\W,, ~ in pulse-coupled neural nets with delays and noise. Berlin: Springer-
T LT . . o . Verlag.
yx*, so that the objective function can be simplified 8%16] A. Winfree (1980)The geometry of biological time. New York: Springer-
E = (yWxT + $AS(y) — $y%)e, assuming that synaptic Verlag.
normalization is imposed during the maximization process.[17] Y. Kuramoto (1984)Chemical oscillations, waves, and turbulence.
Berlin: Springer-Verlag.
[18] B.A. Olshausen & D.J. Fields (1996) Natural image statal and
APPENDIXII efficient coding.Network: Computation in Neural Sustems, 7, 333-339.
WINNER-TAKE-ALL DYNAMICS [19] H.R. Wilson & J.D. Cowan. (1972) Excitatory and inhilny interactions
. . . in localized populations of model neurorBiophysical Journal, 12:1-24.
The dynamics derived from Eq. Il result in the emergence
of a unique winner after learning, and at least two winners
when two inputs are superimposed, as shown in Fig. Ill.
To understand this, we start by writing;, = I, — v, —
A sn Yms Wherel, = W, - x is the input to unitn. In
steady-statey,, = 0 Vn; let's assume that for the maximal
input yy; =~ I, and thereforey, ~ 0 Vn # M. In this
case, the condition for stability implies, — Az Vn # M,
or equivalentlyly; > xzx/A Vn # M; this condition can
be achieved if the weight vectors are properly aligned after
learning.
When two vectors are presented to the network after learn-
ing, a similar analysis shows that the solution of two wirsner
i i (1) (1) (2)
is a stable one, provided thek;, + 1;,)/(1+\) + (I, +

TN/ + ) > I A+ I8
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