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Identical synchronization in networks of coupled
nonlinear circuits and systems

Chai Wah Wu,Fellow, IEEE

Abstract— Synchronization is a ubiquitous phenomenon and is
crucial in many coupled physical systems. We present a theory
of identical synchronization in networks of coupled nonlinear
dynamical systems. We first consider the case of two coupled
systems, and demonstrate chaotic communication systems asan
application. Next the general case of a network of coupled systems
is considered. We show how the coupling topology can influence
the ability of the network to synchronize. In particular, we study
algebraic quantities related to the graph in order to characterize
this relationship. Furthermore, we show that random coupling
facilitates synchronization, whereas local coupling doesnot.

Index Terms— Markov chains, nonlinear dynamics, graph
theory, synchronization.

I. I NTRODUCTION

A CCORDING to the New Oxford American Dictionary, a
definition of to synchronizeis to occur at the same time

or rate. This is how synchronization is usually understood in
the sciences; e.g. the synchronization of fireflies [1], [2],tim-
ing synchronization in digital circuits [3] and phase lock loops
[4], synchronization of pendulum clocks [5], and synchroniza-
tion in neural networks occurring in the visual cortex [6]–[8]
and during epilepsy [9]. Since there is an inherent rate in the
definition, the systems that synchronize are generally periodic
or quasi-periodic and this type of synchronization is referred
to asphase synchronization. The reader is referred to [10] for
a recent tutorial on some aspects of phase synchronization.
One of the first people to study synchronization is Huygens in
the seventeenth century where he noticed that two pendulum
clocks mounted on the same frame will synchronize after
some time [5]. At the beginning of the twentieth century, the
synchronization of clocks plays an important role in Einstein’s
derivation of the theory of relativity [11].

This article deals with a different and stronger kind of
synchronization. This concept first came about when studying
chaotic systems. Systems operating in the chaotic regime are
aperiodic and exhibit sensitive dependence on initial condi-
tions, i.e. a small change in initial conditions or parameters
leads to locally divergent or uncorrelated trajectories. There
is no specific fixed period or frequency in the system and
thus the traditional definition is not applicable. In this case,
synchronization is meant to indicate that the behavior between
two systems approaches each other. This type of synchroniza-
tion is called identical synchronization1. This is almost the
antithesis of the sensitive dependence on initial conditions
property in chaotic systems. Pecora and Carroll were the
first to report that surprisingly, identical synchronization is
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1It is also referred to as complete synchronization.

possible in two chaotic systems coupled in a master-slave
configuration [12]. Identical synchronization is a stronger form
of synchronization than phase synchronization and as a result
is easier to study and analyze. As many natural, biological
and man-made systems can exhibit chaotic behavior, identical
synchronization has been observed in many physical systems
[13], [14].

The purpose of this article is to give a concise presentation
of recent results on identical synchronization and describe
various applications to designing and understanding networks
of complex coupled systems. The main theoretical results
require a mixture of linear algebra, dynamical systems theory
and graph theory.

II. BASIC FRAMEWORK AND NOTATION

We assume that the coupled systems under consideration are
either ordinary differential equations for the continuous-time
case or maps for the discrete-time case.

For the continuous-time case, consider a collection ofn

systems. Thei-th system is written aṡxi = f̃i(xi, t) wherexi

is the state vector of thei-th system.
We consider coupling among then systems such that the

state equation of the coupled ensemble can be written as:

ẋi = fi(x1, . . . , xn, t), i = 1, . . . , n (1)

For the discrete-time case, each system is defined asxi(t+
1) = f̃i(xi(t), t) and the state equations of the coupled
systems are given by:

xi(t + 1) = fi(x1(t), . . . xn(t), t), i = 1, . . . , n (2)

In this caset are natural numbers.
We assume that for each set of initial conditions att0 there

exists a unique trajectory for all timet > t0. For an initial
condition x(t0), we denote the corresponding trajectory as
x(t).

Definition 1: The coupled system (Eq. (1) or Eq. (2)) is
said tosynchronizeif ‖xi − xj‖ → 0 for t → ∞ and all i,j.

An equivalent way to define synchronization is that ast →
∞, the states approach the linearsynchronization manifoldM,
defined as the set{(x1, . . . , xn) : xi = xj , ∀i, j}. A third way
to characterize synchronization is to say that the diameterof
the convex hull ofx1, · · · , xn vanishes ast → ∞. This third
characterization will be useful in Section X-D.

Throughout this article we will usex =







x1

...
xn






to denote

the aggregate vector of all the state vectorsxi of then systems,
where xi ∈ R

m for eachi. We say a matrixA is positive
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semidefinite ifxT Ax ≥ 0 for all x. We denote this asA � 0.
Similarly, we write A ≻ 0 to say thatA is positive definite
(xT Ax > 0 for all x 6= 0). The vector of all1’s is denoted1.
For a matrixA with real eigenvalues, we list them in increasing
order as:

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)

In this case, we also useλmin(A) and λmax(A) to denote
λ1(A) andλn(A) respectively.

Synchronization is closely related to notions of stabilityand
controllability. To this end, let us first recall some standard
notations and definitions, starting with the following definition
of asymptotic stability2:

Definition 2: The systemẋ = f(x, t) or x(t + 1) =
f(x(t), t) is asymptotically stable if given two initial condi-
tionsx(t0) andx̃(t0), the corresponding trajectories approach
each other, i.e.‖x(t) − x̃(t)‖ → 0 as t → ∞.

Many classical results in absolute stability theory such as
passivity theory [16] and Luré-Postnikov theory [17] give
conditions under which a system is asymptotically stable.

Definition 3 ( [18]): For ann by n matrix A andn-vectors
w andb, (A, wT ) is observable if the observability Grammian










wT

wT A
...

wT An−1











is nonsingular.(A, b) is controllable if the

controllability Grammian(b|Ab| · · · |An−1b) is nonsingular.
We will concentrate on the continuous time case and defer

the discrete-time case to Section IX.

III. SYNCHRONIZATION BETWEEN TWO COUPLED

SYSTEMS

The simplest case occurs when there are only two identical
systems, i.e.n = 2. Starting with two identical systems
ẋ1 = f̃(x1, t) and ẋ2 = f̃(x2, t), if the state equations of
the coupled systems can be written as:

ẋ1 = f(x1, x1, x2, t)
ẋ2 = f(x2, x1, x2, t)

(3)

then the following synchronization theorem follows directly
from Definition 2.

Theorem 1 ( [19], [20]): Eq. (3) synchronizes ifẋ1 =
f(x1, u(t), v(t), t) is asymptotically stable for everyu(t) and
v(t).

At the synchronized state,x2(t) = x1(t) and thusẋ1 =
f(x1, x1, x1, t). Therefore if theconsistency condition

f(x1, x1, x1, t) = f̃(x1, t) for all x1, t

is satisfied, then when synchronization is reached, each system
will follow the dynamics of the uncoupled systeṁx1 =
f̃(x1, t).

2In systems theory [15], [16], asymptotically stability would also include
the additionalǫ-δ condition of stability, i.e. for allǫ > 0, there existsδ > 0
such that if‖x(t0)− x̃(t0)‖ ≤ δ, then‖x(t)− x̃(t)‖ ≤ ǫ for all t ≥ t0. We
can develop synchronization theory with or without this additional condition;
we choose to not include this condition in this article.

Two configurations of Eq. (3) are of particular interest: the
master-slave subsystem decomposition configuration originally
studied in [21] and the additive coupling configuration.

Theorem 2 (Master-slave subsystem decomposition):Let
the master system be decomposed into two subsystems as:

ẋ1(t) = g1(x1, y1, t)
ẏ1(t) = g2(x1, y1, t)

Then a slave system with the same state equations as the
second subsystem and driven by the state of the first subsystem
x1:

ẏ2(t) = g2(x1, y2, t)

synchronizes to the master subsystem, i.e.‖y1 − y2‖ → 0 as
t → ∞ if ẏ1(t) = g2(v(t), y1, t) is asymptotically stable for
all functionsv(·).

Theorem 3 (Synchronization through additive coupling):
Two coupled systems

ẋ1 = f(x1, t) + K1(x2, t) − K1(x1, t)
ẋ2 = f(x2, t) + K2(x1, t) − K2(x2, t)

synchronizes, ifẋ1 = f(x1, t)−K1(x1, t)−K2(x1, t) + η(t)
is asymptotically stable for all functionsη(·).

One way the stability condition in Theorem 3 is satisfied
is through quadratic stabilizability (see Section IV). Thecase
whenK1 = 0 andK2 is linear, i.e.

ẋ1 = f(x1, t)
ẋ2 = f(x2, t) + K2(t)(x1 − x2)

was studied in [22] via feedback control.
In a master slave configuration, the construction of a syn-

chronizing system can be related to the observer problem in
control systems [23]. In particular, given a plantẋ1 = f(x1, t),
the dynamical systeṁx2 = g(x1, x2, t) is called anfull state
observerfor the plant ifx2 approachesx1 as t → ∞.

In master-slave applications such as communication systems
(Sect. III-A), it is desirable that the coupling signal fromthe
master system to the slave system be a scalar signal. Under
certain conditions, synchronization via a scalar couplingsignal
can be achieved by appealing to eigenvalue assignment results
in linear feedback control. In particular, we have the following
result.

Theorem 4 ( [23], [24]): Two identical systems of the
form ẋ = Ax + f1(w

T x) where f1 is a function fromR

to R
n andw is ann-vector can be synchronized via a scalar

coupling signal if(A, wT ) is an observable pair. Two identical
systems of the forṁx = Ax+bf2(x)+d whereb andd aren-
vectors andf2 is a scalar-valued function can be synchronized
via a scalar coupling signal if(A, b) is a controllable pair.

In particular, the synchronization is achieved through the
following coupling schemes. If(A, wT ) is observable, the
following two systems will synchronize:

ẋ1 = Ax1 + f1(w
T x1)

ẋ2 = Ax2 + f1(w
T x2)

−f1(w
T x2) + f1(w

T x1) − bwT (x1 − x2)
(4)

wheref1(w
T x1)− bwT (x1 −x2) is the scalar signal from the

first system that is coupled into the second system. If(A, b)
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is controllable,

ẋ1 = Ax1 + bf2(x1) + d

ẋ2 = Ax2 + bf2(x2) + d

+bwT x2 − bf2(x2) + b(f2(x1) − wT x1)
(5)

synchronizes wheref2(x1) − wT x1 is the scalar signal from
the first system that is coupled into the second system.

Many chaotic systems [25], [26] and hyperchaotic systems
[27]–[29] can be written in the Luré form required by Theorem
4.

A. Chaotic communication systems

One of the first applications of synchronized chaotic systems
is their use in communication systems [30]. The idea is to add
a chaotic signal to the information signal in the transmitter and
send the combined signal. At the receiving end, the chaotic
signal is retrieved through synchronization and subtracted from
the combined signal to obtained the information signal. In [31],
[32] this idea is refined by using the information signal to
modulate the chaotic system and eliminating one source of
error in the setup in [30].

Generally, we can create a communication system using
synchronization and modulation of chaos in the following way:

ẋ1 = f(x1, s(t), t) (6)

y = h(x1, s(t), t) (7)

ẋ2 = g(x2, y, t) (8)

Here s(t) is the information signal which is fed into the
transmitter (Eq. (6)) to modulate the chaos. The transmitted
signal y is based upon the modulated chaotic signalx1 and
the information signals via the encoding functionh (Eq. (7)).
The transmitted signaly is then sent to the receiver in Eq.
(8). The transmitter and receiver (defined by the vector fields
f and g and the functionh) is constructed to satisfy the
following relationship:g(x1, h(x1, s(t)), t) = f(x1, s(t), t)
for all signalss(t). If ẋ1 = f(x1, s(t), t) is asymptotically
stable for alls(t), then Theorem 1 shows that the receiver is
synchronized to the transmitter, i.e.x2(t) → x1(t) ast → ∞.
If the encoding functionh is “invertible” in the sense that given
x1 andh(x1, s, t) we can determines, then3 we can recover
s(t) from the transmitted signaly and the state vectorx2 in
the receiver. Schematically, this is shown in Figure 1, where d

is the decoding or inversion operation which recoverss from
x1 and h(x1, s, t). One of the simplest form forh is adding
the chaotic signal to the information signal and transmitting
the sum, i.e.h(x1, s, t) = x1 + s [32]. Other forms ofh can
be found in [33], [19].

Fig. 1. Communication system via synchronization of chaos.

3assuming continuity ofh.

Consider the synchronization via a scalar signal discussed
earlier. If (A, wT ) is observable and the uncoupled system
ẋ1 = Ax1 + f1(w

T ) is chaotic, we can construct a communi-
cation system as follows:

ẋ1 = Ax1 + f1(h(x1, s, t)) + b(wT x1 − h(x1, s, t)) (9)

ẋ2 = Ax2 + f1(h(x1, s, t)) + b(wT x2 − h(x1, s, t)) (10)

where Eq. (9) is the transmitter and Eq. (10) is the re-
ceiver. In order for the transmitter (with state vectorx1) to
have dynamics similar to an uncoupled system, we require
h(x1, s, t) ≈ wT x1.

If (A, b) is controllable andẋ1 = Ax1 + b(f2(x1)) + d is
chaotic, we construct a system as follows:

ẋ1 = Ax1 + b(h(x1, s, t) + wT x1) + d

ẋ2 = Ax2 + b(h(x1, s, t) + wT x2) + d

In order for the transmitter to have dynamics similar to an
uncoupled system, we requireh(x1, s, t) ≈ f2(x1) − wT x1.

The field of chaotic communication systems is an active
research area [34] and includes other communication sys-
tems that exploit chaos without the use of synchronization4

[35]. Recently, a communication system based on synchro-
nized chaotic lasers was demonstrated to transmit information
through a commercial fiber optic network in downtown Athens
[36].

IV. N ETWORK OF COUPLED DYNAMICAL SYSTEMS

A generalization of Theorem 1 to more than two coupled
systems is the following:

Theorem 5:The network of coupled systems with state
equations

ẋ1 = f(x1, x1, x2, . . . , xn)
ẋ2 = f(x2, x1, x2, . . . , xn)

...
ẋn = f(xn, x1, x2, . . . , xn)

(11)

synchronizes iḟx1 = f(x1, σ1(t), . . . , σn(t)) is asymptotically
stable for allσi’s.

State equations of the form Eq. (11) occur in situations
where all the systems receives exactly the same coupling, for
instance in globally coupled networks.

A natural way to express the coupling topology in a network
of coupled systems is through the language of graph theory.
A graph (V, E) consists of a set of verticesV and a set
of edgesE ⊂ V × V . We consider weighted graphs where
a positive weight is associated to each edge. The adjacency
matrix of a graph withn vertices is then by n matrixA where
Aij = w if there is an edge of weightw between vertexi and
vertex j and Aij = 0 otherwise. Thereversalof a graph is
obtained by reversing the orientation of all the edges. In other
words, if a graph has adjacency matrixA, then its reversal
has adjacency matrixAT . A directed tree is a directed graph
with n vertices andn−1 edges such that there exists a vertex
with directed paths to all other vertices. A spanning directed

4For example, chaos is used as a source of decorrelated signals and as an
alternative to pseudo-random sequences in spread spectrumcommunication
systems.
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tree is a subgraph which is a directed tree with the same set
of vertices. Theedge connectivityof a graph is defined as the
smallest weighted sum among all subsets of edges such that its
removal results in a graph that is not weakly connected. The
graph of a matrixA is the directed graph with an edge(vi, vj)
if and only if Aij 6= 0. The average degree of an undirected
graph is defined as the total sum of edge weights divided by
2n.

For state equations of the form Eq. (1) we can characterize
the coupling topology by defining an interaction graph [24].

Definition 4: The interaction graphof a coupled network
in Eq. (1) is defined as the directed graph with vertex set{vi}
with an edge(vi, vj) if and only if i 6= j andfj depends on
xi.

The case where the additive coupling terms between systems
is linear and uniform is more amenable to analysis. Consider
a networks of coupled dynamical system with state equations:

ẋ =







f(x1, t)
...

f(xn, t)






+ (G(t) ⊗ D(t))x + u(t) (12)

The matrix G(t) describes the coupling topology of the
network which changes with time whereas the matrixD(t)
describes the coupling between two systems.G ⊗ D is the
Kronecker product or tensor product of the matrixG andD.
The term(G(t) ⊗ D(t))x is the additive linear coupling in
the network. We call this type of coupling uniform since the
matrix D(t) is the same between any two systems. In general
we chooseG(t) to be a zero row sums matrix for eacht. For
u = 0, this implies that when the network is synchronized,
the coupling term vanishes and the consistency condition is
satisfied. Thus the dynamics of each system follow those of an
uncoupled systeṁx1 = f(x1, t). If D(t) � 0 andGij(t) ≤ 0
for i 6= j we call the couplingcooperative. If D(t) � 0 and
Gij(t) ≥ 0 for i 6= j we call the couplingcompetitive. The
case of symmetricG is calledreciprocal coupling.

The following theorem gives sufficient conditions under
which the network of coupled dynamical systems in Eq. (12)
synchronizes.

Theorem 6 ( [37], [38]): Supposeu(t) is such that‖ui −
uj‖ → 0 as t → ∞. The network in Eq. (12) synchronizes if
the following conditions are satisfied:

1) There exists a (time-varying) matrixH(t), a symmetric
positive definite matrixV and c > 0 such that(x −
y)T V (f(x, t)+H(t)x−f(y, t)−H(t)y) ≤ −c‖x−y‖2

for all x, y, t.
2) There exists an irreducible zero row sums matrix with

nonpositive off-diagonal elementsU such that the matrix
(U⊗V )(G(t)⊗D(t)−I⊗H(t)) is negative semidefinite
for all t.

The first condition is related to linear feedback stabilizabil-
ity. In particular, by using the Lyapunov functionxT V x, it
is easy to see that the first condition implies thatf(x, t) +
H(t)x + η(t) is asymptotically stable for allη(·), i.e. H(t)x
is a stabilizing linear feedback. This property is also known as
quadratically stabilizable in the control literature. Forinstance,

the classical Chua’s chaotic circuit [39] with state equations

v̇1 = 1
RC1

(v2 − v1) −
1

C1
f(v1)

v̇2 = 1
RC2

(v1 − v2) + 1
C2

i3
v̇3 = − 1

L
v2

can be quadratically stabilized by choosingV = I and
H(t) = −κ diag(1, 0, 0) for a large enough scalarκ > 0
[19]. For differentiablef , the Mean Value Theorem shows that
the condition above is equivalent toV

(

∂f(x,t)
∂x

+ H(t)
)

+ δI

being negative definite for someδ > 0 [40].
Assuming the first condition is satisfied, this sufficient con-

dition amounts to finding an appropriate matrixU that satisfies
the matrix inequality(U ⊗ V )(G ⊗ D − I ⊗ H) � 0. If we
assume thatH(t) = α(t)D(t) for all t, then this reduces to the
inequality(U ⊗V )((G(t)−α(t)I)⊗D(t)) � 0. Let us further
assume thatV D(t) is symmetric negative semidefinite for allt.
This last assumption is true for the following scenarios which
are found in practice:

1) V andD are both diagonal andD is negative semidef-
inite;

2) D is a nonpositive multiple of the identity matrix;
3) V is a positive multiple of the identity matrix andD is

symmetric negative semidefinite.
This reduces the inequality toU(G(t) − α(t)I) � 0. To

focus on this condition, we introduce the following definition
Definition 5: For a givenα(t), G(t) satisfiessynchroniza-

tion conditionA if there exists an irreducible zero row sums
matrix with nonpositive off-diagonal elementsU such that the
matrix U(G(t) − α(t)I) � 0 for all t.
The reason for extracting this part of the synchronization
condition to focus on, is that this condition is related to the
connectivity of the coupling graph, as we will show in Section
V.

The case of nonlinear additive coupling

ẋ =







f(x1, t)
...

f(xn, t)






+ N(x) + u(t)

can be recast into Eq. (12) if the nonlinear termN(x) can be
written as(G(x)⊗D(x))x for eachx. One sufficient condition
for this to occur is the following.

Theorem 7 ( [41]): Supposem = 1, i.e. xi are scalars and
N(x) can be written as

N(x) =











∑

j φ1j(xj − x1)
∑

j φ2j(xj − x2)
...

∑

j φnj(xj − xn)











where φij(0) = 0, then N(x) = G(x)x for some matrix-
valued functionG(·) whereG(x) is a matrix with zero row
sums for eachx.

V. A LGEBRAIC CONNECTIVITY AND SYNCHRONIZATION

The Laplacian matrix of a graph is given byL = D − A,
whereA is the adjacency matrix andD is the diagonal matrix
with the row sums ofA on the diagonal. Thus the Laplacian
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matrix is a zero row sums real matrix with nonpositive off-
diagonal elements. Let us denote this class of matrices with
zero row sums and nonpositive off-diagonal elements asW .
We denoteWs as the set of symmetric irreducible matrices in
W . It is important to note that ifG(t) is a matrix inW , then it
is the Laplacian matrix of the reversal of the interaction graph
of Eq. (12). Therefore ifL is the Laplacian matrix of a graph,
we define the interaction graph ofL to be the reversal of this
graph. A matrixL can be written in Frobenius normal form
[42]:

L = P











B1 B12 · · · B1k

B2 · · · B2k

. . .
...

Bk











PT (13)

whereP is a permutation matrix andBi are square irreducible
matrices. The Frobenius normal form is generally not unique.
Finding the permutation matrixP of the Frobenius normal
form is related to finding the strongly connected components
of the corresponding directed graph, a problem which can
be solved in linear time using depth-first search [43]. For a
Laplacian matrixL, each matrixBi can be decomposed as
Bi = Li + Di whereLi is a zero row sums matrix inW and
Di is a positive semidefinite diagonal matrix. Letwi be the
unique positive vector5 such that‖wi‖∞ = 1 andwT

i Li = 0
andWi be the diagonal matrix withwi on the diagonal. Let
w be a nonnegative vector such that‖w‖∞ = 1 andwT L = 0
and W be the diagonal matrix withw on the diagonal. We
can then define the following quantities related to the graph
and its Laplacian matrixL:

• a1(L) = minx⊥1,‖x‖=1 xT Lx;
• a2(L) = minx⊥1,‖x‖=1 xT WLx;

• a3(L) = minx 6=0
xT WLx

xT

�
W− wwT

‖w‖1

�
x

;

• a4(L) = min1≤i≤k ηi whereηi = minx 6=0
xT WiBix
xT Wix

for

1 ≤ i ≤ k − 1 andηk = minx 6=0
xT WkBkx

xT

�
Wk−

w
k

wT

k

‖w
k
‖1

�
x

;

It is easy to see thata1(L) = a2(L) = a3(L) =
a4(L) = λ2(

1
2 (L + LT )) when the graph is undirected

or vertex balanced6. Furthermore, a4 does not depend
on the specific form of the Frobenius normal form. The
numbersa1 and a2 can be expressed as eigenvalues. In
particular, a1(L) = λmin

(

1
2KT (L + LT )K

)

and a2(L) =
λ2

(

1
2 (WL + LT W )

)

= λmin

(

1
2KT (WL + LT W )K

)

where K is an n by n − 1 matrix whose columns form
an orthonormal basis of the linear subspace orthogonal to
1. The quantitiesa1 to a4 can be considered as algebraic
connectivities of directed graphs, a concept first introduced
in [45] for undirected graphs. The case of undirected graphs
has been extensively studied in the past (see [46]–[48] for
survey papers). The following result lists some known graph-
theoretical properties related to the algebraic connectivity of
an undirected graph that are useful to synchronization:

5The existence of this vector is guaranteed by Frobenius-Perron theory [44].
6We define a directed graph to be vertex balanced if for each vertex, the

sum of the weights of incoming edges is equal to the sum of the weights of
outgoing edges.

Theorem 8 ( [45], [49]–[53], [38]): For a graph with
Laplacian matrixL, let ∆min and∆max be the smallest and
the largest vertex degrees respectively. Lete be the edge
connectivity, diam the diameter andρ be the average distance
between two vertices. The following is true ofλ2(L):

1) λ2(L) ≥ 2∆min − n + 2
2) λ2(L) ≥ 2e(1 − cos(π

n
))

3) ∆maxln(n−1)

2(diam−2)−ln(n−1)
≥ λ2(L) ≥ 4

ndiam
4) λ2(L) ≥ 2

(n−1)ρ−n−2
2

5) There existsc > 0 such that almost everyk-regular
random graph satisfiesλ2(L) > ck asn → ∞.

The following result relates the algebraic connectivity to
various properties of the directed graph.

Theorem 9 ( [54]–[56]): Let L be the Laplacian matrix of
a graph. Letδi andδo be the minimum indegree and outdegree
respectively and∆i and ∆o be the maximum indegree and
outdegree respectively.

1) a1(L) ≤ min
{

δo + ∆i

n−1 , ∆o + δi

n−1

}

;

2) a1(L) ≤ do(v) + 1
n−1di(v) wheredo(v) and di(v) is

the outdegree and the indegree of vertexv respectively;

3) a2(L) ≥
(1−cos(π

n ))e

ρ
, wheree is the edge connectivity

andρ = maxi wi

mini wi

;
4) ai(L) ≤ 0, 1 ≤ i ≤ 4 if the graph is not weakly

connected;
5) If the graph is strongly connected, thena3(L) ≥

a2(L) > 0.
6) a4(L) > 0 if and only if the reversal of the graph ofL

contains a spanning directed tree;
7) (Super-additivity) ForG, H ∈ W , a1(G + H) ≥

a1(G) + a1(H);
8) If the off-diagonal elements ofG are random variables

chosen independently according toP (Gij = 1) = p,
P (Gij = 0) = 1 − p, thena1(G) ≈ pn in probability
asn → ∞.

We separate the coupling topology into two cases, the case
where the coupling topology is static and the case where the
coupling topology is dynamic.

A. Static coupling topology

In this caseG(t) = G does not change with time and the
state equation is given by:

ẋ =







f(x1, t)
...

f(xn, t)






+ (G ⊗ D(t))x + u(t) (14)

The quantitiesai provide sufficient conditions for the net-
work to synchronize:

Theorem 10 ( [54]–[56]):G satisfies synchronization con-
dition A if one of the following conditions is satisfied for all
t:

1) a1(G) ≥ α(t);
2) a4(G) ≥ α(t);
3) The graph ofG is strongly connected anda3(G) ≥ α(t).
Since the algebraic connectivity was first defined to quantify

connectivity in a graph [45], a way to paraphrase Theorem 10
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is that the network is more amenable to synchronization if the
underlying graph is more connected. The sufficient condition
for synchronizationa4(G) ≥ α along with the fact thata4(G)
is positive if and only if the interaction graph contains a
spanning directed tree implies the following:

Proposition 1: The network synchronizes if the interaction
graph contains a spanning directed tree and the cooperative
coupling is large enough.

This result is intuitive since the existence of a spanning
directed tree in the interaction graph implies the existence of
a system (located at the root of the tree) which influences
directly or indirectly all other systems. The converse is also
true for networks of chaotic systems. If there does not exista
spanning directed tree, then there are two groups of systems
which are not influenced by any other systems [56]. If these
two coupled groups remain chaotic, they will not synchronize
to each other.

If the graph of G does not contain a spanning directed
tree, thenG is not irreducible and it isk-reducible for
some1 ≤ k ≤ n [57]. A consequence is that there arek

directed trees (and no less) which together span the interaction
graph. If G ∈ W , then this corresponds toG having k

zero eigenvalues (Theorem 19). Thek strongly connected
components (SCC) of the graph which contain thek roots of
these trees will not have coupling from other systems and thus
they will synchronize within themselves (when the coupling
is sufficiently cooperative). Thus there are at leastk groups or
clusters of systems which synchronize among themselves.

One interpretation for the synchronization occurring in cou-
pled systems where the interaction graph contains a spanning
directed tree is that all the systems are synchronized to the
system at the root of the spanning directed tree (which we
will call the root system). This suggests that any control to the
system should be applied to such a root system for maximum
efficiency since its effect will be felt throughout the network.
Of course, in general graphs, the spanning directed tree is not
unique and neither is the root system. Furthermore, since the
coupling topology can change with time, the set of spanning
directed trees can also change with time. It is clear that a root
system is unique if and only if there is coupling from the root
system to other systems and not vice versa (Fig. 2).

Root system

Fig. 2. Interaction graph with a unique root system.

There exists a lower bound ona4(G) which is related to
the structure of the graph. In particular, in [57] a lower bound
was given in terms of quantitiesa2 anda3 of the SCC’s of the
graph and the number of edges between them. The larger the
values ofa2 of the SCC’s, the larger the value of this bound.
Similarly, the more coupling between the SCC, the larger the

value of this bound. This is an intuitive conclusion as theai’s
are measures of connectivity of the graph.

More precisely, the SCC’s of the graph correspond to the
matricesBi in the Frobenius normal form (Eq. (13)) with
decompositionBi = Li + Di. Di describes the coupling to
the i-th SCC from other systems. If we remove this coupling,
we obtainLi which corresponds to the coupling within the
i-th SCC. Thenηi, 1 ≤ i ≤ k − 1 in the definition ofa4 can
be bounded as

ηi ≥
a2(Li)

(

1 +
√

1 + a2(Li)
wT

i
Di1

)2

n + 1

whereasηk = a3(Bk) ≥ a2(Bk).
In scenarios where the dynamical systems correspond to

physical systems, these systems are arranged in space with
respect to some metric. In this case, it make sense to talk
about local coupling where each system is only coupled to
systems in a local neighborhood of radiusδ. In [53], [55]
it was shown that if the diameter of the graph grows faster
than ln(n), then a2(L) → 0 as n → ∞. In [53] the
systems are located on a regular integer lattice with fixed
δ and since the diameter grows as and-th root of n, local
coupling implies thata2(L) → 0 as n → ∞. When the
systems are located randomly, the resulting locally coupled
graph is called a random geometric graph [58]. If we choose
a random geometric graph such that the locations are randomly
chosen on a ball of radiusr(n) where r(n) grows faster
than ln(n), then it was shown in [59] that the diameter also
grows faster than ln(n) almost always and thus in this case
we havea2(L) → 0 as n → ∞ almost always. In general,
we can conclude that for a locally coupled graph where the
local neighborhood is such that the number of vertices in the
neighborhood is uniformly bounded for alln, thena2(L) → 0
asn → ∞.

On the other hand, the last property in Theorem 9 says
that a1(G) ≈ pn for random coupling. By the first property
in Theorem 9, this is asymptotically the highest possible.
This thus indicates that local coupling and random coupling
form two extremes in the corresponding network’s ability to
synchronize [38], [60].

This also points out that the distribution of the vertex
degrees is itself not enough to determine synchronizability.
A locally connectedk-regular graph and a randomk-regular
graph have the same degree distribution, yet their ability to
synchronize are at opposite extremes. Thus how the graph
is generated is also an important property of the graph in
characterizing its synchronizability. Analogous to thek-regular
graph case, one can construct a locally connected undirected
graph with a prescribed vertex degree sequence such that
a1(G) → 0 as n → ∞ and an undirected random graph
with the same prescribed degree sequence such thata1(G)
is bounded away from zero [61], [62].

Because of the super-additivity ofλ2 and the nonnegativity
of λ2 for reciprocal coupling (see [45] and Theorem 9),
adding additional reciprocal coupling does not decreaseλ2. In
other words, adding cooperative reciprocal coupling can only
help improve synchronizability in the network. An important
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difference between reciprocal and nonreciprocal couplingis
that this property is not longer true for nonreciprocal coupling.
In particular, consider the following directed path graph (Fig.
3) with corresponding coupling matrix

G =











1 −1
1 −1

. . .
. . .

0











.

In this casea4(G) = 1.

Fig. 3. Directed path graph.

By adding an additional coupling edge, we obtained the
directed cycle graph which is vertex balanced (Fig. 4) and has
a corresponding coupling matrix

G =











1 −1
1 −1

. . .
. . .

−1 1











Fig. 4. Directed cycle graph.

For this graph,a4(G) = 1 − cos(2π
n

) which decreases to
0 for large n. Thus by adding asingle coupling element,
we have reduced its synchronizability significantly. This can
be explained by noting that the SCC’s in the first graph are
small; they are single vertices. In other words, each vertex
influences directly the next vertex and thus synchronization is
first achieved with the first 2 vertices, and then synchronization
is achieved between vertex 2 and 3, etc. In other words, syn-
chronization can be reached in stages, each time considering
a subgraph of two vertices. On the other hand, the SCC is
large in the second graph; it is the entire graph with a large
diameter, with each vertex influencing and influenced by all
other vertices, some of which are far apart. These long pathsof
communication between vertices make the network harder to
synchronize. This phenomena is similar to Braess’ paradox in
traffic routing, where adding a single road can increase rather
than decrease traffic congestion [63].

For a fixed coupling matrixG, what is the largestα such that
G satisfies synchronization conditionA, i.e. there is a matrix
U ∈ Ws for which U(G − αI) is positive semidefinite? This
value ofα, which we denote asµ(G) gives another measure on
how easy it is to synchronize a network with the static coupling
topology expressed asG. The following theorem gives some
upper and lower bounds onµ(G).

Theorem 11 ( [64]):For a matrixG ∈ W ,

1) λmin

(

1
2 (G + GT )

)

≤ µ(G);
2) a1(G) ≤ µ(G) anda4(G) ≤ µ(G);
3) If the graph of G is strongly connected,a2(G) ≤

a3(G) ≤ µ(G);

4) µ(G) ≤ γ(G); where γ(G) = minλ Re(λ), with λ

ranging over the eigenvalues ofG not belonging to the
eigenvectore;

5) If G has both zero rows and zero column sums, then
γ(1

2 (G + GT )) ≤ µ(G);
6) If G is a normal matrix, thena1(G) = µ(G) = γ(G);
7) If G is a triangular matrix after simultaneous permu-

tation of its rows and columns (i.e. the graph ofG is
acyclic), thenµ(G) = γ(G).

The value ofµ(G) can be computed efficiently by solving
the following semidefinite programming problem for different
values ofµi:

Find U = UT such that
U(G − µiI) � 0
U1 = 0,

Ui,j ≤ 0 ∀i 6= j

andKT UK � I.

(15)

where K is as defined before andµi’s are obtained via
a bisection process converging toµ(G) [64]. Semidefinite
programming problems are known to be solvable in poly-
nomial time [65] and there are many public domain and
commercial software packages available for solving them
(see for instancehttp://www-user.tu-chemnitz.
de/∼helmberg/sdp software.html). In [64] some
numerical simulations were conducted to determine the dif-
ference betweenµ(G) and γ(G). It was observed thatµ(G)
is more likely to be closer toγ(G) when all the eigenvalues of
G are real versus the case whenG has complex eigenvalues.
One direction for future research is analyzing more precisely
the relationship betweenµ(G) andγ(G).

B. Dynamic coupling topology

In the static coupling topology case, in order to prove that
a3(G) ≥ α implies synchronization, we choose a matrix
U ∈ Ws that depends onG. In contrast to the constant
coupling case, the synchronization condition in the time-
varying coupling case is not necessarily satisfied even if
a3(G(t)) ≥ α(t) for all t since the matrixU is not allowed
to change for differentt. By choosingU = I − eeT

n
, it was

shown in [54] thatU(G(t) − α(t)I) � 0 for all t and thus:
Theorem 12:G(t) satisfies synchronization conditionA if

a1(G(t)) ≥ α(t) for all t.
Sincea1 is generally smaller thana4, comparing Theorem 6
with Theorem 12 shows that the synchronization criterion is
more conservative for time-varying coupling topologies.

Note that the synchronization criterion does not depend on
the rate of change ofG(t) andD(t). For a criterion that does
depend on the rate of change inG(t), see [66].

VI. A LGEBRAIC CONNECTIVITY OF COMPLEX NETWORKS

Many man-made and natural networks have a complicated
structure that can not be explained or modelled through
classical random graph models such as those in [67]. Recently,
graph models have been developed that try to mimic the coarse
structure of such networks [68]–[71]. In order to understand
synchronization in networks with such coupling topologies, we
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study the algebraic connectivity of such graph models. The
Strogatz-Watts small world network is an undirected graph
built by taking a nearest neighbour graph andreplacingedges
with randomly chosen edges. In the Newman-Watts model,
randomly chosen edges areaddedto a nearest neighbor graph.
The superadditivity property combined with the fact that the
algebraic connectivity of local coupling vanishes shows that
for largen, the algebraic connectivity of these small world net-
works is essentially the algebraic connectivity of the subgraph
formed by the random edges [38]. Consider the small world
networks in [68], [69], where starting from a locally connected
graph with t edges,pt random edges (with0 < p ≤ 1)
are substituted or inserted into the graph respectively, with t

growing linearly with respect ton, i.e. t = kn for some fixed
k. The algebraic connectivity of these small world networks is
dominated by the algebraic connectivity of the random graph,
which is approximately2kp with high probability for largen.

Consider a set ofn integers0 ≤ d1 ≤ d2 ≤ · · · ≤ dn. We
can create a random undirected graph modelGpr(d1, . . . dn)
[38], [62] where an edge(vi, vj) is chosen with probability

Pij =
d1

n
+

(di − d1)(dj − d1)
∑

k(dk − d1)

This is a modification of the random graph model in [72].
Since

∑

i Pij = dj , the expected degree of vertexvi is di, i.e.
this random graph has the degree sequencedi in expectation.
For the special cased1 = d2 = · · · = dn, we choosePij = d1

n

and this is equivalent to the classical random graph model
G(n, p) with p = d1

n
[73].

In [38], [62] it was shown that each instance of the random
graph modelG(n, p) with p = d1

n
is a subgraph of a set

of graphs of the random graph modelGpr(d1, . . . dn) with
the same probability. SinceG(n, p) hasa1 ≈ d1 with high
probability asn → ∞ [74], by the superadditivity ofa1 and
Theorem 9, the algebraic connectivitya1 of the random graph
modelGpr(d1, . . . , dn) is approximately equal tod1 with high
probability asn → ∞. Another conclusion we can make is
that for a fixed average degree, the algebraic connectivity of
the random graph is the highest when the degree sequence is
uniform (i.e.d1 = · · · = dn). In other words, homogeneity in
the degree sequence is beneficial for synchronization.

In [70] a scale free random graph model was studied where
new edges are added at each iteration and vertices with a
high vertex degree is more likely to connect to the new
edges. This process is calledpreferential attachment. A similar
model of generating random graphs was considered in [75]–
[77] earlier in the context of citation networks. Consider the
sequence where the degree sequence satisfies a power law,
i.e. di ≈ ρiα for some exponentα. This random graph can
be considered a model for scale free random networks. Many
naturally occurring and man-made graphs appear to have a
power law degree sequence with various exponentsα [78].
Consider a sequence of graphs with increasing number of
verticesn where the average degreeda is constant for alln. It
was numerically shown in [79] that for scale free networks and
for each fixedda, λ2 converges to a constant valueλ∞

2 (da)
asn → ∞. Using the modelGpr, it was shown analytically in

[38] that λ∞
2 (da) is approximately

(

1 − 1
α−1

)

da for α ≥ 2

and0 for α < 2. This means that forα = 3, which is the case
considered in [70],λ∞

2 (da) = 1
2da, which was also verified

numerically in [38].

VII. L YAPUNOV EXPONENTS APPROACH TO

SYNCHRONIZATION

In [80], local synchronization criteria are derived based
on numerical estimates of Lyapunov exponents. In this case,
for appropriateD (e.g., D = I), the network synchronizes
if the nonzero eigenvalues ofG has real parts which are
large enough. Corollary 9 in Section X says that all nonzero
eigenvalues ofG has nonzero real parts if and only if the
interaction graph contains a spanning directed tree. Thus the
Lyapunov exponents based synchronization criterion shows
that the network synchronizes locally if and only if the
interaction graph contains a spanning directed tree and the
cooperative coupling is large enough and this statement is
qualitatively the same as Proposition 1.

The synchronization criterion for any arbitrary static net-
work topology can also be obtained experimentally by measur-
ing the synchronization property of a coupled network of only
3 systems [81]–[83]. The main idea here is that the nonzero
eigenvalues of a parameterized graph of 3 vertices can be
arbitrarily placed and thus varying the parameters of a network
of 3 coupled systems suffices to determine the synchronization
properties of an arbitrary network. In particular, by studying
whether a network with the coupling topology in Figure 5
synchronizes for various parametersα, β we can determine
whether an arbitrary network synchronizes.

Fig. 5. Studying a network with this coupling topology is sufficient to
characterize synchronization in network with arbitrary topology.

VIII. C OUPLING BETWEEN DELAYED STATE VARIABLES

Consider the case of additive linear coupling where coupling
terms are present between delayed state variables. The state
equations are written as [84], [85]:

ẋ(t) =







f(x1, t)
...

f(xn, t)






+ (G(t) ⊗ D(t))x(t)

+(Gτ (t) ⊗ Dτ (t))x(t − τ) + u(t)

(16)

We assume that‖ui − uj‖ → 0 for all i, j as t → ∞. The
following result gives sufficient conditions for the synchro-
nization of Eq. (16).
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Theorem 13 ( [85]):Let V ≻ 0 be a symmetric matrix
such that(y − z)T V (f(y, t) + H(t)y − f(z, t) − H(t)z) ≤
−c‖y − z‖2 for somec > 0. Let U ∈ Ws, (B1(t), B2(t))
a factorization ofUGτ (t) ⊗ V Dτ (t) = B1(t)B2(t), and
Y (t) ≻ 0 and symmetric for allt. The network in Eq. (16)
synchronizes if

R
△
= (U ⊗ V )(G(t) ⊗ D(t) − I ⊗ H(t))

+ 1
2B1(t)Y (t)BT

1 (t) + 1
2BT

2 (t)Y −1(t)B2(t) � 0
(17)

for all t.
The application of Theorem 13 has several degrees of

freedom: the choice of(B1(t), B2(t)), the choice ofY (t)
and the choice ofU . Choosing them properly will simplify
the condition in Eq. (17). There are several ways to choose
the factorization(B1, B2). Depending on the factorization, the
matrix Y (t) can have different dimensions thanG ⊗ D and
Gτ ⊗Dτ . When the delay coupling term is absent (Gτ ⊗Dτ =
0), we can pickB1 = B2 = 0 and the synchronization
theorem reverts back to the nondelay case in Theorem 6. The
factorization should be chosen such that the synchronization
manifoldM is in the kernel of bothBT

1 andB2. Otherwise,
asM is in the kernel of(U ⊗ V ), this would mean that the
matrixR in Eq. (17) is never negative semidefinite. IfGτ does
not have constant row sums, thenUGτ1 6= 0 andM is not in
the kernel ofUGτ ⊗ V Dτ and thus is also not in the kernel
of B2. Therefore if Eq. (17) is satisfied, thenGτ has constant
row sums.

Let J = 11
T be the matrix of all1’s andQ = I− 1

n
J ∈ Ws.

Note thatnQ is the Laplacian matrix of the complete graph.
The eigenvalues ofQ are 0 and 1. If X is a matrix with
zero column sums, thenJX = 0 and thusQX = X . In
particular,Q2 = Q, andQU = UQ = U for U ∈ Ws. By
choosing the factorizations(B1, B2) = (U ⊗V, Gτ ⊗Dτ ) and
(B1, B2) = (Q⊗I, UGτ ⊗V Dτ ) we get the following result:

Corollary 1: Let V ≻ 0 be some symmetric matrix such
that (y− z)T V (f(y, t)+H(t)y− f(z, t)−H(t)z) ≤ −c‖y−
z‖2 for somec > 0. Let U ∈ Ws andY (t) ≻ 0 and symmetric
for all t. The network synchronizes if one of the following2
conditions is satisfied for allt:

(U ⊗ V )(G(t) ⊗ D(t) − I ⊗ H(t))
+ 1

2 (Gτ (t) ⊗ Dτ (t))T Y −1(t)(Gτ (t) ⊗ Dτ (t))
+ 1

2 (U ⊗ V )Y (t)(U ⊗ V ) � 0
(18)

(U ⊗ V )(G(t) ⊗ D(t) − I ⊗ H(t))
+ 1

2 (UGτ (t) ⊗ V Dτ (t))T Y −1(t)(UGτ (t) ⊗ V Dτ (t))
+ 1

2 (Q ⊗ I)Y (t)(Q ⊗ I) � 0
(19)

The condition in Eq. (18) was obtained in [84] for the case
of constant coupling. IfGτ has zero row sums, we can choose
the factorization(B1, B2) = (UGτ ⊗ V Dτ , Q ⊗ I) to get:

Corollary 2: Let V ≻ 0 be some symmetric matrix such
that (y− z)T V (f(y, t)+H(t)y− f(z, t)−H(t)z) ≤ −c‖y−
z‖2 for some c > 0. Let U ∈ Ws and Y (t) ≻ 0 and
symmetric for allt. If Gτ has zero row sums, then the network
synchronizes if the following condition is satisfied for allt:

(U ⊗ V )(G(t) ⊗ D(t) − I ⊗ H(t)) + 1
2 (Q ⊗ I)Y (t)(Q ⊗ I)

+ 1
2 (UGτ (t) ⊗ V Dτ (t))Y −1(t)(UGτ (t) ⊗ V Dτ (t))T � 0

A. Choosing the matrixU

By choosingU = Q as was done in [38] and using the
fact thatQX = X whenX is a zero column sum matrix, the
synchronization condition can be further simplified:

Corollary 3: Let V ≻ 0 be some symmetric matrix such
that (y− z)T V (f(y, t)+H(t)y− f(z, t)−H(t)z) ≤ −c‖y−
z‖2 for somec > 0. Let Y (t) ≻ 0 and symmetric for all
t. SupposeGτ and G are zero column sums matrices. The
network in Eq. (16) synchronizes if one of the following
conditions is satisfied for allt:

G(t) ⊗ V D(t) − Q ⊗ V P (t) + 1
2 (Q ⊗ V )Y (t)(Q ⊗ V )

+ 1
2 (Gτ (t) ⊗ Dτ (t))T Y −1(t)(Gτ (t) ⊗ Dτ (t)) � 0

(20)

G(t) ⊗ V D(t) − Q ⊗ V H(t) + 1
2 (Q ⊗ I)Y (t)(Q ⊗ I)

+ 1
2 (Gτ (t) ⊗ V Dτ (t))T Y −1(t)(Gτ (t) ⊗ V Dτ (t)) � 0

(21)

B. Choosing the matrixY

By choosingY appropriately we can show the following:
Corollary 4: Let V ≻ 0 be some symmetric matrix such

that (y− z)T V (f(y, t)+H(t)y− f(z, t)−H(t)z) ≤ −c‖y−
z‖2 for somec > 0. SupposeGτ (t) and V Dτ (t) are sym-
metric for all t, andG andGτ are zero column sums matrix.
Suppose further thatGτ has a simple zero eigenvalue andDτ

is nonsingular for allt. The network in Eq. (16) synchronizes
if the following condition is satisfied for allt:

G(t) ⊗ V D(t) − Q ⊗ V H(t) +
√

(Gτ ⊗ V Dτ )2 � 0 (22)

In particular, if in additionGτ (t)⊗V Dτ (t) � 0 and symmetric
for all t, then the network synchronizes if

G(t) ⊗ V D(t) + Gτ (t) ⊗ V Dτ (t) − Q ⊗ V H(t) � 0

C. The caseD = 0

Consider the case where all the coupling involves delayed
state variables, i.e.D = 0.7 Assume that each individual
system ẋ = f(x, t) is asymptotically stable such that the
addition of small positive feedback of the formH(t)x where
H(t) � 0 does not change its stability. Then this stability is
not destroyed if the delay coupling is small, i.e. each system xi

still converges towards the unique trajectory. More precisely,
we have the following Corollary to Theorem 13:

Corollary 5: Let V ≻ 0 be some symmetric matrix such
that (y− z)T V (f(y, t)+H(t)y− f(z, t)−H(t)z) ≤ −c‖y−
z‖2 for somec > 0. Let U ∈ Ws, (B1(t), B2(t)) a factoriza-
tion of UGτ (t) ⊗ V Dτ (t) = B1(t)B2(t), andY (t) ≻ 0 and
symmetric for allt. The network in Eq. (16) synchronizes if

U ⊗ V H(t) �
1

2
B1(t)Y (t)BT

1 (t) +
1

2
BT

2 (t)Y −1(t)B2(t)

(23)
for all t.

7This case was first studied in [86].



10

D. Algebraic connectivity and synchronization

Similar to the nondelay case, the algebraic connectivity can
be useful in characterizing synchronizability of the network.

Theorem 14:Let V ≻ 0 be a symmetric matrix such that
(y − z)T V (f(y, t) + D(t)y − f(z, t)−D(t)z) ≤ −c‖y − z‖2

for somec > 0. The network in Eq. (16) synchronizes if the
following conditions is satisfied for allt and someα(t) > 0:

F
△
= (QG(t) − Q) ⊗ V D(t) + α(t)

2 (Q ⊗ I)

+ (QGτ (t)⊗V Dτ (t))T (QGτ (t)⊗V Dτ (t))
2α(t) � 0

(24)

If in addition V D(t) ≺ 0 for all t andG is a zero row sums
matrix, then the network synchronizes if

a1(G(t)) ≥ 1 + ‖QGτ (t)‖‖V Dτ (t)‖‖(V D(t))−1‖ (25)
When G is a zero row and column sums matrix,QG =

G. Furthermore,a1(G) = γ(1
2 (G + GT )) and we have the

following Corollary to Theorem 14:
Corollary 6: Let V ≻ 0 be some symmetric matrix such

that (y − z)T V (f(y, t)+ D(t)y− f(z, t)−D(t)z) ≤ −c‖y−
z‖2 for somec > 0. SupposeGτ and G are zero column
sums matrices. The network in Eq. (16) synchronizes if the
following condition is satisfied for allt and someα(t) > 0:

(G(t) − Q) ⊗ V D(t) + α(t)
2 (Q ⊗ I)

+ 1
2α(t) (Gτ (t) ⊗ V Dτ (t))T (Gτ (t) ⊗ V Dτ (t)) � 0

(26)

If in addition V D(t) ≺ 0 for all t andG is a zero row sums
matrix, then the network synchronizes if

a1(G(t)) ≥ 1 + ‖Gτ (t)‖‖V Dτ (t)‖‖(V D(t))−1‖ (27)
When the nondelay coupling topologyG(t) does not change

with time, Theorem 14 can be further improved:
Theorem 15:Let V ≻ 0 be a symmetric matrix such that

(y − z)T V (f(y, t) + D(t)y − f(z, t)−D(t)z) ≤ −c‖y − z‖2

for somec > 0. Let G be an irreducible zero row sums matrix
andw be a positive vector such thatwT G = 0 and‖w‖∞ = 1.
Let W be a diagonal matrix withw on the diagonal. Assume
that V D(t) ≺ 0 for all t. Then the network in Eq. (16)
synchronizes if

a3(G) ≥ 1 + ‖UGτ (t)‖‖V Dτ (t)‖‖(V D(t))−1‖

whereU = W − wwT

‖w‖1
.

In Section V it was concluded that a coupled network
synchronizes if the underlying graph has a large algebraic
connectivity. Theorem 14, Corollary 6 and Theorem 15 are
extensions of this result to the case of coupling among delayed
state variables.

IX. DISCRETE-TIME SYSTEMS

Analogous to continuous-time systems we have the follow-
ing condition for quadratically stabilizability in discrete-time
systems:

Theorem 16:If f(x, t) satisfies

(f(x, t) − f(y, t))
T

V (f(x, t) − f(y, t)) ≤ c(x−y)T V (x−y)
(28)

for some0 ≤ c < 1 and some positive definite matrixV , then
x(t + 1) = f(x(t), t) + η(t) is asymptotically stable for all
η(t).

Consider the following state equation of a network of
coupled discrete-time systems:

x(t + 1) =







x1(t + 1)
...

xn(t + 1)







= (I − G(t) ⊗ D(t))







f(x1(t), t)
...

f(xn(t), t)







= (I − G(t) ⊗ D(t))F (x(t), t) (29)

where the matrixG(t) is a zero row sums matrix for each
t. Similar to the continuous-time case, when the network
synchronizes, the dynamics of each systems follow that of
an uncoupled system. When the individual systems are au-
tonomous (i.e.f does not depend ont) and can be represented
as maps they are generally known as coupled map lattices [87].

Similar to Theorem 6, synchronization in a network of
coupled discrete-time systems can be deduced from the eigen-
values of the coupling matrixG:

Theorem 17 ( [88], [24]): Consider the network of cou-
pled discrete-time systems with state equation Eq. (29) where
G(t) is a normal8 matrix for eacht. Let V ≻ 0 be a symmetric
matrix with decomposition9 V = CT C such that Eq. (28) is
satisfied forc > 0 and all t, x, y.

If for each time t, ‖I − λCD(t)C−1‖2 < 1
c

for every
eigenvalueλ of G(t) not corresponding to the eigenvector1,
then the coupled network synchronizes.

WhenD is also a normal matrix, Theorem 17 can be further
simplified.

Theorem 18:Consider the coupled network in Eq. (29)
whereG(t) andD(t) are normal matrices for eacht. Suppose
f is Lipschitz continuous inx with Lipschitz constantc. If
for eacht, |1 − λµ| < 1

c
for every eigenvalueλ of G(t) not

corresponding to1 and every eigenvalueµ of D(t) then the
coupled network synchronizes.

The criterion in Theorem 18 is shown graphically in Fig.
6. The coupled system synchronizes if all the eigenvalues of
G not belonging to1 lie in the interior of the intersection of
circles of radii 1

c|µi|
centered at1

µi
in the complex plane for

the eigenvaluesµi of D. A dual interpretation can be obtained
by interchanging the roles ofµ and theλ.

When G(t) and D(t) are symmetric, their eigenvalues are
real, and we have the following result:

Corollary 7: Let c be the Lipschitz constant off . If for
eacht, D(t) is symmetric and has only positive eigenvalues
betweenµ1(t) andµ2(t) (with 0 < µ1(t) ≤ µ2(t)) andG(t) is
a symmetric matrix with zero row sums and a zero eigenvalue
of multiplicity 1 and the nonzero eigenvalues ofG(t) are in

the interval
(

1− 1
c

µ1(t) ,
1+ 1

c

µ2(t)

)

then the coupled network in Eq.
(29) synchronizes.

Note the difference between Corollary 7 and the results in
Section V. WhenG is symmetric, in the continuous-time case
the synchronization condition is a condition on the smallest

8i.e. G∗G = GG∗.
9An example of such a decomposition is the Cholesky decomposition.
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Fig. 6. Graphical interpretation of synchronization criterion in networks of
coupled discrete time systems. Coupled network Eq. (29) synchronizes if all
eigenvalues ofG not corresponding to1 lie inside the intersection of the
circles (shown shaded), whereµi are the eigenvalues ofD.

(in magnitude) nonzero eigenvalue ofG, while in the discrete-
time case the synchronization condition is a condition on both
the smallest and the largest nonzero eigenvalues ofG. This
is similar to the fact that the open left half plane stability
condition in continuous time systems is mapped to the interior
of the unit circle in the discrete time case via the mapping
z → ez.

Next we consider the case whereG(t) = ǫL(t) with ǫ > 0
andL(t) is the Laplacian matrix of an undirected graph.

Corollary 8: Let c be the Lipschitz constant off . Let the
graph ofL(t) be connected and letλ2(t) and λn(t) be the
smallest and the largest nonzero eigenvalues of the Laplacian
matrix L(t) of the graph respectively. If

• D(t) is symmetric and has only positive eigenvalues
betweenµ1(t) andµ2(t) (with 0 < µ1(t) ≤ µ2(t))

•
λ2(t)
λn(t) >

(c−1)µ2(t)
(c+1)µ1(t)

then the system in Eq. (29) synchronizes withǫ ∈
(

1− 1
c

µ1(t)λ2(t) ,
1+ 1

c

µ2(t)λn(t)

)

.
For the special case whereD is a positive multiple of the

identity matrix, this implies thatµ1 = µ2 and Corollary 8
says that the network in Eq. (29) synchronizes for someǫ if
r = λ2

λn

is close enough to1.
Section V shows that the second smallest eigenvalueλ2

of L provides an upper bound on the amount of coupling
needed to synchronize a continuous-time coupled network.
Corollary 8 shows that for the discrete-time case the quantity
useful for synchronization is the ratior = λ2

λn
between the

eigenvaluesλ2 and λn of L. This ratio r is also useful
for characterizing synchronization thresholds obtained using
the Lyapunov Exponent method for some matricesD in the
continuous time case (Eq. (12)) in the sense that the largerr

is, the easier it is to synchronize the network [80], [89], [90].
The following result gives an upper and lower bound on the
ratio r for an undirected graph.

Lemma 1 ( [45], [62]):
(

1 − cos
(

π
n

))

δ

∆
≤ r ≤

δ

∆

whereδ and∆ are the minimum and maximum vertex degree
respectively.

Similar to Section V-A, in [61], [62] graph models were
presented that have ratior converging to0 and r bounded
away from0 respectively asn → ∞.

For an undirected graph that is not regular,r can be
increased by modifying the coupling to be nonreciprocal. In
particular, given an undirected graph with Laplacian matrix L

and adjacency matrixA, it was argued in [91] via numerical
experiments and analytically that the ratior of G = (L +
A)−βL reaches a maximum atβ = 1.

X. L INEAR DYNAMICS

Recently, there is considerable interest in studying coupled
dynamical systems in the context of consensus or agreement
protocols of independent agents [92]–[97], [41], [98].10 Some
applications include the study of flocking in animal formations
and robots with limited range communications. For instance,
in flocking problems, if the state of each agent contains
the direction of motion, then synchronization implies thatall
agents are heading in the same direction and achieve flocking
behavior. In many of these models, the resulting state equations
are linear.

A. Continuous-time systems

For the continuous-time case, the first study in this contextis
made in [93]. In [93] an agreement problem amongn agents is
modeled by the following continuous-time autonomous linear
dynamical system:

ẋ = −Lx (30)

wherex ∈ R
n andL is the Laplacian matrix of a graph with

n vertices andxi are scalars. Let us consider the more general
affine case:

ẋ = −(L ⊗ D(t))x + 1⊗ u(t) (31)

where D(t) has only positive real eigenvalues larger than
ǫ > 0 for all t. By using the transformationx → x − (1 ⊗
∫ t

−∞ u(τ)dτ), which preserves the property of synchroniza-
tion, the state equations can be written as

ẋ = −(L ⊗ D(t))x (32)

The coupling topology is expressed by a corresponding in-
teraction digraphG (with no loops). It is easy to see that
L is the Laplacian matrix of the reversal ofG. SinceL ∈
W is a Laplacian matrix of a digraph, its eigenvalues have
nonnegative real parts andL1 = 0. If the zero eigenvalue
is simple, then the kernel ofL is spanned by the vector1
and all other eigenvalues ofL have positive real parts due
to Gershgorin’s circle criterion. In this case,x in Eq. (32)
approaches the kernel ofL ⊗ D(t) which is equal to the
synchronization manifoldM, i.e. the network synchronizes.
This is also referred to in the literature as the system solving
an agreementor consensusproblem.

10In [92] these agents are termed “autonomous” since they can act on their
own without centralized control. We refrain from using thisterm to avoid
confusion with its use in circuits and systems theory to denote systems that
do not receive external (or equivalently) time-varying stimuli.
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Theorem 19:The multiplicity of the zero eigenvalue ofL
is equal to the minimum number of directed trees which forms
a spanning forest in the interaction graph.
The following corollary to Theorem 19 gives a graph-
theoretical characterization of when the zero eigenvalue of L

is simple.
Corollary 9: The zero eigenvalue ofL is simple if and only

if the interaction graph has a spanning directed tree.
Theorem 19 and Corollary 9 have been found independently
by several authors. For instance, Theorem 19 can be found in
[99], [100], [57], [101] and Corollary 9 was proved in [95],
[96]. Corollary 9 can be used to prove that:

Theorem 20:The statex in Eq. (31) approachesM and
thus solves an agreement problem for all initialx if and only
if the interaction graph ofL contains a spanning directed tree.

This result is intuitive since the existence of a spanning
directed tree in the interaction graph implies that there isa root
vertex which influences directly or indirectly all other vertices.
If no such spanning directed tree exists, then there exists two
groups of vertices which do not influence each other [54] and
thus cannot possibly reach an agreement for arbitrary initial
disagreement. Since the agent at the root vertex influences all
other agents, it can be considered a leader, which might not
be unique if there are more than one spanning directed tree.

Definition 6: If x → x∗ with x∗
i = x∗

j = 1
n

∑

i xi(0), then
Eq. (32) is said to solve theaverage consensusproblem.

Theorem 21 ( [41]):Let L be the Laplacian matrix of a
strongly connected graph and letw be a positive vector such
that wT L = 0. Let W be a diagonal matrix withwi on the
diagonal. ThenW−1ẋ = −Lx solves the average consensus
problem.

The special case of vertex balanced graphs, whereW = I,
was solved in [93].

B. Rate of exponential convergence

We say thatx(t) converges exponentially towardsx∗(t) with
ratek if ‖x(t) − x∗(t)‖ ≤ O(e−kt). Since Eq. (31) is linear,
clearlyx converges towardsx∗ with rate at least11 γ(L) which
is positive for interaction graphs with a spanning directedtree.
Sinceγ(L) ≥ a3(L) by Theorem 11, we have the following
result on the convergence rate with respect to the algebraic
connectivity.

Theorem 22 ( [41]): If the graph ofL is strongly connected
then Eq. (31) synchronizes with ratea3(L) > 0.
The special case of Theorem 22 for vertex balanced graphs was
shown directly in [93] using a quadratic Lyapunov function.

When the graph is undirected,γ = λ2 is the algebraic
connectivity of the graph. Thus similar to the algebraic connec-
tivity, when the graph is undirected, adding extra undirected
edges cannot decreaseγ [45], [38]. However, this is not true
for digraphs, using the same example as before. First note
that the Laplacian matrix of an acyclic digraph can always
have its rows and columns be simultaneously permuted to a
upper-triangular matrix, saỹL. Since L̃ has zero row sums,
L̃nn = 0 and thusγ(L) = γ(L̃) = mini<n L̃ii. Thus for an
acyclic graphγ(L) = mini6=j Lii wherej is an index such that

11Or at least arbitrarily close toγ(L), if L has nontrivial Jordan blocks.

Ljj = 0. SinceLii are the indegrees of the interaction graph,
this in particular implies thatγ(L) = 1 if the interaction graph
of L is a tree.

For the directed path graph in Figure 3 with Laplacian
matrix L, γ(L) = 1 since it is a tree and is isomorphic to
its reversal. By adding one directed edge we get the directed
cycle graph in Figure 4 with a circulant Laplacian matrixL

andγ(L) = 1 − cos
(

2π
n

)

(See e.g. [24]).
Thus similar toa4, by adding a single edge,γ changes

from γ = 1 to γ = 1 − cos
(

2π
n

)

which decreases to0 as
O( 1

n2 ). Again this can be explained via the strongly connected
components of these graphs. The discussion in Section V-A
shows that for undirected graphs with bounded vertex degrees,
if the diameter grows faster thanln(n) then γ(L) → 0 as
n → ∞. In addition, we can obtain bounds onγ that depend
on the algebraic connectivities of the SCC’s and the number
of edges between the SCC’s [57], [102].

C. Dynamic coupling topology

In this case the state equations is

ẋ = −(L(t) ⊗ D(t))x + (1 ⊗ u(t))

whereL(t) ∈ W for each timet.
Since this is a special case of Eq. (12), we obtain:
Theorem 23 ( [41]):Eq. (30) solves the agreement prob-

lem with rateinft a1(L(t)).
The special case of strongly connected vertex balanced

graphs for this problem was studied in [93].

D. Discrete-time nonautonomous linear dynamics

Consider the following nonautonomous discrete-time linear
dynamical system:

x(t + 1) = (G(t) ⊗ D(t))x(t) + 1⊗ u(t) (33)

whereu(t) ∈ R
m. We assume thatG(t) is a stochastic matrix

(i.e. a nonnegative matrix whose rows sum to1) and‖D(t)‖ ≤
1 for all t. In this case the maximal distance between thexi’s
is nonincreasing.

Theorem 24 ( [103]):

max
i,j

‖xi(t + 1) − xj(t + 1)‖ ≤ max
i,j

‖xi(t) − xj(t)‖

In order to achieve synchronization, we require that
maxi,j ‖xi(t) − xj(t)‖ → 0 as t → ∞. If the matrix product
G(t)G(t − 1) · · ·G(1) converges to a rank-one matrix of the
form 1cT for some vectorc as t → ∞, then this suffices
to ensure synchronization. This condition has been shown in
the 1960’s to be related to conditions for weak ergodicity of
inhomogeneous Markov chains. The first paper to exploit this
relationship to demonstrate synchronization in Eq. (33) is[92]
and the synchronization criterion is subsequently extended in
[104], [95], [96], [41], [98].

Definition 7: A matrix A is scrambling if A is stochastic
and for each pair of indicesi, j there exist a column ofA such
that thei andj-th entries are both nonzero.

Definition 8 ( [105]): A matrix A is stochastic, inde-
composable and aperiodic (SIA) ifA is stochastic and
limn→∞ An = 1cT for some vectorc.
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Let µ(A) = minj,k

∑

i min(Aji, Aki) be the ergodicity co-
efficient of a matrixA [106]. Note that0 ≤ µ(A) ≤ 1
for stochastic matrices withµ(A) > 0 if and only if A is
scrambling. For a set of matricesS, let Sm denote the set
of products of matrices fromS of length m. We first start
with a fundamental Lemma due to Hajnal and generalized by
Dobrus̆in and Paz and Reichaw:

Lemma 2 (Hajnal’s inequality [106], [107]):If A and B

are stochastic matrices, thenδ(AB) ≤ (1−µ(A))δ(B) where
δ(A) = 1

2 maxi,j

∑

k |Aik − Ajk|.
Using Hajnal’s inequality, the following Lemma can be proved
which slightly generalizes the results in [105], [108]. Although
not explicitly stated in [105], it was discussed in the conclud-
ing remarks12.

Lemma 3:Let S be a set of matrices such that products of
matrices inS are SIA. If infA∈Sm µ(A) > 0 for somem > 0,
then AnAn−1 · · ·A1 with Ai ∈ S converges to a rank-one
matrix of the form1cT asn → ∞.
The following result then follows immediately from Lemma
3.

Theorem 25:Let S be a compact set of matrices such that
product of matrices inS are SIA, thenAnAn−1 · · ·A1 with
Ai ∈ S converges to a rank-one matrix of the form1cT as
n → ∞.

In fact, it is not necessary for every matrixAi to be inS.
It suffices that there are infinitely many long stretches ofAi

in S. In particular, it was shown in [110] that products of at
least 1

2 (3n−2n+1 +1) matrices inS is scrambling. Therefore
we have:

Theorem 26:Let S be a compact set of matrices such that
product of matrices inS are SIA. LetAi be a set of stochastic
matrices. Letsi, ti be two sets of increasing integers such that
si ≤ ti < si+1 ≤ ti+1 for eachi. If for each i, Aj ∈ S for
all si ≤ j ≤ ti and ti − si + 1 ≥ 1

2 (3n − 2n+1 + 1) then
AnAn−1 · · ·A1 with Ai stochastic converges to a rank-one
matrix of the form1cT asn → ∞.

If the matrices inS have positive diagonal elements, then
we can characterizeS via the graphs of these matrices.

Definition 9: Sd is defined as the set of stochastic matrices
with positive diagonal elements.

Theorem 27 ( [96], [57]): For a matrixA ∈ Sd, A is SIA
if and only if the interaction graph ofA contains a spanning
directed tree. IfA, B are SIA matrices inSd, thenAB is SIA.

The next result shows that the bound of1
2 (3n − 2n+1 + 1)

in Theorem 26 can be reduced ton − 1 if the matrices have
positive diagonal elements.

Theorem 28 ( [103]):Let A1, . . . , An−1 be SIA matrices
in Sd. Then the matrix productA1A2 · · ·An−1 is a scrambling
matrix.

The example where

Ai =

















1 1
1 1

1
. . .
. . .

. . .
1

















12See also [109].

for all i shows thatn − 1 is the best possible bound.
Definition 10: Sd(v) is defined as the set of stochastic

matrices with positive diagonal elements where each nonzero
element is larger thanv.

Combining these results we can now prove the following
synchronization result for Eq. (33).

Theorem 29 ( [96], [41], [98]): Let G(k) be the weighted
interaction digraph ofG(k). Suppose there existsv > 0, N >

0 and an infinite sequencek1 ≤ k2 ≤ · · · such that

1) G(k) ∈ Sd(v) for all k;
2) ki+1 − ki ≤ N ;
3) For each i, the union of the graphsG(ki),G(ki +

1), · · · ,G(ki+1 − 1) contains a spanning directed tree;

then Eq. (33) synchronizes.
The constantN < ∞ is important in Theorem 29. The

example in [111] shows that if such anN does not exist,
then it is possible for synchronization to fail among agents.
In other words, it is not sufficient (although it is easy to see
that it is necessary) in order to reach synchronization to have
two sequenceski, ni such that the union ofG(ki),G(ki +
1), . . . ,G(ki + ni) contains a spanning directed tree for alli.
Furthermore, a modification of the example in [111] shows that
the hypothesis in Theorem 29 is sufficient, but not necessary
for synchronization. On the other hand, if each digraphG(k)
is a disjoint union of strongly connected components, then the
constantN is not necessary in Theorem 29, i.e.ki+1 −ki can
be arbitrarily large:

Theorem 30 ( [112]):Let G(k) be the weighted interaction
digraph ofG(k). Suppose each graphG(k) is a disjoint union
of strongly connected components. If there existsv > 0 and
an infinite sequencek1 ≤ k2 ≤ · · · such that

1) G(k) ∈ Sd(v) for all k,
2) For each i, the union of the graphsG(ki),G(ki +

1), · · · ,G(ki+1 − 1) contains a spanning directed tree,

then Eq. (33) synchronizes.
This occurs, for example, ifG(k) (after ignoring the weights

on the edges) are undirected graphs. In particular, there isno
need for a uniform boundN in the results in [92].

Suppose that some of the matricesG(k) are stochastic
matrices that are not SIA, while the rest satisfies Theorem
29, would we still have synchronization? The answer is no,
as the following example indicates. Consider the stochastic
matrices:

A =





1 0 0
0.5 0.5 0
0 0.5 0.5



 , B =





1 0 0
0 0 1
0 0 1





The matrixA ∈ Sd is SIA and system (33) withG(k) = A

synchronizes. However, alternatingG(k) betweenA and B

will not result in a synchronized state sinceBA is a decom-
posable matrix and decouples the agents from interacting with
each other.

On the other hand, Theorems 26 and 28 show that we can
still have synchronization if the matrices that are not SIA are
sparse enough amongG(k).
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E. Follow the leader dynamics and leadership in coordinated
agents

Ref. [92] also considered a follow-the-leader configuration,
where n agents are connected via an undirected connected
graph. An additional agent, the leader, influences some of
thesen agents, but is itself not influenced by other agents.
In other words, the state of the leader is constant. This case
is shown in Figure 2. Since the leader vertex has indegree0,
every spanning directed tree must have the leader vertex as
root. Spanning directed trees exist since the subgraph of the
n agents is strongly connected.

We can generalize the concept of a leader as follows. From
the strongly connected components of a graph, we create a
condensation digraph [42] by associating the SCC to vertices
of the condensation digraph with an edge fromi to j if and
only if there are some edges from thei-th SCC to thej-
th SCC. The condensation digraph does not contain directed
cycles and satisfies:

Lemma 4 ( [41]): The condensation digraphH of G con-
tains a spanning directed tree if and only ifG contains a
spanning directed tree.

Thus whenG contains a spanning directed tree, the unique
SCC which corresponds to the root of the condensation
digraph can be considered a “leading” strongly connected
component (LSCC), with the property that agents in the LSCC
influencing all other agents outside the component, but not vice
versa. WhenG changes with time, the LSCC also changes with
time. It is clear that the roots of spanning directed trees are
equal to the vertices in LSCC.

WhenG does not change with time, an alternative way of
viewing the dynamics is the following. First the agents in the
LSCC synchronize. Their states are then “collapsed” into a
single “leader” state. The agents that the LSCC influences then
synchronize to the “leader” state and are absorbed into the
“leader” state etc, until finally all agents are synchronized.
This reduces the problem to the case of a single leader.

In addition, we can consider a range of “leadership” in the
collection of agents, with the set of root vertices of spanning
directed trees as the leaders in the system. The system can be
considered leaderless if the size of this set (which is equalto
LSCC) approaches the number of agents.

As an application of these results, consider a network of
linear discrete-time dynamical systems where the coupling
topology is generated randomly. In this model, first studiedin
[94], the network at Eq. (33) is considered where the coupling
matrix G(t) is chosen at each iteration from a probability
distribution. Again we assume thatG(t) is a stochastic matrix
for eacht.

Theorem 31 ( [103]):If H is a compact set of stochastic
scrambling matrices such thatP (H) > 0, then the network
synchronizes in probability.
Consider the following (classical) models of random graphs
and random digraphs:

• G(n, p): Each undirected edge is chosen with probability
p. Thus a graph withm edges has probabilitypm(1 −

p)
n(n−1)

2 −m wheren(n−1)
2 is the total number of possible

edges.

• G(n, M): Each graph ofn vertices andM edges is given
equal probability whereas the rest of the graphs ofn

vertices has probability0.
• Gd(n, p): Each directed edge is chosen with probabil-

ity p. A graph with m edges has probabilitypm(1 −
p)n(n−1)−m.

• Gd(n, M): Each digraph ofn vertices andM edges is
given equal probability whereas the rest of the graphs of
n vertices has probability0.

We can connect these unweighted random graph models to Eq.
(33) by associating a stochastic matrixA to each unweighted
graphG such that the graph ofA ignoring the weights is equal
to G. We then have the following Corollaries to Theorem 31:

Corollary 10: If the random graph model isG(n, p) with
p > 0, then Eq. (33) synchronizes in probability.

Corollary 11: If the random graph model isG(n, M) with
M ≥ 2n − 3, then Eq. (33) synchronizes in probability.

Corollary 12: If the random graph model isGd(n, p) with
p > 0, then Eq. (33) synchronizes in probability.

Corollary 13: If the random graph model isGd(n, M) with
M ≥ 2n − 1, then Eq. (33) synchronizes in probability.

If we allow some matrices to have positive diagonal ele-
ments, then the scrambling condition in Theorem 31 can be
relaxed.

Theorem 32:Considernp compact sets of matricesSi ⊂
Sd with Pr(Si) > 0 for each i = 1, . . . , np. Suppose that
if Gi ∈ Si, then the union of the interaction graphs ofGi,
i = 1, . . . , np, contains a spanning directed tree. Then Eq.
(33) synchronizes in probability.
Applying this to the random graph models where we associate
a stochastic matrix inSd to each graph, we obtain:

Corollary 14: If the random graph model isG(n, M) or
Gd(n, M) with M > 0, then Eq. (33) synchronizes in
probability.

F. A nonlinear approach

Recently, an nonlinear approach to consensus problem is
proposed in [97]. In this framework, the system is defined by
the nonlinear equationxi(t + 1) = fi(x1(t), x2(t), . . . xn(t)).
The continuous functionsfi are defined such thatxi(t+1) is in
the convex hull ofx1(t), x2(t), · · · , xn(t) and in the relative
interior of the convex hull when this interior is nonempty.
This can be recast as Eq. (33) as follows. Sincexi(t + 1) is
in the convex hull, it can be written as a convex combination
of x1(t), x2(t), . . . , xn(t), i.e. xi(t + 1) =

∑

j gijxj(t) where
gij are nonnegative numbers such that

∑

j gij = 1. These
numbersgij form a stochastic matrixG(t). In other words,
at each timet a stochastic matrixG(t) can be chosen such
that x(t + 1) = (G(t) ⊗ I)x(t), i.e. Eq. (33) for the case
D(t) = I and u(t) = 0. It is easy to show that the relative
interior condition implies thatG(t) can be chosen to have
positive diagonal elements for eacht. Note that the continuity
of fi is not needed in writing the state equations as Eq. (33).
Another benefit of writing the system as Eq. (33) is that a
lower bound on the convergence rate can be derived using
Hajnal’s inequality, a feature that is absent in the analysis in
[97].
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XI. CONCLUDING REMARKS AND FURTHER READING

Identical synchronization is a very active interdisciplinary
research area with participation from engineers, physicists,
mathematicians and social scientists and we have only at-
tempted to cover a small sampling of this research. As
synchronization is a pervasive phenomenon, we expect this
research to have far reaching applications.

There are other aspects of synchronization which we have
not covered in this paper. We have already mentioned phase
synchronization. Another related concept is generalized syn-
chronization. In identical synchronization, the synchronization
manifold is a linear subspace. By assuming the synchroniza-
tion manifold to be more general manifolds, the concept of
generalized synchronization is obtained [113], [114]. Gener-
alized synchronization can occur when then systems are not
identical.

When the collection of coupled systems is not identically
synchronized, it can still be that subsets of systems are syn-
chronized, forming synchronized clusters. We have mentioned
that if the number of eigenvalues ofG in Eq. (14) isk, then
one has at leastk clusters. In [115], [116], this is studied
using the framework of lattice dynamical systems and the
possible cluster configurations are analyzed and characterized
for several classes of coupling topologies.

Finally, the reader is referred to [117]–[120], [24], [121]for
further reading. A comprehensive list of early papers in this
area can be found athttp://www.ee.cityu.edu.hk/
∼gchen/chaos-bio.html.
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