
RC23841 (W0601-026) January 6, 2006
Computer Science

IBM Research Report

Temperature-Aware Operating System Scheduling Policies for
CMP Architectures

Eren Kursun, Chen-Yong-Cher, Alper Buyuktosunoglu, Pradip Bose
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

TEMPERATURE-AWARE OPERATING SYSTEM SCHEDULING
POLICIES FOR CMP ARCHITECTURES

Eren Kursun1, Chen-Yong-Cher, Alper Buyuktosunoglu, Pradip Bose
IBM T. J. Watson Research Center

ABSTRACT- Thermal characteristics of modern microprocessors have presented numerous
challenges in recent years. As the technology trends in power dissipation, feature scaling and clock
frequencies continue, thermal behavior is expected to be a vital consideration in the next generation
of microprocessor architecture design. There has been a wide range of dynamic thermal
management (DTM) techniques proposed for reducing and managing on-chip temperatures. These
schemes include: scaling the supply voltage, frequency and/or fetch rate, or even shutting down the
clock signal to the processor. However, most of the proposed DTM techniques are based on the
principle of “reactive throttling”: i.e. some form of performance throttling is invoked, after a pre-
architected temperature threshold has been exceeded. As such, there is performance degradation with
each such DTM technique; and, in some cases, if the temperature threshold is set to a relatively low
level to conserve package/cooling cost, the degradation can be quite severe. In this paper, we
investigate the potential benefits of thermal-aware operating system scheduling for chip
multiprocessing architectures. The operating system is already designed to interrupt running jobs in
accordance with time slice and scheduling parameters, as well as workload characteristics (e.g. i/o
and memory behavior). The intuition motivating this work is that adding thermal-awareness to the
scheduling heuristics will enable us to achieve chip-level temperature reduction, without adding any
extra performance overhead (unlike hardware-based DTM control mechanisms). We explored
various operating system policies and their effect on temperature behavior of the processor. We
developed a temperature estimation scheme for preliminary analysis of policies and eventually
verified the policies with the Turandot/PowerTimer simulator on traces extracted from SPEC2000
Benchmark Set. Our results indicate that with thermal-aware O.S. scheduling, hotspot temperatures
can be reduced significantly. We observed a 69.2% reduction in the number of thermally critical
cycles compared to the worst case thermal scheduling and 52% reduction compared to random
scheduling. On average, our MinTemp Scheduling policy yields less than 3% cycles in thermal
violation. There was no appreciable change in net performance, compared to the baseline,
temperature-unaware OS schedule.

1. INTRODUCTION
 The continued demand for higher performance processors has led to a rapid increase in power
dissipation. In fact, power density has doubled every 3 years [Borkar1999]. The resulting increase in on-
chip temperatures have started to present significant challenges in microprocessor design. As such, on-
chip thermal profiles have become a key design constraint, even as multi-core, lower frequency chips
form the basis of new generation, power-efficient systems.

1 Eren Kursun was a summer intern (from UCLA) working at IBM T. J. Watson Research Center, when this work was done.

 1

Temperature characteristics of microprocessors affect vital aspects: such as timing, reliability as well as
increased packaging and cooling costs. Reliability of an electronic circuit is exponentially dependent on
the junction temperature. A 10-15oC rise in the operating temperature results ~2X reduction in the
lifespan of the circuit [Yeh2001]. Due to the temperature dependence of carrier mobility, effective
operating speed decreases at higher temperatures.

Leakage power has exponential dependency on temperature. In fact, there is a positive feedback loop,
wherein an increase of temperature causes leakage power to rise, which causes a further increase in
temperature, and so on. This phenomenon, also called “Thermal Runaway” can cause serious potential
damage if not carefully controlled, through a proper design of the package and related cooling solution.
Leakage power is expected to constitute as high as 50% of the total power consumption [ITRS2001] in
post-90nm CMOS technologies.

A wide range of packaging and cooling techniques has been proposed to alleviate thermal problems.
However, cooling/packaging costs increase at a super-linear rate (>$3 per Watt dissipated after 60oC,
according to an older publication from Intel [Gunther2001]), and package impedances are known to be
saturating to values that are going to be very hard to decrease cost-effectively in the future. Due to the
increases in transistor count and clock frequencies, it is no longer practical to design the processor
packaging for the worst-case temperature (at least, with regard to the desktop and lower end server
market). Many chip producers use packaging, not to handle the absolute worst power/thermal behavior,
but a safe threshold below it. For instance, Intel’s Pentium 4 is known to use packaging that is designed
to handle 80% of the worst-case power dissipation. Beyond the 80% threshold, the very “hot” (but
infrequent) workloads are handled with global clock throttling [Gunther2001].

1.1. Dynamic Thermal Management Techniques
As mentioned earlier, DTM response mechanisms that are currently in use in one or more commercial
microprocessors are as described below in additional detail:

Global Clock Throttling: As the temperature exceeds the thermal threshold the clock signal to the bulk
of the microprocessor is shut down. However, such global throttling causes very significant performance
degradation.

Fetch Throttling: Some Intel CPUs have reportedly integrated a linear throttle mechanism, stopping
the CPU instruction fetch mechanism for short periods of time and allowing it to cool. A prior-
generation PowerPC processor also used such fetch-throttling to conserve power, when needed
[Sanchez1997]. (Other related techniques such as: “Decode throttling” varies the number of instructions
that can be decoded per cycle [Brooks2001])

Dynamic Voltage and Frequency Scaling (DVFS): This provides power savings that follows the cubic
rule (with regard to supply voltage). In other words, it can result in 3% reduction in active power, for
only about 1% loss in performance (resulting from a 1% reduction in voltage and frequency). Thus, it is
generally much more efficient than plain dynamic frequency scaling or clock throttling, which tends to
follow a linear rule (i.e., 1% reduction in power for 1% loss in performance). However, due to the
resynchronization of clocks, DVFS schemes may have to stall 10-50µsec each time the voltage is

 2

adjusted, so the performance loss can be much more pronounced than that dictated by an ideal DVFS
mechanism.

In summary, all of the hardware-based DTM response mechanisms currently in use, generally imply a
significant loss of performance at the chip-level, in order to meet affordable peak temperature limits. As
such, there is a need to investigate the use of alternate hardware-software hybrid schemes towards the
goal of improved thermal efficiency: i.e. achieving significant temperature reduction without noticeable
performance loss. In the section below, we further motivate the general concepts behind our research.

2. MOTIVATION

It is important to note that the aforementioned DTM techniques are designed to work on the principle of
“reactive throttling” and as such can cause performance degradation of various degrees. Chip
multiprocessing (CMP) architectures provide unique challenges and opportunities in thermal
management. Independently managed DTM techniques for each individual core are quite difficult to
justify in a multi-core or CMP scenario, since a global view of power and temperature would be missing
in such a scheme. A globally-coordinated DTM controller, that is able to swap jobs executing on
multiple cores, in response to localized temperature overruns, has more promise. Such “activity
migration” strategies [Kursun2004] have been proposed in the past. However, implementing such a
scheme entirely in hardware is likely to introduce significant additional hardware complexity and area
overhead, since process context swaps have to be managed entirely in hardware. Instead, if one can
leverage the existing context swap infrastructure supported by the system software (e.g. the operating
system and hypervisor layers) and implement a temperature-aware task scheduling heuristic, it may be
possible to achieve the goal of hot spot mitigation, without additional on-chip hardware complexity.
This is the basic motivation of the work reported here.

2.1. Illustrative Case
Figure 1 illustrates a CMP scenario with 4 cores and a number of threads, where the operating system is
responsible for scheduling the next thread to each core every time the current time slice is exhausted.
Note that in operating systems such as Linux the time slice is configurable, however in AIX this is fixed
to 10msec. Conceptually, we assume the presence of a monitoring facility called the GMU (global
power-performance-temperature monitoring unit), that collects thermal profile information for the
threads (tasks) in the queue. This information is passed on to the OS-level. As each benchmark is
divided and executed in 10msec operating system time slices (usually in a round robin fashion) this
profiling information can be acquired at run time at the first time slice of the scheduled task. During the
next time slice, the operating system has the estimated temperature behavior of the task and can
schedule intelligently based on this information. Also, in some cases, a task can lose its time slice
prematurely, if a pre-specified temperature schedule has been exceeded.

 3

Figure1. 4-core CMP with Thermal-aware O.S. Scheduling

As Core 1 in the 4-core CMP heats up to the temperature threshold of 358K (85oC), the operating
system can select the next thread from the thread queue based on the temperature profiles of the threads
in queue. Let us assume that a thread from benchmark Mgrid was running on Core 1. [Mgrid has 367K
maximum temperature and causes FPU_REG unit (floating point register file) to exceed the threshold].

Scenario 1: Operating System (O.S) has a variety of threads to select from in the queue. One possibility
is to select oblivious of the temperature and schedule Applu on the same core which as a steady state
temperature of 365K for FPU_REG. This in turn will increase the core temperature even above 358K
and a hardware DTM technique such as fetch throttling (or clock throttling, etc.) has to be activated for
Core 1 to cool down below a safe threshold.

Scenario 2: O.S can select a low-temperature benchmark such as Mcf, which has the lowest thermal
profile of the traces we experimented on. In this case, Core 1 temperature will decrease and no DTM
will be needed.

Scenario 3: Alternatively, the O.S can select yet another high-temperature benchmark such as Crafty,
which reaches 363K for FXU_REG. However, since the heating patterns are complementary, the
FPU_REG file can cool down without degrading the performance with a hardware DTM technique.

NOTE: Figure 2 displays the difference between the maximum and average temperature for threads
extracted from SPEC 2000 benchmark set. Notice that the maximum deviation between maximum and
average temperatures is less than 2.5-3oC. This in fact shows that the thermal profile of a thread is a
good enough indicator of the thermal behavior of the thread next time it is assigned to a core. For our
experimental analysis we used static thermal profiles.

CCoorree 11

CCoorree 22

CCoorree 33

CCoorree 44

GMU

 4

Figure 2. Difference between maximum and average temperatures of architectural blocks for threads

extracted from SPEC2000

3. PRELIMINARIES

3. 1. Temperature Modeling Basics
Temperature modeling for microprocessors is based on the duality of the electrical and thermal
phenomena in Table 1.

THERMAL ELECTRICAL
Heat Flow (W) Current Flow (A)
Temperature Difference (K) Voltage Difference

(Volts)
Thermal Capacitance (CT) Electrical Capacitance

(CE)
Thermal Resistance (RT) Electrical Resistance

(RE)
Thermal Time Constant: τ =
RT.CT (sec)

Electrical Time Constant:
τ = RE.CE (sec)

Table 1. Analogy between Thermal and Electrical parameters

Temperature behaves according to the exponential RC curves represented by the time constant. In
electrical phenomena, RC time constant is defined, as the time required to charge a capacitor to 63.2%
of the final value; or equivalently, the time required to discharge the capacitor to 36.8% of the initial
value. Thermal transient behavior of an architectural block can be similarly estimated with the
corresponding thermal time constant. The time constant for an architectural block (floorplanned unit) is
dependent on the physical properties such as the thermal capacitance and resistance (which are dictated
by the physical dimensions of the block, and the intrinsic thermal properties of the silicon die material).
It is independent of the power dissipation. A thermal model (derived from University of Virginia’s
HotSpot [Skadron2003] built on top of the energy models within the Turandot/PowerTimer simulator
[Moudgill1999, Brooks2003] was used to estimate the temperature characteristics in our experimental
analysis.

 5

Figure 3 displays the exponential decay curve for benchmark Mcf, when the active power dissipation is
reduced to 0 Watts, as the benchmark stops executing.

Figure 3. Exponential Temperature decay curve for Mcf (x axis represents temperature samples

(each sample is taken at 100K cycles hence RC time constants are in 100msec range)

Figure 4 shows the time constant values for 5W, 50W and 500W constant power dissipation for each
block extracted using the Turandot/PowerTimer simulator. As the figure illustrates thermal time
constant is independent of the power dissipation of the architectural block and program behavior. We
have observed thermal time constants in the range of 80msec to 200msec for various architectural
blocks. These numbers are then used in temperature estimation models for each block in a standalone
Temperature and Power Analysis Tool (TPAT), as described in section 4.

Figure 4. Time constant values for 5W, 50W and 500W power dissipation for different architectural

blocks. (x-axis represents temperature samples and y-axis is the normalized temperature values where
the upper division is 0.632 of the final value i.e. R.C. time constant)

3.2. Turandot Thermal Simulation
Our baseline PowerPC simulator, Turandot [Moudgill1999] utilizes HotSpot [Skadron2003] models for
temperature analysis of POWER4-like microprocessor architecture. Each microarchitectural block is
represented by a node in the analogous RC network, where the nodes are connected to each other with
corresponding thermal resistance and capacitances. Similarly power density for each block is generated
by Turandot’s built-in energy models [Brooks2003] and corresponds to the current sources in the

 6

analogous electrical circuit. Then, the corresponding differential equations are solved by 4th order
Runge-Kutta method [Skadron2003].

4. TEMPERATURE ESTIMATION USING TPAT
We model the temperature of a block with approximate RC curves. Our thermal sampling interval is
10msec and we are trying to estimate the potential temperature for each possible thread we can schedule
on a core.

We have investigated various parameters for temperature estimation. Our experimental analysis shows
that the correlation between Power Density and the next scheduled time slice temperature is 0.25, which
is consistent with previous experimental results by Skadron et al. [Skadron2003]. The correlation value
with ∆Power (Change in Power Dissipation) is 0.32 and finally correlation of temperature with current
power is 0.41. In summary, a simpler metric that is based on solely power dissipation in the previous
cycle seems to be a better choice:

if P wi << P i-1 Ti-1e –∆t/RC

 Ti = if P i ~ P i-1 Ti-1 + ∆Ti-1

 if P wi >> P i-1 Ti-1(1-e –∆t/RC)

If the power dissipation at scheduled time slice i is significantly larger than the previous slice, the
temperature change is estimated with RC saturation curve based on the RC time constant for the block.
Power dissipation differences larger than 20% gives <1C temperature estimation error. In the case that
power dissipation is less than 20% different compared to the previous time slice (OS schedule),
temperature is estimated based on the temperature change in the previous OS scheduled slice. Similarly
the drop in power dissipation is estimated using the exponential decay curve.

In general, temperature change acts as a low pass filter on the power dissipation of the architectural
block. The smaller finer-grain fluctuations do not affect the overall temperature of the block. To account
for this effect we use a weighted average of the power dissipation of the previous 3 thermal sampling
intervals. Each thermal sampling interval is 100K. The correlation of the temperature values estimated
by TPAT and Turandot simulations are displayed in Figure 5. SPEC2000 benchmark set is used for the
simulations.

 7

Figure 5. Correlation between the estimated temperatures by TPAT and Turandot simulations for
architectural blocks over SPEC

5. METHODOLOGY
We assume process technology 180nm, clock frequency 1.1GHz, supply voltage 1V with Power4-like
architecture for our experimental analysis. Ambient temperature: 45oC, initial temperature: 60oC,
thermal threshold for DTM (85oC) based on ITRS data [ITRS2001].

We used traces generated from SPEC2000 Benchmark set (400 million instructions were used). After
the initial power and temperature analysis of the traces, static Thermal and Power Analysis Tool (TPAT)
analyzes the trace data and generates the estimated temperatures. The initial analysis of the thermal O.S.
scheduling policies is done with TPAT; this step is followed by the actual validation with the Turandot
simulations.

6. SPEC 2000 TEMPERATURE PROFILE
Initial thermal analysis of the traces from SPEC2000 Benchmark set was done with Turandot thermal
simulator. The average and maximum temperatures are displayed in Figure 6. Among the 25
benchmarks, 10 of them have blocks with temperatures above the 360K, to keep the temperatures below
358K temperature threshold is a challenging task in such a pool of threads.

 8

Figure 6. Thermal profile of the traces from SPEC2000 benchmark set.

The average temperatures of the traces are shown in Figure 7. (Average temperature is 351.2K) On
average the temperature profile of SPEC is closest to Gcc, which has average temperature of 351.1K and
similarities in terms of heating for individual blocks as well.

Figure 7. Average temperature of the traces from SPEC2000

Figure 8 illustrates the average temperatures of the architectural blocks over SPEC trace runs. In
general IDU (Instruction decode unit), FPU_REG (Floating Point Register File), FXU_REG (Fixed
Point Register File), FXU_B1 (Fixed Point Unit) are the thermally challenging blocks.

 9

Figure 8. Average temperatures of architectural blocks over the experimental traces

7. THERMAL-AWARE OPERATING SYSTEM POLICIES

We have implemented and investigated a number of operating system task scheduling policies. We
assume that our baseline architecture is equipped with thermal sensors (monitored by the GMU) and at
the end of the O.S. time slice the temperatures are read. This information is passed on to the operating
system so that the next thread selection can be based on the heating patterns observed in the current
scheduling window (or time slice).

8. EXPERIMENTAL RESULTS

8.1. Random Policy
In this experiment, we used random numbers for next benchmark selection. This policy is closest to an
operating system policy that is oblivious to temperature information. It is interesting to note that with
random benchmark selection temperatures are eventually reduced. For the given execution time frame
for over 96% of the time, the temperatures are above the thermal threshold. The x-axis represents the
temperature samples at every 100K cycles (the values can be translated to time by multiplying with
*0.1msec) and y-axis represent the individual block temperatures in Kelvins.

 10

Figure 9. Random policy for10msec time slice

8.2. AvgTemp Policy
The simplest temperature-aware scheduling policy involves representing each thread with a single
temperature value. We used average temperature of all the blocks for each benchmark for the AvgTemp
policy. It is important to note that SPEC2000 benchmark thermal profile gives us maximum 2.2K
degrees deviation between average and maximum core temperatures. Hence, average temperature based
scheduling policy manages to reduce the temperatures. However, Figure 10 shows that although some
benchmarks with relatively low average temperature such as Lucas cause increase in the temperature of
the thermally critical blocks.

Figure 10. AvgTemp Policy for 10msec time slices

 11

8.3. MaxTemp Policy

In this set of experiments, the next thread selection is based on the hottest block on the core. MaxTemp
policy schedules the thread with highest temperature profile for the current hottest block. The thermal
behavior of SPEC with MaxTemp is displayed in Figure 11. We assume that Mgrid has been running for
several O.S. time slices and its steady state temperatures has been reached for the initial temperatures.
Temperatures are above the thermal threshold 96% of the execution time. Similarly Figure 12 shows
MaxTemp with initial temperatures for Gcc. Thermal threshold is exceeded 42% of the execution time.

Figure 11. MaxTemp Policy with 10msec operating system time slices

 12

Figure 12. MaxTemp Policy for 10msec operating system time slice (starting with steady state
temperatures of Gcc)

8.4. MinTemp Policy
In this case, the next benchmark selection is based on the temperature of the hottest block on the chip.
MinTemp policy selects the thread that has the minimum temperature for the current hottest block.
Furthermore, assuming that there is almost always number of thermally challenging benchmarks in the
queue, this policy schedules these threads if the hottest block temperature is below the safety threshold
of 356K.

 13

Figure 13. MinTemp Policy 3 Round-Robin runs with 10msec time slices

Figure 13 shows the execution of MinTemp policy in consecutive round robin scheme. It is important to
note that after 130msec (around the RC time constant necessary for the initial cooling) MinTemp is
effective at keeping the maximum temperature below thermal threshold. The zigzag patterns in the
figure illustrates that MinTemp interleaves the thermally challenging threads whenever the on-chip
temperatures are below safety threshold.

Figure 14. MinTemp Policy for 30msec operating system time slice
 14

Figure 15. MinTemp Policy for 10msec operating system time slice (Gcc starting temperature)

 Figure 15 shows the thermal behavior of MinTemp policy with the initial temperatures for Gcc.
Similar observations are valid for this case and consecutive round-robin runs displayed in Figure 16,
where maximum on-chip temperatures are below thermal threshold more than 98% of the execution
time.

Figure16 MinTemp Policy, Round-Robin, 10msec operating system time slice

 15

8.5. Fetch Throttling
 We compared the temperature-aware operating system scheduling policies with fetch throttling. We
throttle fetch above the temperature threshold value of 358K. We selected a coarse-grained aggressive
fetch throttling policy in order to affectively reduce the temperatures below the thermal threshold.
Figure 17 illustrates the effect of fetch throttling after Mgrid’s steady state temperature has been
reached. It is worth noting that the initial benchmark sequence until Lucas has not executed due to
coarse grained fetch throttling. After the sequence completes we continue with the initial benchmark
sequence that was throttled (ammp, mgrid, swim, applu, galgel,equake, sixtrack and facerec). The IPC
for this scenario is 0.808 compared to 1.02 for the analogous case in MinTemp policy. The
corresponding 20% IPC degradation is due to the halt during the cooling time as opposed to executing
complementary benchmarks in MinTemp.

Figure 17. Fetch throttling above 358K

8.6. Effects of Varying O.S. Time Slices

We investigated the affects of varying the length of operating system time slices. In some operating
systems such as Linux, O.S. time slice length can be adjusted, in others such as AIX it is fixed (AIX
case it is 10msec). Figures 18-20 display the affects of increasing the length of time slice for MaxTemp
policy.

It is important to note that in all the experimented time slice lengths (from 10msec to 50msec)
temperature threshold of 358K was exceeded over 90% of the execution time. As the time slice lengths
increase to more than 30msec the heating behavior in FXU_REG is more prominent and reach 360K.

 16

(The figures also illustrate the RC time constant concept. Although the transition from floating point
sequence of benchmarks to fixed point sequence happens around time sample 2600. It takes blocks
FPU_REG and FPU_B1 100msec (~1000 temperature samples) to cool down to 355K.)

Figure 18. MaxTemp Policy for 20msec operating system time slice

Figure 19. MaxTemp Policy for 30msec operating system time slice

 17

Figure 20. MaxTemp Policy for 50msec operating system time slice

6. CONCLUSIONS AND FUTURE WORK

Today’s microprocessor architectures present unique thermal challenges. We investigated the
effectiveness of temperature-aware operating system scheduling as a software-hardware DTM
technique. Since operating system thread scheduling is already incorporated in the CMP
microarchitectures, thermal-aware O.S. scheduling can be performed with virtually no performance
degradation.

Most architectures employ packaging systems designed for less than worst-case temperature, with the
assumption that threads with absolute worst-case thermal behavior are of limited number in the
distribution and can be dealt dynamically with hardware DTM (“reactive throttling”) techniques.

We used traces generated from SPEC2000 benchmark set where 10 of the 25 benchmarks have
maximum block temperatures above 360K. We assumed a thermal threshold value of 358K. (Having
40% of the benchmarks thermally critical: quite aggressive, compared the Intel’s packaging assumption
that only 20% benchmarks are above the packaging /threshold values).

Even with a thermally challenging benchmark, our MinTemp policy is effective in reducing the
temperature from a high initial temperature (such as Mgrid steady state temperature) and keeping the
temperatures lower than the thermal threshold 98% of the execution time for cases with average initial
temperature values (such as Gcc). The reason MinTemp is effective in reducing the temperature even
with 40% of the benchmarks having maximum block temperatures above thermal threshold is the
diversity of hotspot blocks and the policy to interleave the hot benchmarks.

Our experimental analysis indicates that scheduling selection can result in temperature differences
around 5oC on average between different benchmarks for hottest blocks. Fetch throttling is also effective

 18

at reducing the maximum temperatures below the thermal threshold. However, the corresponding
performance degradation can be up to 20%. Random thread selection and AvgTemp policies are
comparable effectiveness.

We investigated the processor heating/cooling behavior and showed that the RC time constant that
determines the heating/cooling speed is in the range of 100msec for the baseline POWER4-like
architecture we looked at. With a time constant in the order of 100msec, we looked at thermal-aware
O.S. scheduling policies that intelligently interleave threads in the execution queue. We also studied a
temperature estimation technique and employed it as a static thermal analysis tool (TPAT) for initial
probing of various policies.

REFERENCES:
[Borkar1999] S.Borkar, “Design Challenges of Technology Scaling”, IEEE MICRO, p23-29, August

1999.

[Sanchez1997] “Thermal management system for high-performance PowerPC microprocessors”, H.

Sanchez, B. Kuttanna, T. Olson, M. Alexander, G. Gerosa, R. Philip, J.Alvarez, Proc. COMPCON,

page 325, 1997.

[Brooks2001] D.Brooks, M.Martonosi, “Dynamic Thermal Management for High-Performance

Microprocessors”, International Symposium on High-Performance Computer Architectures, p. 171-182.

Jan 2001.

[Skadron2003] K.Skadron, M.Stan, W.Huang, S.Velusamy, K.Sankaranarayanan, D.Tarjan,

“Temperature-Aware Microarchitecture”, Proceedings of 30th International Symposium on Computer

Architecture (ISCA 30) p.2-13, June 2003.

[Gunther2001] S.Gunther, F.Binns, D.M. Carmean, J.C. Hall, “Managing the Impact of Increasing

Microprocessor Power Consumption”, Intel Technology Journal, 2001.

[Moore2005] J.Moore, J.Chase, P.Ranganathan, R.Sharma, “Making Scheduling “Cool”: Temperature-

Aware Workload Placement in Data Centers”, USENIX Annual Technical Conference, Anaheim CA,

April 2005.

[Yeh2001] L.T. Yeh, R.Chy, “Thermal Management of Microelectronic Equipment”, American Society

of Mechanical Engineers, (ISBN: 0791801683), 2001.

[ITRS2001] SIA. International Road Map for Semiconductors, 2001.

[Kursun2004] E.Kursun, G.Reinman, S.Sair, A.Shayesteh, T.Sherwood, “Low-Overhead Core

Swapping for Thermal Management”, Power-Aware Computer Systems (PACS) Workshop, in

conjunction with MICRO Symposium, Dec 2004, Portland.

 19

 20

[Moudgill1999] M. Moudgill, J.-D. Wellman, and J. Moreno, “Environment for PowerPC
Microarchitecture Exploration,” IEEE Micro, Vol. 19, No. 3, pp. 15–25 (May/June 1999); see also
http://www.research.ibm.com/MET/.

[Brooks2003] D. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind, P. G. Emma, and M. G. Rosenfield,

“New methodology for early-stage, microarchitecture-level power–performance analysis of

microprocessors,” IBM J. R&D, vol. 47, no. 5/6, 2003.

http://www.research.ibm.com/MET/
http://www.research.ibm.com/journal/rd/475/brookaut.html
http://www.research.ibm.com/journal/rd/475/brookaut.html

	Global Clock Throttling: As the temperature exceeds the thermal threshold the clock signal to the bulk of the microprocessor is shut down. However, such global throttling causes very significant performance degradation.
	THERMAL
	ELECTRICAL

