
RC23846 (W0511-020) November 3, 2005
Computer Science

IBM Research Report

Interprocedural Analysis for Automatic Evaluation of
Role-Based Access Control Policies

Marco Pistoia
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Robert J. Flynn
Polytechnic University

6 Metrotech Center
Brooklyn, NY 11201

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Interprocedural Analysis for Automatic
Evaluation of Role-Based Access Control Policies

Marco Pistoia1 and Robert J. Flynn2

1 IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
pistoia@us.ibm.com,

WWW home page: http://www.research.ibm.com/people/p/pistoia
2 Polytechnic University, 6 Metrotech Center, Brooklyn, NY 11201, USA

flynn@poly.edu,
WWW home page: http://www.poly.edu/faculty/robertflynn

Abstract. This paper describes an interprocedural-analysis model to
represent the flow of security information in systems that have adopted
Role-Based Access Control (RBAC). These systems include Java 2, En-
terprise Edition (J2EE) and Microsoft .NET Common Language Run-
time (CLR). The model allows:
1. Identifying the roles required to execute an enterprise application
2. Detecting potential inconsistencies caused by principal-delegation

policies, which are used to overwrite the roles assigned to a user
3. Reporting if the roles assigned to a user by a given policy are redun-

dant, which would constitute a violation of the Principle of Least
Privilege, or insufficient, which would make the application unstable

4. Evaluating logical expressions of roles
5. Distinguishing intercomponent resource accesses (in which autho-

rization is enforced) from intracomponent resource accesses (in which
authorization is not enforced)

The algorithms described in this paper have been implemented as part
of the Enterprise Security Policy Evaluator (ESPE) tool, built on top of
IBM Research’s DOMO static analysis engine. This paper presents the
results obtained by executing ESPE on several applications.

1 Introduction: Role-Based Access Control Systems

Role-Based Access Control (RBAC) [8] is gaining popularity in managing the
security of large enterprise applications. In RBAC, authorization to access re-
stricted resources is controlled through “security roles” rather than through the
user identity. Java 2, Enterprise Edition (J2EE) [34, 18] and Microsoft .NET
Common Language Runtime (CLR) [10] have adopted a form of RBAC for
defining and managing security of enterprise applications. This paper presents
an interprocedural analysis framework [23] that models the flow of security infor-
mation in an RBAC system and allows for automatic detection of security-policy
misconfigurations. While the analysis techniques described in this paper are in
the context of J2EE code, the basic concepts are applicable to RBAC issues in
non-J2EE systems as well.

1.1 Security Roles

A security role (role for short) is a semantic grouping of access rights [25]. Roles
can be assigned to users of an enterprise application. While users and groups are
defined at the J2EE server level, roles are application-specific; each application
defines its own security roles. In a J2EE application, for example, it is possible to
define the role of Employee and specify that method m1 in enterprise bean Bean1
can be accessed only by those principals who have previously been assigned the
role of Employee. If user Bob Smith successfully logs on to the J2EE server as
bob and attempts to execute—directly or indirectly, through a sequence of other
method calls—m1 on Bean1, the method invocation will succeed only if bob was
previously granted the role of Employee.

1.2 Declarative Security

J2EE and CLR promote the concept of declarative security. This means that
it is not necessary to embed authentication and authorization code within an
application. Rather, security information is stored along with other deployment
information in configuration files that are external to the application code. In
J2EE, these configuration files are called deployment descriptors and are de-
fined in eXtensible Markup Language (XML). The following fragment defines
the Employee role and restricts access to method m1 in enterprise bean Bean1:

<security-role>
<role-name>Employee</role-name>

</security-role>
<method-permission>

<role-name>Employee</role-name>
<method>

<ejb-name>Bean1</ejb-name>
<method-intf>Remote</method-intf>
<method-name>m1</method-name>

</method>
</method-permission>

A system administrator deploying Bean1 must be aware that its method m1 can
only be accessed by principals assigned the role of Employee, and will have to
assign that role to users accordingly.

1.3 Security and Stability Problems in J2EE Applications

This section illustrates the complications that can arise when configuring the
security of a J2EE application.

Intra- vs. Intercomponent Calls The J2EE specification [34] dictates that
when a restricted resource in a component, such as a method in an enterprise
bean, is accessed from another component, the J2EE container must perform
an authorization check. However, the container will not perform authorization
checks if the same resource is accessed from its own component. It will be shown
later that lack of such intracomponent authorization checks can lead to security
compromises or unnecessary authorization failures.

Principal Delegation In J2EE, by default, the identity of the principal who
initiated a transaction on the client is propagated to the downstream calls. How-
ever, some enterprise resources may need to be executed as though they were
called by a principal with a different role. For this purpose, J2EE allows asso-
ciating “principal-delegation policies” with components. A principal-delegation
policy consists of a run-as entry in a component’s deployment descriptor. The
entry’s value is the name of a role specific to the application to which that com-
ponent belongs. The effect is that all the downstream calls from that component
onward will be performed as if the caller had been granted only the role specified
in the run-as entry. It should be observed that:

1. A principal-delegation policy allows specifying only one role and overrides
all the roles possessed by any user up to that point. This implies that:
– If the user was originally granted multiple roles, a principal-delegation

policy will override all those roles with the only role specified by its
run-as entry.

– A principal-delegation policy overrides any role set by previously en-
countered principal-delegation policies.

– Principal-delegation policies cannot be applied conditionally.
2. After a principal-delegation policy has been applied, there is no automatic

rollback. The user will not get any of the original roles unless other principal-
delegation policies are specified.

Principal-delegation policies can easily lead to security misconfigurations, viola-
tions of the Principle of Least Privilege [29], and stability problems.

Identification of Role Requirements Access to any J2EE enterprise resource
can be restricted with one or more roles. It should be noted that:

– When multiple roles are specified for a resource, the operation to apply to
those roles is a logical OR, indicated with ∨. In order for a user to succeed
in accessing that resource, that user must have been granted at least one of
those roles.

– If multiple enterprise resources access each other, forming a chain of calls,
then the user accessing the first of those resources will need to be granted all
the roles necessary to access all the resources that will be invoked as a result
of that first resource access. In this case, the operation to compute the set
of roles needed by the user is a logical AND, indicated with ∧. The system

administrator, however, should take into account that the J2EE container
will enforce authorization only on intercomponent resource accesses. If an
access-restricted resource is reached from its own component, the roles used
to protect it should not be used in the computation.

– If a resource can be accessed from different components, each setting its
own run-as role, a user accessing that resource will only have one of those
run-as roles, depending on the execution path, because principal-delegation
policies are mutually exclusive. Therefore, the logical operation to apply to
run-as roles is eXclusive OR (XOR), indicated with ⊕.

This shows that in order to configure the security of a J2EE application cor-
rectly, system administrators must be able to infer which roles could be involved
with the execution of an application at any given program point and evaluate
potentially complex logical expressions of roles.

Inaccessible Resources In J2EE, an enterprise resource can be marked as
inaccessible by explicitly configuring the deployment descriptor of the resource’s
component and listing that resource in an exclude-list. The intent is for that
resource not to be accessed by any user, regardless of the user’s roles. When
that resource is accessed through an intercomponent call, the J2EE container
will perform an authorization check and will prevent access to that resource,
according to the intent. However, if the resource is accessed through an intra-
component call, the container will not perform any authorization check and the
resource will be accessed in spite of the inaccessibility rule.

1.4 Summary of the Contributions of This Paper

The interprocedural-analysis model presented in this paper solves the problems
identified in Section 1.3. Specifically, the model:

1. Distinguishes between intra- and intercomponent resource accesses and al-
lows for a correct identification of the security requirements of an enterprise
application

2. Allows for automatic identification of security flaws that could be generated
by inappropriate use of principal-delegation policies

3. Determines all the roles involved in the execution of a J2EE application at
any program point

4. Enables automatic evaluation of the logical expressions of roles that are
generated at each program point

5. Detects cases in which resources that were intended to be inaccessible are
inadvertently or deliberately accessed through intracomponent calls

2 J2EE Authorization Scenarios

J2EE is a component-based system. Components include enterprise beans [33],
servlets [36], JavaServer Pages (JSP) programs [35], and J2EE clients. A com-
ponent can contain security-sensitive resources that need to be access-restricted.

For example, if any of the business methods of an enterprise bean performs a
security-sensitive operation, it is possible to restrict access to that method in-
dividually, specifying which role the user executing the application should be
granted. Access to a servlet or JSP application can be restricted by limiting
access to its Uniform Resource Locator (URL) or Uniform Resource Identifier
(URI). Besides restricting access to a URL or URI, J2EE allows restricting ac-
cess based on the HyperText Transfer Protocol (HTTP) methods GET, POST,
PUT, DELETE, HEAD, OPTIONS, and TRACE. If a servlet or JSP application’s URL
or URI has been access-restricted and some HTTP methods have been specified
in the access-restriction policy, the methods in the HttpServlet object corre-
sponding to those HTTP methods will become access-restricted. For example,
if the URL matching a servlet has been access-restricted and, along with that
URL, the HTTP methods GET and POST have been restricted too, the J2EE
container will perform access-control restrictions when the servlet’s doGet and
doPost methods are invoked through the service method as a result of a re-
quest from a client. However, if doGet or doPost are invoked from other methods
within the same servlet, no authorization check will be performed. On the other
hand, if a servlet’s URL has been access restricted, but no HTTP method has
been specified, then the access restriction is applied to all the HTTP methods.

When an application does not execute due to an authorization failure in
a component, the J2EE container prevents the execution of that component.
However, in a distributed component-based system, the container often does not
provide the exact execution point at which the problem occurred. For large ap-
plications, manually tracking back the error across the distributed call stack can
become a very difficult task. The algorithms described in Section 4 automate the
process of call stack inspection for program understanding and security analysis
in the presence of both intra- and intercomponent calls.

This remainder of this section presents two scenarios highlighting security
flaws. The first scenario demonstrates how roles attached to different resources
generate logical expressions of role requirements, which may be difficult to eval-
uate. The second scenario captures points of authorization failure. Both these
scenarios emphasize the need for a tool that can not only detect security flaws,
but also identify those points in the code where security faults may occur.

2.1 Flaws Due to Inaccurate Evaluations of Role Expressions

In the scenario of Figure 1, the application’s entry point can only be accessed
by users who have been granted role r1. However, if a user were only granted
role r1, the application would not execute successfully. In fact, a more accurate
analysis reveals that the roles required to access the application through that
entry point are r1 ∧ (r2 ∨ r3) ∧ (r1 ∨ r5) = r1 ∧ (r2 ∨ r3). Notice that granting
roles r4 or r5 would constitute a violation of the Principle of Least Privilege:

– The resource restricted with r4 is only accessed from its own component.
Thus, the container will never check that the user has been granted role r4.

– Since r1 is explicitly required when the entry point is accessed, role r1 is
sufficient for the user to pass the authorization test for r1 ∨ r5.

r
1

r
1

r
2
,r

3
r

2
,r

3

r
4

r
4

r
1
,r

5
r

1
,r

5

r
i

r
i

Resource

Resource protected

with role r
i

Component

Intercomponent call

Intracomponent call

Entry point

Fig. 1. Difficulties in Evaluating Role Requirements

2.2 Authorization Failures

The application depicted in the call graph of Figure 2 is destined to fail with an
error message that, unfortunately, does not reveal where the failure occurred:

Application threw an exception: java.rmi.ServerException:

Nested exception is: java.rmi.AccessException: CORBA NO_PERMISSION 9998

Understanding the reason of the failure without an automated tool may be
difficult and time consuming because it may require performing testing and man-
ual inspection of code and deployment descriptors. If some components have been
purchased from a third party, their source code may not be available. In other
cases, the application’s object code may have been machine generated and there
may be no corresponding source code. In addition, J2EE promotes a separation
of responsibilities among all the people who are involved with the lifecycle of
an enterprise application [34]. Therefore, a deployer facing an authorization fail-
ure is typically not the developer who wrote the application and may not have
any programming experience to understand where the failure came from, espe-
cially when the application is large and complex and accesses other applications
through intercomponent calls.

Dynamic analysis is limited too because it relies on having a complete set
of test cases covering all possible paths through the set of component resources
in the application. In the absence of a complete set of test cases, authorization
failures may remain undiscovered until the code is deployed in the enterprise.

A first pass through the code and the deployment descriptors associated with
the application in Figure 2 shows that user bob has been granted the Employee
role, which is exactly the role required to invoke Servlet1. What may not be so
evident is that accessing Servlet1 will lead to the invocation of m5 on Bean5,

User: bob

Role Granted: Employee

Bean1

m1

Bean1

m1

Bean6

m7

Bean6

m7

Bean3

m3

Bean3

m3

Bean1

m4

Bean1

m4

Bean5

m5

Bean5

m5

Bean3

m6

Bean3

m6

Bean2

m2

Bean2

m2

Servlet1

service()

Servlet1

service()
Role Required:

Employee

Role Required: Employee

run-as: Manager

Role Required:

Manager

Role Required:

Employee

Role Required:

Manager

Role Required:

Employee

Component

Intercomponent call

Intracomponent call

Fig. 2. J2EE Authorization Scenario

which has been access-restricted with the Manager role. Since the identity of the
user, by default, is propagated with no changes, this invocation will fail because
user bob does not have the required role.

Another point of failure is the invocation of m7 on Bean6. When Servlet1
invokes m1 on Bean1, the authorization check succeeds because access to m1 is
restricted with the Employee role, which is exactly the role possessed by bob
and propagated by the container up to this point. Next, m1 invokes m3 on Bean3.
This resource requires the user to be a Manager. Fortunately, Bean1 uses a del-
egation policy that overrides the roles of the user and forces all the subsequent
downstream calls to be performed under the Manager role. Therefore, the au-
thorization check for m3 succeeds. The problem is that Bean3 does not set the
principal-delegation policy back to Employee, which is the role required to in-
voke m7 on Bean6. Therefore, user bob, who was granted the role of Employee at
the beginning, is now denied access to m7 for not having the role of Employee.

Interestingly, but confusingly, the invocation of m6 on Bean3 does not cause
an authorization failure even though access to m6 also requires the Employee
role. The reason is that both m6 and its predecessor m3 belong to the same
component, Bean3, and the container does not perform authorization checks on
intracomponent resource accesses.

3 Interprocedural Analysis Framework for RBAC

This section describes the interprocedural analysis framework used by the En-
terprise Security Policy Evaluator (ESPE) tool.

3.1 Characteristics of the Call Graph and Pointer Analysis

ESPE is implemented on top of IBM’s Data-Object Modeling and Optimization
(DOMO) framework [9], a Java bytecode analysis system. ESPE uses DOMO’s
flow-insensitive pointer analysis with on-the-fly call graph construction. In par-
ticular, ESPE configures DOMO for a field-sensitive, intraprocedurally flow-
sensitive, interprocedurally flow-insensitive, path-insensitive, and context-insen-
sitive [28] pointer analysis. DOMO takes as input the bytecode of one or more
J2EE applications. As output, it provides a call graph and an associated points-
to graph modeling the execution of the program. The analysis precision can be
customized. In fact, DOMO supports a number of object-oriented call-graph-
construction and pointer-analysis algorithms, including:

1. Class Hierarchy Analysis (CHA) [5]
2. Rapid Type Analysis (RTA) [2]
3. Context-insensitive Control-Flow Analysis disambiguating between heap ob-

jects according to concrete types (0-CFA) [32]
4. Context-insensitive Control-Flow Analysis distinguishing heap objects based

on allocation sites (0-1-CFA) [12], as in Andersen’s analysis [1]

As a result, ESPE supports a range of cost/precision analysis trade-offs. To
model with sufficient precision a security system such as Java 2, Standard Edition
(J2SE), in which authorization checks are based on stack inspection, it has been
shown [19, 24] that the interprocedural analysis should be able to disambiguate
method calls based not just on the methods being invoked, but also on the
receivers on which those methods are invoked and the parameters passed to
those methods. However, to detect security problems generated by an RBAC
policy on a J2EE application, a high level of context sensitivity is not critical:

– Authorization checks are not performed by a specific function, such as Demand
in CLR or checkPermission in J2SE, but by the J2EE container.

– A restricted resource is not characterized by a parameter passed to a method.
Rather, the restricted resource is the method itself.

Therefore, a context-insensitive analysis framework allows analyzing large J2EE
applications in a shorter time, without losing in precision. Another important
characteristic of the DOMO framework is its ability to distinguish between intra-
and intercomponent calls. Consider for example an enterprise bean having re-
mote interface Bean2, remote home interface Bean2Home, and enterprise bean
class Bean2Bean [33]. Suppose that method m1 in enterprise bean Bean1Bean
calls remote method m2 on Bean2Bean. For this to be possible, m2 must be a
method declared in Bean2 and implemented in Bean2Bean, and a code similar
to the following one must be embedded in m1:

Context initial = new InitialContext;
Object objref = initial.lookup("java:comp/env/ejb/Bean2");
Bean2Home bean2Home = (Bean2Home)

PortableRemoteObject.narrow(objref, Bean2Home.class);

Bean2 bean2Objetc = bean2Home.create;
bean2Object.m2;

A traditional static-analysis engine would report an edge from a node represent-
ing a call to m1 to a node representing an invocation of m2 on an object of type
Bean2, but there would be no edge leading to the actual implementation of m2
in Bean2Bean. Since Bean2, which is an interface, does not implement m2, the
control-flow graph would be truncated at that point. Conversely, DOMO creates
an additional edge that links the declaration of m2 in Bean2 to the actual imple-
mentation of m2 in Bean2Bean, as shown in Figure 3. Calls to methods declared
in the remote home, local, and local home interfaces [33] are modeled in a very
similar way.

Bean1Bean.m1()

Bean2.m2()

Bean1Bean.m1()

Bean2.m2()

Bean2Bean.m2()

Traditional Static

Analysis Engine

J2EE-specific Static

Analysis Engine

Component

Intercomponent call

Intracomponent call

Fig. 3. Traditional vs. J2EE-specific Static Analysis Engines

3.2 Lattices of Roles

Let R indicate the set of all the roles associated with the program under analysis
and let P(R) be the powerset of R. At each program point, the interprocedural-
analysis model described in this paper can statically identify:

1. The roles required at that program point
2. The run-as roles that a user might possess at that program point, depending

on the principal-delegation policies encountered in the execution path

This section presents two lattices [11] of roles used by the interprocedural analysis
model to satisfy the two requirements above, respectively.

Role-set Lattice for Role-Requirement Analysis When access control on
a resource a restricted with roles r1, r2, . . . , rk ∈ R is enforced, the user who

initiated the call needs to show possession of at least one role ri, i ∈ {1, 2, . . . , k},
since the relation between those roles is a logical OR, as explained in Section 1.2.
This can be modeled by associating each edge incident to the call-graph node
representing resource a to the set of roles {r1, r2, . . . , rk} ⊆ R. Using a fixed-point
iteration algorithm [17], role sets are then propagated backwards through the
call graph-edges as will be described in Section 4.3. When a call-graph edge e is
reached by two sets of roles R1 = {r1, r2, . . . , rk}, R2 = {q1, q2, . . . , qh} ∈ P(R),
these two sets must be joined. The fact that edge e has been reached by both R1

and R2 means that the roles necessary to traverse e at run time are obtained by
evaluating the logical expression R1∧R2 := (r1∨r2∨ . . .∨rk)∧(q1∨q2∨ . . .∨qh).
Standard set union in P(R) would not model this requirement correctly. The
solution is to map e to the set {R1, R2} ∈ P(P(R)).

Thus, the most appropriate lattice structure that can be used to perform
dataflow of roles in this context is (P(P(R)),∩,∪), where ∩ and ∪ are the set
intersection and union operations on P(P(R)), respectively. The partial order
induced by ∩ and ∪ is the set inclusion ⊆ defined on P(P(R)). The role-set lattice
(P(P(R)),∩,∪) is finite because R is finite. Specifically, |P(P(R))| = 22|R| .
Therefore, this lattice is complete and has finite height, H(P(P(R))) = 2|R|. Its
top and bottom elements are P(R) and ∅, respectively.

Role Lattice for Principal-Delegation Analysis It is important to de-
termine statically the possible run-as roles with which a component will be
executed. For example, let C be a component in the program under analysis
and let C1 and C2 be two other components accessing C. If C1 and C2 specify
run-as policies that set the user’s role to r1 and r2, respectively, then C may
be executed with r1 ⊕ r2. This means that the role possessed by the user as a
result of the principal-delegation policies set by C1 and C2 is either r1 or r2, de-
pending on the execution path. It would be desirable to annotate the call graph
with this information. This suggests that C could be annotated with set {r1, r2},
symbolizing that C can be executed under either r1 or r2. Detecting the set of
run-as roles that can reach a component is achieved by performing a forward
propagation of run-as role sets along the edges of the call graph representing
the executing of the program under analysis, as will be described in Section 4.4.

Since a component’s run-as policy can specify only one role, an appropriate
lattice to model this dataflow of roles is (P(R),∩,∪), where ∩ and ∪ are now
the set intersection and union operations in P(R), respectively. The partial order
induced by ∩ and ∪ is the set inclusion ⊆ defined on P(R). This lattice, called the
role lattice, is finite. As such, it is complete and has finite height, H(P(R)) = |R|.
The top and bottom elements of this lattice are R and ∅, respectively.

4 Enterprise Security Analysis

This section formalizes the interprocedural analysis implemented in the ESPE
tool and discusses experimental results. The analysis can detect the security and
stability problems that can arise in the following six situations:

1. The roles required at a program point according to the deployment descrip-
tors are insufficient to run the application, as shown in Case 1 of Figure
4. If a user were granted only those roles, the container would generate an
authorization failure during the execution of the application.

2. Some of the roles required at a program point according to the security policy
are redundant, as in Case 2 of Figure 4. A user who is not granted any of
those roles would still be able to access the application. Therefore, granting
those roles would constitute a violation of the Principle of Least Privilege.

3. The role set by a principal-delegation policy is not sufficient to cover the role
requirements at subsequent execution points, as in Case 3 of Figure 4. The
container will generate a run-time authorization failure.

4. A component’s principal-delegation policy is unnecessary because subse-
quent execution points do not specify any role requirements, as in Case
4 of Figure 4. Such principal-delegation policy constitutes a violation of the
Principle of Least Privilege.

5. Access to a resource that was configured as inaccessible is attempted through
an intercomponent call, as shown in Case 5 of Figure 4. This is a stability
problem because the container will perform an authorization check and gen-
erate a run-time authorization failure, regardless of the user’s roles.

6. Access to a resource that was configured as inaccessible is attempted through
an intracomponent call, as in Case 6 of Figure 4. The container will not
perform any authorization check and there will be no run-time authorization
failure. However, this is a potential access-control violation since there exists
a possibly undetected path reaching a resource that was intended to be
inaccessible.

4.1 General Architecture of ESPE

ESPE contains two main components: a deployment-descriptor analyzer and
a security-analysis engine. The input to ESPE consists of the object code of
one or more J2EE applications and the deployment descriptors of those appli-
cations. The object code is analyzed by DOMO, which produces as output a
call graph modeling the execution of the applications. ESPE analyzes the de-
ployment descriptors to detect which resources have been access-restricted with
roles, and which components use principal-delegation policies. Based on this
information, the deployment-descriptor analyzer produces two mappings: one
mapping associates enterprise resources with the roles necessary to access them;
the other mapping associates each component with the run-as role specified
by that component, if any. Next, ESPE analyzes both the call graph and the
security mappings, and identifies security and stability problems such as those
shown in Figure 4.

After the call graph has been built, as explained in Section 4.2, the ESPE
engine performs two analyses: the Role-Requirement Analysis and the Principal-
Delegation Analysis. These two analyses are described in Sections 4.3 and 4.4,
respectively. Section 4.5 presents the experimental results obtained by executing
ESPE on a number of test cases.

r
i

r
i

Resource

Resource restricted

with role r
i

Component

Intercomponent call

Intracomponent call

r
i

r
i

Resource

Resource restricted

with role r
i

Component

Intercomponent call

Intracomponent call

r
1

r
1

r
2

r
2

Role required: r
1

Roles effectively
needed: r

1
AND r

2

r
1

r
1

r
2

r
2

Role required: r
1

Roles effectively
needed: r

1
AND r

2

r
1
,r

2
r

1
,r

2

r
2

r
2

Role required: r
1
OR r

2

Role effectively

needed: r
2

r
1
,r

2
r

1
,r

2

r
2

r
2

Role required: r
1
OR r

2

Role effectively

needed: r
2

r
2

r
2

run-as r
1

Role requirement: r
2

Principal’s role: r
1

r
2

r
2

run-as r
1

Role requirement: r
2

Principal’s role: r
1

run-as r
1

Principal’s role: r
1

Role required: none

run-as r
1

Principal’s role: r
1

Role required: none

Inaccessible resourceInaccessible resource

Inaccessible resourceInaccessible resource

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Fig. 4. Security and Stability Problems Detected by ESPE

4.2 Call Graph Construction

An ESPE analysis takes as input the interprocedural call graph G = (N, E),
representing the execution of one or more J2EE applications. Additionally, ESPE
takes as input the deployment descriptors of those applications. The call graph
is built using DOMO. For the call graph to precisely model the execution of a
J2EE application, it is necessary to correctly identify the sets of entry points:

– For each servlet or JSP program, the entry points are the life-cycle methods,
which are called by the servlet container as a result of invocations from client
programs. These methods are init, service, and destroy.

– For each enterprise bean in the application, the entry points are all the meth-
ods declared in the remote, remote home, local, and local home interfaces.

– For each J2EE client, the only entry point is the main method.

It should be noted that the entry methods of the applications under analysis
can have parameters, which for instance methods include the receiver object. At
analysis time, the values and object sources of these parameters are unknown,
since they are part of the client application, which will only be available at run
time. For each parameter object, CHA is used to build the class hierarchy rooted
at the parameter’s declared type. When a call back from that parameter object

is encountered, DOMO can model it by looking for possible implementations of
the invoked method in the class hierarchy.3

4.3 Role-Requirement Analysis

This section presents the RBAC interprocedural analysis performed by ESPE
to compute the actual access-control requirements for all the resources within
a J2EE program and statically detect security and stability problems due to
improper role assignments. The analysis described in this section is called Role-
Requirement Analysis.

Mapping of Call-Graph Nodes to Required Roles The first step of the
Role-Requirement Analysis algorithm is to identify which resources in the appli-
cation are access-restricted and the roles required to access them. In the context
of this work, a resource is a J2EE application method. If a resource is reachable
from the program entry points, then it will be represented by a node of G. Map-
ping nodes of G to roles is a straightforward operation that requires scanning
the deployment descriptors of all the application components. Once the access-
restricted resources have been identified along with the roles necessary to access
them, a simple call-graph traversal allows locating the nodes that represent those
resources, and mapping them to the roles necessary to access those resources. A
function ν : N → P(R) is therefore constructed that maps call graphs nodes to
sets of roles. If n ∈ N and ν(n) = {r1, r2, . . . , rk}, this means that to invoke the
resource represented by n the user must have been granted r1 ∨ r2 ∨ . . . ∨ rk.
While the graph is being traversed, each intercomponent edge e = (m, n) ∈ E
such that ν(n) 6= ∅ is identified.

Interprocedural Analysis for Role-Requirement Detection The next
step in the algorithm is to identify which roles are effectively required to in-
voke a resource. The scenario depicted in Figure 1 shows that when multiple
restricted resources access each other, forming an invocation sequence, then the
user accessing the first of those resources will have to be granted not just the role
needed to access the first of those resources, but all the roles necessary to invoke
all the resources that are subsequently accessed through intercomponent calls.
Understanding the roles effectively required to access a resource a in an invoca-
tion sequence requires detecting all the roles needed to access all the resources
directly and indirectly reachable from a through intercomponent accesses. This
computation can be performed through a reverse role-set propagation across the
edges of G.

The reverse role-set propagation in the call graph is initialized by mapping
each intercomponent edge e = (m,n) ∈ E leading to an access-restricted resource

3 This solution may be overly conservative if the declared type has many subclasses,
and can be unsound if the declared type is non-final and the program being analyzed
is incomplete [28].

node n ∈ N to the singleton {ν(n)} ∈ P(P(R)). For example, the intercompo-
nent edge connecting the two nodes in Case 2 of Figure 4 would be mapped to
role-set requirement {{r2}}, while the entry edge would be mapped to role-set
requirement {{r1, r2}}. This concludes the initialization phase.

Next, each of these edges propagates the role-set lattice element associated
with it to its predecessor edges, regardless of whether those predecessor edges
are inter- or intracomponent edges. The operations performed on the elements
of P(P(R)) associated with each edge is set union, ∪. Every time the role-set
requirements associated with an edge change as a result of the propagation
being performed, that edge must in turn propagate its role requirements to its
predecessor edges.

Excluding intracomponent edges from the initialization phase—even when
these lead to access-restricted resources, such as the resource restricted with role
r4 in Figure 1—correctly models the absence of intracomponent authorization
checks at run time.

This entire process can be described in terms of dataflow equations [17, 20].
For each edge e = (m,n) ∈ E, let GenR(e) and KillR(e) be the subsets of
P(P(R)) corresponding to the role sets generated and killed by e, respectively:

– If e is an intercomponent edge, then GenR(e) := {ν(n)}. If e is an intra-
component edge, then GenR(e) := ∅. Therefore, GenR(e) 6= ∅ if and only
if e is an intercomponent edge and the resource represented by n has been
access-restricted with some roles.

– KillR(e) := ∅ since in this dataflow analysis role sets are never subtracted.

This defines two functions, GenR,KillR : E → P(P(R)) that can be used to
define the following standard dataflow equation system:

OutR(e) = GenR(e) ∪ (InR(e) \KillR(e)) (1)

InR(e) =
⋃

f∈Γ̃+(e)

OutR(f) (2)

for every edge e = (m,n) ∈ E, where:

– OutR(e) and InR(e) are the elements of P(P(R)) corresponding to the roles
propagated from and reaching e, respectively

– \ : P(P(R)) × P(P(R)) → P(P(R)) is the set difference operation in
P(P(R))

– Γ̃+ : E → P(E) is defined by Γ̃+(e) := {f = (u, v) ∈ E : u = n}
The recursive computation of the functions InR, OutR : E → P(P(R)) performed
by resolving Equations (1) and (2) converges to a fixed point after at most O(|E|·
H(P(P(R)))) = O(|E| · 2|R|) iterations [11]. Upon completion, the reverse role-
set propagation yields a mapping of edges to role requirements. Figure 5 shows a
call graph annotated with role-requirement information at the initialization and
termination phases of the Role-Requirement Analysis algorithm.

The mapping of intercomponent edges to role requirements can be used
to compute which roles are actually necessary to invoke an access-restricted

R
3

R
3

R
2

R
2R

1
R

1

{R
1
} {R

2
}

R
3

R
3

R
2

R
2R

1
R

1

{R
1
} {R

2
}

R
3

R
3

R
2

R
2R

1
R

1

{R
1
} {R

2
}

{R
1
, R

2
}

{R
1
, R

2
}{R

1
, R

2
}

{R
1
, R

2
}{R

1
, R

2
}

{R
1
, R

2
}

R
i

R
i

Call graph node representing a

resource protected with role set R
i

Call graph intercomponent and

intracomponent edges requiring
roles R

1
AND R

2
AND … AND R

h

Initialization Termination

Component{R
1
,R

2
,…,R

h
}{R

1
,R

2
,…,R

h
}{R

1
,R

2
,…,R

h
}

Fig. 5. Role-Requirement Analysis Initialization and Termination

resource, and this information can in turn be used to detect stability prob-
lems and security flaws. Specifically, the call graph can be annotated with a
function Λ : E → P(P(R)) that associates each edge e ∈ E to the element
Λ(e) ∈ P(P(R)) defined by Λ(e) := OutR(e).

If e = (m,n) and Λ(e) = {R1, R2, . . . , Rh}, with Ri = {ri1, ri2, . . . riki}, ∀i ∈
{1, 2, . . . , h}, then a user accessing the resource represented by n from the one
represented by m needs to be granted a set of roles obtained by evaluating the
following expression:

Λ̃(e) :=
h∧

i=1

Ri =
h∧

i=1

(
ki∨

j=1

rij) (3)

Stability- and Security-Problem Detection Figure 6 shows the initializa-
tion and termination of the reverse role-propagation algorithm applied to the
scenario of Figure 1. It can be seen that the roles effectively needed by a user
to access the application through its entry point are r1 ∧ (r2 ∨ r3) ∧ (r1 ∨ r5) =
r1 ∧ (r2 ∨ r3). If only role r1 were granted, like a superficial parsing of the de-
ployment descriptor would seem to suggest, the container would generate an
authorization failure. This scenario shows how the reverse role-set propagation
can be used to detect stability problems similar to Case 1 in Figure 4 and avoid
authorization failures at run time.

r
1

r
1

r
2
,r

3
r

2
,r

3

r
4

r
4

r
1
,r

5
r

1
,r

5

SS

Resource

Resource restricted

with role set S

Component

Intercomponent call

Intracomponent call

r
1

r
1

r
2
,r

3
r

2
,r

3

r
4

r
4

r
1
,r

5
r

1
,r

5

r
1
OR r

5
r

1
OR r

5

r
2
OR r

3

r
1

(r
1
OR r

5
)

AND (r
2
OR r

3
)

r
1
OR r

5

r
1
OR r

5

r
1
OR r

5

r
1
AND (r

1
OR r

5
)

AND (r
2
OR r

3
)

Reverse Role-set

Propagation Initialized

Reverse Role-set

Propagation Terminated

Fig. 6. Reverse Role-Set Propagation Algorithm

In other cases, after the reverse role-set propagation algorithm has termi-
nated, comparing the roles necessary to invoke the resource represented by a
node to the roles associated with the outgoing edges can help preventing viola-
tions of the Principle of Least Privilege. For example, in the scenario of Case 2
in Figure 4, the roles necessary to invoke the entry point are r1∨r2. However, at
the end of the reverse role-set propagation, the only edge leaving the root node
will be mapped to role r2. The only role effectively needed by a user to access the
application through the entry point is r2. Granting the user role r1 alone would
cause an authorization failure, while granting the user r1 ∧ r2 would constitute
a violation of the Principle of Least Privilege because r1 is redundant.

The detection for both these problems can be formalized as follows. Let
n0 ∈ N be any call-graph node, with ν(n0) = R0 and Γ+(n0) = {n1, n2, . . . , nh},
where Γ+ : N → P(N) is defined by Γ+(n) := {m ∈ N : (n,m) ∈ E}. Let
e1 = (n0, n1), e2 = (n0, n2), . . . , eh = (n0, nh) ∈ E be n0’s outgoing edges, with
Λ(ei) = {Ri1, Ri2, . . . , Riki},∀i ∈ {1, 2, . . . , h}, as shown in Figure 7.

Let ν̃(n0) be the subset of R0 defined by:

ν̃(n0) = R0 ∩
h⋂

i=1

ki⋂

j=1

Rij

Set ν̃(n0) can help detecting whether a stability or security problem can
occur at run time when a user accesses the resource represented by n0 through
an intercomponent edge e0:

n
1

n
1 n

2
n

2

n
0

n
0

n
h

n
h

…

e
1

e
2

e
h

R
0

{R
11

, R
12

,…, R
1k

}
1

{R
11

, R
12

,…, R
1k

}
1

{R
21

, R
22

,…, R
2k

}
2

{R
21

, R
22

,…, R
2k

}
2

{R
h1

, R
h2

,…, R
hk

}
h

{R
h1

, R
h2

,…, R
hk

}
h

e
0

Fig. 7. Detection of Redundant Roles

1. If ν̃(n0) 6= ∅, then the user should only be granted one of the roles in ν̃(n0).
This means that, if ν̃(n0) = {q1, q2, . . . , qt}, the user accessing the resource
represented by n0 should be granted q1 ⊕ q2 ⊕ . . .⊕ qt. Specifically:

– Any additional role in R0 \ ν̃(n0) is unnecessary. Granting it to the user
would constitute a violation of the Principle of Least Privilege.

– Granting the user none of the roles in ν̃(n0) is potentially insufficient.
Run-time authorization failures are possible.

2. If ν̃(n0) = ∅, then simply granting the user any of the roles in R0, as the
deployment descriptor would seem to suggest, might be insufficient and cause
run-time authorization failures. In this case, for no authorization failure to
occur, the user should be granted a logical combination of roles obtained by
evaluating Λ̃(e0) as defined by Equation (3).

This analysis should be performed for any node n0 corresponding to an access-
restricted resource.

Security Flaws Due to Inaccessible Resources ESPE encodes inaccessible
resources as if they were available only to users with an Inaccessible role. If a
node in the call graph is mapped to the Inaccessible role, then:

1. All the intercomponent edges incident into that node are indications of po-
tential stability problems. Case 5 in Figure 4 is an example of this situation.

2. All the intracomponent edges incident into that node are indications of po-
tentially unintended security violations. Case 6 in Figure 4 is an example of
this situation.

Using the reverse role-propagation algorithm, an Inaccessible role requirement
can be propagated in the call graph from an inaccessible resource, just like any
other role requirement. This allows detecting possible execution paths leading
to resources that were intended to be inaccessible.

4.4 Principal-Delegation Analysis

If principal-delegation policies in an application’s security configuration are de-
tected, ESPE performs an additional analysis, called Principal-Delegation Anal-
ysis, to identify security misconfigurations that could lead to violations of the
Principle of Least Privilege or stability problems.

Mapping of Call-Graph Nodes to run-as Roles The first step of the
Principal-Delegation Analysis consists of mapping call-graph nodes to run-as
roles. The application’s deployment descriptors are scanned, and each compo-
nent is mapped to the singleton containing the run-as role it sets, or to ∅ if it
does not set any run-as role.

Next, a simple call-graph traversal allows locating the nodes that represent
resources in the components that have been identified, and mapping those nodes
to the run-as roles of their components. A function ρ : N → P(R) is therefore
constructed that associates call graphs nodes with singletons of roles. If n ∈
N and the resource represented by n is in a component C with a principal-
delegation policy that sets the run-as role to r, then ρ(n) := {r}, otherwise
ρ(n) := ∅. While the graph is traversed, the subset E′ of E containing all the
intercomponent edges e = (m,n) ∈ E such that ρ(m) 6= ∅ is identified.

Interprocedural Analysis for run-as Role Propagation The next phase of
the Principal-Delegation Analysis is to perform a principal-delegation role prop-
agation, which is a forward propagation similar to the algorithm that computes
reaching definitions [20]. At the end of the principal-delegation role propagation,
each intercomponent edge e in the call graph will be mapped to a set containing
all the run-as roles that can reach e in the call graph.

The principal-delegation role propagation is a fixed-point iteration [17, 20]
over E, initialized with E′. In the propagation process, each intra- and inter-
component edge propagates the roles it has accumulated to its successor edges.
At run time, the operation performed on the run-as roles associated with each
edge is ⊕, because each edge cannot be traversed with more than one run-as
role. At analysis time, however, since it may be important to keep track of all
the possible run-as roles that can reach any edge at run time, it is convenient
to represent each role as a singleton, and then perform set unions. Every time
the role set associated with an edge changes as a result of a propagation, that
edge must in turn propagate its role requirements to its successor edges.

When an edge e is encountered as a result of a run-as propagation from a
predecessor, the incoming run-as role set is unioned with the role set already
computed for e up to that point. However, if e = (m,n) ∈ E′ and ρ(m) = r,
then the singleton {r} overrides, or kills [20], whatever set was computed up to
that point for e.

Excluding intracomponent edges from the initialization phase—even when
these originate from components having principal-delegation policies—correctly
models the requirement that a component’s principal-delegation policy overrides
the role of a user only when that component invokes other components.

This entire process can be described in terms of dataflow equations [17, 20].
For each edge e = (m,n) ∈ E, let Genr(e) and Killr(e) be the subsets of P(R)
corresponding to the roles generated and killed by e, respectively:

– If e is an intercomponent edge, then Genr(e) = {ρ(m)}. If e is an intracom-
ponent edge, then Genr(e) = ∅. Therefore, Genr(e) 6= ∅ if and only if e
is an intercomponent edge and the resource represented by m belongs to a
component with a non-empty principal-delegation policy.

– If e ∈ E′, then Killr(e) = R. Otherwise, e is either an intracomponent edge
or an intercomponent edge such that ρ(m) = ∅, and Killr(e) = ∅.

This defines two functions, Genr, Killr : E → P(R), based on which it is possible
to define the following dataflow equation system:

Outr(e) = Genr(e) ∪ (Inr(e) \Killr(e)) (4)

Inr(e) =
⋃

f∈Γ̃−(e)

Outr(f) (5)

for every e = (m,n) ∈ E, where:

– Outr(e) and Inr(e) are the elements of P(R) corresponding to the run-as
roles propagated from and reaching e, respectively

– \ : P(R)× P(R) → P(R) is the standard set difference operation in P(R)
– Γ̃− : E → P(E) is defined by Γ̃−(e) = {f = (u, v) ∈ E : v = m}

The recursive computation of the functions Inr, Outr : E → P(P(R)) performed
by resolving Equations (4) and (5) converges to a fixed point after at most
O(|E| · H(P(R))) = O(|E| · |R|) iterations [11]. Upon completion, the principal-
delegation role propagation yields a mapping of edges to run-as role sets, each
set representing the run-as roles that can reach the associated edge. Figure 8
shows a call graph annotated with principal-delegation information at the initial-
ization and termination phases of the Principal-Delegation Analysis algorithm.

Specifically, the call graph can be annotated with a function Ω : E → P(R)
that associates each edge e ∈ E to the element Ω(e) ∈ P(R) defined by Ω(e) :=
Outr(e). In particular, the mapping of intercomponent edges to sets of run-as
roles can be used to understand which principal-delegation roles can propagate
when an access-restricted resource is invoked, and detect stability problems and
security inconsistencies.

Stability Problems Due to Incorrect Principal-Delegation Policies Let
e = (m, n) ∈ E be an intercomponent edge and let Ω(e) = {r1, r2, . . . , rk} ∈
P(R) be the set of run-as roles that can have reached e in the call graph. From
a logical point of view, this means that the role expression associated with e is
r1 ⊕ r2 ⊕ . . . ⊕ rk, or that, when e is traversed at run time, the user initiating
the resource access will have exactly one of the roles in the set {r1, r2, . . . , rk},
depending on the execution path prior to traversing e. If n is access restricted
with the set of roles ν(n) = {q1, q2, . . . , qh}, this means that to access the resource

{r
1
}{r

2
}

{r
3
}

{r
1
, r

2
}

{r
1
, r

2
} {r

1
, r

2
}

{r
1
, r

2
}

{r
1
, r

2
}

{r
1
, r

2
}

{r
3
}

{r
3
}

{r
1
, r

2
, r

3
}

Call graph

node

Call graph intercomponent and

intracompomentedges traversed
with roles r

1
XOR r

2
XOR … XOR r

k

Component

{r
1
}{r

2
}

{r
3
}

{r
1
,r

2
,…,r

k
} Component setting

run-as role to r
i

r
2

r
2

r
1

r
1

r
3

r
3

r
2

r
2

r
1

r
1

r
3

r
3

r
i

r
i

Fig. 8. Principal-Delegation Analysis Initialization and Termination

represented by n the user will have to be granted q1 ∨ q2 ∨ . . .∨ qh. This scenario
is graphically represented in Figure 9.

If ν(n) 6= ∅, the security configuration shown in Figure 9 will not generate
an authorization failure and a consequent stability problem for the application
if and only if Ω(e) 6= ∅ and Ω(e) ⊆ ν(n). In other words, it must be k ≥ 1
and {r1, r2, . . . , rk} ⊆ {q1, q2, . . . , qh}. An example of this scenario is Case 3 in
Figure 4.

Security Flaws Due to Redundant Principal-Delegation Policies The
scenario depicted in Figure 9 shows also how the Principal-Delegation Analysis
can be used to detect security flaws. Let e = (m, n) ∈ E be an intercomponent
edge and let Ω(e) = {r1, r2, . . . , rk} be the run-as role set associated with e
upon termination of the run-as role propagation algorithm. If k ≥ 1 and n is
not access-restricted at all (h = 0, according to the notation introduced above,
or ν(n) = ∅), then this is a potential violation of the Principle of Least Privilege.
An example of this scenario is Case 4 in Figure 4.

4.5 Experimental Results

ESPE runs as a stand-alone application and can be launched on top of a J2SE
V1.4 run-time environment from the command line or from Eclipse V3.1 [7]. It

{q
1
,q

2
,…,q

t
}

mm

nn

{r
1
,r

2
,…,r

k
}

Call graph

node

Component

Call graph intercomponent edge

e

Fig. 9. Principal-Delegation Analysis Scenario

can analyze J2EE V1.3 and V1.4 deployed applications packaged in Enterprise
ARchive (EAR) files or separate Java ARchive (JAR) and Web ARchive (WAR)
files [34]. These files contain the object code and deployment descriptors of one or
more applications. Source code is unnecessary since ESPE analyzes object code.
ESPE analyzes standard J2EE applications regardless of the platform vendor.

All the library files used by the applications at run time must be part of
the analysis to allow ESPE to provide sound results. Currently, for the reports
provided by ESPE to be meaningful, the deployment descriptors of the applica-
tions being analyzed must contain security configuration information, including
the definition of at least one role and an RBAC policy. In the future, ESPE will
provide useful results even when the applications it analyzes have not been con-
figured for security, or the configuration is not complete yet. In such cases, ESPE
will still be able to report what are the dependencies between different resources
that can potentially be protected, and this information can in turn be used by
developers (rather than just deployers) to write applications without security
inconsistencies or to figure out role requirements in advance. This feature will
be especially useful in aspect-oriented J2EE environments such as JBoss Appli-
cation Server [16], in which developers can directly specify role requirements.

This section summarizes the results of the analyses performed on a number of
J2EE applications: PetStore [22], Bookstore [6], EnrollerApp [13], SavingsAcc
[13], and anonymous production-level application A. The results reported in Ta-
ble 1 are from running ESPE on an IBM T40 ThinkPad with an Intel Pentium
M 1.6 GHz processor, 1 GB of Random Access Memory (RAM), and Microsoft
Windows XP SP2 operating system. ESPE was run inside Eclipse V3.1 using a
J2SE V1.4.2 08 run-time environment.

From a security point of view, except for the commercial application A, none
of the other benchmarks came with predefined roles, the reason being that ap-
plications downloaded from the Internet typically do not come with a security
configuration. Assigning the security configuration to an application is a task
that the J2EE Specification delegates to the deployer [34] and must be done
based on the system on which the application will run. Before analyzing those
other applications, it was therefore necessary to manually deploy those appli-
cations, define relevant roles, and use those roles to restrict access to security-
sensitive resources. We assigned roles based on the introspection performed on

Application Size Call Graph Time (sec.) Memory Roles Problems
(KB) Nodes Edges DOMO ESPE (MB)

PetStore 1,282 6,465 2,336 124.69 1.89 117 4 6

Bookstore 359 16,269 86,448 1,899.94 3.97 162 3 4

EnrollerApp 15 2,212 10,060 63.42 0.36 220 4 2

SavingsAcc 10 2,164 9,799 62.77 0.21 227 4 0

A 2,580 618 1,007 72.23 1.24 239 4 8
Table 1. Characteristics of the Applications Analyzed

the applications by Sun Microsystems’ Deployment Tool for Java 2 Platform En-
terprise Edition 1.4, without any specific knowledge of the applications’ source
code—similar to what a system administrator would do.

ESPE detected several security problems on the analyzed applications. For
EnrollerApp, both problems were due to an inappropriate principal-delegation
policy. In Bookstore, two of the reported problems were generated by an inacces-
sible resource. The remaining problems were due to insufficient role assignments.
Only one false alarm was detected (in PetStore) using DOMO’s implementation
of RTA, which suggests that RTA is sufficient for ESPE’s authorization analyses.

The absence of an application’s source code makes it very hard to track down
arbitrarily long calling paths within the application and the underlying libraries.
Therefore, without ESPE, detecting the security problems reported in Table 1
would have been extremely difficult.

5 Related Work

Ferraiolo and Kuhn introduced RBAC in 1992 [8]. Subsequently, Sandhu, Coyne,
Feinstein, and Youman described mechanisms for constructing and analyzing
RBAC models and implementations [30]. More recently, Schaad and Moffett [31]
employed the Alloy specification language [14] to model RBAC. In particular,
they used the Alloy constraint analyzer Alcoa [15] to verify key characteristics
of the model, such as separation of duties assigned to roles.

Several static and dynamic analysis techniques have been suggested in the
area of Web applications, but these works do not provide a significant support
for distributed applications, nor do they deal with security issues. For exam-
ple, Ricca and Tonella [27] propose a Unified Modeling Language (UML) model
for Web applications, but their model deals primarily with structural testing of
interactive features of Web applications, such as HyperText Markup Language
(HTML) forms. Brucker and Wolff [3] introduce a mechanism for dynamic anal-
ysis of distributed-component systems using the Object Constraint Language
(OCL) [37] of the UML standard to formalize component specifications.

An EJB object’s confinement can be breached when a direct reference to
the EJB object is returned to a client. Such a reference could allow the client
program to access security-sensitive fields or invoke enterprise bean business
methods without going through the EJB interfaces. In particular, this implies

that any access-control restriction on those methods could be bypassed. The
purpose of the work of Clarke, Richmond, and Noble [4] is to enforce confine-
ment of EJB objects. They propose coding guidelines that, if observed, prevent
confinement breaches. Additionally, they describe a straightforward code inspec-
tion algorithm that checks for violations of those guidelines in enterprise bean
programs. However, their analysis only considers EJB components; servlets and
JSP programs are not analyzed, and RBAC issues are not taken into account.

Finally, Naumovich and Centonze [21] describe how the J2EE authorization
model, which is designed to restrict access to EJB methods, can be extended to
restrict access to the data handled by those methods. They use points-to analysis
[28] to identify which EJB methods access security-sensitive data and the mode
of access (read and/or write). Subsequently, RBAC on that data can be achieved
by enforcing RBAC on the methods accessing the data. Their work can also be
used to find access-control inconsistencies whereby two EJB methods accessing
the same data in the same mode should be restricted with the same roles.

In addition to RBAC [25], Java offers a low-level access control mechanism
to protect static resources, such as the file system, network, and operating sys-
tem properties [26]. Access control decisions are based on the origin of the code
and/or the principal running the code. Both static and dynamic analysis tech-
niques are employed in modeling security and authorization. Much of this work
has been applied to eliminate or minimize redundant authorization tests, or de-
fine alternatives to the current approach to defining authorization points within
code. This work is specifically designed for J2SE authorization problems and
it assumes that call graph algorithms are available to translate the theoretical
approach into a practical implementation. However, many of the well-known call-
graph-construction and dataflow algorithms [28] do not correctly model J2EE
intercomponent calls. Additionally, in J2EE, access control is enforced differ-
ently from the way it is enforced in J2SE. Previous work on J2SE access control
assumes that authorization checks are obtained by passing a Permission object
to a checkPermission function, but this assumption cannot be made for J2EE
because access restrictions are enforced by the container in a vendor-specific way.

6 Acknowledgments

Thanks to Dr. Stephen J. Fink, the lead architect of IBM Research’s DOMO
static analyzer, for his invaluable contributions to the implementation of ESPE.

References

1. Lars Ole Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, University of Copenhagen, May 1994.

2. David F. Bacon and Peter F. Sweeney. Fast Static Analysis of C++ Virtual
Function Calls. In Proceedings of the 11th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 324–341, San
Jose, CA, USA, 1996. ACM Press. Also published in ACM SIGPLAN Notices
31(10).

3. Achim D. Brucker and Burkhart Wolff. Testing Distributed Component Based Sys-
tems Using UML/OCL. In K. Bauknecht, W. Brauer, and Th. Mück, editors, Pro-
ceedings of Informatik 2001, volume 1 of Tagungsband der GI/ÖCG Jahrestagung,
pages 608–614, Vienna, Austria, 2001. Österreichische Computer Gesellschaft.

4. Dave Clarke, Michael Richmond, and James Noble. Saving the World from Bad
Beans: Deployment-Time Confinement Checking. In Proceedings of the 18th annual
ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages,
and Applications, pages 374–387, Anaheim, CA, USA, 2003. ACM Press.

5. Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis. In Proceedings of the 9th Euro-
pean Conference on Object-Oriented Programming, pages 77–101, Aarhus, Den-
mark, August 1995. Springer-Verlag.

6. Harvey M. Deitel, Paul J. Deitel, and Sean E. Santry. Advanced Java 2 Platform:
How to Program. Prentice Hall, Upper Saddle River, NJ, USA, September 2001.

7. Eclipse Project, http://www.eclipse.org.
8. David F. Ferraiolo and D. Richard Kuhn. Role-Based Access Controls. In Pro-

ceedings of the 15th NIST-NCSC National Computer Security Conference, pages
554–563, Baltimore, MD, USA, October 1992.

9. Stephen J. Fink, Julian Dolby, and Logan Colby. Semi-Automatic J2EE Trans-
action Configuration. Technical Report RC23326, IBM Corporation, Thomas J.
Watson Research Center, Yorktown Heights, NY, USA, 2004.

10. Adam Freeman and Allen Jones. Programming .NET Security. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA, June 2003.

11. George Grätzer. General Lattice Theory. Birkhäuser, Boston, MA, USA, second
edition, January 2003.

12. David Grove and Craig Chambers. A Framework for Call Graph Construction
Algorithms. ACM Trans. Program. Lang. Syst., 23(6):685–746, November 2001.

13. Sun Microsystems, J2EE 1.4 Tutorial, http://java.sun.com/j2ee/1.4/

download.html#tutorial/.
14. Daniel Jackson. Alloy: a Lightweight Object Modelling Notation. ACM Trans.

Softw. Eng. Methodol., 11(2):256–290, 2002.
15. Daniel Jackson, Ian Schechter, and Hya Shlyahter. Alcoa: The Alloy Constraint

Analyzer. In Proceedings of the 22nd International Conference on Software Engi-
neering, pages 730–733, Limerick, Ireland, 2000. ACM Press.

16. JBoss, Inc., http://www.jboss.com.
17. Gary A. Kildall. A Unified Approach to Global Program Optimization. In Pro-

ceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 194–206, Boston, MA, USA, 1973. ACM Press.

18. Larry Koved, Anthony J. Nadalin, Nataraj Nagaratnam, Marco Pistoia, and
Theodore Shrader. Security Challenges for Enterprise Java in an E-business Envi-
ronment. IBM Systems Journal, 40(1):130–152, 2001.

19. Larry Koved, Marco Pistoia, and Aaron Kershenbaum. Access Rights Analysis for
Java. In Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 359–372, Seattle, WA,
USA, November 2002. ACM Press.

20. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, June 1997.

21. Gleb Naumovich and Paolina Centonze. Static Analysis of Role-Based Access
Control in J2EE Applications. SIGSOFT Software Engineering Notes, 29(5):1–10,
September 2004.

22. Sun Microsystems, Java PetStore, http://java.sun.com/developer/releases/

petstore/.
23. Marco Pistoia. A Unified Mathematical Model for Stack- and Role-Based Autho-

rization Systems. PhD thesis, Polytechnic University, Brooklyn, NY, USA, May
2005.

24. Marco Pistoia, Robert J. Flynn, Larry Koved, and Vugranam C. Sreedhar. Inter-
procedural Analysis for Privileged Code Placement and Tainted Variable Detec-
tion. In Proceedings of the 19th European Conference on Object-Oriented Program-
ming, pages 362–386, Glasgow, Scotland, UK, July 2005. Springer-Verlag.

25. Marco Pistoia, Nataraj Nagaratnam, Larry Koved, and Anthony Nadalin. Enter-
prise Java Security. Addison-Wesley, Reading, MA, USA, February 2004.

26. Marco Pistoia, Duane Reller, Deepak Gupta, Milind Nagnur, and Ashok K. Ra-
mani. Java 2 Network Security. Prentice Hall PTR, Upper Saddle River, NJ, USA,
second edition, August 1999.

27. Filippo Ricca and Paolo Tonella. Analysis and Testing of Web Applications. In
Proceedings of the 23rd International Conference on Software Engineering, pages
25–34, Toronto, ON, Canada, 2001. IEEE Computer Society.

28. Barbara G. Ryder. Dimensions of Precision in Reference Analysis of Object-
Oriented Languages. In Proceedings of the 12th International Conference on Com-
piler Construction, pages 126–137, Warsaw, Poland, April 2003. Invited Paper.

29. Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information in
Computer Systems. In Proceedings of the IEEE, volume 63, pages 1278–1308,
September 1975.

30. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-Based Access Control Models. Computer, 29(2):38–47, February 1996.

31. Andreas Schaad and Jonathan D. Moffett. A Lightweight Approach to Specifica-
tion and Analysis of Role-Based Access Control Extensions. In Proceedings of the
7th ACM Symposium on Access Control Models and Technologies, pages 13–22,
Monterey, CA, USA, 2002. ACM Press.

32. Olin Shivers. Control Flow Analysis in Scheme. In Proceedings of the ACM SIG-
PLAN 1988 Conference on Programming Language Design and Implementation,
June 1988.

33. Enterprise JavaBeansTM Specification, http://java.sun.com/products/ejb/.
34. JavaTM 2 Platform Enterprise Edition Specification, http://java.sun.com/j2ee.
35. JavaServer PagesTM Specification, http://java.sun.com/products/jsp/.
36. JavaTM Servlet Specification, http://java.sun.com/products/servlet/.
37. Object Management Group, Object Constraint Language Specification, http://

www.omg.org/uml/.

