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Abstract

We introduce an approach for model-based sequence
clustering that addresses several drawbacks of existing al-
gorithms. The approach uses a combination of Hidden
Markov Modeling (HMM) for sequence estimation and Dy-
namic Time Warping (DTW) for hierarchical clustering,
with interlocking steps of model selection, estimation and
sequence grouping. We demonstrate experimentally that the
algorithm can effectively handle sequences of widely vary-
ing lengths, unbalanced cluster sizes, as well as robustness
to outliers.

1 Introduction

Cluster analysis is a way to derive structure from data
by automatically partitioning the data samples into homo-
geneous groups. In model-based clustering, mathematical
models are used to represent the cluster structure, with the
models for each cluster selected to optimize the data fit.
Model-based clustering has been widely used in many ap-
plications, especially those involving complex data. Com-
pared to distance-based clustering, model-based methods
can provide better interpretability [19] and richer represen-
tation of the data. Some models that have been found use-
ful for model-based clustering of data sequences include
Markov and Hidden Markov Models (HMMs), among oth-
ers. HMMs are an extension of Markov models in observa-
tions are probabilistic functions of the states, but for which
the states cannot be observed directly. HMMs are partic-
ularly attractive for the clustering of time series, or more
generally, sequence data, for two reasons. First, they rep-
resent a formal probabilistic model with solid mathematical
foundations, with available efficient and well-defined algo-

rithms for inducing HMMs from a set of sequences [14].
Second, the hidden states in HMMs provide a compact and
easy-to-interpret representation of the underlying “stages”
in a dynamic process. Even though the exact sequence of
states behind each generative process cannot be observed, it
can be estimated by studying the observable output of the
system. Because of these desirable properties, HMMs have
been successfully used to model a wide variety of time se-
ries arising from real-world applications including speech
recognition[14, 8], protein sequencing [11], computational
molecular biology [1], handwriting recognition[7] and hu-
man gesture recognition [2].

However, while well known algorithms exist to induce
HMMs from a set of time series data [14], these algorithms
do not directly address the problems of clustering the time
series: they simply attempt to fit a single model that best
accounts for all of the data, regardless of whether it was
generated by one or multiple underlying processes. Clus-
tering time series data using HMMs is a very different and
much more complex task: it involves the difficult tasks of
estimating the number of homogeneous clusters, or under-
lying processes, as well as the number of states representing
the process that generated the data in each cluster.

Early work on HMM based sequence clustering focused
on speech recognition [15, 10, 5] and assumed that the
number of states in the models is known before cluster-
ing (e.g., pre-defined by linguistic experts). Also, cluster-
ing results in most of these systems are evaluated and se-
lected based on the amount of improvement in recognition
accuracy achieved by the models. Other methods for clus-
ter number selection were later proposed by Smyth [18],
who used Monte-Carlo cross validation, Oates et. al. [13],
who used an initialization process based on Dynamic Time
Warping and hierarchical clustering, and Schliep et. al.
[16], who used a splitting criterion based on cluster size.



However all of these systems still assume that the number
of states is known beforehand and fixed for all clusters.

More recently,Li et. al.[12] proposed a more general
clustering methodology called Matryoshka, which does not
assume that the number of states in the HMMs are known
beforehand or fixed for all clusters. The method is a top
down approach which starts by assigning all sequences to
one cluster fitted by a single state model, then iteratively
increase the number of states as well as the number of clus-
ters. Both the partition size (number of clusters) and model
sizes (number of states) are determined using a Bayesian
Information Criteria (BIC) based measure. The BIC mea-
sure is used to ensure that the HMMs generated are accurate
representations of the data, and at the same time are mean-
ingful abstracts that are easy to interpret, e.g., not overtly
complex.

While Matryoshka demonstrates a more general frame-
work allowing the objective, data-driven determination of
both model and partition sizes in HMM-based sequence
clustering, there are several drawbacks in the methodology
which hinder its application in many real-world situations.
First. the method assumes that all sequences are of equal
length. Second, to generate new clusters, the method uses
a simple approach of initializing a new cluster using the
sequence that is farthest from the existing models. Since
the expectation-minimization (EM) style iterative proce-
dure used to refine the models at each stage is highly sensi-
tive to the initial condition, this simple approach makes the
method unstable when the data contains unbalanced clusters
(clusters of very different sizes), or outliers (singletons or
very small clusters). Finally, the method provides no mech-
anism to handle outliers or noise in the data: it attempts to
account for all the data with HMMs. Because of the lat-
ter two factors, Matryoshka tends to get “distracted” in the
presence of highly unbalanced clusters or outliers, resulting
in sub-optimal models.

In this paper we present a new algorithm for HMM-based
sequence clustering designed to address these problems.
While we also adopt a top-down iterative approach, our al-
gorithm differs from Matryoshka in three important aspects.
First, a normalized BIC measure is adopted to allow for se-
quences of varying lengths. Second, a mechanism called
the outlier pool is introduced to dynamically identify and
handle outliers throughout the clustering process. Finally,
we provide a more sophisticated methodology for creating
and initializing new clusters. Whenever the partition size is
to be increased, the candidate cluster for splitting is iden-
tified based on a goodness-of-fit evaluation for all existing
models. Then, Dynamic Time Warping (DTW) combined
with hierarchical clustering is used to initialize the two new
clusters.

DTW is a dynamic programming algorithm designed to
minimize the dissimilarity/distance between any two given

sequences, even those of very different lengths or stage pro-
gressions. It efficiently searches for the optimal mapping
between the points in the two sequences that minimizes
the accumulated point-wise distance and then returns this
distance as the dissimilarity measure between the two se-
quences. In our algorithm, DTW is used to provide ini-
tial splits generating new clusters. HMM estimation is then
used for model-based refinement of clusters, allowing for
a pool of potential outliers that are not explicitly modeled.
Experimental results demonstrate that this new methodol-
ogy, combined with the outlier pool, effectively improves
the robustness of the clustering results.

DTW was also used by Oates et. al. in sequence-based
clustering [13]. However, in their system, DTW was ap-
plied once to identify all clusters, which were then adjusted
and refined using HMMs with known number of states. In
contrast, our method interleaves DTW into every step of a
top-town, model-based clustering scheme that searches for
the optimal number of clusters and optimal number of states
for each cluster in an iterative manner guided by a normal-
ized BIC measure.

The rest of this paper is organized as follows. In Section
2, we present details of our algorithm. Experimental results
are presented in Section 3. Section 4 concludes.

2 The Interleaved HMM/DTW Algorithm

Suppose we have a set of N sequences (samples) of vary-
ing lengths: X = (x1, · · · , xN ). We assume that a major-
ity of the sequences were generated by an unknown num-
ber of HMMs, each representing a “dominant” underlying
regime in the data. By “dominant” we mean it represents a
significant number of sequences. However, the number of
sequences represented by each dominant regime may vary
widely (i.e., the corresponding clusters maybe highly un-
balanced). We further assume that the data may contain out-
liers, or sequences that do not belong to any of the dominant
regimes. The goal of the clustering algorithm is to iden-
tify the clusters that correspond to these dominant regimes,
along with the underlying models that characterize the se-
quences in each regime.

This clustering problem can be viewed as a model-fitting
problem, where, given a set of data assumed to come from
a mixture of models, we attempt to find the best estimate
of the model parameters such that they lead to maximum
likelihood of the data. The challenge is how to solve the
nested problems of identifying the “right” number of clus-
ters, and given a cluster, the “right” model size for the clus-
ter. We adopt a top-down approach, where we start with the
minimal size for both model and partition, and increment
them in an estimation-maximization (EM)-like procedure
until a certain “goodness” measure is reached. Here, we
use a Bayesian Information Criterion [17] based measure
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Table 1. Outline of the clustering algorithm
Assign all sequences to one cluster.
Apply Model Construction to the cluster.
Sample Reassignment/Outlier Detection.
Compute normalized partition BIC measure.
while BIC measure for current partition > BIC measure

of previous partition:
Partition Growing.
Apply Model Construction to each new cluster.
Sample Reassignment/Outlier Detection.
Compute normalized BIC for current partition.

end while
Accept the previous partition as the final partition.

Table 2. The Partition Growing Module

Identify the cluster with smallest normalized likelihood.
Compute DTW-based distance matrix, D.
Split the cluster based on D.

to assess model goodness, which provides a nice trade-off
between model parsimony and maximization of the likeli-
hood.

Tables 1–3 give a high-level outline of our clustering al-
gorithm. In the following sections we explain in detail the
three key components of this algorithm: model and parti-
tion size selection, partition growing, and outlier handling.

2.1 Normalized BIC for state and partition size
selection

The Bayesian Information Criterion (BIC) was first pro-
posed as a criterion for model selection when fitting a mix-
ture model in a Bayesian framework. It was derived from
an asymptotic approximation formula proposed by Schwarz
in 1978 [17]. The basic definition of the BIC measure given
a mixture model M and data set X is:

BIC(M, X) = log{P (X |M, θ̂)} − d

2
log(N), (1)

where θ̂ denotes the maximum likelihood estimate of the
model parameters, d is the number of free parameters in the
model, and N is the number of data samples in X . The first
term in the formula is the likelihood term, which tends to fa-
vor larger and more detailed models, while the second term
is the model complexity penalty term, which favors simpler
models. Thus BIC has the effect of selecting a good, yet
parsimonious model for the data by trading off the contri-

Table 3. The Sample Reassignment/Outlier
Detection Module

repeat
Compute the acceptance threshold for each

model using Monte Carlo simulation
For each sequence xi, identify

model j having maximum likelihood;
If likelihood > acceptance threshold

then assign xi to cluster j
Otherwise assign xi to outlier pool.

Apply Model Construction to each cluster with
changed membership

until no more change of cluster membership

butions of these two terms. terms. Over the years, vari-
ous forms of the BIC measure have been used successfully
in many different clustering applications [6, 3, 4], however
most of these applications have involved clustering of static
data points as opposed to sequences.

Li et.al.[12] adopted the BIC measure for sequence clus-
tering and demonstrated that it can be effectively used to
determine both the number of clusters and the number of
hidden states represented by the sequences in each cluster.
However, their formulation of the BIC measure failed to ac-
commodate for differences in sequence lengths, as the like-
lihood function of each sequence was used directly in the
likelihood term of the BIC measure, without any normal-
ization.

While this straightforward adaptation works well for se-
quences of fixed length, as demonstrated in [12], it is prob-
lematic when the sequences are of widely varying lengths.
Because of its cumulative nature, the likelihood of a se-
quence tends to be lower for longer sequences. Thus BIC
measures using likelihoods not normalized to account for
sequence length are biased towards longer sequences.

To correct for this bias, we normalize the BIC measure
by dividing the first term by the the length of the sequence,
and adding a regularization factor α (roughly the reverse of
the average sequence length) to the penalty term, resulting
in what we call a normalized BIC measure.

For model λk with parameters θ̂k estimated from cluster
Xk, the normalized model BIC measure is defined as:

BIC(Xk, λk) =
Nk∑

j=1

log P (xkj |λk, θ̂k)
|xkj |

−α × dk

2
log Nk, (2)

where xkj is the jth sequence in cluster Xk, |xkj | is its
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length, and P (xkj |λk, θ̂k) is the likelihood of the sequence.
Similarly, for a given partition M containing K clusters,

the partition BIC measure is defined as:

BIC(X, M) =
N∑

i=1

K∑

k=1

Pik
logP (xi|λk, θ̂k)

|xi|

−α × K +
∑K

k=1 dk

2
log Nk (3)

where Pik is 1 if sample xi is in cluster k and 0 other-
wise.

The process of state size selection is embedded in the
Model Construction algorithm referred to in Table 1. The
algorithm starts with a single state and increases the number
of states by one at each iteration. until the BIC measure
begins to decrease.

Similarly, to choose the number of clusters, the algo-
rithm starts from one cluster and keeps increasing the num-
ber of clusters until the partition BIC measure computed by
equation 3 begins to decrease (as shown in Table 1).

2.2 Outlier handling

Outliers in the context of model-based clustering refer to
objects that do not belong to any of the dominant underlying
clusters. Most likely these objects have been generated due
to system anomaly or noise and therefore are not of primary
interest.

Outliers are very common in real world data and can
cause serious difficulty in model based clustering. First,
mixing outliers in a “legitimate” cluster leads to the “con-
tamination” of the model. Second, even if the algorithm
is capable of isolating the outliers, they lead to a diversion
of the model parameter resource. Thus very often, when
there are outliers, a model based clustering algorithm that
attempts to account for all data with models will only iden-
tify the outliers at the expense of failing to isolate some of
the dominant regimes.

To resolve this problem, we introduce a mechanism
called the outlier pool, detailed in Table 3. Sample Re-
assignment/Outlier Detection module in Table 3. Instead
of attempting to account for all sequences with HMM mod-
els, we allow each model to reject a sequence whose likeli-
hood is too low. A sequence that is rejected by all current
models is placed in the outlier pool. The outlier pool is a
special “garbage” cluster which is not modeled. To be more
specific, no model is estimated from the outlier pool, and
members of the outlier pool do not enter into the BIC mea-
sures. Note that this outlier pool is dynamic: objects can
enter into or exit from the outlier pool as the clustering al-
gorithm proceeds.

The threshold used to determine whether a sequence
should be accepted or rejected by a model is selected based

on the expected likelihood of each model, estimated using
Monte Carlo simulation. For each model, 500 sequences
are generated according to the model parameters. Then the
normalized likelihood of each sequence against the given
model is computed and the average is taken as the expected
likelihood of the model.

2.3 Partition growing using DTW

As shown in Table 1, the algorithm starts with one clus-
ter and incrementally grows the number of clusters until the
partition BIC measure reaches a maximum point. For each
given number of clusters, the initial set of clusters and mod-
els are adjusted using an EM procedure as outlined in Ta-
ble 3, Sample Reassignment/Outlier Detection. Since the
EM algorithm will only converge to a local optimal point,
its outcome greatly depends on the initial partition. Thus a
crucial step in a top-town model based clustering algorithm
is the initialization of a new cluster from an existing set of
clusters.

One possible strategy is to seed the new cluster with the
data sample that is “least fit”, i.e., farthest away from all
current models (e.g., the method adopted in [12]). While
this works reasonably well for clean data, it is sensitive to
outliers. When there are outliers in the data, the data sample
that is farthest away from all models is very likely an outlier.
Thus using this strategy the cluster growing process tends to
be dominated by outliers.

We have adopted a more robust alternative. Instead of
evaluating each individual sequence for fitness, each cluster
is evaluated as a whole. The cluster with the lowest average
likelihood is identified as the candidate for splitting. The
assumption is that the cluster with the lowest likelihood is
most likely to be a composite cluster whose model is an
average of the true underlying models.

3. Experiments

Synthesized data were generated to systematically eval-
uate our algorithm and compare it’s performance with that
of other methods, in particular for clusters of discrete-
values, left-to-right HMMs estimated using segmental k-
means training. Discrete HMMs constrained to transition
only from left to right have proven to be particularly suit-
able for many real world applications [14] and segmental k-
means training is a standard estimation technique. It should
be noted, however, that the approach is not predicated on
these choices: the algorithm and the analysis apply to more
general HMMs and different choices of HMM training tech-
niques as well.
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3.1 Data description

To generate a synthesized data set, we specify the param-
eters of the HMM represented in each cluster, along with the
number of clusters and their sizes and generate the desired
number of sequences generated. Singleton clusters or clus-
ters with a small number of samples are used to simulate
outliers.

Clearly the level of difficulty in clustering a synthesized
data set depends on the pair-wise distances between the
generating HMMs. A number of distance measures have
been developed to compare different HMMs. Here we use
a slightly modified version of the symmetrized similarity
measure (SSM) proposed by Juang and Rabiner [9]. Given
two HMM’s λ1 and λ2, the SSM between these two models
is defined as:

D(λ1, λ2) =
(L(O2|λ1) − L(O1|λ2)) + (L(O1|λ2) − L(O2|λ2))

2
, (4)

where Oi is a set of observation sequences generated by
model λi and L(Oi|λj) is the average normalized log-
likelihood of sequences in Oi given model λj . It is es-
sentially a measure of how well each model matches data
generated by the other model compared to data generated
by itself, and is always negative, with a larger number indi-
cating more similar models.

The HMMs used to generate our synthesized data are
discrete, left to right models as specified in section 2.1.
Each model has two or three states. To generate differ-
ent emission probability distributions, we first generated
6 normal distributions with deviation of 0.5 and means of
i ∗ 2.0, 1 ≤ i ≤ 6. We then calculated the probabilities for
each 1.0 interval between 0.5 and 12.5 for each distribution,
arriving at 6 distinct discrete probability distributions for 13
symbols. The emission probability distributions for all gen-
erating HMMs are selected from these 6 distributions. The
distance between any two HMMs is controlled by the num-
ber of states that that have shared emission probabilities and
the self-transition probabilities of these states.

Instead of using a fixed length for all sequences as in
previous methods [18, 13, 12], we allow the length of the
sequences to vary, to more closely simulate the situation in
most applications. Since the HMMs are left-to-right mod-
els with a forced initial and final state, the expected se-
quence length for each model is essentially determined by
the self-transition probabilities for the states. We adjusted
these transition probabilities such that all models have an
expected sequence length of 50, and allowed individual se-
quence lengths to vary between 30 and 100.

Two synthetic data sets were used in our evaluations,
generated using 10 HMMs. Models 1 to 5 (referred to as
major models) were used to generate dominant regimes and

models 6 to 10 (referred to as noise models) were used to
simulate outliers. Each pair of HMMs has 0 to 2 shared
states, and the SSM measure ranges from −2.1 for models
that are very close to each other, to −5.8 for models that
are further apart. For both data sets, the sizes for the major
clusters are 100,60,30,30,10 respectively. For outliers, the
first data set has 5 singletons while the second one has 5
minor clusters with sizes 4,3,2,1,1.

3.2 Performance Measures

We use two performance measures to quantitatively mea-
sure the performance of our clustering algorithm. The first
is the Partition Misclassification Count (PMC), proposed by
Liat.al.[12]. This measure is a weighted sum of all different
types of object misclassifications that occur in the derived
partition. The smaller the count, the closer the derived parti-
tion is to the true partition and thus more accurate the clus-
tering algorithm. While this measure can provide a good
comparison between two different algorithms, it is some-
what difficult to interpret.

We thus propose another performance measure, the Dif-
ference of Concordance Matrix (DCM), which measures the
mismatch between the true and derived partitions. Given a
set of N objects, the concordance matrix C is a 0-1 N ×N
matrix where cij = 1 if the ith and jth objects are in the
same cluster and cij = 0 otherwise. The DCM measure is
then defined as:

DCM =
eT (|Ct − Cd|)e

eT Cte
(5)

where e is vector of ones, Ct and Cd are concordance ma-
trices for the true and derived partitions, respectively, and
| • | denotes the component-wise absolute value of a matrix.
Values of DCM range from 0 to 1 with 0 indicating a perfect
match and 1 indicating a complete mismatch.

3.3 Experimental results

We evaluated our algorithm using the two synthetic data
sets described in Section 3.1, and compared the results to
those obtained using the Matryoshka algorithm developed
by Liet.al. [12]. Table 4 shows the performance measures
of both algorithms. As can be seen from the table, our algo-
rithm significantly outperforms the Matryoshka algorithm
in both measures for both data sets.

Looking in more detail for data set 2, we found that
100% of sequences from Models 1 and 5 were clustered
correctly, while 5 sequences (of 10 total) from Models 6, 9,
and 10 (the outlier clusters) were mixed in with major clus-
ters from Models 2,4,and 5, respectively. The remaining
outlier sequences were identified correctly.
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Table 4. Performance comparison

PMC measure DCM measure
Matryoshka HMM/DWT Matryoshka HMM/DWT

Set 1 126 16 0.478 0.083
Set 2 122 10 0.413 0.026

In contrast, the Matryoshka algorithm produced a total of
8 clusters, yet failed to isolate all of the major groups: the
algorithm was unable to distinguish sequences generated by
Models 2 and 3, grouping 55 (of 60 total) sequences from
Model 2 together with the 60 sequences from Model 3. An-
other identified cluster was spurious, consisting sequences
from Models 2 and plus four outlier sequences.

4 Conclusions and Future Work

In this paper, we have introduced refinements to existing
HMM-based clustering schemes to address important short-
comings. In particular, we interleave clustering based on a
DTW-based distance measure with an HMM model-based
approach. Our model-based approach allows for objective
selection of both the number of clusters and the number
of HMM states represented by sequences within a cluster
using a normalized BIC measure, which can accommodate
sequences of widely varying lengths and clusters of widely
varying sizes. Our approach also allows for identification
of outlier sequences in such a way that they do not detract
from the identification of the major clusters. Experimental
results with synthetic data show that these adaptations pro-
vide dramatic improvement in the cluster performance mea-
sures, such as the Partition Misclassification Count (PMC)
and the Difference of Concordance Matrix.

Several open questions remain. First, what is the impact
of the particular HMM model fitting algorithm on the clus-
ter results? Here, we have applied a Viterbi algorithm for
model fitting, but the Baum-Welch algorithm could also be
used. Second, does the improved performance carry over to
the case of continuous HMM and/or unconstrained HMM
models? Finally, we would like to understand how ex-
plicit modeling of the state durations impacts the final clus-
ter results, compared to characterizing durations implicitly
through the HMM transition probabilities. Better under-
standing of these issues will aid in identification of appli-
cations where the proposed technique will be most useful.
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